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a b s t r a c t 

This paper examines the prediction of disturbances based on their past measurements using k -nearest 

neighbours. The aim is to provide a prediction of a measured disturbance to a controller, in order to 

improve the feed-forward action. This prediction method works in an unsupervised way, it is robust 

against changes of the characteristics of the disturbance, and its functioning is simple and transparent. 

The method is tested on data from industrial process plants and compared with predictions from an au- 

toregressive model. A qualitative as well as a quantitative method for analysing the predictability of the 

time series is provided. As an example, the method is implemented in an MPC framework to control a 

simple benchmark model. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

A disturbance is an undesired, transitory deviation of those

inputs of the controlled system that are not manipulable by the

controller. In process plants, such disturbances can affect the

quality of the product, or they can cause a malfunction of the site

machinery and accelerate its wear ( Yuan and Qin, 2014 ). Further,

a disturbance originating from one unit can propagate to other

units because of material, energy, or information and control in-

terconnections. When a disturbance propagates through a section

of a plant and affects more process variables, such disturbance is

defined as a plantwide disturbance. 

The paper is about the prediction of process disturbances. It

solves the problem, provides general guidelines, and suggests a

possible application in process control. Specifically, we show how

the disturbance prediction can be obtained using two k -nearest

neighbour methods. Previous uses of k -nearest neighbours for

time series prediction have typically predicted just one sample a

few steps ahead. Instead, this paper shows it is possible to achieve

the more challenging task of predicting the future evolution of the
� Financial support is gratefully acknowledged from the Marie Skłodowska Curie 

Horizon 2020 EID-ITN project ”PROcess NeTwork Optimization for efficient and sus- 

tainable operation of Europe’s process industries taking machinery condition and 

process performance into account - PRONTO”, Grant agreement no 675215 . 
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ime series. A condition for a good prediction is the regularity and

redictability of the time-series. The paper shows a qualitative

nd quantitave method to analyse the predictability. Further, it

ompares the prediction performance of the k -nearest neighbours

ethod with the one obtainable with an autoregressive model,

nd highlights the capability of the k -nearest neighbours to learn

ew disturbance patterns. Thereafter, a simple possible application

f the method in process control is provided, by implementing

he disturbance prediction in an MPC framework. The aim of the

PC with disturbance forecast is to stop the propagation of a

isturbance coming from the inflow of a stirred tank heater, while

eeping the level within tight constraints. 

. Background and motivation 

Forecasting the time series of a disturbance is an open question

nd, to this scope, literature provides many methods such as

RIMA models and Artificial Neural Networks ( De Gooijer and

yndman, 2006 ). The methods are classified into first principle

odels, statistical methods and data-driven methods. Difficulties

n choosing the method arise mainly when the disturbances are

aused by non-linear effects such as limit cycles, or when they

rise because of random events. 

Process control is an interesting application for time series

orecasting because providing information regarding the future

volution of a disturbance can improve the performance of a con-

roller. If a disturbance is measured before it enters and affects the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. An example of a persistent disturbance and representation of terminology. 

Source: ©PSE 2018, reprinted with permission from 13th International Symposium on Process Systems Engineering. 
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ontrolled system, literature speaks about previewing a disturbance.

he principle of previewing is that if there is a transport delay of i

amples between the instant the disturbance is measured and the

nstant the disturbance enters in the system, the controller can

now the future evolution over i samples of the disturbance. While

reviewing is an established practice with real and commercial

pplications in process control ( Nunokawa et al., 1997; Yoshitani

nd Hasegawa, 1998; Birla and Swarup, 2015 ), truly predicting a

isturbance is not. Indeed, feedforward control is used routinely in

rocess systems to compensate for measured disturbances when

hey are detected ( Liptak, 2005; Camacho and Bordons, 2008 ),

ut the standard implementation of feedforward control does not

nclude a prediction of the future evolution of the disturbance. 

Cairano et al. (2014) improved the control of the battery

anagement of a hybrid electric vehicle by predicting the distur-

ance, the driver’s driving style, with a data-driven Markov chain.

lenske et al. (2016) improved the control of an electrically ac-

uated telescope proposing a model based on Gaussian processes

hat learns to fit nearly-periodic disturbances. However, these

ethods adapt their models based on the last measured samples

nd do not exploit the whole history of the measured disturbance.

To address these issues, Borghesan et al. (2018a) proposed

 -nearest neighbours methods to forecast the future trend of

ersistent disturbances. Such methods were able to provide good

redictions of time trends coming from a refinery. This article

evelops and analyses the method in more detail, starting by as-

essing when a time series is first of all predictable. The prediction

erformances are analysed for their robustness to variations in the

haracteristics of the time series such as changes in mean values or

f the pattern in the case of a persistent disturbance. The present

aper extends also the former work for the choice of the tuning

arameters of the method, which improves the prediction perfor-

ance significantly. Whereas ( Borghesan et al., 2018a ) focused on

ersistent disturbances, this article addresses also the case of time

eries characterized by abrupt disturbance phenomena. Finally,

t compares the predictions performance of the k -nearest neigh-

ours method with the prediction obtained by an autoregressive

odel. 

The paper provides a simple application of the prediction,

mplementing the k -nearest neighbours method in an MPC frame-

ork. The controller has to stop the propagation of a plantwide

isturbance by minimizing the variation of the outflow of a tank

ffected by persistent and abrupt disturbances of the inflow. 
. Disturbance prediction 

.1. Introduction 

The k -nearest neighbours method supposes that the current

ime series segment will evolve in future like a past time se-

ies segment (not necessarily a recent one) evolved previously

 Kantz and Schreiber, 2004 ). The task therefore is to identify past

egments of the time series which are similar to the present one

ccording to a certain norm. At current sample time N , the algo-

ithm considers a measurement signal made of N samples y M 

(N) =
 y (1) y (2) . . . y (N)] , termed ‘memory’. The size N of the memory

ncreases as more samples y ( ·) are recorded. The segment made of

he last m samples of y M 

( N ) is y E (N) = [ y (N − m + 1) y (N − m +
) . . . y (N)] . This segment represents the current evolving distur-

ance pattern and is called y E ( N ) ‘evolution’, while m is known

s the ‘embedding dimension’ ( Kantz and Schreiber, 2004 ). The

lgorithm searches within the memory y M 

( N ) for the k time se-

ies intervals of length m that are most similar to y E ( N ). The sim-

larity is measured in this paper with the Euclidean distance, D

 Eq. (1) ). These k time series intervals y j , j = 1 , . . . , k are the k -

earest neighbours and are those k time series intervals within

 M 

( N ) with smallest Euclidean distances: 

 

(
y E (N) , y j 

)
= 

√ 

m ∑ 

i =1 

(
y E ( i ) − y j ( i ) 

)2 
(1) 

As depicted in Fig. 1 , each nearest neighbour y j is followed by a

ime series of length h , where h is the desired prediction horizon.

hese time series of length h are called the ‘prediction contribu-

ions’ y P j , j = 1 , . . . , k . They show how their corresponding nearest

eighbours evolved over an interval of length h . Therefore, they are

he basis for building the prediction vector, as will be described in

ection 3.2.1 . Since all prediction contributions must stay within

he memory y M 

( N ), there is a constraint for the starting points r j 
f the nearest neighbours y j 

 j = 

[
y 
(
r j 
)

y 
(
r j + 1 

)
. . . y 

(
r j + m 

)]
, 

j = 1 , . . . , k, (2) 

r j ∈ [ 1 ; N − h − m + 1 ] 
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Consequently y Pj is defined as 

y P j = 

[
y 
(
r j + m + 1 

)
. . . y 

(
r j + m + h 

)]
j = 1 , . . . , k (3)

3.2. k-Nearest neighbours 

3.2.1. Two versions of the algorithm 

Unweighted and weighted versions of the algorithm differenti-

ate themselves at this step. For the unweighted version, the predic-

tion is an average of the prediction contributions. The prediction is

a vector ˆ y (N) = [ ̂  y (N + 1) . . . ˆ y (N + h )] where: 

ˆ y (N + i ) = 

1 

k 

k ∑ 

j=1 

y P j (i ) , i = 1 , . . . , h (4)

In the weighted version of the algorithm, the nearest neigh-

bours contribute to the prediction proportionally to their distance

from the evolution. First a weight w j for each nearest neighbours

is calculated. The weight w j = 1 if the nearest neighbour y j has the

smallest distance with y E ( N ). Conversely, w j = 0 if the correspond-

ing nearest neighbour y j is the most distant from y E ( N ). 

 j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

max 
� =1 ... k 

(D (y E (N) , y � )) − D (y E (N) , y j ) 

max 
� =1 ... k 

(D (y E (N) , y � )) − min 

� =1 ... k 
(D (y E (N) , y � )) 

with j = 1 , 

1 with j = 1 

The prediction vector ˆ y (N) = [ ̂  y (N + 1) . . . ˆ y (N + h )] is a

weighted average of the prediction contributions, where: 

ˆ y (N + i ) = 

1 ∑ k 
j=1 w j 

k ∑ 

j=1 

w j y P j (i ) i = 1 , . . . , h (6)

The weighted method has been developed to guarantee a

higher robustness and precision of the prediction, since it is able

to partially ignore the nearest neighbours that are too distant from

the evolution. This is interesting when the algorithm works over

an interval of time and the possibility of finding exactly k good

nearest neighbours can change over time. 

3.2.2. A fixed number of neighbours versus a maximal neighbours 

distance 

Concerning the number of nearest neighbours to be found, a

possibility is setting a fixed number k , independently from the in-

stant of time N in which the prediction should start. Kantz and

Schreiber (2004) proposed to choose the maximal distance D max 

between evolution and a neighbour, for which the neighbour can

be considered as one of the nearest neighbours that will evolve as

the evolution y E ( N ). 

Indeed, if the distance D ( y E ( N ), y j ) is too big, then it is likely

that the time segment y j , chosen as nearest neighbour of y E ( N ),

will not evolve in the future as the evolution y E ( N ) will do because

the chosen nearest neighbour does not capture the same dynamic

occurring to the evolution. In this case, the time segment y j can be

defined as false nearest neighbour. Choosing constantly a number

k of nearest neighbours, without taking into account their distance

from the evolution, has the risk of selecting false nearest neigh-

bours. 

On the other hand D max cannot be too small. For example, some

time series segments might be affected by noise in the measure-

ment. This implies that although such time series segments are rel-

atively distant from the evolution because of noise, they reflect the

same dynamic. In a such case, averaging more prediction contribu-

tions (without considering false nearest neighbours) can have the

beneficial effect of finding the expected value of the prediction. 
 if k ≥ 2 

if k = 1 

(5) 

Using the approach of D max , k is chosen at each sample N as 

k (N, D max ) = | Y NN (N, D max ) | 
 NN (N, D max ) = { y 1 , . . . , y k : D (y E (N) , y j ) ≤ D max } (7)

n the above expression, | ·| has been used to indicate the number

f items in the set. Setting a fixed D max is different from setting a

xed k only if D max and k are constant over a certain interval of

ime. Instead, considering a prediction starting at a certain instant

f time, certain values of D max correspond to a specific value of k . 

.3. Measuring accuracy 

.3.1. Measuring the accuracy of the prediction for varying values of 

 and m at an instant of time N 

For a given starting point of the prediction N , the tuning

arameters of the methods are m and k . Varying m and k causes

he average prediction distance to change. The prediction distance

 a v is the Euclidean distance between the prediction and the cor-

esponding segment of the actual future time series (not known

n advance to the algorithm) divided by the chosen prediction

orizon h so that the value does not depend on the length of the

rediction horizon. 

 a v (N, k, m ) = 

1 

h 

D ( ̂ y ( N, k, m ) , [ y ( N + 1 ) . . . y ( N + h ) ] ) (8)

he smaller E a v (N) is, the more accurate the prediction is. 

.3.2. Measuring the accuracy of the prediction for varying values of 

 and m over an interval of time 

Eq. (8) measures the error made at one sample time N . How-

ver, the optimal parameters m and k change for different sampling

imes. Consequently, it is important as well to measure the perfor-

ance of a fixed m and k over an interval of time. We introduce

n this paper the measure 

 

k max 

a v int 
(N 1 , N 2 , k , m ) = 

1 

N 2 − N 1 

N 2 ∑ 

N= N 1 
E a v (N, k , m ) (9)

uch a measure is an average of the prediction error over an inter-

al. 

Similarly, it is possible to fix a value D max and m over a certain

nterval. In this case k might change but depends on a fixed D max 

s Eq. (7) described. 

 

D max 

a v int 
(N 1 , N 2 , D max , m ) = 

1 

N 2 − N 1 

N 2 ∑ 

N= N 1 
E a v ( N, k (N, D max ) , m ) (10)

To not overload the notation, we use the following expression

hen the discussion refers to both E k max 

a v int 
and E D max 

a v int 
and the main

ocus is the interval of time N 1 → N 2 . 

 a v int (N 1 , N 2 ) (11)

.4. Training of the optimal parameters 

.4.1. Finding the tuning parameters through an optimization 

roblem 

A rule of thumb is to set m = � 1 
f 0 

� , where �·� is the floor func-

ion that provides the smaller or equal integer of a real number,
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nd f 0 is the main frequency of the persistent disturbance. In this

ase m is close to the length of one instance of the repeating pat-

ern of the persistent disturbance. The number of nearest neigh-

ours k should be k = � N m 

� , which means equal to the number of

ccurrences of the repeating pattern. This strategy will be called

ase strategy in the rest of the paper. 

The present paper proposes to find the parameters through a

raining algorithm based on a search grid. This involves enumer-

ting the possible combinations within a range of the parameters

 and m , or D max and m depending on the strategy used, and

hoosing the pair of parameters that minimises E a v int (N 

tr 
1 

, N 

tr 
2 
)

ith N 

tr 
2 

< N − h, where N is the current instant of time. The

nterval N 

tr 
1 

→ N 

tr 
2 

is the training interval and corresponds to

alues y (N 1 ) , y (N 1 + 1) . . . y (N 2 ) that have been already measured

t instant N . Since these values are known, the training algorithm

an compare what the prediction would be for each instant of

he training interval and what it was in reality. The condition

 

tr 
2 

< N − h is set because the algorithm had to measure the values

f the time series to calculate the value of E a v (N 2 ) used to calcu-

ate thereafter E a v int (N 

tr 
1 

, N 

tr 
2 
) . The length of the interval N 

tr 
1 

→ N 

tr 
2 

s set to be long enough to cover some instances of the pattern

f the disturbance. The training should not be conducted at every

ample N , rather at discretion when, for example, new distur-

ances patterns are visible or when the noise level of the measure-

ent is changing because of a change of the operating point of the

lant. 

.4.2. Evaluating the accuracy of the training process for the choice 

f the tuning parameters 

The parameters obtained from the training are (k tr opt , m 

tr 
opt ) or

(D 

tr 
max opt , m 

tr 
opt ) , depending whether a fixed k or D max was defined.

To measure how accurate the training was, the prediction

btained from such parameters should be evaluated over a

est interval N 

test 
1 

→ N 

test 
2 

. The term of comparison is the value

f E a v int (N 

test 
1 

, N 

test 
2 

) obtained with the parameters k test 
opt , m 

test 
opt ,

 

test 
max opt that are the optimal ones for the testing interval N 

test 
1 

→
 

test 
2 

. 

The metric γ is the ratio between the value of

 a v int (N 

test 
1 

, N 

test 
2 

) obtained using the parameters k tr opt , m 

tr 
opt ,

 

tr 
max opt and the one obtained using k test 

opt , m 

test 
opt , D 

test 
max opt . We

efine two versions γk max 
and γD max 

of γ , according to the strategy

sed: 

γk max 
= 

E k max 

a v int 
(N 

test 
1 

, N 

test 
2 

, k test 
opt , m 

test 
opt ) 

E k max 

a v int 
(N 

test 
1 

, N 

test 
2 

, k tr opt , m 

tr 
opt ) 

D max 
= 

E D max 

a v int 
(N 

test 
1 

, N 

test 
2 

, k test 
opt , m 

test 
opt ) 

E D max 

a v int 
(N 

test 
1 

, N 

test 
2 

, k tr opt , m 

tr 
opt ) 

(12) 

.5. Assessing the predictability of a time series 

To distinguish a time series with some recurring and determin-

stic patterns from a stochastic time series, the predictability of the

ime series should be assessed. This can be done with a qualitative

ethod or a quantitative one. 

.5.1. Qualitative method to assess the predictability 

A practical qualitative method to estimate the predictability of a

ime series is to plot its phase space plot. The phase space plot as-

ociates to a value y ( N ) of the time series the corresponding value

 (N − delay ) . It possible also to draw a 3D plot where two values

 (N − delay 1 ) and y (N − delay 2 ) are associated to y ( N ). These plots

ighlight the presence of recurrent patterns in the time series and

onsequently their self predictability, explained in Section 3.1 . 
.5.2. Quantitative method to assess the predictability 

A quantitative method we propose derives from the Harris

ndex described in Desborough and Harris (1992) . The Harris

ndex was developed for control loop performance assessment.

he principle is that if the time series of the error of a controller

s predictable, then the control has poor performance. Instead of

eing used on the time series of the error of a controller, here the

rocedure is used on the time series of a disturbance to assess

he predictability of the time series. The procedure is to tune an

utoregressive (AR) model of the time series. 

ˆ 
 ( N + h ) = a 0 + a 1 y (N) + a 2 y (N − 1) + · · · + a m 

y (N − m + 1) 
(13) 

here the horizon h and the order m of the AR model can be

hosen as described in Thornhill et al. (1999) . 

To tune the coefficients, a section of the time series with

onstant characteristics as the mean value must be provided.

he coefficients of the model are found so that the residuals

(N) = y (N) − ˆ y (N) of the prediction are minimized for the train-

ng time series. The variance of the residuals is compared to mean

quare of the time series and this gives the Harris index. 

 index = 

σ 2 
r 

mse (y ) 
(14) 

here σ is the variance of the residuals and mse( y ) is the mean

quare of the time series. If the residuals (and their variance) are

arge compared to the values of the time series (and consequently

o their mean square), then the AR model is not able to capture

ully the dynamic of the time series and, consequently, the time

eries has a low predictability. A value of H index = 0 corresponds

o a highly predictable time series and low quality controller.

herefore, a predictability index can be derived as 

 index = 1 − H index (15) 

here P index = 1 indicates that the time series is highly predictable

nd P index = 0 indicates that the time series is not predictable. 

A high value of the predictability index is a guarantee that the

rediction will work. In case of a persistent disturbance, a value of

redictability index smaller than 0.5 makes questionable the use

or an application in process control. 

For abrupt disturbances instead, a low value of the predictabil-

ty index means that the abrupt event is not predictable before

ccurring. However, once it starts, its future evolution might be

redicted as Section 5.3 will show. 

.6. The autoregressive model as reference of comparison 

The widely used AR model, employed for the predictability in-

ex in Section 3.5.2 , can be used also as comparison for the k -

earest neighbours methods presented in this paper. 

To compare the performance between the two methods, the

ame intervals of time are used for the training of the two meth-

ds. As Section 3.4.1 described, when the k -nearest method is

rained on an interval N 

tr 
1 

→ N 

tr 
2 

, a memory, starting from the

rst recorded instant, should be provided to the algorithm. Conse-

uently, to compare fairly the training done on the two methods,

he AR model uses the interval 1 → N 

tr 
2 

for the training. 

The training and the prediction of the model is done using the

outines in Matlab estimate and forecast . Once the prediction with

he trained autoregressive model is obtained, the quality of the

rediction can be obtained similarly to what has been explained

n Sections 3.3.1 and 3.3.2 . 

 

AR 
a v (N, AR model ) = 

1 

h 

D ( ̂ y ( N, AR model ) , [ y ( N + 1 ) . . . y ( N + h ) ] ) 

(16) 
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Fig. 2. The time series considered for the section regarding the results of the prediction methods. 
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E AR 
a v int (N 1 , N 2 , AR model ) = 

1 

N 2 − N 1 

N 2 ∑ 

N= N 1 
E AR 

a v (N, AR model ) (17)

where AR model refers to the autoregressive model with its coeffi-

cients and previous time series elements. 

As in Section 3.4.2 described, a coefficient γ AR can be intro-

duced. If in Section 3.4.2 the aim of γ is to understand how good

the parameters for the k -nearest neighbours are, here the aim of

γ AR is to understand how good is still, over the testing interval, the

trained autoregressive model AR tr opt compared to the model AR test 
opt 

that would result from the training on the testing interval. 

γAR = 

E AR 
a v int 

(N 

test 
1 

, N 

test 
2 

, AR 

test 
opt ) 

E AR 
a v int 

(N 

test 
1 

, N 

test 
2 

, AR 

tr 
opt ) 

(18)

4. The real industrial disturbances 

Fig. 2 shows the time series used to analyse the prediction

methods. The upper and second panel of the figure show the Tag

33 and Tag 34 from a SE Asian refinery. These time series have

been presented previously, for instance in Thornhill (2005) . 

Tag 33 has a persistent and regular oscillation. However, the

repeating pattern is not so regular as the one of Tag 34. Further,

there is a step change around sample 500, as shown in the arrow

in the top panel of Fig. 2 . The first 500 samples have different val-

ues than the later samples, even though the pattern of oscillation

is similar. Therefore, one can expect lower predictability just af-

ter the step change since there will be no nearest neighbours in

the memory on which to base the prediction. There are also three

abrupt transient disturbances within the red rectangles shown on

the figure that also will present challenges for prediction. 

Tag 34 has a very regular and persistent oscillation, and it is

expected to be highly predictable. However, the local mean value

is not constant between sample 500 and 900, and this will reduce

its predictability to an extent. 

The third panel in Fig. 2 shows Tag 30 of dataset from the East-

man Chemical Company described in Thornhill et al. (2003) . This

time series is affected by phenomena of abrupt disturbances that

take the form of short spikes of varying amplitude with durations

of 3 to 5 samples. 

The time trend of Tag 30 is affected by noise between the

abrupt disturbances, and random noise is inherently unpredictable.
oreover, the occurrence of an abrupt disturbance is not pre-

ictable. However, the results will show that once the abrupt phe-

omenon starts, the k -nearest neighbours algorithm can detect the

henomenon and provide useful predictions. 

The fourth panel shows a signal created by concatenating a sec-

ion of the Tag 33 with one of the Tag 34. The signal in the fifth

anel is built concatenating the same two time series but in the

pposite order compared to the order of the fourth panel. These

wo time series, built on-purpose, are used in Section 5.2 to show

he effects of a time changing disturbance pattern on the predic-

ion performances. 

.1. Qualitative assessment the predictability of the industrial 

isturbances 

Section 3.5.1 described how to assess qualitatively the pre-

ictability of a time series through the phase plots. Fig. 3 shows

uch plots for the three main time series considered. 

The plot in Fig. 3 b, corresponding to Tag 34, is far more well

efined than the other two plots. Tag 34 shows how the k -nearest

eighbours method can give good predictions because the trajec-

ory tends to evolve in the same way from any given point. Tag

3 shows also some repeating trajectories but, qualitatively, the

attern is not well defined. The confused pattern at the centre

f the plot for Tag 30 suggests that Tag 30 has generally low

redictability. However, there are spikes radiating from the centre.

nce the k -nearest neighbours method has identified a spike, then

ig. 3 c shows that a return to the centre can be predicted. 

.2. Quantitative assessment the predictability of the industrial 

isturbances 

Section 3.5.2 described how to assess quantitatively the pre-

ictability of time series. The method is applied to the three

ndustrial disturbances. The prediction horizon is set to h = 15 and

he order is m = 30 . Table 1 shows the predictability index for

he three main time series considered. The quantitative analysis

eflects what was already understandable from the qualitative

nalysis. The time series of the Tag 34 is extremely regular and

redictable. However, the time series of Tag 33 and especially the

ime series of Tag 30 are harder to predict. Nevertheless, Fig. 3 c
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Fig. 3. Phase space plots of sections of the considered time series. 

Table 1 

Predictability index for the three main time series consid- 

ered with h = 15 and m = 30 . 

Tag 33 Tag 34 Tag 30 

H index 0.610 0.984 0.001 
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Fig. 4. Effect of parameters k and m on prediction of Tags 33 and 34 with N 1 = 

400 , N 2 = 1425 and h = 15 . Effect of parameters k and m on prediction of Tag 30 

with N 1 = 60 0 0 , N 2 = 70 0 0 and h = 15 . 

f  

o

 

h  

1  

d  

t  

o  

T

 

s  

o  

T  

c  

t  

b  

o  

p  
uggested that the evolution of the abrupt spiky features of Tag 30

an be predicted, once the spike has been detected. 

. Results: prediction 

This section examines the influence of the number of nearest

eighbours k , and the embedding dimension m , on the quality

f the predictions. Further, it compares the performance of the

nweighted and weighted method explained in Section 3.2.1 , of

sing a fixed k or a constant D Max as described in Section 3.2.2 ,

nd finally compares the k -nearest neighbours method with the

redictions made by an autoregressive model. 

.1. Effect of k and m on E a v int 

Fig. 4 shows the effects of k and m on E a v int over an interval of

ime N 1 → N 2 . Indeed, it plots the values of E a v int for several com-

inations of k and m using the weighted and unweighted method
or the three main considered time series. In all cases, the length

f the interval N 1 → N 2 is 10 0 0 samples. 

For the Tag 33 and 34 from the SE Asian refinery the prediction

orizon is h = 15 , roughly the period of the oscillation which is

7. Tag 30 is affected by abrupt disturbances and once an abrupt

isturbance starts, it is possible to predict its future values until

he end of the disturbance pattern. The abrupt disturbance pattern

f Tag 30 lasts generally 15 samples. Therefore, h = 15 as well for

ag 30. 

For such sensitivity analysis, the maximal embedding dimen-

ion m has been chosen as roughly two times the period of one

scillation. Since the period of oscillation is 17 samples for the

ags 33 and 34 then m ≈ 35. The reason is that the most recent

ycles are likely to be the most important to understand the future

rend of a disturbance. However, there is no oscillation in Tag 30

ut there are roughly six phenomena of abrupt disturbances every

ne thousand samples, although not at regular intervals (with a

eriodicity of about 10 0 0 ≈ 165 ). Given a periodicity of about 165
6 
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Table 2 

Range of the parameters for the search grid optimization algorithms. 

SE Asian refinery Eastman Chemical Company 

Tag 33 and Tag 34 Tag 30 

k D max m k D max m 

Min 4 0 5 4 0 1 

Discretization step 1 0.001 1 1 0.01 10 

Max 85 0.5 30 50 1 50 

Prediction horizon 15 
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samples, the maximal possible value of m is 330, following the

same principle used for the Tags 33 and 34. 

The maximal number of neighbours has been set as the number

of samples N in the maximal memory N 2 over the interval divided

by the length of one oscillation. Indeed, the maximal number of

nearest neighbours that can be found in a series is equal to the

number of oscillations that have occurred in the memory. Conse-

quently k max = 

1420 
17 ≈ 85 for Tags 33 and 34 and k max = 

70 0 0 
165 ≈ 50 .

5.1.1. The effect of m on E a v int 

Fig. 4 shows that the value of E a v int can be high for very small

values of m regardless of the value of k . This is the case of the

two time series Tag 33 and 34 coming from the SE Asian refinery

characterized by a persistent disturbance. This is because an

embedding dimension that does not capture a significant portion

of the period of oscillation does not correctly identify the shape of

the disturbance. For example, two points might have similar values

in the ascending or descending phase of an oscillation but the

prediction contributions y P could be very different, thereby wors-

ening the prediction. For Tag 34, more predictable, high values of

E a v int are present for circa m ≤ 5. For Tag 33, less predictable, high

values of E a v int are present for circa m ≤ 7. Consequently, given

in these cases a duration of pattern of circa 17 samples, we can

say that m should be higher than a third of the duration of the

repeating pattern for persistent disturbances. This limit is inserted

in the search grid algorithm for the training of optimal parameters

which has been described in Section 3.4.1 . 

However, Fig. 4 c shows that the prediction error for Tag 30

seems to be largely independent from the value of m , with a slight

tendency of improvement for small values of m . The reason of this

slight improvement is that in case of an abrupt phenomena only

a short time segment is needed to evaluate the distance between

evolution and nearest neighbours. However, the measure E a v int is

an average of the values E a v for the different instants N . Except for

few instants, precisely during the abrupt phenomena, the time se-

ries shows noise. Consequently, it is not very relevant which are

the nearest neighbours picked for the prediction and consequently

their embedding dimension. Since the aim for the Tag 30 is to pre-

dict the short abrupt phenomena, then the embedding dimension

should not be chosen too large. Indeed, if the length of the evo-

lution is too long, then the part of the evolution occurring before

the abrupt event contributes considerably more in calculating the

distance D ( y E ( N ), y j ) (from Eq. (1) ) than the short abrupt event. 

5.1.2. The effect of k on E a v int 

For all the time series considered, choosing very few nearest

neighbours is not good for the performance. Even Tag 34, which

seems to have from Fig. 4 c low values of E a v int even for very small

of k , benefits from having k ≥ 4. Indeed the minimum value of

E a v int = 0 . 38 for Tag 34 is obtained for k = 6 , m = 10 . For the same

m but k = 2 , E a v int = 0 . 42 instead. The reason is that even persis-

tent disturbances have some randomness. By averaging over more

prediction contributions, the resulting prediction is closer to the

true value. 

Especially for noisy time series, such as Tag 33 and even more

Tag 30, k cannot be too small. By using many nearest neighbours,

the resulting prediction is filtered and is closer to the time series

underneath the hidden signal. For Tag 30 the graph suggests that

the a high number of nearest neighbours should be used for the

prediction. The presence of noise is the likely explanation of this

behaviour. In this specific case k must be higher then 15 as Fig. 4 c

suggests. 

However, after a threshold, high values of k are not beneficial

for more regular time series like Tags 33 and 34. Increasing k too

much results in choosing time series intervals, called false neigh-

bours, that are considered as nearest neighbours even though they
re not very similar to the evolution y E ( N ) and do not develop in

he same way. To conclude, the minimal values of E a v are roughly

iven for values of 4 ≤ k ≤ 10 for Tag 34 and 4 ≤ k ≤ 20 for Tag 33

sing the weighted algorithm. For the training of optimal param-

ters, as in Section 3.4.1 , we recommend therefore a lower limit

 ≥ 4. 

.1.3. Effects of weighted and unweighted method on E a v 
Figs. 4 a and b show that the weighted method has the advan-

age of making the value of E a v int less sensible to the choice of k

or Tags 33 and 34 respectively. This is important because, given a

alue of k (and m ), this value is robust even when the characteris-

ics of the disturbance is changing. 

However, the unweighted method is generally better for Tag

0 for a certain value of k because the hypothesis on which the

eighted method is based is not valid any more in presence of

oise. Indeed, the weighted method assumes that the closer a

earest neighbour is to the evolution, the closer the correspond-

ng prediction contribution will be to the future values of the time

eries. 

.2. Evaluation of E a v over time and different strategies to choose k 

nd m 

The kind of analysis in Section 5.1 can be done on past data.

nstead, the interest of this section is analysing how good is the

redicting performance using different techniques to find the pa-

ameters for the k -nearest neighbours method. 

Section 3.4.1 explained that a possible choice is to set m = � 1 
f 0 

�
nd k = � N m 

� . However, this is a rule of thumb and, furthermore,

he choice of f 0 for a signal affected by abrupt disturbances is not

rivial. This strategy for the choice of m and k is compared here

ith the new strategies explained in Section 3.4.1 . The analysis is

one over a testing interval of time as explained in Section 3.4.2 .

o provide terms of comparison, the best predictions available at

ach instant of time N using the weighted and unweighted al-

orithm are used. Furthermore, the advantages of the k -nearest

eighbours are highlighted in comparison to the autoregressive

odel. 

.2.1. The searching grid, training and testing interval 

The strategies are based on grid search algorithms, which

eans that the parameters are chosen by testing combinations of

he parameters that are within a range. Table 2 shows the ex-

remes of such ranges and the discretization step. 

The training time has been chosen so that several instances of

he patterns of the disturbances are present. For the tags from the

E Asian refinery the length of the interval N 

testing 
1 

→ N 

testing 
2 

has

een of 70 samples. For Tag 30, the length of the training interval

as of 985 samples. 

The testing interval for the tags from the SE Asian refinery in-

ludes the transitory variations, like the step change for Tag 33,

hat have been described in Section 4 . For the Tag 30 the test-
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Table 3 

Values of E a v int obtained with the considered strategies, values of the metric γ to measure the accuracy of the training and values of the 

metric � to evaluate the performance of weighted method in comparison to the unweighted one. 

Tag 33 Tag 34 Tag 30 Tag 33 → 34 Tag 34 → 33 

Opt Weighted 0.031 0.025 0.168 0.026 0.112 

� −3.13% 0.00% + 3.07% −16.1% + 9.80% 

Base Weighted 0.044 0.070 0.195 0.068 0.153 

� −17.0% −21.4% + 1.56% −33.3% −10.5% 

Opt k Weighted 0.041 0.039 0.186 0.047 0.157 

� −10.9% −7.14% −1.59% −29.9% −5.42% 

γk max 
Weighted 1.0 0 0 0.974 1.0 0 0 0.766 0.892 

Unweighted 0.913 0.976 0.989 0.642 0.867 

Opt D max Weighted 0.042 0.042 0.193 0.052 0.184 

� −2.33% 0.00% 0.00% −11.86% 0.00% 

γ D max Weighted 1.0 0 0 0.952 1.0 0 0 0.731 0.788 

Unweighted 0.977 0.976 1.0 0 0 0.661 0.793 

AR – 0.878 0.160 0.199 0.148 0.162 

γ AR – 0.056 0.375 0.938 0.338 0.864 
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ng interval encompasses eight instances of abrupt disturbances of

arying amplitude. 

Furthermore this section analyses also the composed time se-

ies called Tag 33 → 34 and Tag 34 → 33, which have been de-

cribed in Section 4 . In these two cases, the parameters obtained

rom the training on the first section of the time series are tested

n the second half. This simulates the case when the pattern of the

isturbance is changing and the method must learn how to predict

his new pattern. 

.2.2. Description of the results 

Table 3 shows the values of E a v int for the time series considered

ver their testing interval with different strategies. The strategies

re listed below 

• ‘OPT’: the best prediction available at each sample time N

with a value of k min ≤ k ≤ k max and m min ≤ m ≤ m max . This is

a term of comparison, since it is not possible at an instant N

to know already the optimal parameters k and m for calcu-

lating the prediction 

• ‘BASE’: the prediction obtained using the parameters k =
� N m 

� and m = � 1 
f 0 

� 
• ‘OPT K’: The prediction obtained using the weighted method

training the algorithm to find the fixed parameters k and m

that minimized E a v int (N 

tr 
1 

, N 

tr 
2 
) 

• ‘OPT D max ’: The prediction obtained using the weighted

method and training the algorithm to find the fixed param-

eters D max and m that minimized E a v int (N 

tr 
1 

, N 

tr 
2 
) 

• ‘AR Model’: The prediction obtained using the AR model fit-

ted on the interval 1 → N 

tr 
2 

For each of the strategies considered (excluding the AR model)

he values E a v int using the weighted method are given. Further, the

atio 

= 

E weighted 

a v int 
− E unweighted 

a v int 

E unweighted 

a v int 

(19) 

s provided. This ratio shows the improvement on E a v int using the

eighted method instead of the unweighted one. A value of �< 0%

ndicates that that the weighted method had better performance

ompared to the unweighted method for the interval of time con-

idered. Further, the index � shows how large the improvement

as. The opposite occurs for �> 0%. 

The table show also the metric γ that has been introduced in

ection 3.4.2 for evaluating the accuracy of the training process.

bserving this table allows the types of analysis listed. 

• Comparing the performance of the base case strategy for

tuning k and m with the new strategies explained in

Section 3.4.1 
• Comparing the performance obtained setting a constant

value of k and setting a constant value of D max 

• Comparing the results obtained using the trained parameters

and the ones obtained with the optimal parameters for the

test interval 

• Comparing the performance of the weighted and un-

weighted method 

• Analysing the effect of a change of the disturbance pattern

on the performance 

• Observing the behaviour of the k -nearest neighbour method

with the linear AR model 

.2.3. Comparison between the base strategy and training the tuning 

arameters 

The impact of the choice of the parameters depends on the pre-

ictability of the signal. If the signal is highly predictable, then the

trategies explained in Section 3.4.1 has a high impact on the qual-

ty of the prediction compared to the base strategy. Indeed, Tag 34

s highly predictable and one can obtain very good results by care-

ul tuning. Tags 33 and 30 are less inherently predictable, but also

obust to tuning parameters. 

.2.4. Comparison between a fixed number of neighbours versus a 

aximal neighbours distance 

The results show that setting a certain value of k instead of a

ertain value of D max makes no difference in most of cases or it

s even better in some of the cases. The major difference is in the

omputational time needed to obtain the optimal parameters. The

ethod that uses D max needs to compute far more combinations

f the parameters for the search grid algorithm. Therefore, the au-

hors would not recommend this approach. 

.2.5. Comparison between using the trained parameters and the 

ptimal parameters for the test interval 

For Tag 33, 34 and 30, where the pattern in the time series is

epeating itself, there is not a significant difference of performance

etween using the parameters obtained from the training of the

lgorithm and best results obtainable for the interval considered.

able 3 shows indeed high values of γ for these Tags. Consequently

he conducted training has been enough to nearly reach the opti-

al performances available from the strategy. 

Instead, there is a decrease of performance in case of the time

eries built on purpose Tag 33 → 34 and 34 → 33, especially in the

ase of Tag 33 → 34. However, γ for the Tag 33 → 34, using the

eighted method, is 0.76. In comparison the AR model shows a γ
f just 0.33. Therefore the k -nearest neighbour method shows a far

igher robustness. 
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Fig. 5. Optimal distances achievable over time for different strategies. 
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5.2.6. Comparison between the weighted and unweighted method 

The prediction performance obtainable with the unweighted

method, if k and m are allowed to change over time, is in some

cases slightly better than the performance with the weighted

method. This is can be seen from the values E a v int correspond-

ing to the strategy ‘Opt’. However, the strategy ‘Opt’ is a term of

comparison. It is not possible to know at an instant N what are

the optimal parameters to be chosen for the k -nearest neighbour

method. 

Looking at the ratio � ( Eq. (19) ) for the different strategies, it is

possible to see that the weighted method improves the prediction,

except for Tag 30, where the ‘Base unweighted’ strategy is slightly

better than the weighted one. 

Therefore, we recommend using the weighted method because

it provides generally better results. 

5.2.7. Comparing the behaviour of the k-nearest neighbour method 

with the linear AR model 

Table 3 shows that the values of E a v in are far higher for the pre-

dictions obtained by the autoregressive model than the k -nearest
eighbours for Tags 33, 34 and 33 → 34. Furthermore, the values

f γ AR are very low, meaning that a new training of the model

ould be necessary. The values of γ for the k -nearest neighbours

re high instead. 

The topic will be described further in the next Section 5.2.8 .

owever, this observation highlights already one of the advantage

f the k -nearest neighbours, which is the capability to learn new

atterns, without new training and human intervention for the

hoice of the parameters. 

.2.8. Variation of the values of E a v over time 

Fig. 5 plots the values of E a v over time using the strategies

isted in Section 5.2.2 . Given the analysis done in Section 5.2.6 ,

nly the weighted method is plotted. From Fig. 5 , it is visible that

he best performance available, indicated as ‘OPT’, vary over time.

urthermore, some strategies might appear better than other in

ome intervals of time and worse in other intervals. Therefore, a

erformance metric that takes an interval of time into account is

eeded. This is the reason behind the metric E a v int explained in

ection 3.3.2 . 
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Fig. 6. Examples of predictions obtained with the weighted and unweighted k - 

nearest neighbours methods using the parameters obtained from the training and 

with the AR model. 
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Fig. 7. Case study. The MPC receives measurements of level and of cold water dis- 

turbance and sends its output to the outflow valve. 

Source: ©IEEE 2018, reprinted with permission from Proceedings of the 26th 

Mediterranean Conference on Control and Automation (MED 2018), Zadar, Croatia, 

pp-19–22. 
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Regarding the k -nearest neighbours, some plots exhibit a peak

f E a v when the time trend has events or disturbance patterns

hat do not resemble events present in the memory of the algo-

ithm. This is the case of the step present in the Tag 33 for exam-

le ( Fig. 5 a). This event highlights also the time that the k -nearest

eighbours algorithm needs to acquire new data at the new oper-

ting condition and be able to provide reliable predictions again. 

The AR model instead after a transient is not able to learn a

ew model unless it is retrained. Consequently an offset might

e visible on the value of E a v for the AR model. Of course, an

R model is intended for stationary time series, but in process

lants it might be common that the time series of the measured
isturbances are not stationary and in this case the k -nearest

eighbours has an advantage. 

Finally, the different strategy overlap for the Tag 30, which is

he less predictable of the all time series considered. Instead, for

he other Tags 33 and 34, and their composite time series 33 → 34

nd 34 → 33, there is a visible distinction between the different

trategies. Highly predictable time series benefit more from the

mprovements in training strategies. 

.3. Examples of prediction at one instant of time 

To conclude this Section, Fig. 6 provide examples of possible

rediction obtainable using the parameters and the AR model re-

ulting from the training process. For the Tags 33 and 34 the

rediction starts at instant N = 1425 , using a prediction horizon

 = 15 . This instant of time lays in the region where the AR mod-

ls for the two time series show a deterioration of the predic-

ion performance. For Tag 30 from the Eastman Chemical Company

 = 6615 and h = 15 . 

As regards the two Tags 33 and 34, the AR model shows qual-

tatively the deterioration of the performance of the AR model

ompared to the prediction obtained by the k -nearest neighbour

ethod. 

As regards Tag 30, Fig. 6 c shows that neither the k -nearest

eighbours nor the autoregressive model predict the abrupt dis-

urbance just before it happens. However, once it happens they

an forecast the future trend and, nonetheless, the k -nearest neigh-

ours shows better performance. 

. An application of disturbance forecasting in process control 

This section provides a simple example of an application of

he disturbance forecasting in process control. The model and the

tructure of the controller is described briefly. Thereafter the re-

ults are shown. 

.1. Description of the case study 

Fig. 7 shows the considered case study, which is a

imulator of a laboratory continuous stirred tank heater
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Fig. 8. Results of the response of the level (CV) and of the outflow using real disturbances from a SE Asian refinery and from a Eastman Chemical Company plant(the inflow 

of the tank is dashed). 
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 zenodo.org/record/888135 ) with an MPC controller ( Borghesan

t al., 2018b ). The CSTH consists of a simulated tank filled with

ater, a cold-water inflow and a water outflow. The level is the

nly controlled variable and the outflow valve of the tank is the

nly manipulated variable available to the controller. The aim of

he controller is to keep the level within two tight constraints

espite the variations of the inflow which is affected by a dis-

urbance. The inflow of the tank is considered constant in the

ominal case and the disturbance d CW 

, assumed measurable, is

dded to the nominal value of the cold water. The outflow should

e kept constant as much as possible so that the disturbance is

ot propagated to a possible second unit connected downstream. 

The simple relationship between disturbance, controlled vari-

ble and manipulated variable has the aim to highlight how the

esponse of the controller changes by simply providing a distur-

ance forecast to the controller. 

The controller can use the data about d CW 

( N ) in three possible

ays: 

• Predicting the future values of d CW 

(N + h ) , h ≥ 0 where N is

the current discrete instant of time and h is the prediction

horizon of the disturbance 

• Setting d CW 

(N + h ) = d CW 

(N) , ∀ h ≥ 0 . An MPC that uses

this strategy is also called Frozen Time MPC (FTMPC)

( Cairano et al., 2014 ) 

• Ignoring the presence of the disturbance. This is equivalent

to setting d CW 

(N + h ) = 0 , h ≥ 0 

In the first case, the algorithm used for the prediction is the

eighted algorithm with the parameters k and m obtained from

he training process described in Section 3.4.1 . 

.2. Results 

Fig. 8 shows the trend over time of the controlled variable

level) and outflow from the tank using the MPC strategies de-

cribed in Section 6.1 for segments of the Tag 33, 34 and 30. The

trategies are the MPC capable of predicting the disturbance (Pre-

iction ON), the MPC that ignores the presence of a disturbance in

ts model (Prediction OFF), and the frozen time MPC (FTMPC). 

The lower panels relative to the outflow show also the disturb-

ng inflow with a red dashed line. The panels on the left hand side,

orresponding to the strategy ‘Prediction ON’, show also the values

f E a v over time with a blue line. The real industrial data sets

n Fig. 2 have to be adapted for use as disturbances in the CSTH

imulation. Tags 33 and 34 are from a refinery and an oscillation

eriod of 17 min. A realistic disturbance for the laboratory-scale

STH simulator would have much shorter timescales, however.

herefore, the disturbances to be applied are derived from Tags 33

nd 34 by using a data set with exactly the same waveform but

ith a sampling interval of 5 s. Similarly a data set representing

brupt disturbances has been derived from Tag 30 by using a

ampling interval of 1 s. 

The implementation of the prediction improves the perfor-

ance of the controller in terms of violation of the constraints and

t reduces at the same time the variation of the outlet flow, reduc-

ng the disturbance propagation to a possible process unit situated

ownstream. This result is true in the case of persistent oscillating

isturbances as well as in the case of abrupt spiky disturbances. 

The benefits are higher for the Tag 34 compared to the Tag 33.

he reason is that the predictions that are obtainable for the Tag

4 are more accurate. Indeed, the values of E a v , plotted on the pan-

ls on the left hand side, are higher for Tag 33 than for Tag 34. This

s because of the higher predictability of Tag 34 compared to the

ne of Tag 33. 

Finally, a comparison between the two solutions used normally

n industrial MPCs, ‘Prediction OFF’ and ‘FTMPC’, is interesting.
he MPC without any information regarding the disturbance value

iolates the given constraints with both persistent disturbances

Tag 33 and Tag 34). The FTMPC violates less the constraints

ut its control action is aggressive. Instead, when abrupt spiky

isturbances appear the FTMPC violates once the constraints of

he controlled variable at around the instant 10 0 0s and moves

ggressively the manipulated variable. 

. Conclusions 

This paper focuses on the prediction of persistent and abrupt

rocess disturbances. It proposes two versions of the k -nearest

eighbours method to predict the future values of process distur-

ances. The methods have been able to provide good predictions

f three signals of real plants, affected by persistent oscillating

isturbances or spiky abrupt ones. The paper shows also how

o assess the predictability of a time series, analyses the impact

f the parameters k , D max and m on the predictions. The paper

rovides guidance in their choice and compares different strategies

o obtain the parameters. It concludes that the weighted method

s more robust, and that using a fixed number of neighbours k

n place of a fixed distance D max does not deteriorate the per-

ormances and it is computationally faster. Furthermore, when a

trong self predictability is present, an algorithm that optimizes

he choices of the tuning parameters is beneficial for the quality of

he prediction. On the other hand, when a strong self predictability

s not present, the method is robust to a wide range of values of

he parameters. 

The paper analysis also the effect of changing characteristics of

he disturbance in the prediction performance and does a com-

arison of the k -nearest neighbours method with the predictions

btained with an autoregressive model. This analysis shows that

he k -nearest neighbour is better able to learn in an unsupervised

ay changing characteristics of the disturbance. 

Thereafter, this paper presents a simple application of the

isturbance prediction in process control, showing how the pre-

iction of the disturbance can work in conjunction with an MPC

ontroller. The aim of the controller is to reduce the variations of

he manipulated outflow, keeping the level of the water within

wo constraints. The considered disturbance are the three real

ime series mentioned before. For all the time series, of persistent

scillating type as well as of abrupt spiky type, the method

rovides consistent advantages in terms of reduction of constraint

iolations and propagation of the disturbance. 
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