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Abstract

Truss layout optimization problems with global stability constraints are nonlinear and nonconvex and hence very challenging

to solve, particularly when problems become large. In this paper, a relaxation of the nonlinear problem is modelled as a

(linear) semidefinite programming problem for which we describe an efficient primal-dual interior point method capable of

solving problems of a scale that would be prohibitively expensive to solve using standard methods. The proposed method

exploits the sparse structure and low-rank property of the stiffness matrices involved, greatly reducing the computational

effort required to process the associated linear systems. Moreover, an adaptive ‘member adding’ technique is employed

which involves solving a sequence of much smaller problems, with the process ultimately converging on the solution for

the original problem. Finally, a warm-start strategy is used when successive problems display sufficient similarity, leading

to fewer interior point iterations being required. We perform several numerical experiments to show the efficiency of the

method and discuss the status of the solutions obtained.

Keywords Truss structures · Global stability · Semidefinite programming · Interior point methods

1 Introduction

Optimization of the layout of truss structures is a class of

problem that has been studied for many decades, starting

with the seminal paper of Michell (1904). When solved

computationally, truss layout optimization problems are

usually formulated based on the ground structure approach

(Dorn et al. 1964), in which a set of nodes are distributed

across the design space, then interlinked by potential

connecting bars. The main design (as forces are also design
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variables) in most cases are the cross-sectional areas of these

bars, but may also include the coordinates of the nodes when

geometry optimization is used (Svanberg 1981).

The most common objectives of the optimization are to

minimize the volume of the truss or to minimize its compli-

ance, for which several formulations exist, ranging from lin-

ear programming, for example for the plastic design formu-

lation, to nonlinear programming when kinematic compati-

bility constraints are involved (Hemp 1973; Achtziger et al.

1992; Ben-Tal and Bendsøe 1993; Bendsøe and Sigmund

2003; Stolpe and Svanberg 2004; Rozvany et al. 2014).

Even though the solutions obtained using the aforemen-

tioned classical formulations can give useful insights into

potential layouts of truss bars in a structure for use in the

early stage of the design process, the designs generated may

fail to satisfy many practical requirements, and therefore

may require extensive modification in the later stages of

the design process. Hence, in order to improve the prac-

ticality of the designs generated by layout optimization,

researchers have sought to introduce many practical engi-

neering issues in the formulation, such as constraints on

stresses (Kirsch 1990; Guo et al. 2001; Stolpe and Svan-

berg 2001, 2003), constraints on local buckling based on the

Euler formula involving continuous (Zhou 1996; Achtziger

1999; Rozvany 1996; Guo et al. 2001, 2005) or discrete
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(Mela 2014) variables, addressing global stability (Khot

et al. 1976; Szyszkwoski et al. 1989), and in particular, via

the use of nominal forces (Tyas et al. 2006; Descamps and

Coelho 2014) or via introduction of global stability con-

straints (Ben-Tal et al. 2000; Levy et al. 2004; Stingl 2006;

Evgrafov 2005; Tugilimana et al. 2018), to mention a few. In

recent years, several articles have considered optimization

of beam/frame structures with buckling constraints (Torii

et al. 2015; Madah and Amir 2017; Mitjana et al. 2019).

The aforementioned contributions which include Euler

buckling constraints are intended to avoid slender bars in

compression being included in the solution while including

nominal forces are designed to ensure nodes connecting bars

in compression are adequately braced. Formulations which

directly include global stability constraints are concerned

with ensuring the stability of the whole structure. This is

of interest because, even if a structure is well-braced, it

may fail as a result of insufficient overall elastic stiffness.

Note that global stability problem formulations implicitly

address the nodal instability problem, though do not take

into account local instabilities of the sort dealt with by the

Euler formula (e.g. Levy et al. 2004).

The focus of this paper is on problems with global sta-

bility constraints. These problems are in general formulated

as nonlinear and nonconvex semidefinite programs (Ben-

Tal et al. 2000; Levy et al. 2004; Stingl 2006; Evgrafov

2005). Such problems are computationally challenging and

for large-scale structures are usually considered numerically

intractable, though software capable of solving small prob-

lems is available (Fiala et al. 2013; Kočvara and Stingl

2003). For this reason, some studies formulate the non-

linear semidefinite programming problem as an equivalent

nonlinear programming problem (Tugilimana et al. 2018).

Nevertheless, in all approaches, the size of problems that

have been solved thus far in the literature has either been

small or otherwise limited, e.g. by only specifying minimum

connectivity between the nodes in the design space. This

is in stark contrast to the plastic design formulation, solv-

able via linear programming, when full nodal connectivity

problems can be solved even for high nodal densities.

In this article, we propose a relaxation of the nonlinear

and nonconvex semidefinite programming formulation, for

which we develop an efficient optimization algorithm based

on interior point methods. The method is coupled with other

novel techniques to make it capable of solving large-scale

problems and with full nodal connectivity. The relaxed prob-

lem is still a semidefinite program but ignores the kinema-

tic compatibility constraints present in standard elastic for-

mulations. We observe huge computational gains by solving

the relaxed formulation and provide lower bounds for the

associated general nonlinear problems. Moreover, we report

an estimation of the violation of the removed kinematics com-

patibility equations by solving an associated least-squares

problem. For some small-scale benchmark problems, we ad-

ditionally make comparisons between solutions of the rela-

xed and original nonlinear problems. In general, the error

due to ignoring the kinematic compatibility equations are

observed to be very small for reasonable values of the stabil-

ity load factor, suggesting that solutions to the relaxed prob-

lems are acceptable. However, as we increase the value of

the stability load factor beyond practically realistic values,

we observe a high degree of violation in the compatibility

equations and significant differences in the optimal designs.

For some of the examples presented in this article, we also

calculate the violation of the elastic stress constraints for the

solution of the relaxed semidefinite program. The numerical

results once again confirm the usefulness of the solutions

obtained, when stability load factors of practical interest are

used. Next, we describe the techniques that contribute to the

efficiency of the proposed solution algorithm.

Firstly, we employ the adaptive ‘member adding’

approach, previously used to solve plastic truss layout opti-

mization problems (Gilbert and Tyas 2003; Sokół and Roz-

vany 2013; Weldeyesus and Gondzio 2018) via linear pro-

gramming, though now solving the problems of interest here

via semidefinite programming. It is a procedure in which we

approximate the large-scale original problem by a sequence

of smaller subproblems, the solutions of which ultimately

converge to that of the original problem. In the context of

truss optimization, this is done by first solving the problem

with minimum nodal connectivity, followed by generating

and adding more members/bars based on degree of violation

of constraints in the dual problem. The procedure continues

until the solution to the original problems is obtained. This

procedure greatly reduces the memory required to solve a

given problem and, even using a standard desktop computer,

we have managed to solve problems that otherwise would

require hundreds of GB memory. Detailed statistics are pre-

sented in Section 6; see in particular the large-scale bridge

example problem described in Section 6.3.1.

Secondly, similar to Ben-Tal and Nemirovski (1997), we

explicitly utilize the structures of the problems, i.e. the high

degree of sparsity and low-rank property of the element

stiffness matrices (Bendsøe et al. 1994; Ben-Tal 1993b;

Achtziger et al. 1992; Bendsøe and Sigmund 2003), to

address the computational bottle-neck associated with using

the interior point method to solve semidefinite programming

problems. This determines the coefficient matrix of the lin-

ear system originating in the algorithm. Roughly speaking,

instead of performing O(mn3+m2n2) arithmetic operations

(Fujisawa et al. 2000), by using standard and straightfor-

ward expressions to determine the matrices involved in the

linear systems, we perform O(m2n) arithmetic operations,

where m is the number of bars and n is number of nodal

degrees of freedom. Note that the sparsity of the ele-

ment matrices is also effectively used in performing matrix
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inner products in the adaptive member adding procedure, as

described in Remark 6.

Finally, as when solving the plastic truss layout optimiza-

tion using the interior point method (Weldeyesus and Gondzio

2018), we apply a warm-start strategy to solve some of the

subsequent problems, determining an initial point that redu-

ces the number of interior point iterations and overall impro-

ves the convergence characteristics of the optimization pro-

cess. The technique relies on an observation that the number

of newly added bars decreases towards the end of the adaptive

member adding procedure and therefore the degree of simi-

larity between successive subproblems increases at this stage.

The paper is organized as follows. In Section 2, we

present the general nonlinear and nonconvex semidefinite

programming model of the truss layout optimization prob-

lem with global stability constraints, its relaxation, and

the least-squares problem used to estimate violation of the

kinematic compatibility constraints. We describe the general

framework of the primal-dual interior point method and

exploitation of the structure of the matrices in Section 3

and the adaptive member adding procedure in Section 4.

The warm-start strategy and related mathematical analysis

are presented in Section 5 and numerical experiments are

described in Section 6. Finally, conclusions and possible

future research directions are presented in Section 7.

2 The problem formulation with stability
constraints

In this section, we describe the formulation for the layout

optimization of trusses with global stability constraints prob-

lem. We use the ‘ground structure’ approach (Dorn et al.

1964) to formulate all problems. This is done by distributing

a finite set of nodes, say d, across the design space and con-

necting these nodes by all possible potential bars, including

overlapping ones. Hence, we have m = d(d − 1)/2 bars,

where clearly m ≫ d. We denote the cross-sectional

areas of the bars by ai , i = 1, ..., m. Let fℓ ∈ R
n, ℓ =

1, . . . , nL be a set of external forces applied to the structure

where n (≈ Nd , N is the dimension of the design space,

i.e. 2 or 3) is the number of the non-fixed degrees of free-

dom. Then, the associated (nodal) displacements uℓ ∈ R
n,

ℓ = 1, . . . , nL satisfy the elastic stiffness equation

K(a)uℓ = fℓ, ℓ = 1, . . . , nL, (1)

where the stiffness matrix K(a) is computed as

K(a) =

m
∑

i=1

aiKi (2)

and the element stiffness matrices Ki’s are given by

Ki =
E

li
γiγ

T
i (3)

with γi ∈ R
n being the vector of direction cosines for the

ith bar.

Introducing the axial forces qℓ in member i which are

given by

qℓ,i =
aiE

li
γ T
i uℓ (4)

allows us to rewrite (1) as

Bqℓ = fℓ, ℓ = 1, . . . , nL, (5)

where B = (γ1, · · · , γm) ∈ R
n×m.

Next, we define the geometric stiffness matrix G(qℓ) as

given by

G(qℓ) =

m
∑

i=1

qℓ,iGi, (6)

where

Gi =
1

li
(δiδ

T
i + ηiη

T
i ), (7)

in which the vectors δi, ηi are determined so that γi , δi , ηi are

mutually orthogonal (see Kočvara (2002) for details). The

vectors δi and ηi are not necessarily unique. These are chosen

in Kočvara (2002) as the orthogonal basis of the null space

of γ T
i and we follow similar approach in our implementation.

Now, the multiple load case minimum weight (or, strictly

speaking, minimum volume) truss layout optimization prob-

lem with global stability constraints can be formulated as

minimize
a,qℓ,uℓ

lT a

subject to
∑

i

qℓ,iγi = fℓ, ∀ℓ

aiE

li
γ T
i uℓ = qℓ,i ∀ℓ

−σ−a ≤ qℓ ≤ σ+a, ∀ℓ

K(a) + τℓG(qℓ) � 0, ∀ℓ

a ≥ 0, (8)

where l ∈ R
m is a vector of lengths of the bars, and σ+ > 0

and σ− > 0 are the material yield stresses in tension and

compression, respectively. Note that we can find a similar

formulation to problem (8) in Tugilimana et al. (2018) with

additional constraints enforcing local (Euler) buckling. The

parameter τℓ can be interpreted as a stability load factor

and must be set to τ̄ℓ ≥ 1, ∀ℓ to indicate that the resulting

optimal structure is stable for the loads fℓ, ℓ ∈ {1, . . . , nL}.

It is worth mentioning that problem formulation (8)

does not address local buckling, as addressed, e.g. by the

Euler buckling equation. Therefore, we can expect that

the optimal design obtained by solving problem (8) could

potentially include slender bars (Levy et al. 2004).

Due to the inclusion of the nonlinear kinematic compat-

ibility equations (4), problem (8) is a nonlinear and non-

convex semidefinite programming problem. Such problems
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are in general very difficult to solve. In Fiala et al. (2013)

and Stingl (2006), methods for treating nonlinear semidefi-

nite programming problems are described in which a variant

of formulation (8) is solved. These formulations are very

attractive, but the challenge of solving large-scale problems

still remains. In Tugilimana et al. (2018), problem (8) is

transformed from a semidefinite programming problem to a

standard nonlinear programming problem.

In this paper, we relax problem (8) by ignoring the kine-

matic compatibility constraint (4), and solve a semidefinite

programming problem of very large dimension because

we allow full nodal connectivity. Namely, we consider

minimize
a,qℓ

lT a

subject to
∑

i

qℓ,iγi = fℓ, ∀ℓ

−σ−a ≤ qℓ ≤ σ+a, ∀ℓ

K(a) + τℓG(qℓ) � 0, ∀ℓ

a ≥ 0, (9)

which is a (linear) semidefinite program and can be interpre-

ted as the plastic design formulation with global stability cons-

traints. In our numerical experiments described in Section 6,

we additionally report the maximum violation of the kine-

matic compatibility constraints for the optimal designs

obtained by solving the relaxed problem (9). This violation

is estimated by solving the least-squares problem

minimize
uℓ

max
ℓ

1

||q∗
ℓ ||2

∑

i

(

a∗
i E

li
γ T
i uℓ − q∗

ℓ,i

)2

, (10)

where a∗ and q∗
ℓ are the solutions of the relaxed problem (9).

Note that the special case τℓ = 0, ∀ℓ, or in other

words, excluding the matrix inequality constraints, reduces

problem (9) to the plastic layout optimization problem,

which is a linear program that can be solved efficiently by

an interior point method (Weldeyesus and Gondzio 2018).

Remark 1 The relaxed problem (9) belongs to the class of

linear semidefinite programming problems. Hence, any of

its solutions are also globally optimal solutions. Moreover,

this provides a (strict) lower bound to nonconvex problem

(8) for τℓ > 0.

Remark 2 The relaxed problem (9) can be solved very

efficiently by extending the adaptive ‘member adding’

scheme which has been used previously to solve large-scale

plastic layout optimization of trusses formulated as linear

programs (Gilbert and Tyas 2003; Sokół and Rozvany 2013;

Weldeyesus and Gondzio 2018).

Remark 3 For some of the small-scale examples in

Section 6, we additionally solve the nonlinear semidefinite

program (8) and compare the solutions obtained with

those obtained using the linear SDP relaxation (9). To

solve the nonlinear semidefinite program (8), we have

implemented a standard interior point method that uses

outer and inner loops, where the inner loop is used to solve

first-order optimality conditions for a fixed value of a barrier

parameter. Then, we allow a very small reduction in the

barrier parameter in the outer loop. This of course means

that many iterations are required and convergence is slow.

Nevertheless, this has proved effective for the small-scale

problems considered herein. Note that the member adding

procedure described in Section 4 is not used when solving

the nonlinear semidefinite program (8) as the assumptions

needed to apply the techniques of Section 4 in general only

hold for the linear SDP relaxation (9).

Remark 4 The least-squares problem (10) always has

an objective value of 0 for a single-load case problem

when τ = 0 in (9). This is because for τ = 0, the

problem (9) precisely reduces to the so-called least-weight

(or minimum volume) plastic design problem which has

indeed been shown to be equivalent to the elastic minimum

compliance problem (Hemp 1973; Achtziger et al. 1992;

Ben-Tal and Bendsøe 1993; Bendsøe and Sigmund 2003;

Achtziger 1996; Stolpe and Svanberg 2004).

3 The primal-dual interior point framework

We adopt the Mehrotra-type primal-dual predictor-corrector

interior point method (Fujisawa et al. 2000) for semidefinite

programming.

Introducing the slack variables s−
ℓ , s+

ℓ ∈ R
m
+, and Sℓ ∈

S
n
+, we rewrite (8) as

minimize
a,qℓ

lT a

subject to
∑

i

qℓ,iγi = fℓ, ∀ℓ

−σ+a + qℓ + s+
ℓ = 0, ∀ℓ

−σ−a − qℓ + s−
ℓ = 0, ∀ℓ

K(a) + τℓG(qℓ) − Sℓ = 0, ∀ℓ

Sℓ � 0, s+
ℓ ≥ 0, s−

ℓ ≥ 0, ∀ℓ

a ≥ 0, (11)

and write down the following dual:

maximize
λℓ,x

+
ℓ ,,x−

ℓ ,xa ,Xℓ

∑

ℓ

f T
ℓ λℓ

subject to σ+
∑

ℓ

x+
ℓ,i+σ−

∑

ℓ

x−
ℓ,i+

∑

ℓ

Ki•Xℓ+xa,i=li,∀i

γ T
i λℓ − x+

ℓ,i + x−
ℓ,i + τℓGi • Xℓ = 0, ∀ℓ, ∀i

Xℓ � 0, ∀ℓ

xa ≥ 0

x+
ℓ ≥ 0, x−

ℓ ≥ 0, ∀ℓ,

(12)
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where λℓ ∈ R
n denotes the virtual nodal displacement, x+

ℓ ,

x+
ℓ ∈ R

m, ℓ = 1, . . . , nL, xa ∈ R
m, Xℓ ∈ S

n
+, and the

notation U • V =
∑

i

∑

j UijVij for U, V ∈ R
n×n.

Remark 5 The primal problem formulation (11) is tra-

ditionally referred to as the dual problem, and the dual

problem formulation (12) is traditionally referred to as the

primal problem in literature on semidefinite programming

(Wolkowicz et al. 2000).

Next, we introduce a barrier parameter μ > 0 and

formulate the perturbed first-order optimality conditions as

σ+
∑

ℓ

x+
ℓ,i+σ−

∑

ℓ

x−
ℓ,i+

∑

ℓ

Ki • Xℓ+xa,i − li = 0, ∀i (13a)

γ T
i λℓ − x+

ℓ,i + x−
ℓ,i + τℓGi • Xℓ = 0, ∀ℓ, ∀i (13b)
∑

i

qℓ,iγi − fℓ = 0, ∀ℓ (13c)

−σ+a + qℓ + s+
ℓ = 0, ∀ℓ (13d)

−σ−a − qℓ + s−
ℓ = 0, ∀ℓ (13e)

K(a) + τℓG(qℓ) − Sℓ = 0, ∀ℓ (13f)

x+
ℓ · s−

ℓ − μe = 0, ∀ℓ (13g)

x−
ℓ · s−

ℓ − μe = 0, ∀ℓ (13h)

xa · a − μe = 0 (13i)

Xℓ − μS−1
ℓ = 0, ∀ℓ, (13j)

where the notation u ·v, for any v, u ∈ R
m is a component-

wise multiplication and e= (1, ..., 1) of appropriate size. We

denote by ξd = (ξd1
, ξd2,ℓ

) the negative of the dual infeasibil-

ities (13a)–(13b), by ξp = (ξp1,ℓ
, ξp2,ℓ

, ξp3,ℓ
, ξp4,ℓ

) the neg-

ative of the primal infeasibilities (13c)–(13f), and by ξc =

(ξc1,ℓ
, ξc2,ℓ

, ξc3
, ξc4,ℓ

) the negative of the violation com-

plementarity equations (13g)–(13j). Note that a direction

obtained with the scaling corresponding to the last comple-

mentarity equation (13j) is called the HRVW/KSH/M direction

(Helmberg et al. 1996; Kojima et al. 1997; Monteiro 1997).

Now, we solve system (3) for a sequence of μk → 0

to find the solution of the primal and dual problems (9)

and (12). This is done by applying Newton’s method to the

optimality conditions (3) and solving the (reduced) linear

system.

⎡

⎣

A11 ÃT
12 0

Ã12 Ã22 B̃T

0 B̃ 0

⎤

⎦

⎡

⎣


a


qℓ


λℓ

⎤

⎦ =

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦ , (14)

where (borrowing MATLAB notation) B̃=blkdiag(B,..., B),

Ã22 = blkdiag(A11, ..., Aℓℓ), and Ã12 = (A11, ..., A1ℓ)
T

with

(A11)ij = −
∑

ℓ

XℓKiS
−1
ℓ • Kj + (D11)ij

(A1ℓ)ij = −XℓKiS
−1
ℓ • Gj + (D1ℓ)ij

(Aℓℓ)ij = −XℓGiS
−1
ℓ • Gj + (Dℓℓ)ij (15)

and Dkl are diagonal matrices. The vector (ξ1, ξ2, ξ3)
T is

the resulting right-hand side. For a complete description of

the interior point method, we refer the reader to Fujisawa

et al. (2000). The rest of this section is dedicated to the

computational difficulties associated with the interior point

method for semidefinite programming and the techniques

we use to resolve these.

There are several computational challenges associated

with the linear system (14). Firstly, all block matrices

Akl, k, l = 1, ..., nL are dense and require a large amount of

memory to store them (see Fig. 1a for the sparsity structure

of the coefficient matrix for a two-load case problem).

Secondly, the straightforward computation of the coefficient

matrix requires O(mn3 + m2n2) operations (Fujisawa et al.

2000).

The second challenge can be easily resolved by

exploiting the low-rank property and sparsity of the data

matrices Ki, Gi, i = 1, ..., m (Ben-Tal and Nemirovski

1997; Bendsøe et al. 1994; Ben-Tal 1993b; Achtziger

et al. 1992; Bendsøe and Sigmund 2003). From (3) and

(7), it can be seen that the rank of the element stiffness

matrices Ki, i = 1, ..., m is always 1 and the rank of the

element geometric stiffness matrices Gi, i = 1, ..., m is 1

for two-dimensional problems and 2 for three-dimensional

problems. The direction cosine vectors γi , δi , and ηi are

all very sparse with at most 4 or 6 nonzero entries for two-

and three-dimensional problems, respectively. Therefore,

we utilize this property to compute the coefficient matrix
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Fig. 1 Comparison of the size

of the coefficient matrix in

system (14) for a two-load case

problem. a Without adaptive

member adding (number of

non-zeroes = 73,893). b With

adaptive member adding, and in

the final SDP iteration (number

of non-zeroes = 24,126)

efficiently. For example, consider the block matrix A11

(single-load case for notation simplicity). We have

(A11)ij − (D11)ij = −XKiS
−1 • Kj

= −
E2

li lj
Xγiγ

T
i S−1 • γjγ

T
j

= −
E2

li lj
γ T
j S−1γiγ

T
i Xγj , (16)

which can be computed in O(n) arithmetic operations and

hence the computation of the coefficient matrix can be

brought down to O(m2n).

In the next section, we discuss the novel approach

employed to deal with the first challenge, i.e. the large

memory requirements.

4 Adaptive ‘member adding’

In problem formulation (9) we consider fully connected

ground structures. Hence, for a N-dimensional problem

comprising d nodes, the coefficient matrix (KKT) of the

reduced Newton system (14) has dimension

((nL + 1)m + nLn) × ((nL + 1)m + nLn),

where m = d(d − 1)/2 and n ≈ Nd . Moreover, all of the

larger blocks of the coefficient matrix, each with dimension

m × m, are full matrices. This indicates that it would be

computationally prohibitive to store or factorize the matrix

(see also the large-scale bridge example problem described

in Section 6.3.1).

In order to overcome this we extend the adaptive

‘member adding’ approach initially proposed for linear

plastic truss layout optimization problems by Gilbert and

Tyas (2003) and later used in other studies, for example by

Sokół and Rozvany (2013) and Weldeyesus and Gondzio

(2018). It is a strategy whereby the original large problem

is solved by successively solving a number of smaller

subproblems, i.e. problem instances with fewer bars, say

m̄. In practice, m̄ ≪ m, hence each of the m × m dense

blocks in the KKT matrix in (14) reduces to smaller m̄ × m̄

blocks. Moreover, as the problem size increases (i.e. when

higher nodal densities are used), the fraction of the bars

m̄/m used in the SDPs corresponding to the final member

adding iterations decreases (see Remark 10 in Section 6.2).

An overview of the member adding strategy, which can only

be applied to the relaxed linear SDP (9), is provided below.

First, we start with a structure constituting minimum

connectivity, for example with the structure shown in

Fig. 2a for two-dimensional problems and Fig. 2b for three-

dimensional problems, and let m0 be the number of bars in

the the initial structure. We denote by K0 ⊂ {1, . . . , m} the

set of indices of the bars for which the primal problem (11)

and its dual (12) are currently solved. Next, we compute the

dual violations using only variables λℓ and Xℓ in (12) which

are described below.

For any member i to be dual feasible (see (12)), we need

σ+
∑

ℓ

x+
ℓ,i + σ−

∑

ℓ

x−
ℓ,i +

∑

ℓ

Ki • Xℓ ≤ li (17a)

γ T
i λℓ + τℓGi • Xℓ = x+

ℓ,i − x−
ℓ,i, ∀ℓ (17b)

Xℓ � 0, ∀ℓ (17c)

x+
ℓ ≥ 0, x−

ℓ ≥ 0, ∀ℓ. (17d)

Fig. 2 Initial minimally connected ground structures
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Now, since x+
ℓ ≥ 0 and x−

ℓ ≥ 0, from (17a), we have

∑

ℓ

x+
ℓ,i ≤

1

σ+
(li −

∑

ℓ

Ki • Xℓ) and

∑

ℓ

x−
ℓ,i ≤

1

σ−
(li −

∑

ℓ

Ki • Xℓ), (18)

and from (17b), we have

−x−
ℓ,i ≤ γ T

i λℓ + τℓGi • Xℓ ≤ x+
ℓ,i, ∀ℓ. (19)

Combining (18) and (19), we get

−
1

σ−
≤

1

li −
∑

ℓ Ki •Xℓ

∑

ℓ

(γ T
i λℓ+τℓGi •Xℓ)≤

1

σ+
, ∀ℓ

(20)

for a member i to be dual feasible. Any member that violates

(20) is said to be dual infeasible.

Now, solving the problem for members with indices in

K0, we use (20) to generate the set K as

K =

{

j∈{1, · · ·, m}\K0|
1

lj−
∑

ℓ Kj•X∗
ℓ

×

nL
∑

ℓ=1

(σ−ε−
ℓj
+σ+ε+

ℓj
) ≥ 1 + β

}

, (21)

where

ε+
ℓj

= max{(γ T
j λ∗

ℓ + τℓGj • X∗
ℓ )), 0}

ε−
ℓj

= max{−(γ T
j λ∗

ℓ + τℓGj • X∗
ℓ )), 0}

with λ∗
ℓ and X∗

ℓ being optimal values, and β > 0 some

prescribed tolerance. Then, we identify the bars with indices

in K , filter them, and then finally add then to form the next

problem. The purpose of the filtering is to limit the number

of bars to be added in order to prevent fast growth of the size

of the problem (for details of heuristic filtering approaches,

see Weldeyesus and Gondzio 2018). Note that use of a

different filtering approach may affect the size of each

problem to be solved as part of the adaptive member adding

process, and the number of iterations required, but not the

final solution. For the numerical experiments in Section 6,

we use the member bar length approach described as

filtering strategy AP3 in Weldeyesus and Gondzio (2018).

The member adding procedure terminates when K = ∅.

Remark 6 In our implementation, the sparsity of the data

matrices Kj and Gj is exploited to determine the set K in

(21) while performing the operations Kj • X∗
ℓ and Gj •

X∗
ℓ . Hence, this step becomes inexpensive. The CPU times

reported for the numerical experiments in Section 6 include

this procedure.

Remark 7 In Fig. 1, we present the sparsity and size of the

coefficient matrix of the reduced Newton system (14) for

a small problem. Figure 1a shows the situation when the

problem is solved for all potential bars, and Fig. 1b shows

the situation when we apply the adaptive member adding

strategy. The sparsity structures may look similar but the

size is reduced. Moreover, this reduction in size becomes

even more significant for larger problems (see the large-

scale bridge example problem described in Section 6.3.1).

5Warm-start strategy

After performing several member adding iterations, the

subsequent subproblems start to become more and more

similar. Therefore, we use a warm-start strategy and deter-

mine an initial point that can reduce the number of interior

point iterations required to obtain a solution. This has been

used for the basic truss layout optimization problem for-

mulated as a linear program in Weldeyesus and Gondzio

(2018) and is now applied to the semidefinite program-

ming formulations presented in this paper. The discus-

sion in this section and the mathematical analysis closely

follow Section 6 of Weldeyesus and Gondzio (2018).

As described in Section 4, we generate the set K in (21)

at every member adding iteration. If K �= ∅, then we form

the new problem in which the variables are

(a, qℓ, Sℓ, s
+
ℓ , s−

ℓ ) → (a, ā, qℓ, q̄ℓ, Sℓ, s
+
ℓ , s̄+

ℓ , s−
ℓ , s̄−

ℓ )

(u, Xℓ, x
+
ℓ , x−

ℓ ) → (u, Xℓ, x
+
ℓ , x̄+

ℓ , x−
ℓ , x̄−

ℓ ). (22)

where the vectors with the super-bar, all in R
k , k = |K|,

represent the new variables corresponding to the newly

added bars. We assume that the old solution (the left-hand

side in (22)) was feasible in the previous instance of the

adaptive member adding scheme.

5.1 Computing a warm-start point

We set the initial point for the variables without the super-

bar in the right-hand side of (22) to the solution of the

previous problem instance obtained with a loose tolerance.

Following Gondzio (1998), the interior point algorithm

should not be initialized at a point too close to the boundary

of the feasible region. For the newly added variables, i.e.

those with bars in (22), we use a specialized initialization

procedure given below. We first set x̄+
ℓ and x̄−

ℓ as

x̄+
ℓ,j = max{γ̄ T

j λℓ + τℓḠi • Xℓ, μ
1
2

0 }, ∀j ∈ K,

x̄−
ℓ,j = max{−γ̄ T

j λℓ − τℓḠi • Xℓ, μ
1
2

0 }, ∀j ∈ K, (23)

where μ0 is the value of the barrier parameter corresponding

to the saved solution of the previous problem instance. Its
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value is computed as

μ0 =

∑nL

ℓ=1(Xℓ • Sℓ + x+
ℓ

T
s+
ℓ + x−

ℓ

T
s−
ℓ ) + xT

a a

nL · n + (nL + 1)m0
, (24)

where m0 = |K0|. Then, we set the new dual slack variable

as

(x̄a)j = max

{

|l̄j−σ+
∑

ℓ

x̄+
ℓ,j−σ−

∑

ℓ

x̄−
ℓ,j

−K̄i • Xℓ|, μ
1
2

0

}

, ∀j ∈ K . (25)

Finally, new primal variables are defined by

q̄+
ℓ = 0, ∀ℓ

āj = μ0(x̄
−1
a )j , ∀j ∈ K

s̄+
ℓ = σ+ā, ∀ℓ

s̄−
ℓ = σ−ā, ∀ℓ. (26)

Now, similar to Weldeyesus and Gondzio (2018), we

estimate the bounds on the primal and dual infeasibilities,

and the violation in complementarity slackness conditions

induced by the new variables.

5.1.1 Primal infeasibility

We start with the bounds for the first three primal

infeasibilties ξpℓ
= (ξp1,ℓ

, ξp2,ℓ
, ξp3,ℓ

), ℓ = 1, ..., nL (13c)–

(13e).

||ξp1,ℓ
||∞ = ||fℓ −

∑

i

qℓ,iγi −
∑

i

q̄ℓ,i γ̄i ||∞

= ||fℓ −
∑

i

qℓ,iγi ||∞

= ||ξ0
p1,ℓ

||∞,

||ξp2,ℓ
||∞ = ||σ+ā − q̄ℓ − s̄+

ℓ ||∞ = 0,

||ξp3,ℓ
||∞ = ||σ−ā + q̄ℓ − s̄−

ℓ ||∞ = 0. (27)

Now, we determine the bound for the last primal infeasibil-

ity ξp4,ℓ
(13f).

||ξp4,ℓ
||∞ = ||−K(a)−τℓG(qℓ)+Sℓ−K̄(ā)−τℓḠ(q̄ℓ)||∞

≤ ||ξ0
p4,ℓ

||∞ + ||K̄(ā)||∞

≤ ||ξ0
p4,ℓ

||∞ + μ
1
2

0

∑ Ei

l̄i
. (28)

This is because

||K̄(ā)||∞ = ||
∑ Ei āi

l̄i
γ̄i γ̄

T
i ||∞ ≤

∑ Ei āi

l̄i
||γ̄i γ̄

T
i ||∞

= 2N
∑ Ei āi

l̄i
= μ0

∑ Ei x̄
−1
a,i

l̄i
≤μ

1
2

0

∑ Ei

l̄i
,

(29)

where the last inequality above holds since x̄a,i ≥ μ
1
2

0 by

definition. Moreover, ||γ̄i γ̄
T
i ||∞ ≤ 2N . This is because, for

example, when N = 2 the non-zeros entries of the direction

cosine γi are γi = (− (lx )i
li

, −
(ly )i
li

,
(lx )i
li

,
(ly )i
li

) which implies

||γ̄i γ̄
T
i ||∞ ≤ 4 . Therefore, the expressions in (27) and (28)

demonstrate that primal infeasibility is at worst proportional

to μ
1
2

0 , and hence insignificant.

5.1.2 Dual infeasibility

Starting from the second dual infeasibility ξd2,ℓ
in (13b),

using (23), we have

(ξd2,ℓ
)i = γ̄ T

i λℓ − x̄+
ℓ,i + x̄−

ℓ,i + τℓḠi • Xℓ ≤ μ
1
2

0

and hence

||ξd2,ℓ
||∞ ≤ μ

1
2

0 . (30)

Now, we estimate the first dual infeasibilty ξd1
in (13a).

Using the definition of x̄a in (25) and the fact that r − |r| ≤

2|r|, r ∈ R, we have

(ξd1
)i = l̄i − σ+

∑

ℓ

x̄+
ℓ,i − σ−

∑

ℓ

x̄−
ℓ,i −

∑

ℓ

K̄i • Xℓ−x̄a,i

≤ 2|l̄i − σ+
∑

ℓ

x̄+
ℓ,i − σ−

∑

ℓ

x̄−
ℓ,i −

∑

ℓ

K̄i • Xℓ|

+μ
1
2

0

≤ 2

(

l̄i + σ+
∑

ℓ

x̄+
ℓ,i + σ−

∑

ℓ

x̄−
ℓ,i −

∑

ℓ

K̄i • Xℓ

)

+μ
1
2

0

≤ 2

(

l̄i + σmax

∑

ℓ

|γ̄ T
j λℓ + τℓḠi • Xℓ|

−
∑

ℓ

K̄i • Xℓ

)

+ (4nL + 1)μ
1
2

0

= 2

(

l̄i + σmax

∑

ℓ

(ε−
ℓj

+ ε+
ℓj

) −
∑

ℓ

K̄i • Xℓ

)

+(4nL + 1)μ
1
2

0 , (31)

where σmax = max{σ−, σ+}, and ε−
ℓ and ε+ are given as

(21). Hence,

||ξd1
||∞ ≤ ||2

(

l̄ +
∑

ℓ

σmax(ε
−
ℓ + ε+

ℓ ) −
∑

ℓ

¯K Xℓ

)

+(4nL + 1)μ
1
2

0 e||∞, (32)

where ( ¯K Xℓ)j = K̄j •Xℓ, ∀j ∈ K . This expression reveals

that there can be a considerable violation of the first dual
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constraint in (12) and so we apply the warm-starting routine

presented by Gondzio (1998), Gondzio and González-

Brevis (2015) to address this.

5.1.3 Centrality

We compute complementarity products for all newly added

variables to evaluate the centrality of the new point. Note

that the last centrality in condition (3) is automatically

satisfied. Moreover, the pairs (ā, x̄a) are μ0 centred

from (26).

Since

(x̄a)j = max

{

|l̄j − σ+
∑

ℓ

x̄+
ℓ,j − σ−

∑

ℓ

x̄−
ℓ,j

−K̄i • Xℓ|, μ
1
2

0

}

≥ μ
1
2

0 ,

we have

(x̄+
ℓ )j (s̄

+
ℓ )j = σ+(x̄+

ℓ )j āj = μ0σ
+ (x̄+

ℓ )j

(x̄a)j
≤ μ

1
2

0 σ+(x̄+
ℓ )j

= μ
1
2

0 σ+ max

{

γ̄ T
j λℓ + τℓḠi • Xℓ, μ

1
2

0

}

≤ μ0σ
+ + μ

1
2

0 σ+|γ̄ T
j λℓ + τℓḠi • Xℓ|

= μ0σ
+ + μ

1
2

0 σ+(ε−
ℓj

+ ε+
ℓj

). (33)

Next, finding upper bound on (x̄a)j

(x̄a)j = max

{
∣

∣

∣

∣

∣

l̄j − σ+
∑

ℓ

x̄+
ℓ,j − σ−

∑

ℓ

x̄−
ℓ,j

−K̄i • Xℓ

∣

∣

∣

∣

∣

, μ
1
2

0

}

≤ max

{

σmax

(

∑

ℓ

(x̄+
ℓ )j +

∑

ℓ

(x̄−
ℓ )j

)

+K̄i • Xℓ, μ
1
2

0

}

≤ max

{

σmaxnL max
ℓ

|γ̄ T
j λℓ + τℓḠi • Xℓ| + 2nLμ

1
2

0

+K̄i • Xℓ, μ
1
2

0

}

≤ σmaxnL max
ℓ

|γ̄ T
j λℓ + τℓḠi • Xℓ| + K̄i • Xℓ

+2nLμ
1
2

0 ,

we get

(x̄+
ℓ )j (s̄

+
ℓ )j

= σ+(x̄+
ℓ )j āj = μ0σ

+ (x̄+
ℓ )j

(x̄a)j

= μ0σ
+

max{γ̄ T
j λℓ + τℓḠi • Xℓ, μ

1
2

0 }

(x̄a)j }

≥
σ+μ

3
2

0

(x̄a)j

≥
σ+μ

3
2

0

σmaxnL maxℓ |γ̄ T
j λℓ + τℓḠi • Xℓ| + K̄i • Xℓ + 2nLμ

1
2

0

=
μ0σ

+

σmaxnLμ
−1
2

0 (maxℓ(ε
−
ℓj

+ ε+
ℓj

) + K̄i • Xℓ) + 2nL

.

(34)

Then, using (33) and (34)

σ+

σmaxnLμ
−1
2

0 (maxℓ(ε
−
ℓj

+ ε+
ℓj

) + K̄i • Xℓ) + 2nL

μ0

≤ (x̄+
ℓ )j (s̄

+
ℓ )j ≤ μ0σ

+ + μ
1
2

0 σ+(ε−
ℓj

+ ε+
ℓj

), ∀j, ∀ℓ.

(35)

Similarly,

σ−

σmaxnLμ
−1
2

0 (maxℓ(ε
−
ℓj

+ ε+
ℓj

) + K̄i • Xℓ) + 2nL

μ0

≤ (x̄−
ℓ )j (s̄

−
ℓ )j ≤ μ0σ

− + μ
1
2

0 σ−(ε−
ℓj

+ ε+
ℓj

), ∀j, ∀ℓ.

(36)

The bounds in (35) and (36) imply that the pairs (x̄−
ℓ , s̄−

ℓ )

and (x̄+
ℓ , s̄+

ℓ ), ℓ ∈ {1, ..., nL} have no prominent outliers

from the μ0-centrality. This is due to the shift-like terms

involving (ε−
ℓj

+ ε+
ℓj

) in the right-hand side being multiplied

by μ
1
2

0 , thus reducing the induced violation of the μ0-

centrality.

6 Numerical results

The interior point method has been implemented in

MATLAB (R2016a). All numerical experiments have been

performed using a PC equipped with an Intel� Core™ i5-

4590T CPU running at 2.00 GHz with 16 GB RAM. For the

case of the cold-start runs, the initial points a0, s+0
ℓ , s−0

ℓ ,

x+0
ℓ , x−0

ℓ , x+
a are set to unity, Sℓ, Xℓ to the identity matrix I ,
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and q0
ℓ , λ0

ℓ to zero. The interior point algorithm terminates

when

||ξ k
p||∞

1+||l||∞
≤ǫp,

||ξ k
d ||∞

1+||f̃ ||∞
≤ǫd ,

|lT ak−
∑

ℓ

f T λk
ℓ|

1+|lT ak|
≤ǫopt ,

(37)

where f̃ = (f1, ..., fnL
)T , matrix terms are vectorized, and

the primal and dual residuals ξp and ξd are given by (3).

Note that, for feasible primal and dual points, the duality

gap can easily be written as

lT a −
∑

ℓ

f T
ℓ λℓ =

∑

ℓ

(x+
ℓ

T
s+
ℓ +x−

ℓ

T
s−
ℓ +Xℓ •Sℓ)+aT xa

by performing some elementary algebraic operations.

The primal and dual relative feasibility tolerances are set

to ǫp = ǫd = 10−6.

For the optimality tolerance, we use loose tolerances in

the first few member adding iterations since the first few

subproblems should not have to be solved to optimality,

and then tighter tolerances in the final iterations, i.e.

ǫopt = [10−2, 10−2, 10−3, 10−4] and then always 10−5.

The reported CPU times correspond to the entire solution

process, including the member adding computations.

In the original problems, we consider all the potential

bars, including overlapping bars. At the start of the solution

process, we begin with the structure shown in Fig. 2a

for two-dimensional problems and Fig. 2b for three-

dimensional problems, and use β = 0.001 to generate the

set of members in K given in (21) that are dual infeasible.

If the warm-start strategy is used, then it is activated at

the fourth member adding iteration or else before this if

(mk − mk−1)/mk ≤ 0.12, where mk is the number of

bars used in the kth member adding iteration. In applying

this strategy, we use the solutions obtained with tolerance

εopt = 0.1 in the preceding problem instance to determine

the initial point of the subsequent problem.

For all examples, λmin denotes the smallest positive

eigenvalue of the generalized eigenvalue problem

(K(a) + λℓG(qℓ))vℓ = 0. (38)

Moreover, we set τℓ = 0 in (8) and (9) for problems

without stability constraints and τℓ ≥ 1 for problems with

stability constraints. Its specific values are mentioned in the

examples below. Additionally, when reporting the solution

of the SDP relaxation (9), we also provide an estimate of

the violation of the compatibility equations by solving the

least-squares problem (10).

Finally, we use Young’s modulus E = 210 GPa, and

equal tensile and compressive strengths of 350 MPa. In the

plots of the optimal designs, bars in tension are shown in

red and bars in compression are shown in blue (except for

sake of clarity in the case of Fig. 13). In all cases, the bars

shown are those with cross-sectional area ≥ 0.001amax and

the dark dots are the active nodes connecting these bars.

6.1 Benchmark example problems

The objective of the examples in this section is to provide

an insight into the solution obtained when a linear SDP

relaxation (9) is solved for benchmark problems reported

in the literature. This is done by comparing solutions with

those obtained using the nonlinear SDP (8), which includes

compatibility constraints. We display the corresponding

optimal designs in Figs. 3 and 5 for τℓ = 1 and τℓ = 10

that are likely to be of interest to engineering practitioners.

However, we also show numerical results in Tables 1 and 2

for larger values of τℓ, to show the growth of the violation

of (4) in extreme cases.

For the examples described in this section, we also

calculate the violation of the elastic stress constraints for

the solution of the relaxed SDP (9). This is in addition to

the least-squares approach for estimating violation of the

kinematic compatibility equation, and is done by computing

the stress values as σ ∗
ℓ,i = E

li
γ T
i u∗

ℓ , where u∗
ℓ = K−1(a∗)fℓ,

with a∗ being the solution of the relaxed SDP (9).

6.1.1 L-shaped truss example

We solve the benchmark L-shaped truss example problem

shown in Fig. 3a, comprising 132 bars. It has dimensions

1 m × 3 m × 4 m (including the null region of dimensions

1 m × 2 m × 3 m), and each of the applied nodal loads

is 350 kN, applied simultaneously. The optimal designs are

given in Fig. 3b–f and resemble the solutions presented in

Levy et al. (2004) and Tugilimana et al. (2018), who solved

various problem formulations incorporating global stability

constraints, and those presented in Tyas et al. (2006)

and Descamps and Coelho (2014), who solved problems

incorporating destabilizing nodal forces.

When the problem is solved without stability constraints,

the solution shown in Fig. 3b is obtained which comprises

two parallel planar trusses. In that case, the optimal design

has volume 0.0620 m3 and λmin = 1.2e−05 < 1;

hence, it is not stable. Next, solving the relaxed problem

(9) with stability constraints for τℓ = 1, we obtain the

solution shown in Fig. 3c, where a connection between

the two parallel planes is now established. The volume of

the structure is 0.062217 m3 and λmin = 1. It is useful

to establish an estimation of the violation of the kinematic

compatibility equation, obtained from (10); this is found to

have a value of 4.9624e−06. Moreover, we can compare

the solution shown in Fig. 3c to that of the optimal design

shown in Fig. 3d, obtained when solving the standard

nonlinear SDP formulation (8). In this case, the design has

a marginally higher volume of 0.062241 m3.
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Fig. 3 L-shaped truss example:

a Design domain, boundary

condition, and load. b Optimal

design without stability

constraints. c–f Optimal designs

with stability constraints

In order to evaluate the result obtained by solving the

relaxed SDP (9) and the nonlinear problem (8) in more

detail, we also solve the problems for a larger value of the

loading factor τℓ. Thus for τℓ = 10, the solution to the

relaxed SDP gives the design shown in Fig. 3e which has

a volume 0.064333 m3 and the violation of the kinematic

compatibility equation is equal to 5.3177e−04 . This is

larger than in the case above when τℓ = 1. For τℓ = 10,

the nonlinear SDP gives the design shown in Fig. 3f which

has a somewhat larger volume, of 0.064639 m3. Table 1

shows the behaviour for even higher values of τℓ, i.e. τℓ =

20, 30, ..., 90. This indicates that when the value of τ is

increased, the magnitude of the violation of the kinematic

compatibility constraints increases. Nevertheless, the results

seem to agree for small values of τℓ and especially for

the required minimum value τℓ = 1, so that the structure

remains stable when the load is applied.

Next, we calculate violation of the elastic stress

constraints in the relaxed SDP (9) solutions following the

procedure described above. We found maximum violation

of the elastic stress constraints to be 0.35% when τℓ = 1 and

3.6% when τℓ = 10. Moreover, the resulting load factors

(the smallest positive eigenvalues of (38)) were found to be

0.9983 and 9.8310, respectively, as shown in Fig. 4a and b.

The elastic stress distributions are plotted in Fig. 4, where

the values of the stress are within the specified limits in the

grey bars, but violated slightly in the blue (in compression)

and red (in tension) bars.

Table 1 L-shaped truss example: comparison of volumes obtained by solving the nonlinear SDP (8) and the SDP relaxation (9), and violation of

the compatibility constraints (4) estimated by solving the least-squares problem (10)

τ 1 10 20 30 40 50 60 70 80 90

Nonlinear SDP volume (8) 0.0622 0.0646 0.0677 0.0717 0.0772 0.0846 0.0933 0.1031 0.1139 0.1251

Relaxed SDP volume (9) 0.0622 0.0643 0.0670 0.0703 0.0749 0.0805 0.0871 0.0947 0.1028 0.1117

Violation of compatibility (4), by (10) 5.0e−06 5.3e−04 0.0024 0.0066 0.0164 0.0306 0.0368 0.0459 0.0591 0.0702
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Table 2 Tower example: comparison of volumes obtained obtained by solving the nonlinear SDP (8) and the SDP relaxation (9), and violation of

the compatibility constraints (4) estimated by solving the least-squares problem (10)

τ 1 10 20 30 40

Nonlinear SDP volume (8) 0.0030 0.0032 0.0370 0.0507 0.0663

Relaxed SDP volume (9) 0.0030 0.0031 0.0358 0.0499 0.0642

Violation of compatibility (4), by (10) 3.7e−06 5.1e−05 0.0151 0.0510 0.5889

Remark 8 The solution to the problem without stability

constraints presented in Fig. 3a constitutes not only

two independent planar trusses but also unstable nodes

connecting bars that are in compression. The unstable nodes

are stabilized in Fig. 3c–f with bracing bars.

6.1.2 Tower example with downward vertical load

We solve the tower example problem shown in Fig. 5a, com-

prising 1953 bars in the fully connected ground structure.

This is motivated by the similar problems solved by Stingl

(2006) and Tyas et al. (2006). In this example, the tower

is for sake of simplicity assumed to have dimensions of

1 m × 1 m × 3 m, is fixed at its base, and is subjected to a

downwards vertical load of 350 kN at the centre of its upper

surface.

The optimal design is shown in Fig. 5b for the problem

without stability constraints, which turns out to comprise six

vertical inline bars with no bracing elements. Its volume is

0.00300 m3 and λmin = 2.3277e−04; clearly, this structure

is not stable. Now, setting τℓ = 1 and solving the relaxed

problem with stability constraints (9), we obtain the solution

shown in Fig. 5c with no intermediate unstable nodes, with

Fig. 4 L-shaped truss example: elastic stress distribution in the design

obtained by solving the relaxed SDP (9). The values of the stress are

within the specified limits in the grey bars, but violated in the blue (in

compression) and red (in tension) bars by at most 0.35% when τℓ = 1

and 3.6% when τℓ = 10 (actual load factors for relaxed SDP structures

a 0.9983, b 9.8310)

bracing bars connecting the loaded node. The stable design

has a volume of 0.003010 m3. Estimating the violation

of the kinematic compatibility equation, we solve problem

(10) and get 3.6617e−06. The nonlinear formulation (8)

produces the solution shown in Fig. 5d and has a volume of

0.003020 m3.

For a higher value of τℓ = 10, the solution to the

relaxed SDP (9) returns the design shown in Fig. 5e, with a

volume 0.003102m3 and compatibility constraint violation

of 5.0965e−05, and the nonlinear SDP (8) returns the

design presented in Fig. 5f with volume 0.003200 m3. Note

that the results are in broad agreement with the results

obtained by Stingl (2006) and Tyas et al. (2006), where

the tower problem is respectively solved using a nonlinear

semidefinite formulation with global stability constraints

and with the introduction of destabilizing nodal forces. In

Table 2, results are presented for higher values of τℓ =

Fig. 5 Tower example: a Design domain, boundary conditions, and

loading (downward). b Optimal design without stability constraints.

c–f Optimal designs with stability constraints
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Fig. 6 Tower example: elastic stress distribution in the design obtained

by solving the relaxed SDP (9). The values of the the stress are within

the limit in the grey bars, but violated in the blue (in compression) bars

by at most 0.33% when τℓ = 1 and 0.6% when τℓ = 10 (actual load

factors for relaxed SDP structures a 0.999965, b 9.9994)

Fig. 7 Tower example: a Design domain, boundary conditions, and

loading (now upward). b Optimal design without stability constraints.

c Optimal design with stability constraints

20, 30, 40, where the largest violation of the compatibility

equation is observed when τℓ = 40.

Finally, we calculate violation of the elastic stress

constraints in the relaxed SDP (9) solutions. We found

maximum violation of the elastic stress constraints to be

0.33% when τℓ = 1 and 0.6% when τℓ = 10. Moreover, the

resulting load factors (the smallest positive eigenvalues of

(38)) were found to be 0.999965 and 9.9994, respectively,

as shown in Fig. 6a and b. The elastic stress distributions are

plotted in Fig. 6, where the values of the stress are within

the limit in the grey bars, but violated slightly in the blue (in

compression) bars.

Remark 9 As mentioned in Section 2, models (8) and (9)

do not address local buckling. This is shown in Fig. 5c and

f where long bars in compression are used as bracing or as

means of stabilizing otherwise unstable nodes.

6.1.3 Tower example with upwards vertical load

The purpose of this example is simply to demonstrate that

if the bars in the optimal design are all in tension, then

the solution obtained with or without the global stability

constraints are identical. To show this, we solve the problem

in Example 6.1.2 but with the direction of the load reversed,

as shown in Fig. 7a. The optimal design is shown in Fig. 7b

for the problem without stability constraints and once again

comprises six vertical inline bars, all in tension and with

no bracing elements. Its volume is 0.00300 m3 and λmin =

426.5575 > 1. This shows that the design is already stable

and setting τℓ = 1 and re-solving the problem with stability

constraints (9) will change neither its volume (which is is

0.00300m3) nor its geometry, as can be seen in Fig. 7c.

Fig. 8 Bridge example

(small-scale): a Design domain,

boundary conditions, and

loading. b Optimal design,

without stability constraint. c

Optimal design, with stability

constraint, without member

adding. d Optimal design, with

stability constraint, with

member adding
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6.2 Adaptive ‘member adding’ problems

Here, we report on the efficacy of the adaptive member

adding strategy described in Section 4 for the relaxed linear

SDP (9). This is achieved by solving problems both with

and without the strategy, verifying that the same solution

is obtained, and reporting on comparative computational

efficiency.

6.2.1 Bridge example (small-scale)

We solve the bridge-like example problem shown in

Fig. 8a, comprising 3240 bars in the fully connected ground

structure. The design domain has dimensions 8 m × 2 m ×

2 m and has fixed pin supports at each of the four corner

nodes. Vertical loads of magnitude 350 kN are applied to

all nodes along each the two long edges at the base of the

domain.

The solution obtained when stability constraints are not

included is shown in Fig. 8b, comprising two parallel

planar trusses. In this case, the optimal structure has a

volume of 0.0540 m3 and λmin = 3.8613e−08 (i.e. clearly

not stable). Next, we solve the problem with the stability

constraint (9) for τℓ = 1. Numerical results are shown

in Table 3. Figure 8c shows the optimal design when

solving the entire original problem and Fig. 8d shows

the structure obtained when member adding is used. The

optimal designs are clearly identical and have the same

volume, equal to 0.05414 m3 (see row 1 of Table 3).

Moreover, the CPU times reported in the table illustrate the

efficiency of the member adding scheme. In general, these

efficiencies are much more pronounced for larger problems.

Figure 9 illustrates the evolution of the solution when

the adaptive member adding strategy is used, showing the

potential bars and the corresponding optimal design for each

member adding iteration. The violation of the kinematic

compatibility constraint is found to equal 5.8336e−06 at the

end of the process.

Table 3 Bridge example (small-scale): numerical statistics for the

problem instance in Fig. 8

Without member With member

adding adding

Volume (m3) 0.05414 0.05414

Final no. of bars 3240 600

Mem. add. iter. 1 6

Total CPU (s) 145 28

Fig. 9 Bridge example (small-scale): potential bars and optimal

designs illustrating the evolution of the optimal designs with respect to

the member adding iterations reported in Table 3. Green bars represent

newly added bars
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Table 4 Bridge example

(large-scale): numerical

statistics

Without warm-start With warm-start

τ = 1 τ = 10 τ = 1 τ = 10

Volume (m3) 0.05147 0.05376 0.05147 0.05376

Mem. add. iter. 7 7 7 6

Total CPU time (s), for entire optimization process 3638 19432 2654 8914

Fig. 10 Bridge example (large-scale) when τℓ = 1: comparison of a number of interior point iterations, b CPU times, and c problem sizes,

with/without warm-start strategies. The warm-start was used from the 4th member adding iteration

Fig. 11 Bridge example (large-scale) when τℓ = 10: comparison

of a number of interior point iterations, b CPU times, and c problem

sizes, with/without and warm-start strategies. The warm-start was used

from the 4th member adding iteration. The problem without warm-start

has one more member iteration

Fig. 12 Bridge example

(large-scale). a Design domain,

boundary conditions, and

loading. b Optimal design

without stability constraints. c

Optimal design with stability

constraints when τℓ = 1. d

Optimal design with stability

constraints when τℓ = 10
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6.3 Large-scale problems and warm-start strategy

We now solve large-scale problems in which we addi-

tionally demonstrate the numerical benefit of using the

warm-start strategy described in Section 5.

6.3.1 Bridge example (large-scale)

We consider again the bridge problem, though now with

90,100 bars, as shown in Fig. 12a; the loading conditions

and dimensions are as described in Section 6.2.1. It is worth

mentioning that if we attempted to solve the original prob-

lem without member adding, then we would need approx.

240 GB of memory to store the coefficient matrix in (14).

However, by applying the adaptive member adding tech-

nique we not only reduce the CPU time but also significantly

reduce peak memory requirements. Numerical results are

presented in Table 4. It is evident that the warm-start strat-

egy reduces CPU time by approx. 30% when τℓ = 1 and

by 53% when τℓ = 10 , which is achieved by cutting down

the number of interior point iterations (see Figs. 10 and

11). Additionally, the number of member adding iterations

is reduced by 1 when the warm-start strategy is used for

the problem with τℓ = 10. In both cases, the warm-

start is used starting in the fourth member adding iteration.

The optimal designs are shown in Fig. 12, where Fig. 12b

shows the solution without stability constraints, which has

a volume of 0.05122 m3 and λmin = 8.0376e−08 (i.e. is

Fig. 13 Stadium-roof application. a Design domain, boundary con-

ditions, and loads. A = (0, 0, 2.3), B = (0, 5, 0), C = (0, 15, 0),

D = (0, 20, 0), E = (0, 40, 2.8), F = (0, 15, 4.2)). The roof is 80 m

long in the x-direction. b Optimal design without stability constraints.

c Optimal designs with stability constraints. Note that in the plots, the

member sizes are scaled for sake of visual clarity
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Table 5 Stadium-roof

application with multiple load

cases: numerical statistics

Without warm-start With warm-start

Volume (m3) 2.3279 2.3279

Mem. add. iter. 6 6

Total CPU time (s), for entire optimization process 3194 2356

clearly not stable). Figure 12c and d show stabilized designs

obtained, respectively, when τℓ = 1 and τℓ = 10. When

τℓ = 1 the stable design has a volume 0.05147 m3 with

violation of the kinematic compatibility constraint equal to

5.2354e−06. When τℓ = 10 the stable design has a volume

0.05376 m3 with a slightly larger violation of the kinematic

compatibility constraint, equal to 5.3589e−04.

Remark 10 The small-scale bridge problem considered in

Section 6.2.1 and the large-scale bridge problem considered

in Section 6.3.1 demonstrate that when problem size

increases, the fraction of the bars used in the final SDPs

decreases. For the small-scale bridge problem with 3200

bars, 18.5% of the bars were needed to find the solution.

However, for the large-scale bridge problem with 90,100

bars, only 5.6% of the bars were needed when τℓ = 1,

and 8.1% of the bars when τ = 10. This indicates that the

adaptive member adding procedure is likely to bring more

and more benefit as problem size increases.

6.4 Stadium-roof application withmultiple load
cases

We solve the stadium roof design problem shown in

Fig. 13a. The roof is subject to three load cases: LC1 = f1,

LC2 = f1 + f2, and LC3 = f1 + f3, where the loads f1 =

0.27 kN/m2, f2 = 2.7 kN/m2, and f3 = 0.75 kN/m2 are

uniformly distributed. Note that the loads and dimensions

have been simplified in the interests of clarity. The roof

spans 40 m in the y-direction, 80 m in the x-direction and

4.2 m in the the z-direction. Detailed dimensions are given

in the caption of Fig. 13a. The layout optimization problem

has 36, 856 potential members.

We first solve the problem without stability constraints,

obtaining the design shown in Fig. 13b, comprising parallel

disconnected planar trusses with a volume 2.2992 m3 and

with minimum positive eigenvalues for the three load cases

LC1, LC2, and LC3 of 7.0387e−04, 5.6185e−05, and

1.8554e−04, respectively. This indicates that the structure

is not stable for all load cases. Note that since this is a

multiple load case problem, we expect large violations of

the kinematic compatibility constraint, even for problems

without the stability constraints, as mentioned in Remark 4.

In this case, the violation was 0.0011 even when τℓ = 0.

Next, we set τℓ = 10, ℓ = 1, 2, 3, and solve problem

(9) with stability constraints to obtain the design shown

in Fig. 13c, where the parallel planar trusses are now

connected. In this case, the volume of the structure is

2.3279 m3, only slightly higher than before. Moreover,

the violation of the kinematic compatibility equation (10)

by the stable design was found to be 0.3190, which

is large compared with the single-load case examples

considered previously. Computational details are reported

in Table 5 and Fig. 14. The CPU time without the

warm-start strategy was 3194 s, and this is improved by

26% when the warm-start strategy is used, for which

the CPU time was 2365 s. Once again, this is achieved

by cutting down the number of interior point iterations

during warm-starting. In both cases, a total of 6 member

adding iterations were required to obtain the solution

and the final SDPs had approximately 7% of the entire

36,856 bars.

Fig. 14 Stadium-roof application with multiple load cases. a Number of interior point iterations. b CPU times. c Problem sizes, with/without

warm-start strategies. The warm-start was used from the 3rd member adding iteration
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7 Conclusions

We have solved the truss layout optimization problem with

global stability constraints via linear semidefinite program-

ming by relaxing the nonlinear kinematic compatibility con-

straint. A primal-dual interior point method has been used,

tailored to solving these problems efficiently. The imple-

mentation utilizes the sparse structure and low-rank property

of the element stiffness matrices to reduce computational

complexity when determining the linear systems arising in

the algorithm. Moreover, we have extended the range of

application of the adaptive member adding and warm-start

techniques previously applied to truss layout optimiza-

tion problems formulated as linear programs, so these can

now be applied to problems modelled as semidefinite pro-

grams. By doing so, we have been able to find solutions

to large-scale problems that could not have been solved

using previously available methods and standard desktop

computers.

We have demonstrated the validity of the solutions obtai-

ned for the relaxed problem by comparing them with solu-

tions obtained for the original nonlinear problem for values

of the stability load factor that are of interest to engineering

practitioners.

Finally, direct methods were used to solve the linear

systems arising from the interior point algorithm. The

computational effort might be further reduced by use of

iterative methods.

8 Replication of results

The input and output data that are used for all of the exam-

ples described in Section 6 are explicitly provided there.

The same material has been used in all examples and the

material properties are reported directly before Section 6.1.

Note that these values and the applied loads require

appropriate scaling if one wishes to use standard SDP

solvers.
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