
This is a repository copy of The role of the representational entity in physical computing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/147382/

Version: Accepted Version

Conference or Workshop Item:
Stepney, Susan orcid.org/0000-0003-3146-5401 and Kendon, Viv (2019) The role of the
representational entity in physical computing. In: UCNC 2019, Tokyo, Japan, June 2019,
03-07 Jun 2019.

https://doi.org/10.1007/978-3-030-19311-9_18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The role of the representational entity

in physical computing

Susan Stepney1 and Viv Kendon2

1 Department of Computer Science, University of York, UK
2 Department of Physics, Durham University, UK

Abstract. We have developed abstraction/representation (AR) theory
to answer the question “When does a physical system compute?” AR
theory requires the existence of a representational entity (RE), but the
vanilla theory does not explicitly include the RE in its definition of physi-
cal computing. Here we extend the theory by showing how the RE forms
a linked complementary model to the physical computing model, and
demonstrate its use in the case of intrinsic computing in a non-human
RE: a bacterium.

1 Introduction

Many and diverse physical substrates are proposed for unconventional comput-
ing, from relativistic and quantum systems to chemical reactions and slime
moulds, from carbon nanotubes to non-linear optical reservoir systems, from
amorphous substrates to highly engineered devices, from general purpose ana-
logue computers to one-shot devices. In another domain, biological systems are
often said to perform information processing. In all these cases is crucial to be
able to determine when such substrates and systems are specifically computing,
as opposed to merely undergoing the physical processes of that substrate.

In order to address this question, we have been developing abstraction/rep-
resentation theory (AR theory). This is a framework in which science, engineer-
ing/technology, computing, and communication/signalling are all defined as a
form of representational activity, requiring the fundamental use of the represen-
tation relation linking physical system and abstract model in order to define
their operation [3, 7]. Within this framework, it is possible to distinguish scien-
tific experimentation on a novel substrate, from the performance of computation
by that substrate.

In work following on from the original definitions, [6] provides a high level
overview, [4] delves into more philosophical aspects, and [5] presents an example
of intrinsic computation: signalling in bacteria. Also see [3, 4] for references to
the wider unconventional computing and philosophical literature.

AR theory requires the existence of a representational entity (RE) to support
the representation relation. One issue glossed over in our previous descriptions of
AR theory that becomes crucial when analysing computation in systems where
the RE is not a human or conscious user, is the relationship between the physical

2 Susan Stepney and Viv Kendon

RE and the physical computer. Here we enrich AR theory by incorporating the
RE explicitly, and showing how it relates to the physical computing process.

The structure of the paper is as follows. In §2 we summarise the current
formulation of AR theory. In §3 we extend the theory to include the RE explicitly.
In §4 we demonstrate how the extended theory allows us to capture and model
intrinsic computing in a bacterium.

2 AR theory in a nutshell

2.1 Our view of physical computing

AR theory has been developed to answer the specific question of when a phys-
ical system is computing [3]. Its answer hinges on the relationship between an
abstract object (a computation) and a physical object (a computer). It employs
a language of relations, not from mathematical objects to mathematical ob-
jects (as is usual in mathematics and theoretical computer science), but between
physical objects and those in the abstract domain. The core of AR theory is
the representation relation, mapping from physical objects to abstract objects.
Experimental science, engineering, and computing all require the interplay of
abstract and physical objects via representation in such a way that their de-
scriptive diagrams commute such that the same result can be gained through
either physical or abstract evolutions (see §2.3). From this, Horsman et al [3]
define computing as the use of a physical system to predict the outcome of an
abstract evolution.

2.2 Representation

AR theory has physical objects in the domain of material systems, abstract
objects (including mathematical and logical entities), and the representation
relation that mediates between the two. The distinction between the two spaces,
abstract and physical, is fundamental in the theory, as is their connection only by
the (directed) representation relation. An intuitive example is given in figure 1:
a physical switch is represented by an abstract bit, which in this case takes the
value 0 for switch state up, and 1 for switch state down. Note, however, that
AR theory is not a dualist theory in the sense of Descartes. Everything in the
theory is physical in some form. The symbols in the Abstract domain in figure 1
are instantiated as ink on paper or pixels on the screen as you read this. What
makes them abstract in AR theory is that this physical form is to some degree
arbitrary, and can change, while still corresponding to the same abstract object.

An example of a physical object in the domain of material entities is a com-
puter. It has, usually, internal degrees of freedom, and a physical time evolution
that transforms initial input to final output states. An example of an abstract
object is a computation, which is a set of objects and relations as described in
one of the logical formalisms of theoretical computer science. Likewise, an object
such as a bacterium is a physical entity, and its theoretical representation within
biology is an object in the domain of abstract entities.

The role of the representational entity in physical computing 3

Abstract

Physical

(0, 1)

R

Fig. 1. Basic representation has three components: (i) the space of physical objects
(here, a switch with two settings); (ii) the space of abstract objects (here, a binary
digit); (iii) the directed representation relation R mediating between the spaces.

The central role of representation leads to the requirement for a representa-
tional entity (RE). The RE supports the representation relation between physical
and abstract. AR theory does not require the RE to be human, or conscious; see
[5] for an example of a bacterial RE, which is expanded on in §4 here.

The elementary representation relation is the directed map from physical ob-
jects to abstract objects, RT : P → M , where P is the set of physical objects,
and M is the set of abstract objects. We subscript the relation R with a theory
T to indicate that the relation is theory-dependent. When two objects are con-
nected by RT we write them as RT : p → mp. The abstract object mp is then
said to be the abstract representation (under the given theory) of the physical
object p, and together they form one of the basic composites of AR theory, the
representational triple 〈p,RT ,mp〉. The basic representational triple is shown
in figure 2(a).

Abstract evolution takes abstract objects to abstract objects, which we write
as CT : M → M . Again, we subscript with theory T to indicate that C is
theory-dependent. An individual example is shown in figure 2(b), for the map-
ping CT (mp) taking mp → m′

p
. The corresponding physical evolution map is

given by H : P → P. For individual elements in figure 2(c) this is H(p) which
takes p → p′.

2.3 ε-Commuting diagrams

In order to link the final abstract and physical objects, we apply the representa-
tion relation to the outcome state of the physical evolution, to give its abstract
representation mp′ , figure 2(d). We now have two abstract objects: m′

p
, the re-

sult of the abstract evolution, and mp′ , the representation of the result of the
physical evolution. For some (problem-dependent) error quantity ε and norm |.|,
if |mp′ −m′

p
| ≤ ε (or, more briefly, mp′ =ε m′

p
), then we say that the diagram

2(d) ε-commutes.
Commuting diagrams are fundamental to the use of AR theory. If the relevant

abstract and physical objects form an ε-commuting diagram under representa-
tion, then mp is a faithful abstract representation (up to ε) of physical system p

for the evolutions CT (mp) and H(p).
The existence of such ε-commuting diagrams define what is meant by a faith-

ful abstract representation of a physical system. The final state of a physical

4 Susan Stepney and Viv Kendon

Abstract

Physical

p

mp

RT Abstract

Physical

p

mp

RT

m′
p

CT (mp)

(a) (b)

Abstract

Physical

p

mp

RT

m′
p

CT (mp)

p′H(p)

Abstract

Physical

p

mp

RT

m′
p

CT (mp)

p′H(p)

mp′

ε

RT

(c) (d)

Fig. 2. Parallel evolution of an abstract object and the physical system it represents.
(a) The basic representational triple, 〈p,R,mp〉: physical system p is represented ab-
stractly by mp using the modelling representation relation RT of theory T . (b) Ab-
stract dynamics CT (mp) give the evolved abstract state m′

p. (c) Physical dynamics
H(p) give the final physical state p′. (d) RT is used again to represent p′ as the
abstract output mp′ . If mp =ε mp′ , the diagram ε-commutes. (Adapted from [3].)

object undergoing time evolution can be known either by tracking the physi-
cal evolution and then representing the output abstractly, or by evolving the
abstract representation of the system; and the two results differ by less than
the problem-dependent ε. In the first case, the ‘lower path’ of the diagram is
followed; in the latter, the ‘upper path’.

Finding out which diagrams ε-commute is the business of basic experimental
science; once commuting diagrams have been established they can be exploited
through engineering and technology.

2.4 Compute cycle

Figure 2(d) shows the basic ‘science cycle’, of representing a physical system, and
determining whether CT is a sufficiently good abstract model of its behaviour,
by requiring that mp =ε mp′ for sufficiently many different initial states p to
have confidence in CT and RT . There are derived variants of this diagram that
capture the ‘engineering cycle’, and the related ‘compute’ cycle. See the original
references for details; here we focus on the compute cycle.

The role of the representational entity in physical computing 5

p

mp

R̃T

m′
p

=ε mp′

CT (mp)

A

encode

A′

decode

p′
program runs

H(p)

RT

Fig. 3. Physical computing in AR theory. An abstract problem A is encoded into the
model mp; the model is instantiated into the physical computer state p; the computer
calculates via H(p), evolving into physical state p′; the final state is represented as the
final abstract model mp′ =ε m′

p; this is decoded as the solution to the problem, A′. The
instantiation, physical evolution, and representation together implement the desired
abstract computation CT (mp). (From now on we omit the dashed line separating the
physical and abstract world, and rely on the different shaped boxes to indicate what
components lie in which domain.)

An ε-commuting diagram in the context of computation also connects the
physical computing device, p, and its abstract representation mp. But to do

so it makes use of the instantiation relation R̃T : M → P. Here, instead of
saying abstract object mp represents physical system p, we say that physical
system p instantiates abstract object mp. Whereas the representation relation
is primitive, the instantiation relation is a derived relation, based on multiple
science cycles, abbreviated as R̃T ; see original references for full details.

The use of R̃T acknowledges that a computer is physical system engineered
(or possibly evolved) to have a particular behaviour, rather than a natural phys-
ical system being scientifically modelled. The full compute cycle is shown in
figure 3, starting from initial abstract problem, through instantiation into a
physical computer, physical evolution of the device, followed by representation
of the final physical state as the abstract answer the the problem.

Ensuring that the diagram ε-commutes is a process of debugging the physical
system, including how it is instantiated (engineered, programmed and provided
with input data), and how its output is represented. This shows another key
difference from the science cycle: there the diagram is made to ε-commute by
instead debugging the abstract model.

The most important use of a computing system is when the abstract outcome
m′

p
is unknown: when computers are used to solve problems. Consider as an

example the use of a computer to perform the abstract arithmetical calculation
2 + 3. If the outcome were unknown, and the computing device were being
used to compute it, the final abstract state, m′

p
= 5, would not be calculated

abstractly. Instead, confidence in the technological capabilities of the computer
and the correctness of the instantiation would enable the user to reach the final,

6 Susan Stepney and Viv Kendon

abstract, output state mp′ =0 m′
p
using the physical evolution of the computing

device alone. (One advantage of digital computers is that we can achieve ε = 0.)
This use of a physical computer is the compute cycle, figure 3: the use of a

physical system (the computer) to predict the outcome of an abstract evolution
(the computation).

2.5 Generality of AR theory

Nothing in the above definition requires the physical computer to be digital,
or electronic, or universal, or pre-existing. The computer could be a continuous
analogue device; it could be a mechanical or organic device; it could be a hard-
wired device with limited capabilities; it could be a ‘one-shot’ device constructed
for a particular computation. It simply needs to be sufficiently powerful, suffi-
ciently accurate, and instantiatable, to perform the RE’s desired computations:
the relevant squares must exist, and must be known to ε-commute for the desired
computations.

And, of most relevance here, nothing in the above definition requires the RE
to be a human, or conscious, user. We now show how to model the RE in the
same context as the computing system.

3 Including the RE in the model

3.1 Overview

As mentioned above, the representational entity (RE) supports the representa-
tion relation R. Although it does not appear explicitly in the compute cycle of
figure 3, it is the physical entity that ‘owns’ the abstract problem A and desires
the abstract solution A′.

To help clarify the issues, consider a (human) RE who has the problem “I
have two apples in my left hand, and three in my right hand; how many apples
do I have in total?” We model this physical RE’s problem, how they encode it
as a computational problem, how this is instantiated in a physical computer,
how the computer finds the answer, how the answer is represented back as an
abstract computational result, and how that result is decoded as an answer to
the RE’s problem.

In this section, we add the RE to the overall model of physical computing as
defined in AR theory. As before, we have objects in two domains: the physical
RE, and (our) abstract model of the RE. First we show how we model the RE
in a manner analogous to how we model a physical computation (§3.2). Then
we show how to integrate the RE and full physical compute cycle models, and
how to interpret various parts of the resulting model (§3.3).

3.2 The physical RE

The RE is a physical system pRE . The relevant part of the RE here is the physical
states that it uses to represent its abstract problem A. (There are several levels

The role of the representational entity in physical computing 7

pRE

mpRE

RTRE

mpc

encode

pc

physically encode

R̃Tc

Fig. 4. The relationship between the physical representational entity pRE and the
physical computer pC via abstract models of each. There is an encoding of the abstract
model mpRE

into mpC
. In a correctly working system, this encoding is appropriately

implemented by the respective physical systems: the square should ε-commute. Note
that the models of the RE and the computer are potentially with respect to different
theories.

of indirection at play here, that will become clearer with later examples.) Our
abstract model of these relevant parts in AR theory diagrams is mpRE

; the RE
does not in general itself construct AR diagrams. See figure 4. Our model mpRE

may incorrectly capture the RE’s physical state, in which case the model needs
to be modified; mpRE

is our scientific model of pRE .

We model the computational system as before. There is the abstract model
mpc

that forms the ‘specification’ of the RE’s problem mpRE
encoded as a com-

putational problem. (This is the model mp in figure 3.) This is our model of the
RE’s model of the computer and encoding: the RE’s model is also part of its
physical state pRE .

The computer’s physical state may incorrectly implement the RE’s model, in
which case the physical state needs to be modified; the RE is using an engineer-
ing model of pc. However, our model mpc

of the RE’s model may incorrectly
represent the RE’s model: we are using a scientific model of the RE and its com-
puter. We model the RE’s problem being encoded into the computer by mpRE

being encoded into the computational model mpc
. There is no guarantee that

such an encoding is possible: not all problems are computable.

The two representation/instantiation relation arrows in figure 4 are with re-
spect to two different theories. The representation RTRE

: pRE → mpRE
is based

on the theory of how the physical RE forms abstract problem specifications; the
instantiation R̃Tc

: mpc
→ pc is based on the theory of how the physical com-

puter implements abstract computations.

In a correctly implemented computer, the diagram in figure 4 should ε-
commute: the instantiated state of the physical computer should correctly mir-
ror the desired state of the physical RE: it should physically encode the desired
state. The establishment of this physical encoding link is part of the engineering
process.

During the execution, this physical encoding link is not necessarily estab-
lished immediately. There may be some delay, for example in updating a record

8 Susan Stepney and Viv Kendon

pc

mpc

R̃c

m′
pc

Cc

p′
c

Hc

Rc

pRE

mpRE

RRE

m′
pRE

CRE

p′
RE

HRE

R̃RE

physically
encode

encode

physically
decode

decode

Fig. 5. The full compute cycle including the representational entity and the physical
computer. The desired change in the RE’s state, from posed problem to perceived so-
lution, is pRE → p′

RE . The physical computer performs pc → p′
c. The full compute

cycle from AR theory is: represent RE’s physical state pRE (desired computation) as
abstract model mpRE

; encode to computational model mpc
; instantiate into physical

computer state pc; physical computer evolves to final state p′
c; represent physical solu-

tion as abstract computational solution m′
pc
; decode to final abstract problem solution

m′
pRE

; which models the instantiation of the final state of the RE. Each set of squares
(between representational entity and physical computer, and across the compute cycle)
should ε-commute.

to reflect reality, or in opening or closing a valve to reflect changed demand.
In, for example, a mechanical control system, with feedback, there can be an
immediate coupling: the behaviour of the physical controlled system changes its
state, which is directly communicated to the physical controller though their
physical mechanical coupling. We do not consider this aspect further here, al-
though it is a key feature of correctly-engineered computational ‘mirror worlds’
and of feedback control systems.

3.3 The physical RE in the compute cycle

We can now add this physical RE layer to the previous compute cycle. See
figure 5 for the full compute cycle including the representational entity. Notice
how the RE adds another dimension (cube instead of square) to the diagrams.
Each dimension is a level of indirection or representation. The full compute cycle
involves traversal of many faces and edges of the displayed cube. Each face has
its own place in the model.

Consider again a (human) RE who has the problem “I have two apples in
my left hand, and three in my right hand; how many apples do I have in total?”

Back face; RE’s view of the computation (figure 6): the RE’s desired states,
starting from a problem state (abstract initial state, mpRE

, “how many ap-
ples?”; physical state, pRE , a brain state that is represented by that abstract

The role of the representational entity in physical computing 9

pRE

mpRE

RRE

m′
pRE

CRE

p′
RE

HRE

R̃RE

Fig. 6. The RE’s view of the problem solution (back face of figure 5). The RE has an
initial physical state pRE , modelled as mpRE

. It has a desired final state p′
RE , modelled

as m′
pRE

. Both the horizontal arrows are dashed, as they are implemented in a different
medium: the computer.

question) and resulting in a solution state (abstract final state, m′
pRE

, “five ap-
ples!”; physical state, p′RE , a brain state that captures that abstract solution).
There is no direct path from initial to final state, either abstractly or physically,
as a separate computer is used to achieve the desired state changes.

Left face; encoding the problem (figure 4): the RE’s initial physical and abstract
state encoded into the computer’s initial physical and abstract states. The RE’s
abstract problemmpRE

of “how many apples?” can be encoded as the computer’s
initial abstract state mpc

“2+3”. This is instantiated as the computer’s initial
physical state pc, 2+3 . The RE pRE physically encodes the problem in the
computer’s initial state pc by, for example, pressing the keys labelled 2 then
+ then 3 . (How this human RE manages to press the keys, given the apples
it is currently holding, is an exercise left to the reader.)

Front face; compute cycle (figure 3, which also includes the back face RE abstract
models as its ‘abstract problem’ components): the original simple AR theory
compute cycle, ignoring the role of the RE. The abstract computational problem
mpc

is instantiated in the computer’s initial physical state pc, 2+3 . The physical
computer evolves as given by its physical structure, Hc, which results in the final
physical state p′

c of 5 . This is represented as the final abstract state m′
pc

of “5”.
These three steps (instantiation, physical evolution, representation) implement
the desired abstract computation Cc: “2+3 = 5”.

Right face; decoding the solution (figure 7): the RE’s final physical and abstract
state decoded from the computer’s final physical and abstract state. The com-
puter’s final physical state p′

c (some kind of pattern of lights in the shape of a
figure 5) is represented as the final abstract state m′

pc
of “5”. This is decoded

to the RE’s final abstract state m′
pRE

of “five apples!”. The RE’s final physical
brain state p′

RE is an instantiation of this, physically achieved by the RE looking
at and physically decoding the output from the computer.

10 Susan Stepney and Viv Kendon

m′
pc

p′
c

Rc

m′
pRE

p′
RE

R̃RE

physically
decode

decode

Fig. 7. Decoding the solution from the computer to the RE (right face of figure 5).
The final state of the computer, p′

c, is represented as the final abstract state m′
pc
; this

is decoded to the final abstract state of the RE, m′
pRE

; and instantiated as the RE’s
final physical state. This is the model of the physical decoding lower arrow, achieved
by the RE physically interrogating the computer.

mpc
m′

pc

Cc

mpRE
m′

pRE

CRE

encode

decode

Fig. 8. The abstract model of the RE’s use of the computer to solve its problem (top
face of figure 5). The RE has an initial abstract state mpRE

; this is encoded into the
initial abstract state of the computer mpc

. The computer performs its calculations
to produce its final state m′

pc
, which is decoded to produce the desired final state of

the RE, m′
pRE

. Both the horizontal arrows are dashed, as they are implemented in a
different medium: the physical computer.

Top face; abstract use of a computer (figure 8): the purely abstract view of
the (modelled) RE encoding its problem into a (modelled) computation, and
decoding the desired solution. There is no direct path from initial to final abstract
states as the physical computer is used to achieve the desired abstract state
changes. In terms of classical refinement theory [1, 2], CRE can be thought of as
the ‘global-to-global’ requirement (although here this need not be captured in a
formal manner), with “encode, computation Cc, decode” corresponding to the
“initialisation, operation, finalisation” steps.

Bottom face; physical use of a computer (figure 9): the purely physical view
of the RE encoding its problem in a physical computer, and decoding the de-
sired solution. That this is a computation, rather than some other activity, is
established by the abstract models and the various ε-commuting squares.

The role of the representational entity in physical computing 11

pc p′
c

Hc

pRE p′
RE

HRE

physically
encode

physically
decode

Fig. 9. The physical system of the RE’s use of the computer to solve its problem
(bottom face of figure 5). The physical RE has an initial physical state pRE ; this is
physically encoded into the initial physical state of the computer pc. The computer
evolves over time to produce its final state p′

c, which is decoded to produce the desired
final state of the physical RE, p′

RE .

chem X

signal?

R̃c

motor !
Cc

chem Y
signal pathway

Rc

pRE

food?

RRE

move!
CRE

p′
RE

HRE

R̃RE

physically
encode

encode

physically
decode

decode

Fig. 10. The full compute cycle for the bacterial system. See text for details.

All of these relationships must be correctly implemented and modelled (the
relevant squares containing encoding, decoding, instantiation, and representation
must ε-commute) for the actual physical RE final state p′

RE to be the desired
physical RE final state, that is, for the physical computer to have been used
correctly, and for it to have performed correctly, to solve the RE’s problem.

4 Example: Intrinsic computing in bacteria

Figure 10 shows the RE and the compute cycle in the case of the problem of
bacterial computing. This example was originally studied in [5] to demonstrate
that it is possible to have computation with a non-human RE. However, without
the explicit modelling of the bacterial RE, it resulted in a somewhat circuitous
description. With the RE here explicitly present, the model is much clearer.

The physical RE, pRE , is a bacterium, with a receptor at the front, and a
flagellar motor at the back. In the absence of input at the receptor, the motor
is off; input causes the motor to switch on, propelling the bacterium towards
food. (As ever, the biology is more complicated than this. The original reference
should be consulted for the biological details.) The abstract problem, CRE , that

12 Susan Stepney and Viv Kendon

the RE wants to solve is “if there is food, move towards it”. This is encoded as
the abstract computational problem Cc: “if there is a signal, switch the motor
on”. The abstract signal is instantiated as a particular chemical; the physical RE

physically encodes the reception of exterior food as the presence of an internal
chemical, chem X.

This chemical physically propagates through the bacterium, undergoing trans-
formation via a biochemical pathway, such that another chemical becomes present
at the rear. The presence of this other chemical, chem Y, is represented as switch-
ing on the (abstract) motor, which is decoded as the answer to the bacterium’s
problem: to move. It is physically decoded as activating the flagellar motor.

The bottom face of this bacterial-compute cube shows the purely physical
computing: The bacterial RE physically encodes the detection of food by its
receptor as a chemical chem X; the biochemical pathway moves and transforms
this chemical signal to the rear where it appears as chem Y. The resulting chem-
ical is physically decoded: it attaches to and activates the flagellar motor. The
physical problem, of detecting food and moving towards it, has been solved.

That this is indeed a computation, rather than a purely physical process, is
argued in [5]: chem X, chem Y, and the pathway are in some sense ‘arbitrary’
(they comprise different molecules in different bacterial species), and so it is
not their specific physical properties, but their representational, informational
properties, that are being exploited. We are able to model the part of the bac-
terium that represents the problem as mpRE

, and the part that encodes into
the computer mpc

in a way that convincingly contains the right sorts of repre-
sentation. With representation (and hence a representational entity) identified,
we can conclude that there is data being processed, not mere material being ex-
ploited. With ε-commuting diagrams present, we can conclude that computation
is present.

5 Conclusion

We have shown how the RE in AR theory can be incorporated into the com-
pute cycle, and how this can illuminate how the physical RE can use a physical
device as a physical computer. The RE does not need to be a human brain:
the example here shows intrinsic computing by a bacterial RE. This demon-
strates how computing, whether conventional or unconventional, can be broader
than human use of computers (external or brain-based), but is narrower than
pan-computationalism, in requiring the existence of an RE in addition to the
computer itself.

It may be that the RE does not even need to be organic, or ‘alive’; it might
potentially appear in the loop as an engineered ‘proxy’ for the ultimate RE, for
example, the plant in a control system using the controller as a computer to
maintain itself in a particular behaviour. In future work we will investigate how
far the concept of the RE can be removed from a living user.

The role of the representational entity in physical computing 13

Acknowledgements

We thank our colleagues Dom Horsman, Tim Clarke, and Peter Young, for il-
luminating discussions. VK is funded by UK Engineering and Physical Sciences
Research Council (EPSRC) grant EP/L022303/1.

References

1. Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: finalisation and a taxon-
omy of security attacks. In: REFINE 2005 Workshop, Guildford, UK, April 2005.
ENTCS, vol. 137(2), pp. 225–242. Elsevier (2005)

2. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined (resumé). In: Proc.
European Symposium on Programming, ESOP 86. LNCS, vol. 213, pp. 187–196.
Springer (1986)

3. Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system
compute? Proceedings of the Royal Society A 470(2169), 20140182 (2014)

4. Horsman, D., Kendon, V., Stepney, S.: Abstraction/Representation Theory and the
Natural Science of Computation. In: Cuffaro, M.E., Fletcher, S.C. (eds.) Physical
Perspectives on Computation, Computational Perspectives on Physics, pp. 127–149.
Cambridge University Press (2018)

5. Horsman, D., Kendon, V., Stepney, S., Young, P.: Abstraction and representation in
living organisms: when does a biological system compute? In: Dodig-Crnkovic, G.,
Giovagnoli, R. (eds.) Representation and reality: humans, animals, and machines,
vol. 28, pp. 91–116. Springer (2017)

6. Horsman, D., Stepney, S., Kendon, V.: The Natural Science of Computation.
Comms. ACM 60(8), 31–34 (2017)

7. Horsman, D.C.: Abstraction/representation theory for heterotic physical computing.
Philosophical Transactions of the Royal Society A 373, 20140224 (2015)

