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Is EMG a viable alternative to BCI for detecting
movement intention in severe stroke?

Sivakumar Balasubramanian, Eliana Garcia-Cossio, Niels Birbaumer, Etienne Burdet*,
and Ander Ramos-Murgialday*

Abstract—Objective: In light of the shortcomings of cur-
rent restorative brain computer interfaces (BCI), this study
investigated the possibility of using EMG to detect hand/wrist
extension movement intention to trigger robot-assisted training in
individuals without residual movements. Methods: We compared
movement intention detection using an EMG detector with a sen-
sorimotor rhythm based EEG-BCI using only ipsilesional activity.
This was carried out on data from 30 severely affected chronic
stroke patients from a randomized control trial using an EEG-
BCI for robot-assisted training. Results: The results indicate the
feasibility of using EMG to detect movement intention in this
severely handicapped population; probability of detecting EMG
when patients attempted to move was higher (p < 0.001) than at
rest. Interestingly, 22 of the 30 (or 73%) patients had sufficiently
strong EMG in their finger/wrist extensors. Furthermore, in
patients with detectable EMG, there was poor agreement between
the EEG and EMG intent detectors, which indicates that these
modalities may be detecting different processes. Conclusion: A
substantial segment of severely affected stroke patients may
benefit from EMG-based assisted therapy. When compared to
EEG, a surface EMG interface requires less preparation time, is
easier to don/doff, and is more compact in size. Significance: This
study shows that a large proportion of severely affected stroke
patients have residual EMG, which yields a direct and practical
way to trigger robot-assisted training.

Index Terms—Stroke, EMG, BCI, Neurorehabilitation, Move-
ment intention

I. INTRODUCTION

FOLLOWING a stroke, intense movement training can
promote sensorimotor recovery in the upper-extremity

(UE) [1]–[5]. A critical factor driving motor improvements
is the patient’s active participation during therapy [6], [7],
which can be maximised by encouragining patients to use their
residual movement capability during training [8]. However,
such approaches will not work for patients with no residual
movements. Instructing such severely impaired patients to
concentrate on movement training or imagery does not ensure
that they actually focus on planing and preparing movements
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adequately. Ideally, one would observe neural activity, extract
signatures of movement intention, and use that as a trigger
to provide assisted movement, the contingent feedback, and
reward. This is the rationale behind any neurorehabilitation ap-
proach using restorative BCI [9]–[11], which aims to actively
engage severely affected patients in training. A restorative BCI
system uses EEG, MEG or invasively recorded brain activity
to detect movement intention and controls a robot that drives
the affected limb [12]–[20]. EEG-BCI systems have generally
used motor imagery or movement attempts to measure event-
related desynchronisation (ERD) of the sensorimotor rhythm
(SMR) [14], [17] to detect movement intention; a recent study
has also used slow cortical potentials and the Bereitschafts
potential [16].

Several studies have demonstrated the feasibility of BCI
systems for robot-assisted rehabilitation [12]–[20], and pro-
vided evidence for its effectiveness to reduce impairments
and improve the sensorimotor function [21]. However, several
factors prevent its routine clinical application:

1) EEG’s low information rate [22], poor signal-to-noise
ratio, and large trial-to-trial variability [23] mean that
the reliable movement intention detection sometimes
requires delays. Given the precise timing requirements
for Hebbian learning mechanisms in the context of the
BCI literature [24], variable delay between intention,
movement and feedback may impede learning.

2) EEG-BCI system design for movement intent detection
in stroke survivors can be difficult due to variable reor-
ganisational processes in motor areas over time. An EEG
signature providing reliable feedback at one time period
may change during subsequent periods.

3) Current EEG systems are cumbersome for everyday use
and require a long preparation time.

In view of these difficulties with EEG-BCI to trigger
robot-assisted movements, we propose inferring the pres-
ence/absence of movement intention (for on/off control) in
severely affected stroke patients through a binary decoder
using EMG from the muscles typically involved in a target
movement. A binary decoder detects the presence or absence
of intention and can be used for assisted movements through
on/off control (e.g. [14], [25]). A continuous decoder esti-
mates the level of effort from the subject and uses that to
continuously modulate the assisted movement [26]–[28] (e.g.
control the velocity of specific degrees-of-freedom). In this
context, the main advantage of a binary decoder with on/off
control over the continuous decoder is when the intent related
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signal has a lot of variability. Here, a continuous decoder
would require more filtering to produce an accurate and
smooth control signal to execute assisted movements, which
will proportionally increase the delay between intention and
movement execution. On the other hand, a binary decoder with
some temporal-filtering might suffer less from this issue.

Most existing work in EMG-based therapy protocols have
been typically carried out on patients with some residual
movements, with the exception of [29] and [16]. DiPietro et.
al [29] recruited three severely affected patients for an EMG-
triggered robot-assisted therapy study, one of whom had no
residual movement but some residual EMG in UE muscles
that could be used for triggering assisted movements [29].
Bhagat et. al [16] studied two severely affected stroke patients
without residual movements, who had some EMG, which was
used to gate the EEG-BCI detector’s output. However, it is
currently not clear if EMG-triggered assisted therapy is a
viable option for severely affected stroke patients with no
residual movement.

Recently, we had investigated the ability of UE surface
EMG for decoding different movements in 41 severely affected
stroke patients [30]. Patients performed different bilateral
UE movements (e.g. shoulder flexion, elbow extension, wrist
extension, etc.), while EMG from both UE was recorded from
several muscles. None of the 41 patients were able to extend
their wrist or fingers, about 85% of them could not extend the
elbow, and 70% could not flex or rotate the shoulder. The EMG
data was used to classify these different movements using
an artificial neural network. We observed that the hand/wrist
movements could be decoded correctly with at least 65%
accuracy in about 21% of the 41 stroke patients [30]. The
current work extends [30] by specifically investigating the
feasibility of using EMG as an on/off control for triggering
robotic assistance for hand therapy. In particular, it attempts to
answer questions about: (a) the proportion of severely affected
stroke patients that could benefit from an EMG triggered
assisted training, and (b) how well an EMG detector agree
with a EEG-BCI detector on movement intention.

In our previous study [14], [30], we had evaluated an EEG-
BCI to trigger robot-assisted movements in severely affected
stroke patients with no visible finger extension. A majority
of these patients had residual EMG in the finger extensors
that improved with therapy. While this muscle activity may
not be suitable for continuous control of robotic assistance,
we hypothesized that it can be used as an on/off trigger
for robot-assisted therapy. In order to test this hypothesis,
we analysed the EMG activity from the forearm muscles of
all study participants from [14]. We also used this data to
compare the agreement between EMG and EEG-BCI-based
motion intention detection.

II. METHODS

The EMG and BCI data analysed in this study were col-
lected as part of a previously published randomised controlled
trial evaluating the effectiveness of BCI for chronic stroke
rehabilitation in 32 severely affected patients [14]. The study
was carried out at the University of Tübingen, Germany and

TABLE I
Demographic data and Fugl-Meyer assessment (FMA), at the time of

enrollment, for the patient groups. Motor part of the modified
upper-limb cFMA (hand and arm parts combined having a maximum

score of 54 points); F - female; M - male; L - left; R - right.

Group Experimental Control
Gender 9M/7F 9M/5F

Age (yrs) 49.3±12.5 50.3±12.2
Time since

stroke (months)
66±45 71±72

Lesion side 8R/8L 8R/6L
cFMA scores 11.15±6.92 13.28±10.71

Fig. 1. Schematic of the EMG amplitude estimator and detector.

was approved by the ethics committee of the Faculty of
Medicine [14]. The details of the study participants are listed
in Table I; two patients in the control group we excluded
after recruitment as they did not satisfy the inclusion/exclusion
criteria.

We investigated robot-assisted therapy for the arm and hand
triggered by movement intention detected from an EEG-BCI
system [14]. The BCI system was a two-state detector that used
the ipsilesional SMR to detect an intention to move. In the
experimental group, robotic assistance was contingent upon
the BCI detection of movement intention. In the control group
it was random, and uncorrelated to the BCI output. In the
experimental group, movement intention was detected from a
desynchronisation in the SMR, which produced a binary output
every 40 ms. When the five consecutive detector outputs were
the same, then a command was sent to the robot to either
assist or stop hand movements. In the control group, the BCI
detector output changed state every 40 ms with a probability
of 10% and if the last five consecutive outputs of the BCI
detector were the same, the robot was commanded either to
assist or stop hand movements.

During the BCI triggered robot-assisted training, EMG from
the following four UE muscles were recorded bilaterally: (1)
extensor carpi ulnaris (2) extensor digitorum (3) long head of
the biceps (flexion) (4) the external head of the triceps [14].
The current study did not make use of the raw EEG data,
but only used the binary output of the SMR-based EEG-BCI
two-state detector.

A. EMG-based movement intention detector

An algorithm was implemented for detecting EMG signals
in the forearm muscles (extensor carpi ulnaris and extensor
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digitorium) of the affected limb during the BCI robot-assisted
therapy sessions. This EMG detector worked on the assump-
tion that in the “rest” state there is negligible EMG activity
in the target muscles, while in the “move” state there will be
more EMG activity. There are various possible approaches to
design an EMG activity detector [31], but we implemented a
simple Hodges detector [32] as described below.

The raw EMG data (sampled at 500 Hz) was first bandpass
filtered (forward and backward) using a fourth order Butter-
worth filter with cut-off frequencies 10 Hz and 225 Hz. The
EMG amplitude for the two channels (extensor carpi ulnaris
and extensor digitorum) were estimated every 40 ms using the
root mean square amplitude on a 200 ms window. Let,

a(n) = [a1(n), a2(n)]
T
, 0 ≤ n < Nt

represent EMG amplitude data from a given trial, where ai(n)
is the amplitude estimate of the ith EMG channel at time index
n, and Nt is the total number of data points in a trial.

The EMG detector was trained using the last 2 sec of “rest”
state data (Fig. 1) by estimating the mean µi and standard
deviation σi of the EMG amplitudes of the individual channels
for a trial:

µi =

∑N2−1
n=N1

ai(n)

N2 −N1
; σi =

[∑N2−1
n=N1

[ai(n)− µi]
2

N2 −N1 − 1

] 1
2

(1)

µi and σi correspond to the mean and standard deviation
of ai(n) in the “rest” state, N1 and N2 are the indices
corresponding to the start and end of the last 2 sec of “rest”
state data. Data from the first 1 sec from the “rest” state was
ignored because it could still contain EMG from the previous
trial as the patient relaxes. The mean and standard deviation for
the individual channels were then used to define the amplitude
threshold that determined the presence or absence of EMG in
channel i:

τi = µi + 2σi, i ∈ {1, 2} (2)

The detector first used a simple rule to generate a binary output
Ĩ(n), which was set to 1 if (at least) one of the channels had
activity above the threshold, i.e. a1(n) > τ1 or a2(n) > τ2,
else it was set to 0. The movement intention IEMG(n) ∈
{0, 1} was then obtained after performing a temporal-filtering
on Ĩ(n), same as the one used with the EEG-BCI detector.
At any given time instant n, IEMG(n) was set to 1 if the last
5 consecutive values of Ĩ(n) were 1, and it was set to 0 if
the last 5 consecutive values of Ĩ(n) were 0, else it was set
to IEMG(n − 1); the inital value of IEMG(n) was set to 0
(IEMG(0) = 0).

B. Statistical Analysis
The data from every trial corresponding to hand opening

movements in all training sessions were analysed using the
EMG detector to estimate IEMG(n) (where n indicates time
instant). The EMG (IEMG(n)) and EEG-BCI (IBCI(n))
based movement intentions were used to answer the following
two questions:
Q1: Do stroke patients with no visible hand movements

produce movement related surface EMG in their hand
muscles during the “move” state?

Q2: Do movement intentions detected by EMG (IEMG) and
the EEG-BCI (IBCI) detectors agree with each other?

The first question was investigated by comparing the mean val-
ues of IEMG(n) in the “rest”

(
pRest
EMG

)
and “move”

(
pMove
EMG

)
states, which can be interpreted as the probability of detecting
EMG in these states, respectively. If EMG activity is detected
when the patient is attempting to open the hand, then pMove

EMG

would be greater than pRest
EMG. The mean values of pMove

EMG and
pRest
EMG from all trials across all sessions were estimated for

all 30 patients and compared using the Wilcoxon signed-rank
test at 1% significance level [33].

The second question was investigated by estimating the
Cohen’s Kappa (κ) agreement statistic [34] between IEMG(n)
and IBCI(n) in the “move” state for each individual patient.
The joint probability distribution of both EMG and BCI detec-
tor outputs P (IEMG, IBCI) for a patient was first estimated;
the data from all trials for each patient was used for this
purpose. Following this, the overall κ was computed using

κ =
po − pe
1− pe

(3)

where po = P (1, 1) + P (0, 0) is the observed probability of
agreement between the EMG and BCI detectors, and pe is the
hypothetical probability of agreement

pe = P (1, ·)× P (·, 1) + P (0, ·)× P (·, 0) (4)

where ‘·’ indicates that the joint probability is summed across
that particular variable resulting in a marginal probability; for
instance, P (1, ·) is the marginal probability of IEMG = 1.
It should be noted that κ = 1 indicates complete agreement
while κ = −1 complete disagreement.

III. RESULTS

An example of the EMG amplitude estimator and detector
outputs along with the BCI output are shown in Fig. 2. The
dotted vertical line separates the “rest” (left of the dotted line)
and “move” (right of the dotted line) states. The EMG detector
was trained on two seconds of data immediately preceding the
dotted line, while the entire trial data was then run through
the detector to identify the presence of EMG. Unlike the
EMG detector output which can be non-zero in both “rest”
and “move” states, the BCI detector’s output was suppressed
during the “rest” state [14], and thus its output was uniformly
zero in this state. The two plots in Fig. 2 show two trials with
good (bottom plot) and poor agreement (top plot) between the
EMG and BCI detector outputs in the “move” state.

A. Is there a detectable EMG that can characterise movement
intention in severe stroke patients?

The mean value of the EMG detector’s output in the
“rest”

(
pRest
EMG

)
and “move”

(
pMove
EMG

)
states were compared

to identify the presence of movement intention-related EMG
in severe stroke patients. The summary plot of the parameters
pRest
EMG and pMove

EMG evaluated from the entire dataset from all
patients, across all hand training sessions, is shown in Fig.
3. Overall, the mean probability of detecting EMG in the
“move” state was found to be higher than that in the “rest”
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Fig. 2. Sample outputs of two hand opening trials showing the amplitude estimates from the EMG channels, along with the EEG-BCI
and EMG detector outputs. The top plot shows a case where there is poor agreement between EMG and BCI detectors, while the
bottom plot is a case where there is good agreement.

state (Wilcoxon singed-rank test: p < 0.001;NEMG = 30);
NEMG = 30 corresponds to the 30 study participants.

For a given trial, the EMG detector used data from the “rest”
state to estimate the thresholds (τi) for detecting EMG. Thus,
even if there is no EMG in the “move” state, pMove

EMG may
be higher than pRest

EMG because the “move” state data was not
used to estimate the thresholds. In order to get an estimate of
the difference one could expect due to chance, between pRest

EMG

and pMove
EMG, a set of simulated data was generated and analysed

using the same EMG detector. The details of this analysis are
provided in Appendix A. The detector’s performance on this
noise data was captured by two parameters, pRest

Noise and pMove
Noise.

As seen in Fig. 3, even for the simulated noise data the prob-
ability of detecting signal above threshold was higher in the
“move” state compared to the “rest” state (Wilcoxon singed-
rank test: p < 0.001;NNoise = 30). Moreover, the probability
of detecting EMG was also higher than that of noise (Wilcoxon
rank-sum test: p < 0.001;NEMG = 30, NNoise = 30)1

indicating that the difference between the “rest” and “move”
states for EMG was more than that could be expected due to
chance. These results indicate there was residual intent-related
surface EMG in these severely affected patients during the
“move” state, and suggests that EMG is a viable solution for
detecting movement intention in severe stroke patients.

Although Fig. 3 provides an overall summary of the

1NEMG and NNoise are the sample sizes for the EMG and noise data.

differences between the “rest” and “move” states, it does
not provide any information about individual patients across
different sessions. This information is provided in Table II,
which displays the mean values of pRest

EMG and pMove
EMG for

the individual patients estimated across all trials and sessions.
Overall, for 73% (22/30) of the study participants, the median
pMove
EMG was greater than pRest

EMG and the 99th percentile of
the median pMove

Noise, i.e. a large percentage of patients showed
movement intent-related surface EMG that could serve as a
trigger for assisted movement therapy.

Additionally, Table II also provides a measure of the ac-
curacy of the EMG detector displaying the mean accuracy
across sessions for each patient (along with the standard
deviation across sessions). The accuracy in a given session
was defined as the proportion of the session’s trials where
the EMG detector detected more EMG in the “move” state
than the “rest” state, i.e. pMove

EMG is greater than both pRest
EMG

and 99th percentile of pMove
Noise. The detector’s mean accuracy

was found to be highly correlated to mean pMove
EMG (Spearman

correlation r = 0.997, p < 0.001), indicating that patients
with larger residual EMG were able to generate the signal
more consistently across trials compared to patients with low
residual EMG. A similar accuracy analysis for the EEG-BCI
detector could not be carried out as its output was suppressed
(set to ‘0’) in the “rest” state [14].
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Fig. 3. Probability of detecting EMG in the “rest” and “move”
states from all patients across all hand training sessions. The
boxplots in blue correspond to probabilities estimated from actual
EMG data from patients, while the boxplots in red correspond
to simulated noise data; ‘(N)’ in the x-axis indicates noise. ‘***’
indicates a significant difference between the mean proability of
detection at p < 0.001.

B. How well do the EMG and BCI detectors agree on move-
ment intention?

The Cohen’s κ statistic estimated from patients in the
experimental group is shown in Table II. κ was estimated
only for the experimental group because in the control group
the BCI detector’s output was changed randomly and was not
correlated to the patient’s SMR. Overall in the experimental
group, the agreement between the EMG and BCI detectors was
positive but small (median κ = 0.075), indicating that there
was little agreement between EMG and BCI detector outputs.
κ was practically zero (< 0.1) for most patients, but there were
some patients with slight to fair agreement between EMG and
BCI (0.1 < κ < 0.3, Table II). Thus, even when there was
significant movement intent-related EMG, there was only a
slight agreement between BCI and EMG detector outputs.

IV. DISCUSSION

There has been a growing interest in restorative BCI to ac-
tively engage stroke patients with no residual motor control in
neurorehabilitation. BCI systems detect movement intention,
and close the loop by providing movement-related afferent
feedback, synchronised to the cortical processes for movement
planning, through a robotic device [12]–[20] or electrical
stimulation [24]. Existing systems primarily use EEG to detect
voluntary movement intention to provide assisted movements
[12]–[20].

The results of the current study demonstrate that EMG
provides a feasible alternative or ajunct to voluntarily engage
severely affected patients in training. EMG is a peripheral
manifestation of a movement attempt, and thus a proxy for

TABLE II
Data analsyis summary from individual patients listing the

mean values of pRest
EMG and pMove

EMG, and the overall Cohen’s κ
agreement statistic between the EMG and EEG-BCI detectors.
The ‘*’ in the “Move” column indicates that the median pMove

EMG

estiamted across all sessions was larger than that of pRest
EMG and

pMove
Noise and the 99th percentile of median pMove

Noise (E:
Experiment group; C: Control group)

Patient Rest Move Accuracy
Mean (Std) Agreement

E1 0.008 0.102 0.435 (0.107) 0.015
E2 0.008 0.241* 0.589 (0.171) 0.044
E3 0.011 0.583* 0.908 (0.034) 0.282
E4 0.016 0.747* 0.973 (0.019) 0.207
E5 0.019 0.566* 0.876 (0.109) 0.178
E6 0.011 0.459* 0.806 (0.069) 0.066
E7 0.011 0.512* 0.837 (0.105) 0.084
E8 0.007 0.351* 0.778 (0.089) 0.140
E9 0.008 0.096 0.463 (0.044) 0.014

E10 0.018 0.194* 0.625 (0.117) 0.090
E11 0.004 0.878* 0.985 (0.011) 0.099
E12 0.008 0.088 0.449 (0.103) 0.005
E13 0.010 0.147* 0.574 (0.060) 0.161
E14 0.011 0.115* 0.500 (0.079) 0.012
E15 0.016 0.200* 0.584 (0.186) 0.060
E16 0.040 0.203* 0.629 (0.078) 0.026
C1 0.008 0.227* 0.653 (0.079) –
C2 0.012 0.535* 0.862 (0.055) –
C3 0.017 0.069 0.424 (0.055) –
C4 0.008 0.083 0.378 (0.074) –
C5 0.005 0.694* 0.903 (0.107) –
C6 0.047 0.154* 0.540 (0.037) –
C7 0.013 0.115 0.446 (0.074) –
C8 0.013 0.093 0.432 (0.067) –
C9 0.012 0.079 0.442 (0.080) –

C10 0.007 0.384* 0.783 (0.104) –
C11 0.008 0.655* 0.914 (0.072) –
C12 0.015 0.316* 0.727 (0.093) –
C13 0.012 0.483* 0.796 (0.141) –
C14 0.007 0.184* 0.589 (0.106) –

brain activity related to motion intention. Using EMG, rather
than EEG, to trigger robot-assisted movements has several
advantages:

1) EEG detectors use an empirical approach of choosing any
set of signals showing feature changes when a patient
attempts a movement. These changes in signal features
may not be a direct correlate of movement attempt [24],
but may reflect only non-specific arousal changes during
movement preparation, such as the late components of
negative slow brain potentials occuring before the actual
“Bereitschafts potential” [35]. On the other hand, EMG
in a target muscle is the resulting final evidence of an
attempted movement. Thus, for a given task, if there are
still residual connections from the brain to target muscles,
EMG is an indicator of a movement attempt.

2) EMG is more task-specific than EEG as it relies on the
activities of specific muscles involved in a given task;
EEG does not have the spatial resolution for identifying
individual muscle groups.

3) EMG is easier to record than EEG as the setup required
is smaller, simpler, and easier to don and doff. EMG also
require minimal time for calibration.

4) EMG is more reliable than EEG. Muscles act as natural
amplifiers and EMG has lesser attenuation compared to
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EEG. EMG from the UE muscles are also less affected
by other physiological signals such as ECG or EOG.

The data presented here involves 30 of the 32 stroke
survivors with severe impairments with no voluntary finger
extension [14]. Presence of residual EMG was not an inclusion
criteria, although, EMG activity was part of the patient screen-
ing process [14]. With a simple threshold method and by using
only two muscles from the paretic side, we observed 22 out
of 30 subjects (or 73%) to have significant EMG activity for
detecting motion intention. This suggests that a large portion
of this patient population may be able to use specific target
muscles (e.g. wrist and finger extensors) to interactively
train assisted movements. For the rest 27% of patients with
extremely small or no residual EMG, EMG-triggered therapy
would not be suitable. Such patients would require an EEG-
BCI system for assisted therapy, until sufficient voluntary
control or EMG reappears.

A comparison between EEG and EMG movement intent
detection revealed that there was poor agreement between the
two modalities. Out of the 16 subjects (Table II), only two
had Cohen’s κ greater than 0.2. The lack of agreement was
least expected given that a majority of patients had EMG in
their forearm muscles. This poor agreement may indicate that
EEG detects different processes, possibly not directly related
to movement generation. Another possiblity could be the poor
detection accuracy/reliability of the EEG or EMG detectors
employed in the current study. Table II shows that three of the
four patients with EMG detection probability greater than 80%
had the highest values for Cohen’s κ. Contamination and bias
of EEG (and EEG-BCIs) due to different sources of artefacts,
especially when used for motor rehabilitation is well known
[36]. Furthermore, the poor SNR of residual EMG signals
could have reduced the accuracy and reliability of the EMG
detector (Table II). These issues were, at least partly, addressed
through the use of temporal filters (200 ms time window)
for both EEG and EMG detectors. However, it is likely that
a different EEG modality or more sophisticated EEG/EMG
detectors could have resulted in better agreement between
cortical and muscle activities. For instance, movement-related
cortical potential (MRCP) is another popular EEG modality
to detect movement intention [37], [38]. Recent developments
on sophisticated methods for improved MRCP detection [39],
[40] could have improved the overall EEG and EMG agree-
ment. Similarly, a more optimal EMG detector [31], [41]–[45]
could also lead to a better agreement.

Early detection of movement intent, well before movement
onset, afforded by EEG is believed to be a crucial factor for
optimal recovery with restorative BCIs [39], [40]. This early
detection allows close temporal coupling between movement
intent and afferent feedback from assisted movements, which
has been shown to strengthen cortical connections involved
in movement planning and execution [37], [46]. Interestingly,
cortical excitability has also been shown to increase with
externally induced cortical and peripheral stimuli when there
is tight temporal coupling between them – paired associative
stimulation [47]–[49]. These neuroplastic proceses are proba-
bly the result of Hebbian learning mechanisms such as spike
time dependent plasticity (STDP) [24], [49].

EMG-triggered assisted movement therapy is likely to oper-
ate through the same Hebbian learning mechanisms as EEG-
BCI triggered therapy. However, the delay between cortical
and EMG activity might reduce the effectiveness of the
learning process due to suboptimal timing of the stimulus [24].
Although, single neuron studies have demonstrated the impor-
tance of timing between pre- and post-synaptic activities, the
role of precise timing is not clear in network-level structures
which are modulated continuously [24]. Furthermore, there
is evidence in the current literature demonstrating that both
cortical changes [50], [51] and functional recovery can oc-
cur following EMG-triggered assisted movements [51]–[53];
thus, indicating that EMG-triggered movements can serve as
associative cues for strengthening learning. Mcgie et. al found
that motor evoked potentials were upregulated following both
EEG-BCI-triggered and EMG-triggered FES [50]. Francisco
et. al showed that stroke patients training with EMG-triggered
FES performed better than patients receiving standard physical
therapy [52]. A review by de Kroon et. al found that EMG-
triggered FES may be more effective than non-triggered stim-
ulation for upper-limb training in stroke [53]. All these studies
have relied on EMG-triggered electrical stimulation to produce
assisted movements of a target joint, which is different from
robot-assisted movements in terms of the afferent feedback
sent to the brain. Electrical stimulation produces contractions
in the target muscles and thus provides additional afferent
feedback (from the muscle spindles and Golgi tendon organs)
on top of feedback resulting from the limb movement. This
difference could influence the recovery induced by these two
modalities when used in a intent-triggered assisted paradigm.
However, a recent study by Mrachacz-Kersting indicates that
these two feedback modalities might be equally effective in
increasing cortical excitability following a 30 min intervention
using an EEG-BCI triggered ankle dorsiflexion movement
[38].

We emphasize that the work presented is a secondary
analysis of data collected from a randomized controlled trial
that investigated the effect of BCI-based robot-assisted training
of the UE [14]. Thus, the study outcomes should only be taken
as a preliminary result on the feasibility of EMG as a proxy
for movement intention in severely affected stroke patients.
Nevertheless, the positive results obtained here motivate fur-
ther investigation of the use of EMG detector proposed in this
paper to trigger robot-assisted neurorehabilitation of the hand
in severely affected stroke survivors.

V. CONCLUSION

The current study evaluated the feasiblity of using surface
EMG as an adjunct or alternative to EEG-based movement
intention detection in severely affected stroke paients with
no visible movement. This was done through analysis of
data from a previously published randomized controlled trial
on EEG-BCI triggered robot-assisted rehabilitation of the
arm/hand of severely affected chronic stroke patients. Overall,
the results from the study indicate that EMG is a viable
alternative or adjunct to EEG for detecting movement in-
tention, with almost 73% (22/30) of the patients showing
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sufficient surface EMG in their finger/wrist extensor muscles.
Given the potential practical advantages of EMG compared
to EEG, it is worth further investigating this approach for
assisted neurorehabilitation. Additionally, we also observed
that there was poor agreement between the EEG and EMG
based intention detectors, which may indicate that they detect
different processes.

APPENDIX A
EMG DETECTOR PERFORMANCE ON NOISE DATA

For any a given trial, the EMG detector was trained using
data from the “rest” state. Thus, even if there is no EMG in
the “move” state, pMove

EMG may be higher than pRest
EMG because

the “move” state data was not used to determine the detector
parameters. In order to get an estimate of the difference
between pRest

EMG and pMove
EMG due to the training-testing effect,

a set of simulated data was generated and analysed using the
same EMG detector. The simulated data consisted of 3000
different realisations of two independent channels of Gaussian
white noise (8 sec in duration sampled at 500Hz); the first 3
seconds of data is assumed to be the “rest” state, while the
rest 5 seconds is “move” state. The 3000 trials were splits
into 30 sets of 100 trials, simulating 30 different subjects
performing 100 trials. Each trial in the dataset was bandpass
filtered between 10Hz and 225Hz (same as the one used on
the raw EMG data), and its amplitude was estimated. The
amplitude estimate was input to the EMG detector to evaluate
the detector’s performance pRest

Noise and pMove
Noise, which are the

probabilities of detecting a noise amplitude above the detector
threshold in the “rest” and “move” states, respectively. This
results in 3000 pairs of pRest

Noise and pMove
Noise corresponding to

100 trials for 30 subjects.
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