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Runtime Analysis of Crowding Mechanisms for

Multimodal Optimisation
Edgar Covantes Osuna and Dirk Sudholt

Abstract—Many real-world optimisation problems lead to
multimodal domains and require the identification of multiple
optima. Crowding methods have been developed to maintain
population diversity, to investigate many peaks in parallel and
to reduce genetic drift. We present the first rigorous runtime
analyses of probabilistic crowding and generalised crowding,
embedded in a (µ+1) EA. In probabilistic crowding the offspring
compete with their parent in a fitness-proportional selection.
Generalised crowding decreases the fitness of the inferior solution
by a scaling factor during selection. We consider the bimodal
function TWOMAX and introduce a novel and natural notion
for functions with bounded gradients. For a broad range of such
functions we prove that probabilistic crowding needs exponential
time with overwhelming probability to find solutions significantly
closer to any global optimum than those found by random
search. Even when the fitness function is scaled exponentially,
probabilistic crowding still fails badly. Only if the exponential’s
base is linear in the problem size, probabilistic crowding becomes
efficient on TWOMAX. A similar threshold behaviour holds for
generalised crowding on TWOMAX with respect to the scaling
factor. Our theoretical results are accompanied by experiments
for TWOMAX showing that the threshold behaviours also apply
to the best fitness found.

Index Terms—Crowding methods, runtime analysis, proba-
bilistic crowding, generalised crowding, theory.

I. INTRODUCTION

PREMATURE convergence is one of the major difficulties

in Evolutionary Algorithms (EAs), the population con-

verging to a sub-optimal individual before the fitness landscape

is explored properly. Real-world optimisation problems often

lead to multimodal domains and so require the identification

of multiple optima, either local or global [24], [26]. In multi-

modal optimisation problems, there exist many attractors for

which finding a global optimum can become a challenge to

any optimisation algorithm. A diverse population can deal with

these multimodal problems as it can explore several hills in

the fitness landscape simultaneously.

Crowding methods were introduced to preserve the popu-

lation diversity, to investigate many peaks in parallel and to

reduce the effect of genetic drift [4]. In general, parents and

offspring compete in a replacement-oriented survival process.

These methods are well-known techniques as covered in

tutorials and surveys for diversity-preserving mechanisms [11],

[25], [27], [30]. The first crowding mechanism was introduced

by De Jong [4] and it was called standard crowding. In this

mechanism the offspring replace the most similar parent from

a random subpopulation of size CF (crowding factor). Later

E. Covantes Osuna and D. Sudholt are with the Department of Com-
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in the nineties, Mahfoud [14] changed De Jong’s scheme in

the following way. In a genetic algorithm (GA) all elements

of the population are grouped into µ/2 pairs (where µ is the

population size and assuming µ to be even). Then, these groups

are recombined and mutated. For each pair of offspring, two

sets of parent-child tournaments are possible. Each offspring

competes against the most similar parent according to a dis-

tance metric, either genotypic or phenotypic, and the offspring

replace their closest parent according to a replacement rule.

Deterministic, probabilistic and generalised crowding are

examples of Mahfoud’s scheme with different replacement

rules. In deterministic crowding the offspring replace their

closest parent if it is at least as good [14]. In probabilistic

crowding, the offspring compete against their most similar

parent and the survivor is chosen with a probability pro-

portional to their fitness [15]. Generalised crowding is a

variant that generalises both deterministic and probabilistic

crowding through the choice of a parameter called scaling

factor φ ∈ [0, 1] that diminishes the impact of the inferior

search point [10]. Similar to standard crowding, in restricted

tournament selection (RTS), the offspring replace their most

similar individual from a random subpopulation of size w
(window size) if it is at least as good [13]. Given such a

variety of mechanisms to choose from, it is often not clear

which mechanism is the best choice for a particular problem.

Most of the analyses and comparisons made between crowd-

ing techniques are assessed by means of empirical investi-

gations using benchmark functions [2], [24], [26]. Theoret-

ical runtime analyses have been performed that rigorously

quantify the expected time needed to find one or several

global optima [3], [9]. Both approaches are important to

understand how these mechanisms impact the EA runtime

and if they enhance the search for good individuals. These

different expectations imply where EAs and which crowding

mechanism should be used and, perhaps even more impor-

tantly, where they should not be used. Previous theoretical

studies [1], [3], [9], [18] compared the expected running time

of different diversity mechanisms when embedded in a simple

baseline EA, the (µ+1) EA. All mechanisms were consid-

ered on the well-known bimodal function TWOMAX(x) :=
max {n−

∑n
i=1 xi,

∑n
i=1 xi}. TWOMAX consists of two dif-

ferent symmetric slopes (or branches) ZEROMAX and ONE-

MAX with 0n and 1n as global optima, respectively, and the
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goal is to evolve a population that contains both optima1.

TWOMAX was chosen because it is simply structured,

hence facilitating a theoretical analysis, and it is hard for

EAs to find both optima as they have the maximum possible

Hamming distance. The results allowed for a fair comparison

across a wide range diversity mechanisms, revealing that some

mechanisms like avoiding genotype and phenotype duplicates

perform badly, while other mechanisms like fitness sharing,

clearing, deterministic crowding and RTS perform surprisingly

well (see Table I and Section II).

In this paper we provide rigorous theoretical runtime anal-

yses accompanied by experimental studies for probabilistic

crowding and generalised crowding. Our goal is to narrow the

gap between theory and practice by rigorously assessing their

performance and providing insights of when and why they

perform well (or not) to enhance our understanding of their

strengths and weaknesses, and by comparing the performance

of both mechanisms to other diversity mechanisms analysed

previously on TWOMAX.

For the (µ+1) EA with probabilistic crowding we show

that the mechanism is unable to evolve solutions that are

significantly closer to any global optimum than those found

by random search, even when given exponential time. To

this end, we introduce a novel notion of (α, β)-bounded

gradients: a function has an (α, β)-bounded gradient if within

a region within Hamming distance at most β to any global

optimum, when making a local step towards an optimum, the

fitness increases by at most a factor of α. For instance, with

α = 2 the fitness can at most double with every local step

towards an optimum. This property naturally holds for many

optimisation problems showing some degree of smoothness;

we show this formally for ONEMAX, TWOMAX and the

classical combinatorial optimisation problems MAXSAT and

VERTEX COLOURING. For all these problems we show that

the (µ+1) EA with probabilistic crowding with overwhelming

probability needs exponential time to even get moderately

close to any optimum.

The reason for this disastrous performance is that the selec-

tive pressure of the embedded fitness-proportional selection is

too low when the gradient towards global optima is bounded.

This even holds when scaling the fitness using exponential

scaling, i. e., raising the fitness to a power of some base

α, leading to functions αONEMAX(x) and αTWOMAX(x) with an

(α, n)-bounded gradient. We show a lower runtime bound

of 2Ω(n/α) for all functions with (α, n/α)-bounded gradient,

revealing that every constant base α, and even values up to

α = O
(

n1−ε
)

still lead to exponential times with overwhelm-

ing probability. Probabilistic crowding only becomes effective

when choosing a base of α = Ω(n) as only then the selection

pressure becomes large enough to enable hill climbing. In this

case probabilistic crowding with scaling is as successful on

1In [9] an additional fitness value for 1n was added to distinguish between
a local optimum 0n and a unique global optimum. There the goal was to
find the global optimum, and all approaches had a baseline probability of
1/2 of climbing up the right branch by chance. We use the same approach
as [1], [18], and consider the original definition of TWOMAX and the goal of
finding both global optima. The discussion and presentation of previous work
from [9] is adapted to our setting. We refer to [28] for details.

TWOMAX as deterministic crowding. Our results establish a

threshold behaviour with respect to the gradient α.

We further provide the first runtime analysis of generalised

crowding. For a scaling factor φ = 1 we have probabilistic

crowding and φ = 0 yields deterministic crowding. We show

that there is a threshold behaviour with respect to φ: we

give a lower runtime bound of 2Ω(φn/α) for all functions

of (α, φn/α)-bounded gradient. This gives exponential times

with overwhelming probability on ONEMAX and TWOMAX

if φ = Ω
(

n−1+ε
)

. Only if φ = O(1/n), that is, if generalised

crowding is extremely close to deterministic crowding, the

(µ+1) EA with generalised crowding becomes effective on

TWOMAX.

Our main theoretical results are accompanied by experi-

ments for TWOMAX that further investigate the best fitness

values found during a run. The results show conclusively

how performance of probabilistic crowding degrades to that

of random search for increasing problem sizes. By compre-

hensively covering the whole parameter range for probabilistic

crowding with exponential scaling and generalised crowding

our experiments show how the best fitness found steadily

improves as the parameters α and φ approach the identified

efficient regimes.

This article significantly extends a preliminary conference

paper [3] that only studied probabilistic crowding without

scaling on ONEMAX and TWOMAX. In this work, the analysis

of probabilistic crowding has been rewritten entirely2 and

the notion of (α, β)-bounded gradients was introduced to

provide stronger statements that apply to general functions

with bounded gradients that may have many (even exponen-

tially many) global optima3. This paper further provides the

first rigorous runtime analyses for probabilistic crowding with

exponential scaling and for generalised crowding, establishing

threshold behaviours for both. We believe that the notion of

(α, β)-bounded gradients introduced here is of independent

interest and likely to find many further applications in the

analysis of randomised search heuristics.

II. PREVIOUS WORK AND PRELIMINARIES

There has been a line of work comparing various diver-

sity mechanisms on TWOMAX in the context of the simple

(µ+1) EA. The (µ+1) EA starts with a population of size µ
created uniformly at random (u. a. r.) and generates one off-

spring due to mutation; the resulting offspring competes with

an individual selected u. a. r. from the subpopulation with worst

fitness and the best individual replaces the worst (in case

of ties, the offspring is preferred). Table I summarises all

known results, including our contributions (shown in bold) and

conditions involving population size µ and specific parameters

of each diversity mechanism explained below. Results from [9]

are adapted to our definition of TWOMAX; see [28] for details.

2The previous analyses considered the fitness as progress measure; this was
replaced by the Hamming distance to a particular global optimum to show
that the (µ+1) EA with probabilistic crowding is unable to get within a certain
Hamming distance from any optimum.

3This extension was motivated by a discussion with Kenneth De Jong and
Pietro S. Oliveto during our talk at GECCO 2018. We thank both of them for
this inspiring discussion.
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TABLE I
OVERVIEW OF RUNTIME ANALYSES FOR THE (µ+1) EA WITH DIVERSITY

MECHANISMS ON TWOMAX, SHOWING THE PROBABILITY OF FINDING

BOTH OPTIMA WITHIN (EXPECTED) TIME O(µn logn). RESULTS

DERIVED IN THIS PAPER ARE SHOWN IN BOLD.

Diversity Mechanism Success prob. Conditions

Plain (µ+1) EA [9] o(1) µ = o(n/ logn)

No Duplicates [9]

Genotype o(1) µ = o
(√

n
)

Fitness o(1) µ = poly(n)

Deterministic Crowding [9] 1− 2−µ+1 all µ

Fitness Sharing (σ = n/2)
Population-based [9] 1 µ ≥ 2
Individual-based [18] 1 µ ≥ 3

Clearing (σ = n/2) [1] 1 µ ≥ κn2

Prob. Crowding1 (Th 8, Cor 10) 2−Ω(n) all µ

Prob. Crowding with Scaling

General bases α1 (Th 9, Cor 10) 2−Ω(n/α) all α ≥ 1
Very large α (Th 11) 1− 2−µ+1 α ≥ (1+Ω(1))en

Generalised Crowding

General scaling factors φ1 (Th 13) 2−Ω(φn) all φ ≤ 1

Very small φ (Th 12) 1− 2−µ+1 φ ≤ 1−Ω(1)

e2n

Restricted Tournament Sel. [3]

Small window size w o(1) µ = o
(

n1/w
)

Large window size w 1− 2−µ′+3 w ≥ 2.5µ lnn

1 These results also hold for general function classes with bounded gradients.

As can be seen from previous works on TWOMAX, not all

mechanisms succeed in finding both optima efficiently, that

is, in expected time O(µn log n) (the best known time bound

for the (µ+1) EA with diversity-preserving mechanisms).

Friedrich, Oliveto, Sudholt, and Witt [9] showed that the plain

(µ+1) EA and the simple mechanisms like avoiding genotype

or fitness duplicates are not able to prevent the extinction

of one branch, ending with the population converging to one

optimum, with high probability. Deterministic crowding with

a sufficiently large population is able to reach both optima

with probability 1− 2−µ+1 in expected time O(µn log n) [9,

Theorem 4]. This probability converges to 1 exponentially fast

in µ; for instance, a small population size of µ = 10 already

gives a success probability of ≈ 0.998 and for µ = 30 it

grows to ≈ 0.9999999981. A population-based fitness shar-

ing approach, constructing the best possible new population

amongst parents and offspring, with µ ≥ 2 and a sharing

radius of σ = n/2 is able to find both optima in expected

optimisation time O(µn log n) [9, Theorem 5]. The drawback

of this approach is that all possible size µ subsets of this union

of size µ+ λ (where λ is the offspring population size) need

to be examined. This is prohibitive for large µ and λ.

Oliveto, Sudholt, and Zarges [18] studied the original fitness

sharing approach and showed that a population size µ = 2
is not sufficient to find both optima in polynomial time; the

success probability is only 1/2 − Ω(1) [18, Theorem 1].

However, with µ ≥ 3 fitness sharing again finds both optima in

expected time O(µn log n) [18, Theorem 3]. Covantes Osuna

and Sudholt [1] analysed the clearing mechanism and showed

that it can optimise all functions of unitation—function defined

over the number of 1-bits contained in a string—in expected

time O(µn log n) [1, Theorem 4.4] when the distance function

and parameters like the clearing radius σ, the niche capacity κ
(how many winners a niche can support) and µ are chosen

appropriately. In the case of large niches, that is, with a

clearing radius of σ = n/2, it is able to find both optima in

expected time O(µn log n) [1, Theorem 5.6]. Finally, Covantes

Osuna and Sudholt [3] showed that Restricted Tournament

Selection fails to find both optima even in exponential time

when the window size w is too small [3, Theorem 3.4].

However, if w is large enough and µ′ := min(µ, log n), the

mechanism can find both optima efficiently in expected time

O(µn log n) [3, Theorem 3.1].

The above works did not consider crossover as recombining

individuals from different branches is likely to create poor

offspring. We therefore consider a (µ+1) EA using mutation

only.

A. Notation

Our notion of time is defined as the number of function

evaluations before the (µ+1) EA achieves a stated goal such

as finding a global optimum or finding both optima of TWO-

MAX. Since the (µ+1) EA is initialised with µ individuals, and

subsequently generates one offspring in each generation, the

number of function evaluations is equal to µ plus the number

of generations needed to achieve the set goal. The additional

term of µ is only relevant for unreasonably large population

sizes and is being tacitly ignored when it is absorbed in a

runtime bound (such as O(µn log n)) anyway.

We say that a function f is exponential if f ≥ 2Ω(nε) for a

positive constant ε > 0. A function f is exponentially small

if and only if 1/f is exponential. An event A occurs with

overwhelming probability if 1−Pr(A) is exponentially small.

B. Drift Theorems

Our analysis will make heavy use of a technique called

drift analysis. In a nutshell, the progress of the algorithm

is measured by a potential function such as the Hamming

distance to an optimum where a potential of 0 indicates that

an optimum has been found. The drift is then defined as the

expected change of this potential in one generation.

The following multiplicative drift theorem gives an upper

bound on the expected time until the potential reaches 0 and

an optimum has been found. It requires that the drift is at

least proportional to its current state. It also gives a tail bound

showing that the probability of exceeding this time is very

small.

Theorem 1 (Multiplicative drift theorem with tail bounds, [6]).

Let {Xt}t≥0 be a sequence of random variables taking values

in some set S. Let g : S → {0}∪R≥1 and assume that gmax :=
max{g(x) | x ∈ S} exists. Let T := inf{t ≥ 0 : g(Xt) = 0}.

If there exists δ > 0 such that

E[g(Xt+1) | g(Xt)] ≤ (1− δ)g(Xt)

then E[T ] ≤ (1 + ln gmax)/δ and for every c > 0
Pr(T > (ln gmax + c)/δ) ≤ e−c.
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For our negative results we make heave use of the so-

called negative drift theorem (also known as simplified drift

theorem). It states that, if the drift is negative within an interval

of the state space that needs to be crossed, and the algorithm

typically does not make large jumps, the time to cross the

interval is exponential in the interval size. The theorem uses

transition probabilities pi,j and the notation “pk,k±d ≤ x” as

a shorthand for “pk,k+d ≤ x and pk,k−d ≤ x”.

Theorem 2 (Negative drift theorem [17], [19]). Consider a

Markov process X0, X1, . . . on {0, . . . ,m} with transition

probabilities pi,j and suppose there exist integers a, b with

0 < a < b ≤ m and ε > 0 such that for all a ≤ k ≤ b the

drift towards 0 is

E[k −Xt+1 | Xt = k] < −ε (1)

Further assume there exist constants r, δ > 0 (i. e., they are

independent of m) such that for all k ≥ 1 and all d ≥ 1

pk,k±d ≤
r

(1 + δ)d
. (2)

Let T be the first hitting time of a state at most a, starting

from X0 ≥ b. Let ℓ = b − a. Then there is a constant c > 0
such that Pr

(

T ≤ 2cℓ/r
)

= 2−Ω(ℓ/r).

We also use a variant that is applicable to processes with

large self-loop probabilities.

Theorem 3 (Negative drift with self-loops [23]). The negative

drift theorem with self-loops is identical to Theorem 2 with

the following revised conditions, where pk,k is the self-loop

probability at state k.

E[k −Xt+1 | Xt = k] < −ε · (1− pk,k) (3)

pk,k±d ≤
r(1− pk,k)

(1 + δ)d
. (4)

III. PROBABILISTIC CROWDING

Recall that in probabilistic crowding, the offspring compete

against the most similar parent according to a distance metric

and the survivor wins proportionally according to their fitness.

Without crossover, this means that the mutant y competes

against its parent x using fitness-proportional selection. The

idea is to use a low selection pressure to prevent the loss

of niches of lower fitness [15]. Then the probability of the

mutant y winning is given by
f(y)

f(x)+f(y) , where f is the fitness

function. The resulting (µ+1) EA is shown in Algorithm 1.

Algorithm 1 (µ+1) EA with probabilistic crowding

1: Initialise P with µ individuals chosen u. a. r.

2: while stopping criterion not met do

3: Choose x ∈ P u. a. r.

4: Create y by flipping bits in x independently w/prob. 1/n.

5: With probability
f(y)

f(y)+f(x) set P = P \ {x} ∪ {y}.

There are several related theoretical analyses for fitness-

proportional selection for the case of the ONEMAX function.

The Simple Genetic Algorithm (SGA) has been analysed with

fitness-proportional selection for parent selection in [16], [20],

[21].

Most relevant to this work is the work by Happ, Johannsen,

Klein, and Neumann [12], who analysed a variant of the

(1+1) EA using fitness-proportional selection and showed

that it needs exponential time to evolve a fitness of at least

(1 + ε)n/2 on ONEMAX with high probability. Their algo-

rithm can be seen as a special case of the (µ+1) EA with

probabilistic crowding for µ = 1. Our result is similar to the

result in [12], but it holds for arbitrary population sizes µ and it

applies to general classes of functions with bounded gradients.

We first give a formal notion for bounded gradients.

Definition 4. For two functions α := α(n) ≥ 1 and 0 ≤
β := β(n) ≤ n we say that a function f : {0, 1}n → R

+
0 has

(α, β)-bounded gradient if for every global optimum x∗ of f
and all search points x, y with H(y, x∗) < H(x, x∗) ≤ β we

have

f(y) ≤ f(x) · αH(x,x∗)−H(y,x∗).

This definition, intuitively, states that each time the Ham-

ming distance to an optimum x∗ is decreased by 1, the fitness

can only increase at most by a factor of α. This condition only

has to hold for search points within a Hamming ball of radius

β from the set of global optima; we do not care about search

points further away from global optima.

Note that, if a function has (α, β)-bounded gradient then

it also has (α′, β′)-bounded gradient for any larger gradient

α′ ≥ α and smaller radius β′ ≤ β. Thus when characterising

a fitness function, the smallest possible value for α and the

largest possible value of β will give the strongest conditions.

Any result that assumes an (α′, β′)-bounded gradient also

holds for an (α, β)-bounded gradient.

We argue that the condition of bounded gradients emerges

naturally in many problems if there is some degree of smooth-

ness. The condition can be natural and very easy to verify. For

example, a function with maximum fitness fmax has (2, β)-
bounded gradient if all solutions within Hamming distance at

most β of any optimum have fitness at least fmax/2. This is

the case for TWOMAX.

In a more general sense, a sufficient condition is that the

effect of each variable on fitness is limited. The following

theorem formalises this.

Theorem 5. Consider any pseudo-Boolean function f with

fmax := maxx f(x), for which flipping one bit only changes

the fitness by a value in [−d, d], for d ∈ R
+. Then

f is of (1 + d/(fmax − dβ), β)-bounded gradient for every

β < fmax/d. Choosing β := fmax/(2d) this yields a

(1 + 2d/fmax, fmax/(2d))-bounded gradient.

Proof: Consider an arbitrary optimum x∗ and Hamming

neighbours x, y with H(y, x∗) + 1 = H(x, x∗) ≤ β. Then

f(x) ≥ f(y)−d and f(x) ≥ fmax−d·H(x, x∗) ≥ fmax−dβ as

every step of a shortest Hamming path from x∗ to x decreases

the fitness by at most d. Together,

f(y)

f(x)
≤

f(x) + d

f(x)
= 1 +

d

f(x)
≤ 1 +

d

fmax − dβ
.
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The claim for general x, y with H(y, x∗) < H(x, x∗) ≤ β
follows by a trivial induction.

For the functions ONEMAX and TWOMAX Theorem 5

applies with d = 1 and fmax = n, yielding a very small

value of α, α = 1 + 2/n within a large radius of β = n/2
around global optima. Note that for TWOMAX the gradient

bound of α = 1 + 2/n even holds within the maximum

Hamming distance of β = n as for x∗ ∈ {0n, 1n} the

fitness increases with increasing Hamming distance H(x, x∗)
in the area of search points x with H(x, x∗) > n/2 and thus

f(y)/f(x) < 1 ≤ α for n/2 ≤ H(y, x∗) < H(x, x∗). Hence

TWOMAX is (1 + 2/n, n)-gradient bounded.

We also provide additional examples for (α, β)-bounded

gradients in well-known combinatorial problems, showing that

this notion can be applied in a much wider setting.

The famous MAXSAT problem provides a collection of

clauses in conjunctive normal form (CNF) and asks for an

assignment of variables that maximises the number of satisfied

clauses. For instances with m clauses the optimal value is

fmax ∈ [m/2,m] as one of the two assignments 0n and 1n

must satisfy at least m/2 clauses. The MAXSAT problem is

NP-hard, even in the case where all clauses only have two

literals.

The well-known VERTEX COLOURING problem asks for

an assignment of colours to vertices in an undirected graph

such that no two adjacent vertices share the same colour.

It is NP-hard in general, but we consider the special case

of 2 colours for which efficient algorithms are known. For 2

colours we have a binary encoding where each bit indicates the

colour of one corresponding vertex, and the fitness function is

taken as the number of correctly coloured edges. A closely

related problem is inspired from Ising models in physics:

the encoding is the same, but an edge is correctly coloured

if both vertices have the same colour. Both problems are

equivalent for bipartite graphs4. For both settings we also

have fmax ∈ [m/2,m] where m is the number of edges.

This is because a random initial colouring colours m/2 edges

correctly in expectation, hence solutions of fitness at least m/2
must exist.

Corollary 6. Theorem 5 implies the following:

1) ONEMAX is of (1 + 2/n, n/2)-bounded gradient.

2) TWOMAX is of (1 + 2/n, n)-bounded gradient.

3) MAXSAT (maximising the number of satisfied CNF-

clauses) with m clauses is of (1 + 4d/m,m/(4d))-
bounded gradient if every variable only appears in at

most d clauses.

4) Maximising the number of correctly coloured edges in

VERTEX COLOURING with 2 colours or simple Ising

models [7], [8], [29] in graphs with m edges is of

(1+ 4d/m,m/(4d))-bounded gradient if the graph has

maximum degree d. For d-regular graphs (all nodes

have degree d) like cycles or toroids we have m = dn/2
yielding a (1 + 8/n, n/8)-bounded gradient.

4There is a simple bijection between the two problems: flipping all vertices
of one set of the bipartition turns all monochromatic edges into bichromatic
edges and vice versa. The performance of any unbiased randomised search
heuristic is identical for both problems if the graph is bipartite.

Examples of functions that are not gradient-bounded include

functions with ridges such as LEADINGONES or RIDGE. For

instance, the optimum of LEADINGONES, 1n of fitness n,

has a Hamming neighbour 01n−1 of fitness 0. Many pseudo-

Boolean problems can be classed as having bounded gradients,

though, and our analysis of probabilistic crowding will apply

to large classes of such functions.

In the following we now fix an optimum x∗ ∈ OPT. We

will show that the probability of reaching x∗ efficiently is

very small. For functions with multiple optima, we then apply

a union bound to show that the probability of reaching any

optimum is still very small.

The following lemma bounds the drift in the Hamming

distance to a fixed optimum x∗. For simplicity we as-

sume an (α, n)-bounded gradient, that is, the gradient is

bounded by α everywhere (β = n). The following the-

orems will only require a much laxer condition on β,

though. To ease readability, we use shorthands Pr(∆H = d)
for Pr(H(x, x∗)−H(y, x∗) = d | x) and Pr(∆H = ±d) for

Pr(∆H ∈ {−d,+d}) in the remainder.

Lemma 7. Let x be the selected parent, y be the offspring,

and z ∈ {x, y} be the individual selected for survival. Then

for any function f with (α, n)-bounded gradient and for all

global optima x∗ and all search points x,

E[H(x, x∗)−H(z, x∗) | x] ≤
H(x, x∗)− n/2

n
+

e(α− 1)

2
.

If the gradient is only (α, β)-bounded for β < n then the

inequality holds for all x, x∗ with H(x, x∗) ≤ β− log n when

adding a term n−ω(1) to the right-hand side.

In the remainder of the paper we may abbreviate H(x, x∗)
as H(x) for brevity if the second argument x∗ is obvious.

Proof: We first analyse the expected distance of the

mutant y before survival selection. In expectation H(x)/n
bits that are different to x∗ flip to agree with x∗. Likewise,

(n−H(x))/n bits that agree with x∗ flip to disagree with x∗.

Hence E[H(y)] = E[H(x)] + (n − H(x))/n − H(x)/n =
E[H(x)] + (n− 2H(x))/n and

E[H(x)−H(y) | x] =
2H(x)− n

n
. (5)

We now use this inequality to analyse the distance difference

H(z) − H(x) after survival selection. Observe that this dif-

ference is 0 in case z = x. Hence only generations where y
is selected for survival contribute to E[H(x)−H(z) | x]. The

latter can be written as follows.

E[H(x)−H(z) | x] =
∞
∑

d=−∞

Pr(∆H = d) · d ·
f(y)

f(x) + f(y)

Using that

f(y)

f(x) + f(y)
=

1

2
+

1

2
·
f(y)− f(x)

f(y) + f(x)
,
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we get

E[H(x)−H(z) | x]

=

∞
∑

d=−∞

Pr(∆H = d) · d ·

(

1

2
+

1

2
·
f(y)− f(x)

f(y) + f(x)

)

=
1

2

∞
∑

d=−∞

Pr(∆H = d) · d

+
1

2

∞
∑

d=−∞

Pr(∆H = d) · d ·
f(y)− f(x)

f(y) + f(x)
.

The first sum is E[H(x)−H(y)]/2 by definition of

the expectation, and we already know from (5) that

E[H(x)−H(y)]/2 = (H(x)− n/2)/n.

The second sum can be bounded as follows. Using that the

gradient is bounded by α := α(n), we get for d ≥ 1

f(y)− f(x)

f(y) + f(x)
=

f(y)/f(x)− 1

f(y)/f(x) + 1
≤

αd − 1

αd + 1

and for d ≤ −1 we get

f(y)− f(x)

f(y) + f(x)
=

1− f(x)/f(y)

f(x)/f(y) + 1
≥

1− α|d|

1 + α|d|
= −

α|d| − 1

α|d| + 1

and thus

1

2

∞
∑

d=−∞

Pr(∆H = d) · d ·
f(y)− f(x)

f(y) + f(x)

≤
1

2

∞
∑

d=−∞

Pr(∆H = d) · |d| ·
α|d| − 1

α|d| + 1
.

Using that the summand for d = 0 is 0 and the summand

for d > 0 is equal to the summand for −d, we get an upper

bound of

1

2

∞
∑

d=1

Pr(∆H = ±d) · d ·
αd − 1

αd + 1
.

To simplify this bound we exploit that Pr(∆H = ±d) ≤
1/(d!) as it is necessary to flip at least d bits. There are

(

n
d

)

ways of choosing d bits that are guaranteed to flip, and the

probability of flipping the chosen bits is n−d. The remaining

n− d bits can flip or stay the same. Hence the probability of

flipping at least d bits is at most
(

n
d

)

(1/n)d ≤ 1/(d!). Thus

the second sum is bounded from above by

1

2

∞
∑

d=1

d

d!
·
αd − 1

αd + 1
=

1

2

∞
∑

d=0

1

d!
·
αd+1 − 1

αd+1 + 1
.

Using αd+1−1
αd+1+1

= 2αd+1

αd+1+1
− 1, we get

1

2

(

∞
∑

d=0

1

d!
·

2αd+1

αd+1 + 1
−

∞
∑

d=0

1

d!

)

=
1

2

(

α
∞
∑

d=0

1

d!
·

2αd

αd+1 + 1
− e

)

.

Finally, we use that for all α ≥ 1,
∑∞

d=0
1
d! ·

2αd

αd+1+1
≤ e,

which is proven in Lemma 15 in the appendix. This yields the

claimed bound 1
2 (αe− e) = e(α− 1)/2.

For the last statement we bound the possible error intro-

duced by a possible absence of a gradient bound beyond

radius β. For all x with H(x) ≤ β − log n, we have

E[H(x)−H(z) | x] =

β−H(x)
∑

d=−∞

Pr(∆H = d) · d ·
f(y)

f(x) + f(y)

+
∞
∑

d=β−H(x)+1

Pr(∆H = d) · d ·
f(y)

f(x) + f(y)

where the first sum is bounded by e(α− 1)/2 as before since

for these values of d the gradient bound holds. The second

sum is crudely bounded from above by

∞
∑

d=β−H(x)+1

Pr(∆H = d) · n · 1 ≤ n · Pr(∆H ≥ log n).

Since at least log n bits have to flip in one mutation for ∆H ≥
log n to hold and the probability of flipping at least log n bits

is at most 1/((log n)!) = n−ω(1), we obtain an additive term

of n · n−ω(1) = n−ω(1) as claimed.

Lemma 7 gives an important lesson. Assume that the

survivor z was chosen uniformly between x and y. This would

yield a highly inefficient blind random walk as the fitness is

not taken into account. Then we would have

E[H(x)−H(z) | x]

=
1

2
· E[H(x)−H(y) | x] +

1

2
· E[H(x)−H(x) | x]

=
H(x)− n/2

n

using (5) and E[H(x)−H(x) | x] = 0. Lemma 7 states that

compared to this setting, a fitness-proportional selection of z
only gives a bias of at most e(α − 1)/2. For ONEMAX and

TWOMAX, plugging in α := 1 + 2/n, this bias is O(1/n)
and hence vanishingly small. In other words, Lemma 7 quan-

tifies the observation that in the considered context, fitness-

proportional selection is very similar to uniform selection and

each lineage behaves very similarly to a blind random walk.

We now use Lemma 7 and the negative drift theorem (Theo-

rem 2) to prove a strong negative result on the performance

of the (µ+1) EA with probabilistic crowding.

More precisely, we will show that on functions with

bounded gradient, including ONEMAX and TWOMAX, the

(µ+1) EA with probabilistic crowding does not perform no-

ticeably better than random search. Note that, for any fixed

optimum x∗, the expected Hamming distance of a search point

chosen u. a. r. to x∗ is n/2. The following theorem shows that

the (µ+1) EA with probabilistic crowding does not evolve any

solutions significantly closer to any optimum than n/2, even

given exponential time.

Theorem 8. Let ξ, ε > 0 be constant. Let f be any function

of (α, n/2)-bounded gradient with α ≤ 1 + ε/(2e) − Ω(1)
and at most 2ξn global optima. With probability 1 − 2−Ω(n)

the (µ+1) EA with probabilistic crowding will not have found

a search point within Hamming distance (1 − ε)n/2 of any

optimum of f in 2cn function evaluations, for every population

size µ and small enough constants ξ, c > 0 that may depend

on ε.
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Proof: We first assume a (α, n)-bounded gradient and

later on argue that the analysis still holds if β := n/2 is used

instead. Fix a global optimum x∗. We show that no search

point within Hamming distance (1 − ε)n/2 of x∗ is reached

in 2cn function evaluations with the claimed probability, and

then use a union bound over all optima to prove the statement.

Note that the statement does not restrict the population

size µ in any way. We may however safely assume that

µ = 2o(n) as if µ ≥ 2c
′n for any constant 0 < c′ < 1,

the statement follows immediately (for c := c′) as the first

2c
′n search points contain an optimal search point only with

probability at most 2 · 2−n · 2c
′n = 2−Ω(n) as c′ < 1.

Further note that in the absence of crossover, probabilistic

crowding evolves µ independent lineages as any offspring only

competes directly with its parent. This allows us to consider a

fixed lineage and later on apply a union bound over µ lineages.

We show that the probability of any fixed lineage reaching

a Hamming distance of (1 − ε)n/2 in 2cn generations is

2−Ω(n). Taking the union bound over all lineages yields that

the probability of reaching such a distance is bounded by

µ · 2−Ω(n) = 2o(n) · 2−Ω(n) = 2−Ω(n), which implies the

claim.

Now focus on one lineage. By standard Chernoff bounds

(see [5]), the probability of initialising the lineage with an

initial search point of Hamming distance at most (1−ε/2)n/2
to x∗ is 2−Ω(n). If this rare failure event does not happen, the

lineage needs to decrease an initial distance from a value at

least (1 − ε/2)n/2 to a value at most (1 − ε)n/2. We apply

the negative drift theorem to the Hamming distance of the

current individual in our lineage to x∗ to show that this does

not happen in 2cn generations with probability 1 − 2−Ω(n).

The interval chosen will be from a := (1 − ε)n/2 to b :=
(1− ε/2)n/2; note that it has length εn/4.

Let x be the selected parent, y be the offspring, and

z ∈ {x, y} be the individual selected for survival. We establish

the two conditions of the negative drift theorem. The first

condition follows from Lemma 7 as the drift is at most

H(x)− n/2

n
+

e(α− 1)

2
≤

(1− ε/2)n/2− n/2

n
+

e(α− 1)

2

= −
ε

4
+

e(α− 1)

2
= −Ω(1)

as α is a constant strictly less than 1+ ε/(2e) by assumption.

The second condition follows easily from properties of

standard bit mutation: the difference in Hamming distance

|H(z) − H(x)| is clearly bounded by the number of flipping

bits. The probability of flipping d bits in a standard bit

mutation is at most 1/(d!) ≤ 2/2d for all d ≥ 1. This

proves the second condition when choosing r := 2 and

δ := 1. Invoking the negative drift theorem yields that the

probability of one lineage reaching a search point with a

distance at most (1 − ε)n/2, starting with a distance at least

(1 − ε/2)n/2, in 2c
′εn/8 steps, for some constant c′ > 0, is

at most 2−Ω(εn/4) = 2−Ω(n). Choosing c := c′ε/8 yields the

claimed time bound.

Applying the above arguments for every optimum and using

a union bound over all at most 2ξn optima, the probability of

finding any search point within Hamming distance (1−ε)n/2

of any optimum within the stated time is still bounded by

2ξn · 2−Ω(n) = 2Ω(n) if ξ is sufficiently small.

Now, if β is lowered to n/2, that is, f only has an

α-bounded gradient amongst search point with Hamming

distance at most n/2 to any optimum, the above arguments

essentially remain unaffected. The negative drift theorem only

requires a drift estimate for all search points x within the

considered interval, that is, for H(x) ≤ (1 − ε/2)n/2. Since

(1− ε/2)n ≤ n/2− log n, the last statement from Lemma 7

applies, introducing an error term of n−ω(1) that is absorbed

in the drift bound −Ω(1).

Theorem 8 states that probabilistic crowding has a poor

performance since it is not possible to evolve search points

that are significantly better than those found by random search,

even given exponential time. The fitness-proportional selection

mechanism embedded in the selection does not give a high

enough selection pressure to favour the fitter individuals.

One standard way of improving the performance of fitness-

proportional selection is to scale the fitness. An extreme way

of using scaling is to use exponential scaling, that is, using

αf(x) instead of f(x), for some base α.

A theoretical study in the context of evolutionary algo-

rithms with fitness-proportional selection using this scheme

for scaling the fitness was done in [16]. Neumann, Oliveto

and Witt [16] showed for the first time that even with a large

population, a mutation-based EA with fitness-proportional se-

lection with high probability needs exponential time to find the

global optimum of ONEMAX. However, by using exponential

scaling with a base equal to the population size µ the EA turns

into an efficient algorithm for ONEMAX if µ is large enough.

For f being ONEMAX or TWOMAX, scaling to αf gives

functions with an (α, n)-bounded gradient. An obvious ques-

tion is how large α needs to be to yield a large enough selec-

tion pressure that leads to good performance in the (µ+1) EA

with probabilistic crowding. For instance, exp(f(x)) (that is,

α := e) scales the fitness exponentially, yielding enormously

large fitness values of up to en. Is this drastic way of scaling

the fitness sufficient? Note that Theorem 8 only applies to

small values of α because of the condition α ≤ 1 + ε/(2e)−
Ω(1). It is not clear whether α values mildly violating this

condition will yield good performance.

The following theorem shows that for moderate α values,

even constant and superconstant ones, performance is still

very poor. The result applies to functions with any (α, n/α)-
bounded gradient. This includes functions that only have a

bounded gradient within a small radius around the set of

optima as α can be chosen arbitrarily large to satisfy a

gradient bound and to make the radius β := n/α arbitrarily

small. In particular, the theorem applies to all examples from

Corollary 6.

Theorem 9. Let f be any function with an (α, n/α)-bounded

gradient and f having at most 2ξn/α global optima for a

constant ξ > 0. With probability 1− 2−Ω(n/α) the (µ+1) EA

with probabilistic crowding will not have found an optimum,

or any search point within Hamming distance n/(9α) of any

optimum, in 2cn/α function evaluations, for every population

size µ and small enough constants ξ, c > 0.
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Note that the strength of the statement is parameterised by

n/α in terms of the lower time bound, the probability bound,

the number of optima and a lower bound on the Hamming

distance to the set of optima. For α = O
(

n1−ε
)

, ε > 0
constant, we get an exponential lower bound that holds with

overwhelming probability to get within Hamming distance

O(nε) of any optimum, even if there are exponentially many

optima. The statement becomes trivial when α = Ω(n) as then

the claim may only give a lower bound of 1 generation.

Proof of Theorem 9: We assume that n/α = ω(1) as the

claim is trivial for n/α = O(1). We fix a global optimum x∗

and apply the negative drift theorem with self-loops to the

distance interval n/(9α) ≤ H(x, x∗) ≤ n/(8.5α). Using the

same arguments as in the proof of Theorem 8, the initial

distance in each lineage is at least n/(8.5α) with probability

1− 2−Ω(n), unless µ is so large that the claim holds trivially.

For search points x in the considered interval we estimate

the positive and the negative summands in the drift separately.

We pessimistically assume that the gradient is always ex-

actly α as this clearly maximises the drift. As in the proof

of Theorem 8 we first assume an (α, n)-bounded gradient

and then explain how the arguments change for the radius

β = n/α from the statement. For the positive summands,

we pessimistically assume that all improvements are always

accepted and then apply Lemma 3 in [22], which states that

Pr(∆H = d) ≤ 1.14
d! ·

(

H(x)
n

)d

, to bound the probability of

jumps closer to the optimum.

∞
∑

d=1

Pr(∆H = d) · d ≤
∞
∑

d=1

1.14

d!
·

(

H(x)

n

)d

· d

=
1.14H(x)

n

∞
∑

d=0

1

d!
·

(

H(x)

n

)d

=
1.14H(x)

n
· eH(x)/n ≤

1.3

8.5α
(6)

where the last inequality follows from H(x)/n ≤ 1/(8.5α) ≤
1/8.5. Note for later use that the transition probabilities

decrease exponentially in d.

The negative summands are bounded from above by pes-

simistically only considering the summand for d = −1 and

assuming that the gradient is exactly α:

−1
∑

d=−∞

Pr(∆H = d) · d ·
f(y)

f(x) + f(y)

≤ − Pr(∆H = −1 | x) ·
1/α

1 + 1/α
≤ −

7.5

17eα
(7)

where the last step follows from Pr(∆H = −1 | x) ≥
(n − H(x))/(en) ≥ (n − n/8.5)/(en) = 7.5/(8.5e) and

1 + 1/α ≤ 2. Combining (6), (7) and 1.3/8.5 < 7.5/17e, the

drift is at most 1.3
8.5α − 7.5

17eα = −Ω(1/α).
We claim that the term Ω(1/α) is of the same order as the

converse of the self-loop probability as this is required for the

first condition of the negative drift theorem with self-loops.

The probability of increasing the fitness is clearly bounded

by the positive drift, which we already bounded from above

by O(H(x)/n) = O(1/α). The probability of decreasing the

fitness is at most 1
1+α = O(1/α) as the (µ+1) EA has to accept

a fitness decrease of by a factor of α (or a larger power of

α in the case of longer jumps). Using these arguments along

with the familiar bound of 1/d! for the probability of changing

the distance by an absolute value of d, it is also easy to see

that the second condition for the negative drift theorem with

self-loops is met. This implies the claimed lower bound.

Finally, the results hold for β = n/α instead of β = n
as argued in the proof of Theorem 8: in order to notice the

absence of a gradient for a parent in the distance interval

n/(9α) ≤ H(x) ≤ n/(8α), at least (7/8)n/α bits need to flip

in one mutation. The probability for such an event is 2−Ω(n/α).

Applying these arguments for all optima x∗ and taking a

union bound over at most 2ξn/α optima still gives a probability

bound of 1−2ξn/α ·2−Ω(n/α) if ξ is chosen small enough.

We summarise our negative results for selected examples,

including all problems from Corollary 6.

Corollary 10. With overwhelming probability, the (µ+1) EA

with probabilistic crowding requires exponential time

1) to get within Hamming distance (1 − ε)n/2 of any

optimum on ONEMAX or TWOMAX (by Theorem 8)

2) to find any optimum on scaled functions αONEMAX(x) and

αTWOMAX(x) if α = O
(

n1−ε
)

(by Theorem 9)

3) to get within Hamming distance m/(36d) of any op-

timum for MAXSAT on any instance with m clauses

where each variable only appears in at most d clauses,

provided m ≤ 4d(n − 1) (by Theorem 9 with α :=
4dn/m, the bound on m ensuring that 1 + 4d/m ≤ α)

4) to get within Hamming distance n/72 of any optimum

for VERTEX COLOURING or the Ising model on any

regular graph (by Theorem 9 with α := 8).

Corollary 10 shows that even exponential scaling with a

base of α = O
(

n1−ε
)

is not sufficient for optimising scaled

versions of ONEMAX and TWOMAX. The following theorem

shows that a base of order n is sufficient to guarantee efficient

runtimes on a scaled ONEMAX, and a high probability of

finding both optima of TWOMAX efficiently. This result also

explains why Theorem 9 does not give a meaningful lower

bound when α = Ω(n).

Theorem 11. The (µ+1) EA with probabilistic crowding

and polynomial µ finds an optimum on αONEMAX(x) with

α ≥ (1 + Ω(1))en in expected time O(µn log n).
On αTWOMAX(x) with α ≥ (1 + Ω(1))en the (µ+1) EA with

probabilistic crowding finds a population consisting of only

global optima in expected time O(µn log n). In that case the

population contains both global optima with probability at

least 1− 2−µ+1.

Proof: We focus on one lineage only and show that the

optimum of ONEMAX is reached in O(n log n) mutation steps

applied to said lineage. Let x be the current search point, then

E[H(x)−H(z) | x] =
∞
∑

d=−∞

Pr(∆H = d) · d ·
αd

αd + 1
.

Note that the summand for d = 0 is 0. For d ≥ 1 we bound

the summands from below by Pr(∆H = d) · d · α
α+1 using
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αd

αd+1
≥ α

α+1 . For d ≤ −1 the summands are negative, hence

we use αd

αd+1
≤ α−1

α−1+1 = 1
1+α to bound these summands from

below. Together we obtain a drift bound of

α

α+ 1

∞
∑

d=1

Pr(∆H = d) · d+
1

α+ 1

−1
∑

d=−∞

Pr(∆H = d) · d

=
α− 1

α+ 1

∞
∑

d=1

Pr(∆H = d) · d+
1

α+ 1

∞
∑

d=−∞

Pr(∆H = d) · d

=
α− 1

α+ 1

∞
∑

d=1

Pr(∆H = d) · d+
E[H(x)−H(y) | x]

α+ 1
.

Using that E[H(x)−H(y) | x] ≥ −1 by (5) and lower-

bounding the sum by the term of d = 1 (that is, flipping

only one of H(x) incorrect bits),
∑∞

d=1 Pr(∆H = d) · d ≥
H(x)/(en), we get a drift of at least

α− 1

α+ 1
·
H(x)

en
−

1

α+ 1

≥

(

1−O

(

1

n

))

·
H(x)

en
−

1

(1 + Ω(1))en
= Ω

(

H(x)

n

)

.

So the drift in one mutation step of the considered lineage

is Ω(H(x)/n). Since the lineage’s current search point is

mutated with probability 1/µ, the drift in one generation is

Ω(H(x)/(µn)). Now the bound O(µn log n) follows from a

straightforward application of the multiplicative drift theorem

with H(x) as distance function, gmax = n and δ = Ω(1/(µn)).
The same analysis also applies to TWOMAX for the time

one fixed lineage finds an optimum. However, the second

statement of this theorem claims that all µ lineages will have

found a global optimum in expected time O(µn log n). Hence

we need to show that even the slowest out of µ lineages will

still finish in this time.

To this end, we exploit that the multiplicative drift theorem

provides tail bounds. Since µ is polynomial, there is a con-

stant d > 0 such that µ ≤ nd. We then apply the multiplicative

drift theorem’s tail bound with parameter c := d ln(n) + 1;

this yields that the probability of a fixed lineage not finding

an optimum in time O(µn log n) is at most e−c ≤ 1/(eµ).
By a union bound, the probability that there is a lineage that

has not found an optimum in this time is at most 1/e. If this

happens, we repeat the above arguments with another, fresh

period of O(µn log n) generations. Since in every period all

lineages find global optima with probability at least 1− 1/e,

in expectation only O(1) such periods are needed before this

happens. This implies a bound of O(µn log n) generations.

The probability 1 − 2−µ+1 follows from the fact that all

lineages are independent. Every lineage has equal probabilities

of ending up in 0n or 1n. The probability that, once all µ
lineages have found global optima, they all end up in the same

global optimum is 2 · 2−µ = 2−µ+1. Hence with probability

1− 2−µ+1 the population contains both global optima.

IV. GENERALISED CROWDING

Introduced by Galán and Mengshoel [10], generalised

crowding uses the same pairing and replacement as proba-

bilistic crowding, but it introduces a scaling factor φ that

diminishes the fitness of the inferior search point. It allows

wider ranges of replacement strategies by adjusting φ. In

this crowding mechanism, the probability of accepting the

offspring y over the parent x is given by:










f(y)
f(y)+φ·f(x) if f(y) > f(x),

0.5 if f(y) = f(x),
φ·f(y)

φ·f(y)+f(x) if f(y) < f(x).

(8)

In the special case where φ = 1 we obtain probabilistic

crowding, and in case where φ = 0 we essentially retrieve

deterministic crowding as then the better offspring is selected

with probability 1. A minor difference is that in case of ties, the

offspring is kept with probability 1/2 in generalised crowding

whereas in deterministic crowding the offspring is always

preferred in this case.

We use the techniques established for the analysis of prob-

abilistic crowding to study the performance of generalised

crowding in the context of TWOMAX. Since we already know

that the extreme parameter settings φ = 1 and φ = 0 are

respectively inefficient and efficient, an obvious question is

whether there is a threshold behaviour for the choice of

φ and where this threshold is located. The following two

theorems establish a threshold behaviour around φ = Θ(1/n).
This means that generalised crowding is only efficient if the

parameters are chosen very close to those for deterministic

crowding.

Theorem 12. The (µ+1) EA with generalised crowding,

polynomial µ and φ ≤ (1 − Ω(1))/(e2n) finds an optimum

on ONEMAX in expected time O(µn log n).
On TWOMAX it finds a population consisting of only

global optima in expected time O(µn log n). In that case the

population contains both global optima with probability at

least 1− 2−µ+1.

Proof: As before, we only consider a single lineage and

show a bound of O(n log n) steps that evolve said lineage,

keeping in mind an additional factor of µ for the expected

waiting time for such an evolution step.

Using the same notation for x, y, z and H(·) as before,

E[H(x)−H(z) | x] =
∞
∑

d=1

Pr(∆H = d) · d ·
f(y)

φf(x) + f(y)

+

−1
∑

d=−∞

Pr(∆H = d) · d ·
φf(y)

f(x) + φf(y)
.

Considering only the summand d = 1, the first sum is at least

H(x)

en
·

f(x) + 1

φf(x) + f(x) + 1
≥

H(x)

en
·

1

1 + φ
.

For the second sum, we again bound the probability of a jump

of length |d| by 1/(|d|!) (cf. proof of Lemma 7) and obtain a

lower bound of

−1
∑

d=−∞

1

|d|!
· d ·

φf(y)

f(x) + φf(y)

≥−
∞
∑

d=1

1

d!
· d ·

φ

1 + φ
= −

φ

1 + φ

∞
∑

d=0

1

d!
= −

eφ

1 + φ
.
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Together, the drift E[H(x)−H(z) | x] is at least

H(x)

en
·

1

1 + φ
−

eφ

1 + φ
=

1

1 + φ

(

H(x)

en
− eφ

)

= Ω

(

H(x)

n

)

as by assumption φ < (1−Ω(1))/(e2n). Another application

of the multiplicative drift theorem proves the claim.

The statement for TWOMAX follows in the same way as in

the proof of Theorem 11.

The following theorem gives a negative result very similar

to Theorem 9 with φ/α replacing 1/α.

Theorem 13. Let f be any function of (α, φn/α)-bounded

gradient and f having at most 2ξφn/α global optima for a con-

stant ξ > 0. With probability 1−2−Ω(φn/α) the (µ+1) EA with

generalised crowding and parameter φ will not have found

an optimum, or any search point within Hamming distance

φn/(9α) of any optimum, in 2cφn/α function evaluations, for

every population size µ and small enough constants ξ, c > 0.

The proof is nearly identical to the proof of Theorem 9; the

negative drift theorem is applied to the interval φn/(9α) ≤
H(x) ≤ φn/(8.5α) and calculations include an additional

factor of φ (which retrieves Theorem 9 as a special case for

φ = 1). Details are omitted due to space restrictions.

Theorem 13 implies the following, recalling that TWOMAX

has an (1 + 2/n, n)-bounded gradient.

Corollary 14. With probability 1−2−Ω(φn) the (µ+1) EA with

generalised crowding and scaling factor φ will not have found

any optimum, or any search point within Hamming distance

φn/9−O(1) of any optimum, in 2cφn function evaluations, for

every population size µ and a small enough constant c > 0.

This is an exponential time with overwhelming probability

if φ = Ω
(

n−1+ε
)

for a constant ε > 0.

V. EXPERIMENTAL ANALYSIS

We provide an experimental analysis as well in order to

see how closely the theory matches the empirical performance

for reasonable problem sizes. Our analysis is focused on

Algorithm 1, its scaled version and generalised crowding for

the TWOMAX function. We consider exponentially increasing

population sizes µ ∈ {2, 4, 8, . . . , 1024} for a problem size

n = 100 and for 100 runs.

Since we are interested in proving how good/bad these

mechanisms are, we define the following outcomes and stop-

ping criteria for each run. Success, both optima of TWOMAX

have been reached, i. e., the run is stopped if the population

contains both 0n and 1n. Failure, once the run has reached

10µn lnn generations and the population does not contain both

optima. By [3, Lemma 3.3], this time period is long enough

to allow any reasonable (µ+1) EA variant to find one or two

global optima with high probability (unless the best fitness on

a branch drops frequently). We report the mean of successes

and failures for the 100 runs.

For probabilistic crowding (Algorithm 1), and as proved in

Theorem 8, for all µ sizes, the method is not able to optimise

TWOMAX. In all runs the algorithm failed to reach even one

optimum, let alone reaching both. Since the algorithm is not

able to find any optimum of TWOMAX, we ran additional

experiments for n ∈ {32, 64, 128, . . . , 16384} and population

size µ = 32 to observe how far the best lineages evolve

from n/2 and/or how close the best individuals get to reach

an optimum. In the following we will use box plots for

representing some of the statistical data with an extended

variant where additionally outliers are identified. In Fig. 1a,

we show the best individuals obtained in each of the 100 runs

and its variance. As soon as n increases, the best fitness in

the population starts to concentrate around n/2 and reaching

a fitness of (1+ε)n/2 becomes very difficult for all constants

ε > 0 as n grows. Even the best outliers start to get closer

and closer to the average of the population.

For probabilistic crowding with scaling we would like to

observe how the hill-climbing capability of the method is

improved with respect to the base α. In order to cover bases

very close to 1 as well as larger ones, we vary α − 1
exponentially: α−1 ∈ {2− logn, 2−((logn)+1), . . . , 2(logn)+2}.

We test the (µ+1) EA with probabilistic crowding on αTWOMAX

with n = 1024 (we know from Fig. 1a that this problem size

is hard for the (µ+1) EA without scaling) and a population

size µ = 32 with the same stopping criteria.

In Fig. 1b, we show the best individuals obtained in each of

100 runs, its variance and the number of successes achieved.

In this experimental analysis we explore a wide range of

replacement rules that range from similar results from the

classic probabilistic crowding with a performance close to n/2
to a more elitist replacement rule like deterministic crowding.

From all the bases α analysed here, we can observe how

scaling plays a crucial role in the optimisation process by

allowing better individuals to survive and to reach both global

optima of TWOMAX. As shown in Theorem 11 and in Fig. 1b,

an exponential scaling factor with a base of order n is needed

to guarantee efficient runtimes on TWOMAX.

In the same way we analyse the (µ+1) EA with gener-

alised crowding, varying the scaling factor exponentially as

φ ∈ {2−((logn)+3), 2−((logn)+2), . . . , 20}. In Fig. 1c, we show

the best individuals obtained in each of the 100 runs, its

variance and the number of successes achieved. And as stated

from Theorem 12, generalised crowding is only efficient if

the scaling factor φ approaches to 0, i. e., as the scaling

factor is getting closer to 0, the algorithm starts emulating

the behaviour of deterministic crowding, and the success rate

reaches 100. When φ = 1 we can observe a similar behaviour

as probabilistic crowding in Fig. 1a.

VI. CONCLUSION

We have examined theoretically and empirically the be-

haviour of two different crowding mechanisms embedded

into a simple (µ+1) EA on the large class of functions

with bounded gradients, including TWOMAX. We rigorously

proved that probabilistic crowding fails miserably on TWO-

MAX; it is not even able to evolve search points that are sig-

nificantly better than those found by random search, even when

given exponential time. The reason is that fitness-proportional

selection for survival selection works very similar to uniform

selection, and then the algorithm performs an almost blind

search on µ independent lineages. Our negative results ap-

ply to a broad range of functions with bounded gradients,
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Fig. 1. The normalised best fitness TWOMAX/n reached and number successes achieved among 100 runs at the time both optima were found or the
t = 10µn lnn generations have been reached for (1a) n ∈ {32, 64, 128, . . . , 16384} by the (µ+1) EA with probabilistic crowding, (1b) n = 1024 by the
(µ+1) EA with probabilistic crowding with exponential scaling and base α with log(α − 1) ∈ {− logn, . . . , (logn) + 2} and, (1c) for n = 1024 by the
(µ+1) EA with generalised crowding with exponentially decreasing scaling factor φ, choosing − log(φ) ∈ {0, . . . , (logn) + 3} and µ = 32.

which also includes combinatorial problems like MAXSAT

and VERTEX COLOURING. For all considered problems, the

(µ+1) EA with probabilistic crowding needs exponential time

with overwhelming probability to even get reasonably close to

any global optimum.

Even when scaling the fitness function exponentially to

some base α, finding any optimum of TWOMAX takes ex-

ponential time for any constant base α. We have shown a

threshold behaviour with respect to α at α = Θ(n) where

probabilistic crowding with exponential scaling becomes effi-

cient on TWOMAX.

A similar threshold behaviour was proven for generalised

crowding, where the fitness of the inferior search point in the

comparison between parent and offspring is decreased by a

factor of φ ∈ [0, 1]. Here the threshold between efficient and

inefficient behaviour on TWOMAX is located at φ = Θ(1/n).
In other words, the fitness of the inferior search point has to

be vanishingly small for generalised crowding to be effective.

In addition to strengthening the theoretical foundation of

EAs, we believe that our results are highly relevant for practice

as they apply to many real-world settings. Our negative

results for probabilistic crowding with and without scaling

and generalised crowding apply to general classes of functions

with bounded gradients, including highly multimodal problems

as found in real-world problems. Most runtime analyses of

EAs focus on the time to hit a global optimum exactly, which

can be of limited relevance to practitioners. Our results go

beyond global optimisation as they show that even the time

to get within a certain Hamming distance to any optimum is

exponential with overwhelming probability if the wrong mech-

anism is used or parameters are set incorrectly. Our theoretical

and empirical results, including the threshold behaviours for

parameters α and φ, provide solid guidance for practitioners

on how to use crowding mechanisms most effectively.

APPENDIX

The following inequality was used in the proof of Lemma 7.

Lemma 15. For all α ≥ 1,

∞
∑

d=0

1

d!
·

2αd

αd+1 + 1
≤ e

Proof: The claim is obvious for α = 1. We show the claim

for α > 1 by showing that the function is non-increasing in α.

Since αd+1 + 1 ≥ 2, the left-hand side is bounded by eα.

Despite being weaker than the claimed bound, it shows that the

series is absolutely convergent for all α ≥ 1. The derivative of
αd

αd+1+1
is calculated using the quotient rule

(

f
g

)′

= f ′g−g′f
g2 ,

yielding

dαd−1(αd+1 + 1)− (d+ 1)αd · αd

(αd+1 + 1)2
=

dαd−1 − α2d

(αd+1 + 1)2
.

Hence the derivative of the series is

∞
∑

d=0

1

d!
·
2dαd−1 − 2α2d

(αd+1 + 1)2
.

The term for d = 0 is −2/(α + 1)2. Hence the derivative is

at most 0 if and only if

∞
∑

d=1

1

d!
·
2dαd−1 − 2α2d

(αd+1 + 1)2
≤

2

(α+ 1)2

or, equivalently,

∞
∑

d=1

1

d!
·
dαd−1(α+ 1)2

(αd+1 + 1)2
≤ 1 +

∞
∑

d=1

1

d!
·
α2d(α+ 1)2

(αd+1 + 1)2
. (9)

We show that the left-hand side is at most e and the right-hand

side is at least 1 + (e− 1) = e. The left-hand side equals

∞
∑

d=1

1

(d− 1)!
·
αd−1(α+ 1)2

(αd+1 + 1)2
=

∞
∑

d=0

1

d!
·
αd+2 + 2αd+1 + αd

α2d+4 + 2αd+2 + 1

The obvious inequality αd−1 ≤ αd+2(αd−1) implies αd+2+
αd ≤ α2d+2+1 and αd+2+2αd+1+αd ≤ α2d+4+2αd+2+1.

Consequently, the left-hand side is at most
∑∞

d=0
1
d! = e.
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The series on the right-hand side of (9) equals

∞
∑

d=1

1

d!
·
α2d+2 + 2α2d+1 + α2d

α2d+2 + 2αd+1 + 1
≥

∞
∑

d=1

1

d!
= e− 1.

Together, this proves (9) and that the derivative is always at

most 0. Hence the claim holds for all α ≥ 1.
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