
This is a repository copy of Bayesian Polytrees With Learned Deep Features for 
Multi-Class Cell Segmentation..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/147231/

Version: Accepted Version

Article:

Fehri, H, Gooya, A, Lu, Y et al. (3 more authors) (2019) Bayesian Polytrees With Learned 
Deep Features for Multi-Class Cell Segmentation. IEEE transactions on image 
processing : a publication of the IEEE Signal Processing Society, 28 (7). pp. 3246-3260. 
ISSN 1057-7149 

https://doi.org/10.1109/tip.2019.2895455

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/210993067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Bayesian Polytrees with Learned Deep Features for

Multi-Class Cell Segmentation
Hamid Fehri, Student Member, IEEE, Ali Gooya, Member, IEEE, Yuanjun Lu, Erik Meijering, Fellow, IEEE,

Simon A. Johnston, Alejandro F. Frangi Fellow, IEEE

Abstract—The recognition of different cell compartments, types
of cells, and their interactions is a critical aspect of quantitative
cell biology. However, automating this problem has proven to be
non-trivial, and requires solving multi-class image segmentation
tasks that are challenging owing to the high similarity of
objects from different classes and irregularly shaped structures.
To alleviate this, graphical models are useful due to their
ability to make use of prior knowledge and model inter-class
dependencies. Directed acyclic graphs, such as trees have been
widely used to model top-down statistical dependencies as a
prior for improved image segmentation. However, using trees,
a few inter-class constraints can be captured. To overcome this
limitation, we propose polytree graphical models that capture
label proximity relations more naturally compared to tree based
approaches. A novel recursive mechanism based on two-pass
message passing was developed to efficiently calculate closed-form
posteriors of graph nodes on polytrees. The algorithm is evaluated
on simulated data and on two publicly available fluorescence
microscopy datasets, outperforming directed trees and a state-
of-the-art convolutional neural network architecture, namely
SegNet. Two types of features were used to explore the role of
features in segmentation: 1) scale-space differential invariants, 2)
deep representations extracted by SegNet. Polytrees are shown
to outperform directed trees in predicting segmentation error,
by highlighting areas in the segmented image that do not
comply with prior knowledge. This paves the way to uncertainty
measures on the resulting segmentation and guides subsequent
segmentation refinement.

Index Terms—hierarchical graphs, cell and nucleus segmen-
tation, multi-class segmentation, segmentation error prediction

I. Introduction

Accurate and efficient image segmentation of complex spa-

tial object arrangements composed of multiple constituting
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structures (or classes) is challenging yet paramount for bio-

logical discoveries underpinned by quantitative imaging. For

example, the identification of different cells within tissue [1]

or organelles within cells [2], the sub-cellular localization of

proteins [3], the interactions of different cell types in organ

development [4], or the immune response during infection

[5], are just a few relevant problems in biology. To assess

the morphological and behavioral characteristics of these cells

(some having unknown causes [6]), quantitative metrics are

devised, which require image segmentation as an unavoidable

first step. Additionally, histology images are increasingly used

for disease diagnosis and grading. Quantitative analysis of

these images through the developed metrics (e.g. for abnormal

nuclei as a potential indicator of cancer) helps pathologists

by providing a supporting diagnosis and disease progress

evaluation [7], [8]. Still, at a finer resolution, the biology

of cell nucleus, i.e. the organization of the genome and the

proteins, has a functional relevance with the biological cell

processes, and their mis-localization (hence segmentation)

can be a valuable indicator for many pathologies [9], [10],

[11]. Given that all the above mentioned examples are multi-

class segmentation problems, automatic methods are of high

significance due to their labor-intensity, and inter- and intra-

observer variability of manual analysis, especially for large

datasets. However, common features of these images, such

as defused or overlapping boundaries, irregular shapes and

high deformability of objects, limited resolution and quality

in biological images, may contribute to the poor segmentation

performance of automatic methods.

Incorporation of prior knowledge can play an important

role in aiding and improving segmentation. Inter-object de-

pendencies have been used in the segmentation of interacting

objects [12] and intra-object spatial relationships were shown

to enhance the segmentation of cell organelles [13]. Other

examples in cell segmentation include using priors to consider

the relative topology of cells and nuclei [14], [15], and to

impose area and size constraints on segmented regions [16],

to achieve a better segmentation. In brain tissue analysis,

appearance and spatial priors have been used to improve tumor

localization [17], generalization to unseen images [18], and

lesion recognition as atypical brain tissues [19].

Graphical models enable modeling associative relations

between random variables [20]. These probabilistic models can

improve segmentation by imposing constraints emerged from

the prior knowledge [21], [22]. The key aspect of graphical

models is that the label of each node is determined based on

both its own attributes and attributes of other nodes connected
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through graph edges. This way, not only all the information is

incorporated in inferring the labels, but also label configura-

tion constraints can be effectively applied during inference.

For instance, Chen et al. [23] employed graphical models

to incorporate nuclear positions with boundary information

for yeast cell segmentation. In a rather different application,

segmentation of retinal images, graphical models have been

used for combining appearance models with shape priors [24].

We propose polytree graphical models for implementation

of local label configurations for multi-class segmentation prob-

lems. Polytrees are a type of Bayesian Networks (BNs) whose

nodes can have more than one parent. Compared to other

well-known BNs based on trees [25], [26], [27], [28], where

each node only has one parent, polytrees can capture more

complex configurations and constraints. This higher flexibility

of polytrees also inhibits certain unfeasible label cliques on

the graph that trees are unequipped to exclude, in spite of

their contravening prior knowledge. The performance of the

proposed method was compared to that of the directed trees

and a convolutional neural network to assess the modeling and

error prediction efficiencies.

II. Related work

Two types of graphical models have been used for image

segmentation, namely Markov Random Fields (MRFs) and

Bayesian Networks (BNs). MRFs have weighted edges indicat-

ing dependencies between variables and are used for capturing

correlations between random variables. Directed edges in BNs

indicate causal relationships between random variables [29].

In this paper, we focus on BNs and enforce the constraints

using conditional probabilities that appear in the joint prob-

ability distribution. To find the optimal labels of the graph,

different inference algorithms have been proposed. Two-pass

inference algorithms were initially proposed for chain-based

models, which calculate exact probabilities for node labels

[30]. Extension of this forward-backward algorithm, known

as belief propagation [31], [32], resulted in exact solutions

for two main types of Directed Acyclic Graphs (DAGs): trees

and polytrees. Directed trees are BNs with only one route

between each pair of nodes in the graph (i.e. singly connected

[20]), with each node, except the root node, having exactly

one parent node. Polytrees, however, are singly connected

BNs where each node can have more than one parent node.

Existing solutions for these two DAGs factorize the posterior

of each node into two factors: a marginal posterior given a

subset of observations, and a subgraph data likelihood given

the label of the node [32]. Despite their being exact and non-

iterative, the dependency on the likelihood function in these

factorizations makes the numerical implementation impractical

[33]. This is because probability values become very small at

some nodes, where the likelihoods involve a large number of

data components, hence causing arithmetic underflow.

To address the implementation problem of the proposed

algorithms for inference, Laferte et al. [33] designed a re-

cursive framework that calculates exact posteriors of nodes

on a regular quadtree, based on posteriors of its neighboring

nodes. Feng et al. [34] used Tree-Structured Belief Networks

(TSBNs) as a prior model combined with a neural network

for local prediction of class labels. TSBNs suffer from block

artifacts [35] resulting from the descendants of a node s

on a tree being conditionally independent, given the state

of s. More complex graph structures, such as overlapping

trees [36] whose nodes do not point to distinct areas of the

image, and two-dimensional trees [37] have been proposed to

reduce this effect at the expense of higher computational costs.

Alternatively, a group of authors proposed trees with dynamic

structures fitting the image contents (e.g. [38], [39]) where the

labels and the graph structure are inferred. Priors have also

been incorporated into trees using Hierarchically-Structured

Interacting Segments (HINTS) [12], where the nodes represent

interacting segments in the image. Iterative algorithms were

proposed for approximating the optimal label configurations

for binary [40] and multi-label [41] cases. However, the

proposed optimization algorithms do not always converge and

may require modifying the graph structure or relaxing the

constraints for convergence.

To address the limitations of trees, which mainly stem

from the independence of same-level nodes [34], we propose

polytrees for multi-class image segmentation. Compared to

trees, polytrees can eliminate a wider range of unfeasible

label configurations, by modeling both inter- and intra-level

dependencies. Similar to the work of Laferte et al. [33], we

derive a two-pass inference algorithm on the polytree for

exact calculation of posterior probabilities on the graph. The

proposed polytree based method is evaluated by segmenting

objects from multiple classes in real microscopy images. We

show it outperforms methods based on the state-of-the-art

convolutional neural networks, viz. SegNet [42], and directed

trees.

The proposed model is also evaluated on its ability to

predict segmentation error. Areas of the segmented image that

do not comply with the imposed priors are nominated and

their similarity to the actual segmentation error is measured.

Polytrees are shown to outperform trees in finding the wrongly

segmented areas.

Our polytree based segmentation method is fundamentally

different from the method proposed by Laferte et al. [33] and

entails important extensions. Our hierarchical graph structure

(both in polytrees and trees) is made based on an initial super-

pixelation step [43], and subsequently merges the most similar

superpixels (graph nodes) until the highest level. The graph

structure is asymmetric and irregular. This property allows

capturing more natural cell boundaries for a more complex

implementation. Conversely, Laferte et al. use symmetric and

regular quadtrees, where the nodes are represented by square

regions. The shapes of the nodes do not match the actual

morphologies of the cells, rendering the method unsuitable

for comparison. Inference-wise, our method uses features

extracted by convolutional neural networks (CNN) (details

explained in section IV-E) and is applied to supervised multi-

class image segmentation, while Laferte et al. use pre-defined

intensity and texture features for an EM-based unsupervised

image classification. See Table I for a summary of fine

differences between the three mentioned methods.
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TABLE I
Summary of key differences between Laferte et al. method and the proposed tree and polytree

Method Laferte et al. Proposed tree Proposed polytree

Number of descendants 4 2 2
Hierarchical structure Regular Irregular Irregular
Features Intensity and texture CNN Intensity features/ CNN
Application Unsupervised segmentation Supervised segmentation Supervised segmentation

Sample constructing element
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III. Method

We present here our proposed graphical model for image

segmentation. First, a polytree is generated for the image

by grouping similar pixels and regarding them as nodes in

the graph. Next, the parameters of the likelihood functions

are trained and labels of the nodes are inferred. Finally, the

segmented image is constructed based on the optimal labels

on the graph.

A. Graph generation

Initially, the graph is generated by grouping pixels into

locally coherent areas (superpixels), each representing a single

root node (Fig. 1). We use the SEEDS algorithm [43], which

refines an initial grid of identically block shaped superpixels

into more coherent ones. The two most similar superpixels are

then recursively merged to generate higher-level nodes in the

graph hierarchy, in a similar manner to generating a merge-tree

[44].

For each superpixel at the finest level, one (root) node in

the lowest level of the graph is created (see Fig. 1). Every two

nodes achieving highest scores according to a similarity metric

are then merged to create a new super node. The new super

node is the union of image regions attached to its two lower-

level descendant nodes. We define the similarity metric as a

superposition of distances using spatial and intensity features

of the superpixels. A vector β = [βs;βi] is introduced to

adjust contributions of each feature in the similarity metric.

An adaptive scheme is designed for setting β, which helps

in the generation of more meaningful nodes in the graph.

Nodes in the lower levels of the graph represent subregions

of objects, rather than their full areas. For these nodes, we set

β such that βs consists of greater values compared to βi. This

makes merging neighboring nodes that correspond to parts of

the same object (i.e. a cell or a nucleus in our case) more

probable. In the higher levels, however, values of βi are set

to be greater than those of βs to facilitate the merging of

regions belonging to the same class, although they might not

be neighbors. Assuming βi=βi1 and βs=βs1 and setting βi=1

for simplicity, β is determined by a cross validation merely

on βs.

After each merging step, the new node and all the other

orphan nodes, are assessed with the similarity metric to

recognize candidate nodes for merging next. Region merging

is continued until only two orphan nodes remain in the graph,

ࣦ: Leaf node (mother node)

࣬: Root nodes (lowest level) Initial superpixels

M
e
rg
in
g

Fig. 1. Generating a polytree from an oversegmented input image.
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Fig. 2. A symbolic process of node merging for a synthetic cell (C) with a
nucleus (N) resulting a polytree constructing element.
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Fig. 3. Edge directions on cliques in (a) directed tree and (b) polytree
graphical models.

which are eventually merged to create the leaf node that

corresponds to the whole image (Fig. 1). Since two nodes

are merged at each step of the graph evolution, the resulting

structure is a binary graph; i.e. each non-root node has two de-

scendant nodes directly connected to it. We call this three-wise

structure a clique and denote it by parent1 − child − parent2.

Figure 2 shows a symbolic process of merging for a cell

(C) with a nucleus (N). Here, nodes 1 and 2 align with blue

and yellow areas in the synthetic cell, respectively. If these

two nodes are chosen to be merged based on their value in

the similarity metric, node 3 is generated, which corresponds

to the union of blue and yellow areas annotated by the dashed

ellipse. This clique is represented by 1 − 3 − 2.
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B. Graph definition

The generated graph is a hierarchical structure modeling

the interrelations between areas corresponding to different

classes. Nodes in the lower levels correspond to smaller

superpixels, such as sub-areas of cells, and are therefore more

homogeneous. Higher-level nodes correspond to one or mul-

tiple objects that can be of different classes. The hierarchical

structure allows merging smaller areas from the same class

(in the lower levels), and embedding of objects within larger

regions with different classes (in the higher levels) according

to certain merging rules. These rules are introduced in the

model by defining and applying priors on label configurations.

Denoting the graph by G, the latent variable for node s is

labeled as xs, where xs ∈ X (X being the set of all latent

variable nodes), and takes a discrete value from the label set

Λ. The observation nodes ys are attached to each xs node

in the graph and contain feature vectors extracted from its

corresponding superpixel in the image. With these definitions,

segmenting the image equals inferring labels xs given the

observations ys ∈ Y (Y being the set of all observation nodes),

where the label configurations comply with the prior imposed

on the model.

C. Imposing priors on the graph

Applying inclusion-based prior knowledge is the main ad-

vantage of using hierarchical graphs and is a way to constrain

the solution to plausible results. In a directed graphical model,

prior knowledge can be modeled through setting specific

forms of the conditional probabilities that implement causality

according to the directions of the edges. These probabilities

act as the prior factor in the Bayesian factorization of the

posterior.

In directed trees, the joint probability consists of one-to-

one priors that can only model across-level dependencies.

For instance, in the constructing element of a dyadic tree

depicted in Fig. 3a (excluding the observation nodes tem-

porarily for simplicity) the joint probability is written as

p(X) = p(xs+
1
|xs)p(xs+

2
|xs)p(xs), where p(xs+

1
|xs) and p(xs+

2
|xs)

are the one-to-one priors. In polytrees however, the joint

probability has multiple-to-one priors modeling both across-

level and same-level dependencies. The joint probability for

the sample polytree structure of Fig. 3b factorizes as p(X) =

p(xs|xs+
1
, xs+

2
)p(xs+

1
)p(xs+

2
), in which the factor p(xs|xs+

1
, xs+

2
) is

the prior. To show how this can influence the modeling ability

of the hierarchy, imagine the label set consists of two classes:

Λ = {A, B}. Also, assume B−A−A is a feasible and B−A−B is

an unfeasible configuration. Using trees, B−A−A is allowed by

setting probabilities p(xs+
i
= B|xs = A) and p(xs+

i
= A|xs = A)

to non-zero values. However, enforcing the former constraint

also makes B−A−B cliques feasible, even though they are to

be prevented by the model. But thanks to the more complex

priors in the polytree, setting p(xs = A|xs+
1
= B, xs+

2
= A) to

non-zero values and setting p(xs = A|xs+
1
= B, xs+

2
= B) to zero

satisfies both of the constraints with no conflicts. This simple

example shows the advantage of polytrees over directed trees

in modeling more complex problems, by using a larger number

of parameters.

In this paper, we use the generated polytree (details ex-

plained in section III-A) to segment the image by inferring

the optimal labels for latent variable nodes. Each node at

the lowest graph level (finest image resolution) is a root (in

contrast to the single root node in directed trees) and there is

only one leaf node (see Fig. 1).

Figure 4 shows the tables of priors and possible label

configurations, when three classes of background (B), cell (C)

and nucleus (N) exist in the image, which is useful for the

problem of segmenting cells and nuclei in the images.

D. Label inference

Let X = {xs} and Y = {ys} denote sets of labels (latent

variables) and the corresponding observed features at nodes,

respectively, G denote the set of nodes and edges and xs ∈ Λ,

where Λ is the set of all possible labels. For an internal node

(neither in the lowest level nor the leaf node) s in the graph,

s−, s+ and s′ denote nodes in higher, lower and same layers,

respectively (Fig. 5a).

We now derive equations governing the posterior probabili-

ties of graph nodes. Given the observed data Y, finding the best

segmentation equals the best configuration of labels X for the

graph. Bayesian inference associates the most probable label

from the set of possible labels Λ, given all observations:

∀s ∈ G, x̂s = arg max
xs∈Λ

p(xs|Y) (1)

A new set of equations is derived to calculate the closed-

form posterior probabilities at each node in the polytree. The

inference algorithm calculates the posteriors of the nodes in

two passes. These two consist of a pass from the leaf to the

roots, (top-down pass), and another from the roots to the leaf

(bottom-up pass).

The probability of a node’s label xs, given all data Y, is

computed by marginalizing the probability of the clique over

two parent nodes s+
1

and s+
2

given Y, and the joint posterior

is given by

p(xs|Y) =
∑

xs+
1
,xs+

2

p(xs, xs+
1
, xs+

2
|Y)

(2)

Three-wise constraints on cliques appear in the posterior calcu-

lation. To factorize the joint probability, we need a mechanism

to identify the dependency of the nodes in the graph.

D-separation: Consider three sets of nodes A, B and C in

a directed acyclic graph. We want to verify the conditional

dependency of A and B, given C. D-separation (directional

separation) rule [31] can determine this based on the paths

that exist between A and B on the graph. Each path connecting

A and B is blocked if it involves a node s for which either:

a) arrows meet head-to-tail or tail-to-tail at node s and s ∈

C (Fig. 6a), or b) arrows meet head-to-head at node s and

neither the node nor any of its descendants are in the set C

(Fig. 6b). If all paths between A and B are blocked, they are

conditionally independent, given C (A and B are d-separated

by C and A y B|C).
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Fig. 4. The prior knowledge used for the three-class problem of cell and nucleus segmentation. Panel (a) shows the plausible label-configurations based on
the inclusion of nuclei by cells and cells by the background. Panel (b) shows equivalent probabilistic conditionals when directed trees or polytrees are used
for modeling the image. When no child label xs is plausible for a pair of parent labels xs+

1
and xs+

2
in a polytree clique, a uniform prior 1/3 is considered.

Using the d-separation rule, the joint posterior in Eq. 2 is

expanded as

p(xs, xs+
1
, xs+

2
|Y) = p(xs|xs+

1
, xs+

2
,Y)p(xs+

1
, xs+

2
|Y)

= p(xs|xs+
1
, xs+

2
,Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
)),

(3)

where Ya(.) and Yd(.) refer to the sets of observation nodes

of the ascendant and descendant nodes, respectively (Fig. 5b).

For each node s (or a set of nodes S), ascendant nodes refer to

the set of all nodes that are connected to s (S) through edges

with inward directions. Similarly, descendant nodes include the

nodes connected to node s (S) through outward oriented graph

edges. The union of ascendant and descendant observation

nodes constructs the set of all observations. See Fig. 5b for a

graphical explanation.

We first elaborate on the factor p(xs|xs+
1
, xs+

2
,Ya(s)) on the

right-hand side of Eq. 3. This factor enforces posteriors of
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Fig. 5. Distribution of latent and observation nodes in the graph. The notation
for nodes connected to an internal node s of the graph is shown in (a). In
(b), the graphical representation of ascendant, Ya(s), and descendant, Yd(s),
observation nodes is depicted.
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Fig. 6. D-separation rule. Nodes A and B are conditionally independent
given C, when graph edges meet head-to-tail or tail-to-tail and s ∈ C (a), or
when graph edges meet head-to-head and s < C (b).

unfeasible configurations to zero, as it is a product of the joint

probability of a child node and its two parent nodes.

p(xs|xs+
1
, xs+

2
,Ya(s)) =

p(xs, xs+
1
, xs+

2
|Ya(s))

∑

x′s
p(x′s, xs+

1
, xs+

2
|Ya(s))

(4)

Using the d-separation rule, the numerator becomes:

p(xs, xs+
1
, xs+

2
|Ya(s)) = p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

=
p(xs, xs+

1
, xs+

2
)

p(xs)
p(xs|Ya(s)).

(5)

The factor p(xs, xs+
1
, xs+

2
) in Eq. 5 controls the occurrence of

feasible and unfeasible configurations on the graph, by setting

nonzero and zero values, respectively. The factor p(xs|Ya(s)) in

Eq. 5 is the posterior of node s given the observations of all

its ascendant nodes and its own observations. This top-down

posterior is expanded as:

p(xs|Ya(s)) ∝
∑

xs− ,xs′

p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs, xs′ , xs− )

p(xs− )p(xs′ )
p(xs− |Ya(s−)).

(6)

Equation 6 indicates that having calculated the likelihood

probabilities p(ys|xs), p(ys′ |xs′ ), and the posterior p(xs′ |Yd(s′)),

the top-down posterior of node s is calculated based on top-

down posterior of the node s−. This implies that a top-down

recursion calculates the top-down posteriors for all nodes.

The factor p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
)) on the right-hand side

of Eq. 3 is factorized by several applications of d-separation

rule. This factorization separates parts calculated from ascen-

dant and descendant nodes as follows.

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
))

∝ p(Ya(s+
1
,s+

2
),Yd(s+

1
,s+

2
)|xs+

1
, xs+

2
)p(xs+

1
, xs+

2
)

= p(Ya(s+
1
,s+

2
)|xs+

1
, xs+

2
)p(Yd(s+

1
,s+

2
)|xs+

1
, xs+

2
)p(xs+

1
, xs+

2
)

= p(Ya(s+
1
,s+

2
)|xs+

1
, xs+

2
)p(Yd(s+

1
)|xs+

1
)p(Yd(s+

2
)|xs+

2
)p(xs+

1
, xs+

2
)

∝ p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

p(xs+
1
|Yd(s+

1
))

p(xs+
1
)

p(xs+
2
|Yd(s+

2
))

p(xs+
2
)

(7)

Similar to Eq. 6, p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) on the right-hand side

of Eq. 7 is calculated through a top-down recursion as below.

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) ∝
∑

xs

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
, xs+

2
|xs)p(xs|Ya(s))

(8)
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The factors p(xs+
1
|Yd(s+

1
)) and p(xs+

2
|Yd(s+

2
)) in Eq. 7 are called

bottom-up posteriors as they are calculated based on posteriors

of their descendant nodes. For each node s in the graph, the

bottom-up posterior is written as

p(xs|Yd(s)) ∝
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
|Yd(s+

1
))p(xs+

2
|Yd(s+

2
))p(xs|xs+

1
, xs+

2
).

(9)

Derivations of Eq. 6, 8 and 9 are included in Appendix A.

Making use of Eq. 3, 4, 5 and 7, the node’s posterior in

Eq. 2, given all the observations, is written as follows.

p(xs|Y) ∝
∑

xs+
1
,xs+

2

p(xs, xs+
1
, xs+

2
|Ya(s))

∑

x′s
p(x′s, xs+

1
, xs+

2
|Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

p(xs+
1
|Yd(s+

1
))

p(xs+
1
)

p(xs+
2
|Yd(s+

2
))

p(xs+
2
)

(10)

Equation 10 calculates the posterior at each node

s using three marginal posteriors p(xs, xs+
1
, xs+

2
|Ya(s)),

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) and p(xs|Yd(s)), in Eq. 5, 8 and 9. Each

term is calculated through either a top-down or a bottom-up

recursion. The inference is summarized in Algorithm 1. Note

that R and L denote the set of root nodes and the leaf node

in the graph, respectively.

IV. Experiments and results

A. General experimental design

We evaluated the proposed inference algorithm by classify-

ing synthetic data generated using ancestral sampling. Next,

two fluorescent microscopy image datasets were used for

evaluating our multi-class segmentation method. The method

was compared to SegNet [42], as an instance of a powerful

deep convolutional neural network introduced for multi-label

image segmentation. We also compared segmentation using

both trees and polytrees on the real image datasets to explore

how changing the direction of edges and therefore the use of

two-wise priors instead of three-wise priors affect the results.

For inferring posteriors on trees, we adapted Laferte et al. [33]

formulation into the graphs generated in this work.

B. Validation of the inference algorithm: ancestral sampling

To assess the performance of the inference algorithm, re-

gardless of the image processing tools employed, we consid-

ered the classification of synthetic data generated by ancestral

sampling technique [29]. We draw samples for xs variables

to represent ground truth data. Based on this, the ys variables

are then drawn according to the presumed class conditional

distributions. Next, ignoring the reference xs variables of the

first step, new values are inferred for xs from the observed ys

variables only. We then compare the inferred xs variables to

the ground truth and experimentally validate the viability of

our inference algorithm.

To draw samples x̂1, x̂2, ..., x̂N from the joint distribution

p(X,Y), we first sample from the probability distribution

p(xs)
∣

∣

∣

s∈R
for all root nodes. Visiting each internal node in an

upward recursion, we sample from the conditional distribution

Algorithm 1 Label inference on polytrees

� Preliminary pass. This initial upward recursion computes

prior marginals for each node. The parameters p(xs|xs+
1
, xs+

2
)

are set based on problem the model represents.

for all s ∈ R do

p(xs) =
1
|Λ|

end for

for all s < R do

p(xs) =
∑

xs+
1
,xs+

2

p(xs|xs+
1
, xs+

2
)p(xs+

1
)p(xs+

2
)

p(xs+
1
, xs+

2
|xs) =

p(xs |xs+
1
,xs+

2
)p(xs+

1
)p(xs+

2
)

p(xs)

end for

△ Bottom-up pass. Upward recursion for calculating

bottom-up posteriors of nodes.

for all s ∈ R do

p(xs|Yd(s)) = p(xs)

end for

for all s < R do

p(xs|Yd(s)) ∝
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
|Yd(s+

1
))p(xs+

2
|Yd(s+

2
))p(xs|xs+

1
, xs+

2
)

end for

∇ Top-down pass. Downward recursion for calculating top-

down posteriors and calculation of complete posteriors from

marginal posteriors.

if s = L then

p(xs|Ya(s)) = p(xs|ys) ∝ p(ys|xs)p(xs)

end if

for all s , L do

p(xs|Ya(s)) ∝
∑

xs− ,xs′
p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs,xs′ |xs− )

p(xs′ )
p(xs− |Ya(s−))

p(xs, xs+
1
, xs+

2
|Ya(s)) = p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

∝
∑

xs
p(ys+

1
|xs+

1
)p(ys+

2
|xs+

2
)p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

end for

p(xs|xs+
1
, xs+

2
), where the parent labels x̂s+

1
and x̂s+

2
have been

sampled in previous steps. Once we have sampled from the

leaf node of the graph, x̂N , we will have obtained a sample

from the joint distribution p(X,Y).

In this section only, we considered two classes for xs for

simplicity, and selected ys from the continuous range of [0, 1].

Class conditional likelihood functions, p(ys|xs) were beta

distributions. For different numbers of root nodes ranging from

10 to 100000 (i.e. 19 to 199999 nodes in total as the graph

is binary), graphs with random structures were generated and

labels were inferred. Figures 7a and 7b show beta distributions

for different selectivities. Figure 7c depicts the percentage of

the wrongly inferred labels for different graph sizes and the

corresponding beta distributions. This experiment shows that

even with significant overlaps between the likelihoods of two

classes, where a > 0.8, the inference error is stable and small

(i.e., less than 10%). Therefore, this experiment verifies the

correctness of the developed derivations and also indicates

that inference accuracy increases with the selectivity of the

likelihood functions.
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Fig. 7. Panels (a) and (b) show beta distributions used as class conditional likelihood functions in ancestral sampling. Value of b was fixed and curves
correspond to values of a from 0.2 to 1, respectively, with an increasing overlap on the likelihoods (thus potential classification errors). In (c), the percentages
of wrongly inferred labels using ancestral sampling are shown.

C. Validation on multi-class image segmentation

The proposed algorithm was applied to the problem of

supervised multi-class image segmentation, and to evaluate

the role of exploiting prior knowledge in segmentation. Two

real image datasets were chosen from the publicly avail-

able datasets on Broad Bioimage Benchmark Collection that

contain two-channel fluorescence microscopy images with

cells and nuclei, namely BBBC020 and BBBC007 datasets

[45]. In these cases, between-class relationships can help to

improve the segmentation results, as only a certain set of label

configurations are plausible. To compare the performance of

the method to the state-of-the-art, SegNet [42] was employed

for the segmentation of images.

BBBC020 contains 20 two-channel in vitro microscopy

images of murine bone marrow macrophages, and BBBC007

has 16 two-channel in vitro microscopy images of drosophila

Kc167 cells. Manual annotations are available for both

datasets. These two datasets have the same type of images

and define similar multi-class segmentation problems of cells

and nuclei. The BBBC007 dataset has noisier images and a

larger number of overlapping cells, however, they have more

regular shapes. See Fig. 8 for samples from the two datasets.

To explore the role of features used for inference, we used

two types of features: 1) scale-space first and second order

differential invariants [46], 2) deep representations extracted

by SegNet. In the following, details of experiments with the

two feature sets are explained and results are compared to

SegNet. The accuracy of the segmentation was measured by

calculating confusion matrices and the Dice similarity coeffi-

cients (DSC) [47] computed by comparing the segmentation

results with the ground truth.

D. Polytree with scale-space differential invariant features

In this experiment, features were chosen to be intensity

value, the absolute value of the gradient, and determinants and

traces of the Hessian matrix at 7 scales, for each microscopy

channel. A total of 32 features were initially calculated for

each image, out of which the most relevant features were

selected using Fisher discriminant score [29]. Fisher scores,

Wd, are weights with higher values for features that have

higher discrimination abilities and are calculated as follows.

Wd =

∑N
c=1(md − md,c)2

∑N
c=1 s2

d,c

N

N − 1
(11)

Where d is the index of the feature, N is the total number of

classes, md is the mean of dth feature over the training images.

md,c and sd,c denote mean and standard deviation of dth feature

within samples of cth class, respectively.

For each dataset, four images were used for feature selection

through ranking features based on their Fisher scores. The rest

of the images were used for cross validation, i.e. 4- and 6-fold

cross validations were applied on the 16 and 12 remaining

images in BBBC020 and BBBC007 datasets, respectively. The

four images used for Fisher score calculation were always

included in the training sets during cross validation.

Once the Fisher scores were calculated, features were

ranked for each class separately, and the first D of them were

selected for classification. Gaussian distributions were used for

class conditional likelihood functions with a layer-dependent

variance that allows higher within-class variances for nodes

in the higher levels of the graph. Parameters of the method,

including βs (explained in section III-A), number of intensity

features used for graph generation (F) and inference (D), and

values of mean (µc) and covariance matrix (Σc) for each class

c were optimized through cross validation for each of the two

datasets. Figure 9 shows the block diagram of polytree based

segmentation using scale-space differential invariant features.

We applied SegNet to the two datasets and compared the

results with polytree segmentation using scale-space differen-

tial invariants. As the size of the datasets was not sufficiently

large for training the network, random elastic deformations

of the training images and their annotations were added to

the training sets during each cross validation experiment. This

way, the size of the training sets for each experiment on the

two datasets was increased to 400 images to improve shift

and rotation invariance, and robustness to deformations and

gray value variations [48], [49]. The trained network was then

evaluated on its segmentation of the test set. Figure 10 shows

the confusion matrices for polytree and SegNet segmentations

of BBBC020 and BBB007 datasets. Overall segmentation
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Input image Ground truth polytree + SS SegNet Tree + SN Polytree + SN

Fig. 8. Sample images from BBBC020 (first and second rows) and BBBC007 (third and fourth rows), their corresponding ground truth and automatic
segmentations. Third column shows segmentation results using polytrees with scale-space (SS) features (section IV-D). Fourth column shows results of
applying SegNet to the images. Last two columns depict segmentation results using directed trees and polytrees with features generated by SegNet, labeled
Tree + SN and Polytree + SN, respectively.
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Fig. 9. Block diagram for polytree segmentation with scale-space differential invariant features.

accuracies are similar for the two methods on BBBC020

dataset, while SegNet outperforms polytree on BBBC007.

Dice similarity coefficients (DSC) in Fig. 11 indicate SegNet is

more accurate than polytree in both classes on the two datasets,

except for segmentation of cells in BBBC020, where polytree

provides a higher DSC.

Comparing SegNet with polytree using scale-space differ-

ential invariant features indicates outperformance of SegNet in

segmentation. However, the two methods were compared using

different experimental setups. First, SegNet was trained with

a larger set of training images (through augmentation). The

numbers of features (D) selected after ranking them based on

the Fisher scores were 20 and 6, for BBBC020 and BBBC007

datasets, respectively, which are very small compared to the

number of features extracted by SegNet. To investigate the two

methods regardless of the type of features used, we proposed

the use of polytrees with features employed by SegNet in the

next section.
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Fig. 10. Confusion matrices for SegNet with augmented images and polytree segmentations with scale-space differential invariants on the two real datasets.
The overall accuracy of using polytree (a) was slightly higher than SegNet (b) on BBBC020 dataset, while SegNet (d) outperforms polytree (c) on BBBC007
dataset. Number of pixels corresponding to each percentage is shown in bold. Black and white percentages in each box show the proportion of correctly and
incorrectly classified pixels, respectively.

(a) (b)

Fig. 11. Dice similarity coefficients (DSC) of polytree based segmentation
using scale-space differential invariant features compared to SegNet on (a)
BBBC020 and (b) BBBC007 datasets.

E. Polytree with SegNet-based deep features

To compare the developed polytree inference and SegNet

using similar preprocessing, feature extraction and selection,

and training size, we developed a framework to employ fea-

tures calculated by SegNet, shown in Fig. 12. In this section,

we have also applied directed trees with SegNet features to

the segmentation of images in the two datasets. The directed

tree was generated by reversing the directions of edges on the

irregular polytree and the inference proposed by Laferte et

al. was adapted to it. Softmax [29] functions were chosen as

posteriors.

p(xs = c|ys) ∝
exp(wT

c ys)
∑N

k exp(wT
k

ys)
(12)

In Eq. 12, wk’s are the vectors of weights for each class

k, calculated by the CNN to describe the distribution of each

class, and N denotes the total number of classes (N = 3 in our

case).

Note that Eq. 12 implies that a set of improper (unnormal-

ized) class conditional likelihoods, i.e. exponentials, have been

used. However, looking at Algorithm 1, the proposed inference

algorithm normalizes every term that contains likelihood prob-

ability of nodes, facilitating the utilization of unnormalized

likelihood functions. For this reason, we chose exponentials

as the likelihood functions, i.e. p(ys|xs = c) ∝ exp(wcys).

Both of the class parameters (wc) and feature vectors (ys) are

provided by the SegNet. Therefore, having trained the SegNet,

we do not require any additional training steps for polytree

segmentation.

In applying CNN on BBBC020 and BBBC007 datasets,

the same image augmentation procedure as explained in sec-

tion IV-D was employed. Segmentation performance of the

methods were compared at three different sizes of datasets;

original dataset size (20 images for BBBC020 and 16 images

for BBBC007), 200, and 400 augmented images. In each of the

experiments, a four-fold cross validation was done. To perform

a cross validation, the augmented images were generated based

only on the images in the training folds, so that the network

was trained independently of the testing set.

For these experiments, the images were first oversegmented

using the SEEDS algorithm [43]. The features provided by

SegNet were then used for graph generation and, in the next

step, for label inference (F = D).

Figure 13 shows the DSC of the three methods when SegNet

features are used with variable numbers of the training sam-

ples. Table II shows the average Dice similarity coefficients for

each of the three methods and for each size of the training set

for BBBC020 and BBBC007 datasets. The superior results

of the directed tree and polytree indicate the effectiveness

of the prior knowledge imposed by these directed graphical

models, which cannot be captured by SegNet. It can also be

seen that the performance of directed trees tend to have larger

variances compared to polytrees. This higher uncertainty is

likely to stem from the inability of directed trees to eliminate

unfeasible label configurations, eliminated by polytrees, that

allows semantically wrong segmentations (see section IV-F).

F. Prediction of segmentation error

Unlike discriminative models, generative models incorpo-

rate priors in calculating the posterior distributions. Accord-
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Fig. 12. The proposed architecture for using SegNet-based deep features and learning class conditional likelihood functions.

(a) (b)

Fig. 13. Dice similarity coefficients of the three methods for segmenting cells and nuclei in (a) BBBC020 and (b) BBBC007 datasets, respectively.

TABLE II
Mean Dice similarity coefficients of the polytree, directed tree and SegNet on BBBC020 and BBBC007 datasets. P-values resulting from a pairwise t-test

for comparison of polytree and SegNet were less than 0.05 in all experiments.

Dataset BBBC020 BBBC007

# Images 20 200 400 16 200 400

Polytree 78.60 ± 5.42 80.43 ± 4.76 81.35 ± 5.18 80.28 ± 8.44 82.09 ± 7.46 83.06 ± 6.85

Directed tree 78.45 ± 5.39 80.52 ± 4.82 81.45 ± 5.21 79.65 ± 10.62 81.00 ± 10.40 81.75 ± 9.64

SegNet 77.00 ± 5.28 79.42 ± 4.71 80.40 ± 5.06 77.40 ± 8.83 80.06 ± 7.79 81.03 ± 7.43

ingly, the proposed polytree graphical model can evaluate to

what extent its estimated clique labels comply with the im-

posed priors. A strong disagreement can indicate an erroneous

segmentation that can be flagged up for manual inspection. To

implement this, the labels of cliques are read from the graph

representing the segmented image, and their probabilities are

calculated using the constraints in Fig. 4b. Areas in the

image that correspond to cliques with unfeasible labels (zero

probabilities) are then marked as potential segmentation errors.

Figure 14 shows samples from BBBC020 and BBBC007 and

the error predicted for them. To represent the confidence of

the model in labeling the wrongly segmented areas, they are

marked by red colors with different values, corresponding to

the entropy of the joint posterior of the clique. Areas with

lower and higher error likelihoods (entropies), are shown in

lighter and darker colors, respectively.

The error prediction ability of the directed trees was also

evaluated. Figure 15 shows Dice similarity coefficients be-

tween the potentially incorrectly segmented areas and the

actual segmentation error for both methods. Figure 16 shows

the average Dice similarity coefficients for different thresholds

of entropies for the models on the two datasets. These two

figures indicate that polytrees are superior in predicting the

segmentation error. This superiority is due to the more ef-

fective imposition of prior knowledge in polytrees compared

to trees (three-wise constraints versus two-wise constraints,

respectively).
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Input image Ground truth Polytree segmentation Predicted error

Fig. 14. The ability of the proposed method in nominating the possibly wrongly segmented areas shown for samples from BBBC020 (first row) and BBBC007
(second row) datasets. Value of red color is proportional to the probability of being an error in the segmentation.

(a) (b)

Fig. 15. Dice similarity coefficients between the predicted and the actual
segmentation error for directed trees and polytrees on (a) BBBC020 and (b)
BBBC007 datasets.

V. Discussion and conclusions

This work proposes a new inference algorithm for multi-

class segmentation using irregular directed graphical models.

The image is first oversegmented and a graph is generated by

recursively merging the two most similar nodes in the graph

until a hierarchical graphical model is generated that has no

loops. Two types of features were used in this study: 1) scale-

space differential invariants of intensity and 2) SegNet-based

deep image representations. This was done to investigate the

dependency of the method performance on the features used.

Two publicly available real microscopy image datasets were

used for evaluation. We showed that our polytree based method

outperforms the state-of-the-art convolutional neural network,

SegNet [42], and equals or surpasses the customized directed

trees, in multi-class segmentation. Also, polytrees were shown

to predict errors in segmentation more accurately compared to

directed trees.

In the literature, directed graphical models have been em-
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Fig. 16. Average Dice similarity coefficients between the predicted and actual
segmentation error for directed trees and polytrees at different thresholds of
entropies of cliques on (a) BBBC020 and (b) BBBC007 datasets.

ployed to incorporate prior knowledge to improve segmenta-

tion [23], [24]. However, a large majority of the works rely on

directed trees, due to more simple inference and the existence

of efficient closed-form solutions for posteriors. This work

introduces polytrees for multi-class segmentation and models

more complex label dependencies between the child and parent

nodes. We also derive, for the first time, closed-form solutions

for posteriors on the polytrees. It should be noted that factor

graphs [50] can also provide closed-form solutions as long as

the original graph structure can be converted to a factor graph

without loops. However, the proposed inference method does

not require the extra step for generating a second factor graph,

simplifying the implementation.

Using polytrees with scale-space differential invariant fea-

tures (Fig. 11) suggests that depending on the choice of

model features and parameters, it can outperform SegNet, even

though the latter is trained on a much larger dataset (16 vs.

400 augmented images). Additionally, the distinct performance

of the polytree segmentation on BBBC007 dataset, when
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different types of features were used, reveals the key role of

features in the segmentation performance. By using the same

features as the SegNet, polytree provides a better segmentation

compared to this convolutional neural network (see Table

II). This superiority owes to the model’s ability to explicitly

enforce prior knowledge and to eliminate unfeasible label

configurations, which in turn results in outperforming directed

trees in predicting segmentation error (see Fig. 15 and 16). An

example of these unfeasible configurations for the problem of

segmenting cells and nuclei is the existence of a cell area

inside a nucleus. SegNet can also learn such dependencies

through its cascade of convolutional layers. However, its

efficiency relies on the quality of the training data and the

existence of sufficient instances of the dependencies, which

might not be possible for every dataset.

In the current implementation of the proposed algorithm,

the overall segmentation performance of the method can be

confined by the graph generation quality. To address this, one

line of future work can be the development of a Maximum

Posterior (MAP) estimation [29] for graph generation that

optimizes the graph structure jointly with label inference. On

the other hand, it is worth mentioning that the small margin of

improvement by the proposed graph based segmentation over

SegNet is because features learned by the CNN are minimizing

the cost function of SegNet rather than the cost function of

the polytree. Another line of future work can be extracting

features by neural networks that are specifically minimizing

the cost of polytree.

The proposed application of the directed graphical models

facilitates extracting statistics of relationships between class la-

bels from the graph, in addition to the current use of the graph

for imposing prior knowledge. For example, using the pro-

posed method for the segmentation of host and pathogen cells,

the proportions of intracellular and extracellular pathogen

cells, infected and healthy host cells can be calculated from

the labeled graph, both at a specific time point and over

time for disease progression monitoring. Such applications

introduce new capabilities of graph based segmentation for

the behavioral analysis of diseases and biological systems.

Appendix A

Proofs of equations

• Expansion of Eq. 6 (top-down)

p(xs|Ya(s)) ∝ p(xs,Ya(s))

=
∑

xs− ,xs′

p(Ya(s), xs− , xs, xs′ )

=
∑

xs− ,xs′

p(Ya(s)|xs− , xs, xs′ )p(xs− , xs, xs′ )

=
∑
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p(ys|xs)p(ys′ |xs′ )p(Yd(s′)|xs′ )

p(Ya(s−)|xs− )p(xs− , xs, xs′ )

∝
∑

xs− ,xs′

p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs, xs′ , xs− )
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(13)

• Expansion of Eq. 8 (top-down)
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• Expansion of Eq. 9 (bottom-up)
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