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Abstract 

We report evidence of Re and Mo segregation (up to 2.6 at.% and 1 at.%) along with Cr and Co to 

the dislocations inside of γ' precipitates in a second generation Ni-based single crystal superalloy, 

after creep deformation at 750°C under an applied stress of 800 MPa. The observed segregation 

effects can be rationalized through bridging the solute partitioning behavior across the γ/γ' interface 

and the pipe diffusion mechanism along the core of the dislocation line. This understanding can 

provide new insights enabling improved alloy design.  
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Single crystal Ni-based superalloys have long been important engineering materials used in gas 

turbines and jet engines due to their superior creep, fatigue and oxidation properties at elevated 

temperatures [1–7]. These are associated with the two-phase microstructure, where a disordered 

face-centered cubic (FCC)  γ matrix contains a high volume fraction of L12 ordered γ' precipitates, 

which have been considered initially as dislocation-free [3]. Many elements are typically added 

for solid solution strengthening of the γ matrix, such as W and Mo [8]. Re has attracted special 

attention due to the fact that additions of 2 to 6 wt.% Re significantly enhance the creep properties 

of Ni-based single crystal superalloys [1,3,9–11]. How Re improves the creep properties is debated. 

The following possibilities have been suggested in the literature: (i) solid solution strengthening 

and distortions of the γ matrix lattice due to the large size of Re atoms [1,12], (ii) the slow diffusion 

rate of Re in Ni (slowest of all d-shell elements) [13,14], and (iii) the possible formation of Re 

clusters in the γ matrix that might hinder dislocation movement [15–18]. However, these Re 
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clusters were neither detected by extended X-ray absorption fine structure investigations (EXAFS) 

nor by atom probe tomography (APT) [12,19,20]. Recent experiments show that Re atoms 

segregate to the core of network dislocations at γ/γ' interfaces and hence block their motion during 

creep deformation [21,22]. Till now, the observation of effects associated to Re has been confined 

either in the γ matrix phase or at the γ/γ' interfaces. 

Elements such as W, Re, Co and Cr typically partition to the γ matrix in single crystal Ni-based 

superalloys. In contrast, Al, Ti and Ta favor the formation of γ' particles and are observed to 

partition to γ' [3,6,23–26]. Similarly, at a smaller scale, segregation of certain solute elements to 

dislocations (Cottrell atmosphere) and stacking faults (Suzuki effect) has been observed in Ni-

based superalloys [27–29]. Viswanathan et al. [30] were the first to report segregation of Cr and 

Co to a superlattice-intrinsic stacking fault (SISF) inside γ' in two commercial Ni-based 

superalloys, using energy dispersive spectroscopy (EDS) in the scanning transmission electron 

microscopy (STEM) mode. Smith et al. [31,32] extended the investigations and tackled the 

segregation behavior to superlattice-extrinsic stacking fault (SESF) and found Nb, Ta, Ti and Co 

enrichment with local structural phase transformation from L12 (γ' phase) to a DO24 ordering (η 

phase). Similar segregation behavior has been found at dislocations [33–37], twin boundaries [38–

40] and planar defects of γ' phase in Co-based superalloys (enrichment of Co and W in SISF and 

of Co and Cr in anti-phase boundary) [37,41,42]. This raised the question whether these elementary 

segregation processes are associated to the rate limiting steps for creep deformation.  

Here, we show evidence by APT of Re and Mo segregation, along with Cr and Co, to dislocations 

present inside of γ' particles. We show that these segregation effects to the dislocations are broadly 

related to chemical partitioning, which can contribute to control the creep rate. 

Here we investigated a creep deformed, second generation single crystal Ni-based superalloy 

referred to as ERBO1, which is akin to the CMSX-4 alloy, containing ~ 3wt.% Re. More 

information about the material can be found in ref. [6]. A series of interrupted low temperature 

(750°C) high stress (800 MPa) tensile creep experiments were conducted along precisely 

determined [001] orientations. The details of how strain rates evolve with time are reported in refs. 

[43,44]. For the present work, two creep stages (i.e. stage II:1% and stage III:5%) were selected 

for precise structural and chemical analysis using TEM and APT. The 1% specimen was just about 

to pass through a local intermediate maximum of creep rate (~3h, 1.6×10-6 s-1), while the 5% 
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specimen had reached a global creep rate minimum (~172h, 3.5×10-8 s-1). TEM foils were prepared 

from the gauge area of the crept samples, and cut out parallel to the {111} planes for 

characterization of elongated dislocation segments and extended planar defects. More details about 

the TEM foil preparation can be found in ref. [45]. The microstructure was investigated using a 

FEI Tecnai Supertwin F20 G2 operated at 200 kV. Site specific lift-outs for APT investigations 

were prepared from regions of the crept specimens (1% and 5% crept) containing a high dislocation 

density by using a dual-beam SEM/focused-ion-beam (FIB) instrument (FEI Helios Nanolab 600i). 

The adopted detailed procedure was described in ref.[46]. APT measurements were conducted on 

a Cameca LEAP 5000 XR operated in laser pulsing mode at a pulse repetition rate of 125 kHz and 

a pulse energy of 45 pJ. The specimen base temperature was kept at 60 K and the detection rate 

maintained at 1 ion detected per 100 pulses on average.  

Figure 1 shows representative overviews of the microstructure, viewed along the [111] direction, 

for the samples crept up to 1% (1% sample) and 5% strain (5% sample), respectively. Figure 1(a) 

shows the STEM bright-field (BF) image for the 1% sample, where we observe dislocations mostly 

confined to the γ channels. For the 5% sample, Figure 1(b), we observe a significant increase in 

dislocation density in the microstructure, in both, γ-channels and γ' precipitates, consistent with 

what was reported in ref. [43].  Due to the higher dislocation density in the 5% sample, a STEM 

DF image is shown for better dislocation contrast in Figure 1b. 

 

Figure 1: STEM microstructure overview (a) Bright field (BF), 1% crept sample. (b) Dark field (DF), 5% crept sample. 
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Figure 2(a) shows a 3D APT reconstruction from the 1% sample, showing the distribution of Co 

atoms colored in dark yellow. The γ/γ' interfaces are evidenced by the iso-composition surfaces 

delimiting regions containing more than 14 at.% Co. The reconstruction contains a γ channel with 

high Co-composition in between two γ' precipitates. Many tertiary γ' particles which formed during 

cooling can be seen in the γ channel [47]. The Co solute partitions to the γ phase. The 

compositional partitioning of different solutes across the γ/γ' interface is shown in supplementary 

Figure S1. The base component Ni and the solutes Al, Ti, Ta, and W show partitioning to the γ' 

precipitate while the other solutes (Co, Cr, Mo and Re) partition to γ matrix phase. This chemical 

partitioning of solutes is consistent with the literature [6,23,48].  

 

Figure 2: (a) APT reconstruction of a tip prepared from the 1% sample showing a γ-channel between two γ/γ' 

interfaces. Two dislocations D1a and D1b are highlighted in the dashed black rectangle region. (b) Magnified view 

for the dashed black rectangle, highlighting dislocations D1a and D1b. The composition profiles were recorded in 

the marked area. (c) Composition profile across dislocation D1a. Clear enrichments in Co and Cr are also observed. 

(d) Re composition profile in the same area. Re segregation across the dislocation is significant compared to the 

background level of Re. 

Inside the γ' precipitate, the dashed black rectangle delineates a region containing two linear 

features decorated by Cr which correspond to two dislocations [49,50]. Figure 2(b) shows a 

magnified view of this region, with the two dislocations marked as D1a and D1b (D1 refers to 

dislocations observed in the 1% specimen). The composition profiles of Co, Cr and Re across D1a 

(i.e. along AA' from the blue cuboidal box in Figure 2(b)) are shown in Figures 2(c) and 2(d). We 

observe a significant enrichment of Co (by ~ +4 at.% ) and Cr (~ + 3.5 at.%) at D1a with respect 
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to the surrounding γ' phase. Additionally, we find a relative increase in Re composition by ~ +0.4 

at.%. The composition profiles of other solutes are plotted in supplementary Figure S2 which 

shows that Ni and Al are both depleted at dislocation D1a, alongside with a slight reduction of Ta 

and W. Ti and Hf show no significant change. A similar trend in the segregation of solutes is 

observed for dislocation D1b, as shown by the composition profiles provided in the supplementary 

Figure S3. 

Figure 3 shows the APT analysis from the 5% sample. A similar reconstruction is shown in Figure 

3(a), with the distribution of Co atoms and iso-compositional surfaces indicating a Co-composition 

of 14 at.% Co at the γ/γ' interfaces. An iso-surface surrounding regions containing more than 4 at.% 

Cr reveals three dislocations (D5a, D5b, D5c) inside the two γ' precipitates (similarly, D5 refers to 

dislocations in the 5% specimen). The region containing dislocation D5a is marked by a dashed 

black rectangle in Figure 3(a). Figure 3(b) is a close-up on dislocation D5a. A 2D compositional 

map of Re was projected onto the surfaces of a cuboid by keeping the region-of-interest at the 

center as shown in Figure 3(c), with the color-coded composition scale for solute Re. We observe 

a confined Re segregation along the dislocation line. Figure 3(d) shows the distribution of Re 

atoms (blue color) projected on the XZ and YZ planes (see the directions in Figure 3(c)).  An iso-

surface surrounding the region containing more than 1.5 at.% Re clearly encloses dislocation D5a 

with a high composition of Re atoms relative to the surrounding γ' lattice. Figures 3(e) and 3(f) 

show the composition profiles of Cr, Co, Re and Mo. We observe an enrichment of Re up to ~ 2.6 

at.% at D5a that is significantly higher than the segregation observed at dislocations in the 1% 

sample. Additionally, a Mo enrichment up to approx. 1.3 at.% appears at D5a.  
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Figure 3: (a) APT reconstruction of 5% deformation tip. Three dislocations are numbered as D5a, D5b and D5c. (b) 

Enlarged view of dislocation D5a. Composition profiles were measured in the marked region from A to A'. (c) 2D 

composition profile of dislocation 5a, projected onto the surfaces of a cuboid, showing the Re composition profile. (d) 

Re atom distribution on planes XZ and YZ, showing clear segregation of Re to dislocation D5a. (e) Composition 

profile of dislocation D5a, clear Co and Cr enrichment is observed at the dislocation. (f) Composition profile of Re 

and Mo in the same area as in (e), stronger segregation of Re can be seen in this condition compared to the 1% sample. 

Also, Mo is clearly enriched. 

The composition profile of Ni and other solutes are plotted in Figure supplementary S4. 

Composition profiles across dislocation D5c can be found in the supplementary Figure S5, those 

for dislocation D5b are not shown due to the limited number of atoms acquired. We observe similar 

solute segregation behavior as for dislocation D5a, however, the enrichment levels were different. 

We deduce that the segregation levels, particularly for solutes Re and Mo, increase as creep strain 

increases from 1 to 5%. 

Referring to the creep curves for the two stages under investigation reported in ref. [43,44], it can 

be seen that the material exhibits significant primary creep. Previous studies on this material and 

similar CMSX-4 alloys indicate that dislocations form ribbons with an overall <112> fault vector 

inside of the γ' phase [45,51–53]. Solute decoration of dislocations, known as Cottrell atmospheres, 

have been reported in several alloy systems. The proposed mechanism is related to the solute 

interaction with the dislocation’s elastic strain field which influences its mobility. In addition, 
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several experimental studies have shown that solute atoms diffuse much faster along dislocation 

lines than in the bulk material. This effect is attributed to the reduced activation energies for 

diffusion in the dislocation core, an effect known as pipe diffusion [54–57]. The solute mass flux 

density depends on the “pipe cross-section” which is assumed as a disk with a radius of the size of 

the Burgers vector [54].  

In γ/γ' based superalloys (both Ni- and Co-based), solute segregation was reported at dislocations 

present in the γ' precipitates [34,35]. All of them showed Co and Cr enrichment with respect to the 

surrounding γ' lattice which is also consistent with the results found for the present crept ERBO1 

alloy. However, the mechanisms and driving forces for solute enrichments at dislocations are 

unclear. Earlier reports indicate that enrichment of Cr and Co is related to their smaller atomic size 

and higher mobility compared to other solutes such as W, Ti, and Mo [58]. This is in contrast to 

the present observation of additional Re and Mo (solutes partitioned in the γ phase) segregation 

confined to the γ' dislocations, since Re and Mo have larger atomic sizes and low diffusivities. To 

the best of our knowledge, Re or Mo segregation to dislocations inside γ' precipitates were so far 

not yet reported. Previous studies have shown that Re segregates to some dislocations which are 

at the γ/γ' interface[21,22], while Mo is observed to enrich along complex intrinsic stacking faults 

or superlattice intrinsic stacking faults in a single-crystal prototype nickel-based superalloy [38]. 

We now consider the mechanisms for the solute enrichment to the dislocations inside γ'. Figure 

4(a) shows a schematic illustration of a γ' cuboidal precipitate embedded into a γ matrix with a 

dislocation moving on a {111} plane. Figure 4(b) shows the normalized composition profiles 

across the γ/γ' interface for the solutes partitioning to γ (γ stabilizers: Co, Cr, Re, and Mo) and γ' 

(γ' stabilizers: Ni, Al, W, Ta, and Ti). There are three possibilities of how solute enrichment at the 

dislocations can occur. (1) Local static rearrangement and long-range diffusion of solutes towards 

the dislocation core from the surrounding γ' lattice. (2) Solute collection in the γ' phase as the 

dislocation moves through the precipitate. (3) Diffusion of solutes from the γ matrix into the γ' 

phase along the dislocation line as depicted in the Figure 4(a). The compositional profile of the γ 

stabilizers in Figure 3(e-f) does not show any evidence for the presence of a compositional denuded 

zone surrounding the region enriched in solutes at the dislocation. In addition, the amount of γ 

stabilizing solute elements in γ' is very low, in particular for e.g. Re and Mo. Hence, possibilities 

(1) and (2) are unlikely to explain the high enrichment observed in the present work. 
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In turn, mechanism (3) can explain the solute segregation at the dislocations after creep in the γ' 

phase. For local thermodynamic equilibrium at the γ/γ' interface, the solutes should have equal 

chemical potentials in both γ and γ' phases, i.e.
'gg µµ ii = , where i indicates the solute species. In 

the presence of a dislocation cutting into the γ'-phase and connecting the γ and the γ' phase, Figure 

4(a), the solute exchange can be expected to take place along the dislocation line (mechanism (3)) 

having a well-defined pipe cross-section. The system tends to equilibrate the chemical potential of 

the solutes along the dislocation line. Hence, there is a driving force for a change of composition 

along the dislocation line. The composition of γ' stabilizers should decrease because of the less 

ordered structure of the dislocation core, bringing the composition locally closer to γ. In contrast, 

the composition of γ stabilizers increases along the dislocation core in γ'. 

 



9 
	

Figure 4: (a) Schematic showing the three mechanisms of solute enrichment at the dislocation: (1) Long range 

diffusion of solutes from the surrounding γ' lattice, (2) Solute pick-up from the γ' lattice during the movement of the 

dislocation, and (3) Solute exchange through the dislocation line core between the γ and γ' precipitate. (b) Normalized 

composition profiles for γ and γ' stabilizers across the γ/γ' interface. 

The composition profiles in Figures 2(c) and 3(e) show a significant enrichment of Co and Cr at 

the dislocation inside the γ' precipitate for both, 1% and 5% samples. This result is consistent with 

the suggestion introduced above. We also observed a confined depletion of Ni and Al at the 

dislocation line within the γ' precipitate. Additionally, in the 5% samples, the pronounced 

segregation of Re and Mo, in addition to the enrichment of Co and Cr, to the dislocation also 

supports the proposed mechanism. Correspondingly, there is always a reduction of Ta and in some 

cases also of W and Ti (supplementary Figures S3, 4 and 5) at the dislocations. Transport of these 

solutes along the dislocation lines occurs at high temperatures (here: 750°C) also in the presence 

of an external load. Hence, the composition of the dislocations in the γ' precipitates is expected to 

also depend on the creep strain and may vary along the line of a dislocation. In the present study, 

we generally observe that for the 5% sample (172h creep exposure), the segregation of Co, Cr, Re 

and Mo is significantly more pronounced as compared to the 1% specimen (3h creep exposure). 

This shows that with increasing creep exposure time at 750°C, more diffusion takes place and 

hence a higher solute content can accumulate at the dislocations.  

In summary, the current APT results provide experimental evidence for Re and Mo segregation to 

the dislocations present inside of γ' precipitates. The results shown here can be explained in terms 

of a pipe diffusion mechanism, where solute mass transport occurs along the dislocation line out 

of the γ matrix into the γ' phase, thereby crossing the γ/γ' interface. This links the field of γ/γ' 

dislocation plasticity to partitioning and segregation processes in γ/γ' microstructures. The 

suggested process can influence the creep behavior as solute decoration of dislocations creates a 

solute drag force which slows down dislocation movement. Moreover, the selective solute 

transport along the dislocations in the γ' phase is in accordance with mechanism (3) which depends 

on the solute partitioning behavior across interfaces. Hence, the change in solute partitioning 

behavior will also affect the type and direction of the movement of solutes along the shearing 

dislocations across the γ/γ' interfaces. Control over the solute partitioning is possible by tuning 

alloy chemistry. For example, addition of Ta to a Ni-based superalloys has been shown to reverse 

the partitioning of W from the γ' phase into the γ precipitate [59]. Similarly, in Co-based 
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superalloys, Cr addition leads to a similar effect on the Mo partitioning behavior [60]. These 

observations can serve as guiding principles for devising improved alloy doping concepts for high 

temperature applications.  
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Figure S1: Composition profiles across γ/γ' interface at 1% creep. (a)Distribution of Ni, Al, Co and Cr across γ/γ' 

interface. Ni and Al are enriched in the γ' phase, and Co and Cr are enriched in the γ phase. (b) Distribution of Re 

and Mo across γ/γ' interface. Both elements are enriched in the γ phase. (c) Distribution of  W, Ta, Hf and Ti across 
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γ/γ' interface. W and Ta are enriched in the γ' phase. Ti is slightly enriched in the γ' phase. Hf shows no obvious 

enrichment behavior. 

 

 

Figure S2: Compositional profile of the same region for dislocation D1a in 1% creep strain tip. (a) Distribution of Ni 

and Al across dislocation D1a. Clear depletion of Ni and Al can be seen. (b) Distribution of Ta, Ti, W, Hf and Mo 

across dislocation D1a. No profound change of composition of these elements are observed. 
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Figure S3: Compositional profile of cube investigation area for dislocation D1b in 1% creep strain tip. (a) distribution 

of Cr and Co across dislocation D1b. Clear enrichment of Co and Cr can be seen. (b) Distribution of Re across 

dislocation D1b. There is nearly 0.6 at. % of Re at the dislocation, compared to an average of 0.2 at.% for the 

surrounding γ’ phase. (c) Distribution of Ni and Al across the dislocation, clear depletion of Ni and Al is observed for 

the dislocation region. (d) Distribution of Ta, Ti, Mo, W and Hf across dislocation. Clear depletion of Ta is observed 

for the dislocation, while for other elements there are no profound changes. 
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Figure S4: Compositional profile of dislocation D5a in 5% creep strain tip, same investigated area as in Figure 3. (a) 

Distribution of Ni and Al across the dislocation, clear depletion of Ni and Al is observed for the dislocation region. 

(b) Distribution of W, Ti, Ta and Hf across dislocation. Clear depletion of Ta is observe for the dislocation, as well 

as W. For Ti and Hf there are no profound changes. 
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Figure S5: Compositional profile for dislocation D5c in 5% creep strain tip. (a) distribution of Cr and Co across 

dislocation D5c. Clear enrichment of Co and Cr can be seen. (b) distribution of Re and Mo across dislocation D5c. 

There is nearly 1.5 at. % of Re at the dislocation, compared to an average of 0.4 at.% for the surrounding γ’ phase. 

(c) distribution of Ni and Al across the dislocation, clear depletion of Ni and Al is observed for the dislocation region. 
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(d) distribution of Ta, Ti, Mo, W and Hf across dislocation. Clear depletion of Ta is observed for the dislocation, while 

for other elements there are no profound changes. 


