
This is a repository copy of Extremes and limit theorems for difference of chi-type 
processes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/147166/

Version: Accepted Version

Article:

Albin, P, Hashorva, E, Ji, L orcid.org/0000-0002-7790-7765 et al. (1 more author) (2016) 
Extremes and limit theorems for difference of chi-type processes. ESAIM: Probability and 
Statistics, 20. pp. 349-366. ISSN 1292-8100 

https://doi.org/10.1051/ps/2016018

© EDP Sciences, SMAI, 2016. This is an author produced version of a paper published in 
ESAIM: Probability and Statistics.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


EXTREMES AND LIMIT THEOREMS FOR DIFFERENCE OF CHI-TYPE PROCESSES

PATRIK ALBIN, ENKELEJD HASHORVA, LANPENG JI, AND CHENGXIU LING

Abstract: Let {ζ(κ)m,k(t), t ≥ 0}, κ > 0 be random processes defined as the differences of two independent

stationary chi-type processes with m and k degrees of freedom. In applications such as physical sciences and

engineering dealing with structure reliability, of interest is the approximation of the probability that the random

process ζ
(κ)
m,k stays in some safety region up to a fixed time T . In this paper, utilizing Albin’s methodology

we derive the asymptotics of P

{
supt∈[0,T ] ζ

(κ)
m,k(t) > u

}
, u→ ∞ under some assumptions on the covariance

structures of the underlying Gaussian processes. We establish further a Berman sojourn limit theorem and a

Gumbel limit result.

Key Words: Stationary Gaussian process; stationary chi-type process; extremes; Berman sojourn limit theo-

rem; Gumbel limit theorem; Berman’s condition.

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Let X(t) = (X1(t), . . . , Xm+k(t)), t ≥ 0,m ≥ 1, k ≥ 0 be a vector process with independent components which

are centered stationary Gaussian processes with almost surely (a.s.) continuous sample paths and covariance

functions satisfying

ri(t) = 1− Ci |t|α + o(|t|α), t→ 0 and ri(t) < 1, ∀t 6=0(1)

where α ∈ (0, 2] and C := (C1, . . . , Cm+k) ∈ (0,∞)m+k. We define the following stationary non-Gaussian

processes
{
ζ
(κ)
m,k(t), t ≥ 0

}
, κ > 0 by

ζ
(κ)
m,k(t) :=

(
m∑

i=1

X2
i (t)

)κ/2
−
(

m+k∑

i=m+1

X2
i (t)

)κ/2
=: |X(1)(t)|κ − |X(2)(t)|κ, t ≥ 0.(2)

In this paper we shall investigate for any T > 0 the asymptotics of

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
, u→ ∞(3)

by using Albin’s method established in [?].

Our study of the tail asymptotics of supt∈[0,T ] ζ
(κ)
m,k(t) is motivated by the exit problem in engineering sciences;

see e.g., [?, ?, ?] and the references therein. Specifically, of interest is the probability that the Gaussian vector

process X exits a predefined safety region Su ⊂ R
m+k up to the time T , namely

P {X(t) 6∈ Su, for some t ∈ [0, T ]} .

Various types of safety regions Su were considered for smooth Gaussian vector processes in the aforementioned

papers. Particularly, a safety region given by a ball centered at 0 with radius u > 0

Bu =

{
(x1, . . . , xm+k) ∈ R

m+k :

(
m+k∑

i=1

x2i

)1/2

≤ u

}
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has been extensively studied; see, e.g., [?, ?, ?, ?]. Referring to [?, ?], we know that for k = 0

P {X(t) 6∈ Bu, for some t ∈ [0, T ]} = P

{
sup
t∈[0,T ]

ζ
(1)
m,0(t) > u

}

= THm,0
α,1 (C)u

2
αP

{
ζ
(1)
m,0(0) > u

}
(1 + o(1)), u→ ∞(4)

where Hm,0
α,1 (C) is a positive constant (see (8) below for a precise definition). Very recently [?] obtained the tail

asymptotics of supt∈[0,T ] ζ
(2)
1,1(t).

Our first result, which derives the exact asymptotics of (3), extends the findings of [?, ?] and suggests an

asymptotic approximation for the exit probability of the Gaussian vector process X from the safety regions

S(κ)
u given, with the notation of (2), as

S(κ)
u =

{
(x1, . . . , xm+k) ∈ R

m+k : |x(1)|κ − |x(2)|κ ≤ u
}

(5)

for large enough u.

Since chi-type processes appear naturally as limiting processes; see, e.g., [?, ?], when one considers two indepen-

dent asymptotic models, the study of the supremum of the difference of the two chi-type processes is of some

interest in mathematical statistics and its applications. Another motivation for considering the tail asymptotics

of the supremum of the difference of chi-type processes is from ruin theory, where the tail asymptotics can be

interpreted as the expansion of the ruin probability since the net loss of an insurance company can be modelled

by the difference of two positive random processes; see, e.g., [?].

Although for k ≥ 1 the random process ζ
(κ)
m,k is not Gaussian and the analysis of the supremum can not be

transformed into the study of the supremum of a related Gaussian random field (which is the case for chi-type

processes; see, e.g., [?, ?, ?, ?, ?, ?]), it turns out that it is possible to apply the techniques for dealing with

extremes of stationary processes developed mainly in [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

Sojourn limit theorems, initiated by Berman [?, ?], have been proved to be significant results in the study of

extreme values of stationary and self-similar processes; see, e.g., [?, ?]. In the second part of Section 2 we derive

a sojourn limit theorem for ζ
(κ)
m,k. Further, we show a Gumbel limit theorem for the supremum of ζ

(κ)
m,k over an

increasing infinite interval. We refer to [?, ?, ?, ?, ?, ?] for results on the Gumbel limit theorem for Gaussian

processes and chi-type processes.

Brief outline of the paper: Our main results are stated in Section 2. In Section 3 we present proofs of Theorem

2.1, Theorem 2.2 and Theorem 2.3 followed then by an Appendix containing the somewhat complicated proofs

of three lemmas utilized in Section 3.

2. Main Results

We start by introducing some notation. Let {Z(t), t ≥ 0} be a standard fractional Brownian motion (fBm)

with Hurst index α/2 ∈ (0, 1], i.e., it is a centered Gaussian process with a.s. continuous sample paths and

covariance function

Cov(Z(s), Z(t)) =
1

2

(
sα + tα − |s− t|α

)
, s, t ≥ 0.

In the following, let {Zi(t), t ≥ 0}, 1 ≤ i ≤ m + k be independent copies of Z and define Wκ to be a Gamma

distributed random variable with parameter (k/κ, 1). Further let O1 = (O1, . . . , Om),O2 = (Om+1, . . . , Om+k)

denote two random vectors uniformly distributed on the unit sphere of Rm and R
k, respectively. Hereafter we

shall suppose that O1,O2,Wκ and Zi’s are mutually independent. Define for m ≥ 1, k ≥ 0, κ > 0

η
(κ)
m,k(t) = Z̃

(κ)
m,k(t) + E, t ≥ 0,(6)
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where E is a unit mean exponential random variable being independent of all the other random elements

involved, and

Z̃
(κ)
m,k(t) =

(
m∑

i=1

√
2CiOiZi(t)− L(t)

)
I{κ ≥ 1}

+


Wκ −

(
W2/κ
κ + 2(Wκ/κ)

1/κ
m+k∑

i=m+1

√
2CiOiZi(t) + 2κ−2/κ

m+k∑

i=m+1

CiZ
2
i (t)

)κ/2
 I{κ ≤ 1}

with L(t) =
(∑m

i=1 CiO
2
i

)
tα, I{·} the indicator function and the convention that

∑m
i=m+1 = 0. In addition,

denote by Γ(·) the Euler Gamma function. We state next our main result.

Theorem 2.1. Let {ζ(κ)m,k(t), t ≥ 0} be given by (2) with the involved Gaussian processes Xi’s satisfying (1).

Then for any T > 0

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
= THm,k

α,κ (C)u
2τ
ακP

{
ζ
(κ)
m,k(0) > u

}
(1 + o(1)), u→ ∞(7)

where τ := I{κ ≥ 1}+ (2/κ− 1)I{κ < 1} and

Hm,k
α,κ (C) = lim

a↓0

1

a
P

{
sup
j≥1

η
(κ)
m,k(aj) ≤ 0

}
∈ (0,∞)(8)

with η
(κ)
m,k given by (6).

Remarks: The tail asymptotics of the Gaussian chaos ζ
(κ)
m,k(0) and its density can be easily derived using

Theorem 1 in [?]. We give a self-contained proof in Lemma 3.1 below.

b) Clearly, Hm,k
α,κ (C) in (8) is more involved than the classical Pickands constant

Hα = lim
a↓0

1

a
P

{
sup
j≥1

(√
2Z(aj)− (aj)α

)
≤ −E

}
∈ (0,∞),

see, e.g., [?, ?, ?] for the above definition which is an alternative expression of the Pickands constant (cf. [?]).

c) Define exit times τκ(u) = inf{t > 0 : X(t) 6∈ S(κ)
u }, κ > 0 with S(κ)

u given by (5). By a direct application of

Theorem 2.1 for any T > 0 we obtain

lim
u→∞

P {τκ(u) ≤ t|τκ(u) ≤ T} =
t

T
, ∀t ∈ [0, T ],

which means that asymptotically τκ(u)|{τκ(u) ≤ T} is uniformly distributed on [0, T ].

d) If κ > 2, then the claim of Theorem 2.1 implies

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
= P

{
sup
t∈[0,T ]

ζ
(κ)
m,0(t) > u

}
(1 + o(1)), u→ ∞,(9)

hence Xm+1, . . . , Xm+k do not influence the tail asymptotics of supt∈[0,T ] ζ
(κ)
m,k(t). This is expected since

supt∈[0,T ] ζ
(κ)
m,k(t) has a sub-exponential tail behaviour for any κ > 2.

Consider the sojourn time of the random process ζ
(κ)
m,k above a threshold u > 0 in the time interval [0, t] defined

by

L
(κ)
m,k,t(u) =

∫ t

0

I{ζ(κ)m,k(s) > u} ds, t > 0.(10)

Our second result below concerns a Berman sojourn limit theorem for ζ
(κ)
m,k.

Theorem 2.2. Under the assumptions and notation of Theorem 2.1 for any t > 0
∫ ∞

x

P

{
u

2τ
ακL

(κ)
m,k,t(u) > y

}
dy = u

2τ
ακE

{
L
(κ)
m,k,t(u)

}
Υκ(x)(1 + o(1)), u→ ∞(11)

holds for all continuity point x > 0 of Υκ(x) := P

{∫∞

0
I{η(κ)m,k(s) > 0} ds > x

}
.
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Remarks: a) It might be possible to allow Xi’s to be dependent. Results for extremes of chi-type processes

for such generalizations can be found in [?, ?].

b) Following the methodology in [?] one could consider Xi’s to be self-similar Gaussian processes. Further

extensions for random fields could also be possible by adopting the recent findings in [?, ?].

In the following, we derive a Gumbel limit theorem for supt∈[0,T ] ζ
(κ)
m,k(t) under a linear normalization.

Theorem 2.3. Under the assumptions and notation of Theorem 2.1, if further the following Berman’s condition

lim
t→∞

max
1≤l≤m+k

|rl(t)| ln t = 0(12)

holds, then

lim
T→∞

sup
x∈R

∣∣∣∣P
{
a
(κ)
T

(
sup
t∈[0,T ]

ζ
(κ)
m,k(t)− b

(κ)
T

)
≤ x

}
− exp

(
−e−x

)∣∣∣∣ = 0(13)

where for T > 0

a
(κ)
T =

(2 lnT )1−κ/2

κ
, b

(κ)
T = (2 lnT )κ/2 +

κ

2(2 lnT )1−κ/2
(K0 ln lnT + lnD0)(14)

with

D0 = 2
2τ
α +2(1− k

κ )I{κ≤2}

(
Hm,k
α,κ (C)

Γ(m/2)Γ(k/2)
Γ

(
k

κ
I{κ ≤ 2}+ k

2
I{κ > 2}

)
κ(k/κ−1)I{κ<2}−I{κ=2}

)2

K0 = m− 2 +
2τ

α
+ k

(
1− 2

κ

)
I{κ ≤ 2}.

Under the assumptions of Theorem 2.3, we have the following convergence in probability (denoted by
p→)

supt∈[0,T ] ζ
(κ)
m,k(t)

(2 lnT )κ/2
p→ 1, T → ∞

which follows from the fact that limT→∞ b
(κ)
T /(2 lnT )κ/2 = 1 and that a

(κ)
T is bounded away from zero, together

with elementary considerations. In several cases such a convergence in probability can be strengthened to

the pth mean convergence which is referred to as the Seleznjev pth mean convergence since the idea was first

suggested in [?]. In order to show the Seleznjev pth mean convergence of crucial importance is the Piterbarg

inequality (see [?], Theorem 8.1). Since the Piterbarg inequality holds also for chi-square processes (see [?],

Proposition 3.2), using further the fact that

ζ
(κ)
m,k(t) ≤ |X(1)(t)|κ, t ≥ 0

we immediately get the Piterbarg inequality for the difference of chi-type processes by simply applying the

aforementioned proposition. Specifically, under the assumptions of Theorem 2.3 for any T > 0 and all large u

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
≤ KTuβ exp

(
−1

2
u2/κ

)
(15)

where K and β are two positive constants not depending on T and u. Note that the above result also follows

immediately from Theorem 2.1 combined with Lemma 3.1 below. Hence utilizing Lemma 4.5 in [?] we arrive

at our last result.

Corollary 2.4. (Seleznjev pth mean theorem) Under the assumptions of Theorem 2.3 we have for any p > 0

lim
T→∞

E





(
supt∈[0,T ] ζ

(κ)
m,k(t)

(2 lnT )κ/2

)p
 = 1.
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3. Further Results and Proofs

We shall first give some preliminary lemmas; hereafter we use the same notation and assumptions as in Section

1. By
d→ and

d
= we shall denote the convergence in distribution (or the convergence of finite-dimensional

distributions if both sides of it are random processes) and equality in distribution function, respectively. Further,

we write fξ(·) for the pdf of a random variable ξ and write h1 ∼ h2 if two functions hi(·), i = 1, 2 are such

that h1/h2 goes to 1 as the argument tends to some limit. For simplicity we shall denote for κ > 0 (recalling

τ = I{κ ≥ 1}+ (2/κ− 1)I{κ<1})

qκ = qκ(u) = u−2τ/(ακ), wκ(u) =
1

κ
u2/κ−1, u > 0.

In the proofs of Lemmas 3.1–3.3, we denote uκ,x = u+ x/wκ(u) for all u, x > 0.

Lemma 3.1. For all integers m ≥ 1, k ≥ 0 we have as u→ ∞

P

{
ζ
(κ)
m,k(0) > u

}
∼
f
ζ
(κ)
m,k(0)

(u)

wκ(u)
∼ 22−(m+k)/2

κ2Γ(k/2)Γ(m/2)

1

wκ(u)
um/κ−1 exp

(
−1

2
u2/κ

)




Γ(k/κ)
(wκ(u))k/κ , κ < 2;

Γ(k/2), κ = 2;

κ2k/2−1Γ(k/2), κ > 2.

Proof of Lemma 3.1: For k = 0 the claim of the lemma is elementary (see, e.g., [?], p.117).

Note that for any k ≥ 1

f|X(2)(0)|κ(y) =
21−k/2

κΓ(k/2)
yk/κ−1 exp

(
−1

2
y2/κ

)
, y ≥ 0.

We have by e.g., [?], p.117 together with elementary consideration

f
ζ
(κ)
m,k(0)

(u) =
1

wκ(u)

∫ ∞

0

f|X(1)(0)|κ(uκ,y) f|X(2)(0)|κ

(
y

wκ(u)

)
dy

=
f|X(1)(0)|κ(u)

wκ(u)

∫ ∞

0

f|X(1)(0)|κ(uκ,y)

f|X(1)(0)|κ(u)

21−k/2

κΓ(k/2)

(
y

wκ(u)

)k/κ−1

exp

(
−1

2

(
y

wκ(u)

)2/κ
)
dy

∼ 21−k/2

κΓ(k/2)

f|X(1)(0)|κ(u)

wκ(u)

∫ ∞

0

(
y

wκ(u)

)k/κ−1

exp

(
−1

2

(
y

wκ(u)

)2/κ

− y

)
dy, u→ ∞.

Recalling that wκ(u) → ∞,= 1/2,→ 0 correspond to κ <,=, > 2, respectively, we conclude the second claimed

asymptotic relation of the lemma. The first claimed asymptotic relation then follows similarly as

P

{
ζ
(κ)
m,k(0)>u

}
=
f
ζ
(κ)
m,k(0)

(u)

wκ(u)

∫ ∞

0

f
ζ
(κ)
m,k(0)

(uκ,x)

f
ζ
(κ)
m,k(0)

(u)
dx ∼

f
ζ
(κ)
m,k(0)

(u)

wκ(u)

∫ ∞

0

e−x dx.

�

Lemma 3.2. If {ζ(κ)m,k(t), t ≥ 0} is as in Theorem 2.1, then

{
wκ(u)(ζ

(κ)
m,k(qκt)− u)|(ζ(κ)m,k(0) > u), t ≥ 0

}
d→
{
η
(κ)
m,k(t), t ≥ 0

}
, u→ ∞

with η
(κ)
m,k given by (6).

Proof of Lemma 3.2: We henceforth adapt the notation introduced in Section 2. By Lemma 3.1

wκ(u)(ζ
(κ)
m,k(0)− u)

∣∣∣(ζ(κ)m,k(0)− u > 0)
d→ E, u→ ∞.(16)
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Thus, in view of Theorem 5.1 in [?], it suffices to show that, for any 0 < t1 < t2 < · · · < tn < ∞ and

zj ∈ R, 1 ≤ j ≤ n, n ∈ N,

pk(u) := P

{
∩nj=1{ζ

(κ)
m,k(qκtj) ≤ uκ,zj}

∣∣∣ζ(κ)m,k(0) = uκ,x

}

→ P

{
∩nj=1{Z̃

(κ)
m,k(tj)+x ≤ zj}

}
, u→ ∞(17)

holds for all x > 0 and zj ∈ R, 1 ≤ j ≤ n. Define below

∆iu(tj) = Xi(qκtj)− ri(qκtj)Xi(0), 1 ≤ i ≤ m+ k, 1 ≤ j ≤ n.

By (1) we have

u2τ/κCov(∆iu(s),∆iu(t)) → Ci(s
α + tα − |s− t|α)

= 2CiCov(Zi(s), Zi(t)), u→ ∞, s, t > 0, 1 ≤ i ≤ m+ k.

Therefore

{uτ/κ∆iu(t), t ≥ 0} d→ {
√
2CiZi(t), t ≥ 0}, u→ ∞, 1 ≤ i ≤ m+ k.

Furthermore, by the independence of ∆iu(tj)’s and Xi(0)’s, the random processes Zi’s can be chosen such

that they are independent of ζ
(κ)
m,k(0). Note that X(1)(0)

d
= R1O1 holds for some R1 > 0 which is independent

of O1. Then similar arguments as in [?] yield that, for any zj ∈ R, 1 ≤ j ≤ n

p0(u) = P





n⋂

j=1

{
|X(1)(qκtj)|κ ≤ uκ,zj

} ∣∣∣|X(1)(0)|κ = uκ,x





= P





n⋂

j=1

{
wκ(u)

(
Rκ1

[
1 +

1

R2
1

Vu(tj)

]κ/2
−Rκ1

)
≤ zj − x

}∣∣∣∣∣R
κ
1 = uκ,x

}

= P





n⋂

j=1

{κ
2
wκ(u)R

κ−2
1 Vu(tj)(1 + op(1)) ≤ zj − x

} ∣∣∣∣∣R
κ
1 = uκ,x

}

= P





n⋂

j=1

{
m∑

i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑

i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x ≤ zj

}
 , u→ ∞(18)

where Vu(tj) :=
∑m
i=1 ∆

2
iu(tj) + 2

∑m
i=1 ∆iu(tj)ri(qκtj)Xi(0) −

∑m
i=1(1 − r2i (qκtj))X

2
i (0). Consequently, the

claim for k = 0 follows. Next, for k ≥ 1, we rewrite pk(u) as

pk(u) =

∫ ∞

0

P





n⋂

j=1

{
ζ
(κ)
m,k(qκtj) ≤ uκ,zj

} ∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)





×
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ(y/wκ(u))

wκ(u)fζ(κ)
m,k(0)

(uκ,x)
dy

=

∫ ∞

0

P





n⋂

j=1

{
|X(1)(qκtj)|κ ≤ uκ,zj+wκ(u)|X(2)(qκtj)|κ

} ∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)



hκ,u(y) dy

(19)
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where by Lemma 3.1

hκ,u(y) :=
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ(y/wκ(u))

wκ(u)fζ(κ)
m,k(0)

(uκ,x)

=
f|X(1)(0)|κ(uκ,x+y)

f|X(1)(0)|κ(u)

f
ζ
(κ)
m,k(0)

(u)

f
ζ
(κ)
m,k(0)

(uκ,x)

f|X(1)(0)|κ(u)f|X(2)(0)|κ(y/wκ(u))

wκ(u)fζ(κ)
m,k(0)

(u)

∼
f|X(2)(0)|κ(y/wκ(u))e

−y

∫∞

0
f|X(2)(0)|κ(y/wκ(u))e

−y dy
, u→ ∞(20)

implying that hκ,u(·) is asymptotically equal to some pdf hκ(·) as u→ ∞.

Next we consider the limit distribution of wκ(u)|X(2)(qκt)|κ
∣∣∣{wκ(u)|X(2)(0)|κ = y}. Noting that X(2)(0)

d
=

R2O2 holds for some R2 > 0 which is independent of O2, we have by similar arguments as in (18) that, for any

t ≥ 0

(
wκ(u)|X(2)(qκt)|κ

)2/κ ∣∣∣{wκ(u)|X(2)(0)|κ = y}

= (wκ(u))
2/κ

[
m+k∑

i=m+1

X2
i (0) + 2

m+k∑

i=m+1

ri(qκt)Xi(0)∆iu(t) +

m+k∑

i=m+1

∆2
iu(t)

−
m+k∑

i=m+1

(1− ri(qκt)
2)X2

i (0)

]∣∣∣∣∣

{
Rκ2 =

y

(wκ(u))1/κ

}

= (wκ(u))
2/κ

[
R2

2 + 2
R2

uτ/κ

m+k∑

i=m+1

√
2CiOiZi(t)(1 + op(1)) +

2

u2τ/κ

m+k∑

i=m+1

CiZ
2
i (t)(1 + op(1))

−2

(
R2

uτ/κ

)2 m+k∑

i=m+1

CiO
2
i t
α(1 + op(1))

]∣∣∣∣∣

{
Rκ2 =

y

(wκ(u))1/κ

}

= y2/κ + 2y1/κ
(
wκ(u)

uτ

)1/κ m+k∑

i=m+1

√
2CiOiZi(t)(1 + op(1)) + 2

(
wκ(u)

uτ

)2/κ m+k∑

i=m+1

CiZ
2
i (t)(1 + op(1)).

This together with (18) and (19) implies that

pk(u) =

∫ ∞

0

P





n⋂

j=1

{
m∑

i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑

i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x+ y

≤ zj + wκ(u)|X(2)(qκtj)|κ
}∣∣∣∣∣|X

(2)(0)|κ =
y

wκ(u)

}
hκ,u(y) dy

=

∫ ∞

0

P





n⋂

j=1

{
m∑

i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑

i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x+ y ≤ zj +

(
y

2
κ + 2y

1
κ

×
(
wκ(u)

uτ

) 1
κ

m+k∑

i=m+1

√
2CiOiZi(tj)(1 + op(1)) + 2

(
wκ(u)

uτ

) 2
κ

m+k∑

i=m+1

CiZ
2
i (tj)(1 + op(1))

)κ
2







 hκ,u(y) dy.

Recall that τ = I{κ ≥ 1}+ (2/κ− 1)I{κ < 1}. It follows by (20) and Lemma 3.1 that, for κ ≤ 1

hκ(y) := lim
u→∞

hκ,u(y) =
1

Γ(k/κ)
yk/κ−1e−y, y > 0

which is the pdf of a Gamma distributed rv with parameter (k/κ, 1). Consequently, the desired result follows.

�

The next lemma corresponds to Condition B in [?]; see also [?, ?]. We note in passing that this condition,

motivated by [?], is often referred to as the “short-lasting-exceedance” condition. As shown in Chapter 5 in [?]

this condition is crucial. Denote in the following by [x] the integer part of x ∈ R.
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Lemma 3.3. Let {ζ(κ)m,k(t), t ≥ 0} be given as in Theorem 2.1. For any T, a > 0, we have

lim sup
u→∞

[T/(aqκ)]∑

j=N

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}
→ 0, N → ∞.

Proof of Lemma 3.3: Note first that the case k = 0 is treated in [?], p.119. Using the fact that the standard

bivariate Gaussian distribution is exchangeable, we have for u > 0

P

{
ζ
(κ)
m,k(qκt) > u

∣∣∣ζ(κ)m,k(0) > u
}
= 2P

{
ζ
(κ)
m,k(qκt) > u, |X(1)(qκt)| > |X(1)(0)|

∣∣∣ζ(κ)m,k(0) > u
}
=: 2Θ(u).

Further, it follows from Lemma 3.1 that for any k ≥ 1

Θ(u) =

∫ ∞

0

∫ ∞

0

P

{
ζ
(κ)
m,k(qκt) > u, |X(1)(qκt)| > |X(1)(0)|

∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)

}

×
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ

(
y

wκ(u)

)

w2
κ(u)P

{
ζ
(κ)
m,k(0) > u

} dxdy

≤
∫ ∞

0

∫ ∞

0

P

{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ = uκ,x+y

} f|X(1)(0)|κ (uκ,x+y) f|X(2)(0)|κ

(
y

wκ(u)

)

w2
κ(u)P

{
ζ
(κ)
m,k(0) > u

} dxdy

=

∫ ∞

0

P

{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ > uκ,y

} P

{
|X(1)(0)|κ > uκ,y

}

wκ(u)P
{
ζ
(κ)
m,k(0) > u

}f|X(2)(0)|κ

(
y

wκ(u)

)
dy.

Moreover, in view of the treatment of the case k = 0 in [?], p.119 we readily see that, for any p ≥ 1, with

R(t) := max1≤i≤m ri(t), r(t) := min1≤i≤m ri(t) and Φ(·) denoting the N(0, 1) distribution function,

P

{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ > uκ,y

}
≤ 4m

(
1− Φ

(
(1−R(qκt))u

1/κ

√
m(1− r2(qκt))

))

≤ Kpt
−αp/2, ∀qκt ∈ (0, T ]

holds for some Kp > 0 not depending on u, t and y. Consequently

P

{
ζ
(κ)
m,k(qκt) > u

∣∣∣ζ(κ)m,k(0) > u
}

≤ 2Kpt
−αp/2

∫ ∞

0

P

{
|X(1)(0)|κ > uκ,y

}

wκ(u)P
{
ζ
(κ)
m,k(0) > u

}f|X(2)(0)|κ

(
y

wκ(u)

)
dy

= 2Kpt
−αp/2, ∀qκt ∈ (0, T ].(21)

Therefore, letting p = 4/α

lim sup
u→∞

[T/(aqκ)]∑

j=N

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}

≤ 2Kp

∫ ∞

aN

x−2 dx =
2Kp

aN
→ 0, N → ∞

establishing the proof. �

The lemma below concerns the accuracy of the discrete approximation to the continuous process, which is

related to Condition C in [?]. As shown in [?] (see Eq. (7) therein), in order to verify Condition C the following

lemma is sufficient. The technical proof of it is relegated to the Appendix.

Lemma 3.4. Let {ζ(κ)m,k(t), t ≥ 0} be as in Theorem 2.1. Then, there exist some constants C, p > 0, d > 1 and

λ0, u0 > 0 such that

P

{
ζ
(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u

}
≤ Ctdλ−pP

{
ζ
(κ)
m,k(0) > u

}

for 0 < t̟ < λ < λ0 and u > u0. Here ̟ := α/2I{κ ≥ 1}+ α/2min(κ/(4(1− κ)), 1)I{κ < 1}.
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Proof of Theorem 2.1: It follows from Lemmas 3.1–3.4 that all the assumptions of Theorem 1 in [?] are

satisfied by the process ζ
(κ)
m,k, which immediately establishes the proof. �

Proof of Theorem 2.2: In view of (21) with p = 4/α and letting vκ = vκ(u) = 1/qκ(u) = u2τ/(ακ) we obtain

vκ

∫ T

N/vκ

P

{
ζ
(κ)
m,k(s) > u

∣∣∣ζ(κ)m,k(0) > u
}
ds =

∫ vκT

N

P

{
ζ
(κ)
m,k(s/vκ) > u

∣∣∣ζ(κ)m,k(0) > u
}
ds

≤ K4/α

∫ vκT

N

s−2 ds ≤ K4/α

N
, u→ ∞.

Hence

lim
N→∞

lim sup
u→∞

vκ

∫ T

N/vκ

P

{
ζ
(κ)
m,k(s) > u

∣∣∣ζ(κ)m,k(0) > u
}
ds = 0.

Since further Lemma 3.2 holds, the claim follows by Theorem 3.1 in [?]. �

As shown by Theorem 10 in [?], in order to derive the Gumbel limit theorem for the random process ζ
(κ)
m,k two

additional conditions, which were first addressed by the seminal paper [?] (see Lemma 3.5 therein), need to be

checked, namely the mixing Condition D and the Condition D′ therein. These two conditions will be followed

from Lemma 3.5 and Lemma 3.6 below; the technical proof of them will be displayed in the Appendix.

Lemma 3.5. Let {ζ(κ)m,k(t), t ≥ 0} be defined as in Theorem 2.3. Let T, a be any given positive constants and

M ∈ (0, T ), then for any 0 ≤ s1 < · · · < sp < t1 < · · · < tp′ in {aqκj : j ∈ Z, 0 ≤ aqκj ≤ T} with t1 − sp ≥ M ,

we have for u > 0
∣∣∣∣∣∣
P





p⋂

i=1

{ζ(κ)m,k(si) ≤ u},
p′⋂

j=1

{ζ(κ)m,k(tj) ≤ u}



− P

{
p⋂

i=1

{ζ(κ)m,k(si) ≤ u}
}
P





p′⋂

j=1

{ζ(κ)m,k(tj) ≤ u}





∣∣∣∣∣∣

≤ Kuς
∑

1≤i≤p,1≤j≤p′

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
(22)

and
∣∣∣∣∣∣
P





p⋂

i=1

{ζ(κ)m,k(si) > u},
p′⋂

j=1

{ζ(κ)m,k(tj) > u}



− P

{
p⋂

i=1

{ζ(κ)m,k(si) > u}
}
P





p′⋂

j=1

{ζ(κ)m,k(tj) > u}





∣∣∣∣∣∣

≤ Kuς
∑

1≤i≤p,1≤j≤p′

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
(23)

with some positive constant K, where ς = 2/κ(m− k − 1 + max(0, 2(1− κ))) and r̃(t) := max1≤l≤m+k |rl(t)|.

Lemma 3.6. Under the assumptions of Theorem 2.3, we have, for ς, r̃(·) as in Lemma 3.5 and Tκ given by

Tκ = Tκ(u) =
1

Hm,k
α,κ (C)

qκ(u)

P

{
ζ
(κ)
m,k(0) > u

}(24)

and any given constant ε ∈ (0, Tκ)

uς
Tκ
qκ

∑

ε≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)
→ 0, u→ ∞.(25)

Proof of Theorem 2.3: To establish the Conditions D and D′ in [?], we shall make use of Lemma 3.5 with

T = Tκ taken as in (24) and M = ε ∈ (0, Tκ). First note that the right-hand side of (22) is bounded from above

by

Kuς
Tκ
aqκ

∑

ε≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

which by an application of (25) implies that the mixing Condition D in [?] holds for the random process ζ
(κ)
m,k.
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Next, we prove Condition D′ in [?], i.e., for any given positive constants a and T̃

lim sup
u→∞

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]

∑

j=[T̃ /(aqκ)]

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}
→ 0, ε ↓ 0.(26)

Indeed, by (23) for some large M̃ > T̃ and a positive constant K

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}
≤ P

{
ζ
(κ)
m,k(0) > u

}
+Kuς

Tκ
qκ
r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

holds for sufficiently large u and aqκj > M̃ . Consequently

lim sup
u→∞

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]

∑

j=[T̃ /(aqκ)]

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}

≤ lim sup
u→∞

[M̃/(aqκ)]∑

j=[T̃ /(aqκ)]

P

{
ζ
(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)m,k(0) > u
}
+ ε

+ lim sup
u→∞

Kuς
Tκ
qκ

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]

∑

j=[M̃/(aqκ)]

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

where the first term and the last term on the right-hand side equal 0 by an application of Lemma 3.3 and (25),

respectively. It follows then that (26) holds. Consequently, in view of Theorem 10 in [?] we have for Tκ given

by (24)

lim
u→∞

P

{
sup

t∈[0,Tκ]

ζ
(κ)
m,k(t) ≤ u+

x

wκ(u)

}
= exp

(
−e−x

)
, x ∈ R.

Expressing u in terms of Tκ using (24) (see also (38)) we obtain the required claim with a
(κ)
T , b

(κ)
T given by

(14) for any x ∈ R; the uniform convergence in x follows since all functions (with respect to x) are continuous,

bounded and increasing. �

4. Appendix

Proof of Lemma 3.4: By (1), for any small ǫ ∈ (0, 1) there exists some positive constant B such that

ri(t) ≥
1

2
and 1− ri(t) ≤ Btα, ∀t ∈ (0, ǫ], 1 ≤ i ≤ m+ k.

Furthermore, for any positive t satisfying (recall ̟ = α/2I{κ ≥ 1}+ α/2min(κ/(4(1− κ)), 1)I{κ < 1})

0 < t̟ < λ < λ0 := min

(
1

2κ+4B
,
κ

2κ+2
, ǫ̟

)

and any u > 2

u2τ/κθκ(t) ≤ 2κκBtα ≤ κtα/2

16
with θκ(t) :=

1

(r(qκt))κ
− 1, r(t) := min

1≤i≤m+k
ri(t).(27)

Let (X
(1)
1/r(t),X

(2)
1/r(t)) :=

(
X1(t) − r−1

1 (t)X1(0), . . . , Xm+k(t) − r−1
m+k(t)Xm+k(0)

)
which by definition is inde-

pendent of {ζ(κ)m,k(t), t ≥ 0}. For j = 1, 2

P

{
|X(j)

1/r(qκt)| > x
}
≤ P

{
|X(j)(0)| > x

2
√
2Bu−2τ/κtα

}
, uθκ(t) ≤

λ

2wκ(u)
.(28)

In the following, the cases κ = 1, κ ∈ (1,∞) and κ ∈ (0, 1) will be considered in turn.

Case κ = 1: Note that by the triangular inequality

ζ
(1)
m,k(q1t) ≤ |X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)|+

1

r(q1t)
ζ
(1)
m,k(0) + θ1(t)|X(2)(0)|.
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Consequently, from (28) we get

P

{
ζ
(1)
m,k(q1t) > u+

λ

u
, ζ

(1)
m,k(0) ≤ u

}

≤ P

{
|X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)|+ θ1(t)|X(2)(0)| > λ

u
− uθ1(t), ζ

(1)
m,k(q1t) > u

}

≤ P

{
|X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)| >

λ

3u

}
P

{
ζ
(1)
m,k(q1t) > u

}
+ P

{
θ1(t)|X(2)(0)| > λ

6u

}

=: I1u + I2u.

By (27) and (28), we have for any p > 1

P

{
|X(1)

1/r(q1t)| >
λ

6u

}
≤ P

{
|X(1)(0)| > λ

12
√
2Btα/2

}
≤ K

(
λ

tα/2

)−p

holds with some K > 0 (the values of p and K might change from line to line below). Similarly

P

{
|X(2)

1/r(q1t)| >
λ

6u

}
≤ K

(
λ

tα/2

)−p

and hence

I1u ≤ K

(
λ

tα/2

)−p

P

{
ζ
(1)
m,k(0) > u

}
.(29)

Moreover, in view of Lemma 3.1 and (27) we have for sufficiently large u that

I2u ≤
P

{
|X(2)(0)| > 2λu

tα/2

}

P

{
ζ
(1)
m,k(0) > u

} P

{
ζ
(1)
m,k(0) > u

}
≤ K

(
λ

tα/2

)−(p−k+2)

u−(p+m−2k)
P

{
ζ
(1)
m,k(0) > u

}
.(30)

Hence, the claim for κ = 1 follows from (29) and (30) by choosing p > max(4/α+ k, 2k).

Case κ ∈ (1,∞): Denote below by (Y (1)(t),Y (2)(t)) :=
(
r−1
1 (t)X1(0), . . . , r

−1
m+k(t)Xm+k(0)

)
. Note that |Y (1)(t)| ≤

|X(1)(0)|/r(t) and |X(2)(0)| ≤ |Y (2)(t)| ≤ |X(2)(0)|/r(t) for all t < ε, and for some constants K1,K2 > 0 whose

values might change from line to line below

|1 + x|κ ≥ 1 + κx, x ∈ R and (1 + x)κ ≤ 1 +K1x+K2x
κ, x ≥ 0.(31)

We have further by the triangle inequality

ζ
(κ)
m,k(qκt) ≤

(
|Y (1)(qκt)|+ |X(1)

1/r(qκt)|
)κ

−
∣∣∣|Y (2)(qκt)| − |X(2)

1/r(qκt)|
∣∣∣
κ

≤ |Y (1)(qκt)|κ +K1|X(1)
1/r(qκt)||Y

(1)(qκt)|κ−1 +K2|X(1)
1/r(qκt)|

κ

−|Y (2)(qκt)|κ + κ|X(2)
1/r(qκt)||Y

(2)(qκt)|κ−1

≤ K1|X(1)
1/r(qκt)||X

(1)(0)|κ−1 +K2|X(1)
1/r(qκt)|

κ

+K3|X(2)
1/r(qκt)||X

(2)(0)|κ−1 +
ζ
(κ)
m,k(0)

(r(qκt))κ
+ θκ(t)|X(2)(0)|κ

holds for qκt ≤ ǫ and some constant K3 > 0. Therefore, with µ = 1/(2(κ− 1)) and ϕ = α/(4(κ− 1))

P

{
ζ
(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u

}

≤ P

{
|X(1)(0)| > λµu1/κ

tϕ

}
+ P

{
|X(2)(0)| > λµu1/κ

tϕ

}

+P

{
K1|X(1)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

+K2|X(1)
1/r(qκt)|

κ +K3|X(2)
1/r(qκt)|

(
λµu1/κ

tϕ

)κ−1

+θκ(t)|X(2)(0)|κ ≥ λ

2wκ(u)
, ζ

(κ)
m,k(qκt) > u

}

=: Ĩ1u + Ĩ2u + Ĩ3u.(32)
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Note by (27) that λµ/tϕ > 1. Similar arguments as in (30) yield that





Ĩ1u ≤ K
(
λµ

tϕ

)−(p−m+2)
u−(p−k(2/κ−1)I{κ≤2})/κ

P

{
ζ
(κ)
m,k(0) > u

}

Ĩ2u ≤ K
(
λµ

tϕ

)−(p−k+2)
u−(p−k+m−k(2/κ−1)I{κ≤2})/κ

P

{
ζ
(κ)
m,k(0) > u

}

and

Ĩ3u ≤
(
P

{
K1|X(1)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

>
λ

8wκ(u)

}
+ P

{
K2|X(1)

1/r(qκt)|
κ >

λ

8wκ(u)

}

+P

{
K3|X(2)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

>
λ

8wκ(u)

})
P

{
ζ
(κ)
m,k(qκt) > u

}

+P

{
θκ(t)|X(2)(0)|κ > λ

8wκ(u)

}

=: (II1u + II2u + II3u)P
{
ζ
(κ)
m,k(0) > u

}
+ II4u.

Furthermore

II1u ≤ P

{
|X(1)(0)| > K1

λ1/2u−1/κ

t−α/4(r−2(qκt)− 1)1/2

}

≤ P

{
|X(1)(0)| > K1

λ1/2

tα/4

}

≤ K

(
λ1/2

tα/4

)−p

.

Similarly

II2u ≤ K

(
λu2(1−1/κ)

tακ/2

)−p/κ

, II3u ≤ K

(
λ1/2

tα/4

)−p

.

Next, we deal with II4u. We have by (27) that 2κ+4Btα/2 ≤ 1. Therefore, similar arguments as for (30) yield

that

II4u ≤ P

{
|X(2)(0)|κ > 2λu

tα/2
1

2κ+4Btα/2

}

≤ K

(
λ

tα/2

)−(p−k+2)

u−(p−k+m−k(2/κ−1)I{κ≤2})/κ
P

{
ζ
(κ)
m,k(0) > u

}
.(33)

Therefore, the claim for κ ∈ (1,∞) follows from (32) and the inequalities for Ĩ1u, Ĩ2u, II1u, II2u, II3u and II4u by

choosing p > max(8(κ− 1)/α+ k +m, 2k).

Case κ ∈ (0, 1): Note that

(1 + x)κ ≤ 1 + x, x ≥ 0 and − |1− x|κ ≤ −(1− x), x ∈ [0,∞).

We have further by the triangle inequality

ζ
(κ)
m,k(qκt) ≤

(
|Y (1)(qκt)|+ |X(1)

1/r(qκt)|
)κ

−
∣∣∣|Y (2)(qκt)| − |X(2)

1/r(qκt)|
∣∣∣
κ

≤ |Y (1)(qκt)|κ + |X(1)
1/r(qκt)||X

(1)(0)|κ−1 − |Y (2)(qκt)|κ + |X(2)
1/r(qκt)||Y

(2)(qκt)|κ−1

≤ |X(1)(0)|κ
(r(qκt))κ

+ |X(1)
1/r(qκt)||X

(1)(0)|κ−1 − |X(2)(0)|κ + |X(2)
1/r(qκt)||X

(2)(0)|κ−1

=
ζ
(κ)
m,k(0)

(r(qκt))κ
+ θκ(t)|X(2)(0)|κ + |X(1)

1/r(qκt)||X
(1)(0)|κ−1 + |X(2)

1/r(qκt)||X
(2)(0)|κ−1.
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Therefore, we have by (28), with ψ = α/(4(1− κ))

P

{
ζ
(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u,

}

≤ P



θκ(t)|X

(2)(0)|κ +
|X(1)

1/r(qκt)|
(u−τ/κtψ)1−κ

+
|X(2)

1/r(qκt)|
(u−τ/κtψ)1−κ

>
λ

2wκ(u)
, ζ

(κ)
m,k(qκt) > u





+P

{
|X(1)(0)| ≤ u−τ/κtψ, ζ

(κ)
m,k(qκt) > u

}
+ P

{
|X(2)(0)| ≤ u−τ/κtψ, ζ

(κ)
m,k(0) ≤ u, ζ

(κ)
m,k(qκt) > u+

λ

wκ(u)

}

=: I∗1u + I∗2u + I∗3u.

Now we deal with the three terms one by one. Clearly, for any u > 2

I∗1u ≤ P

{
θκ(t)|X(2)(0)|κ > λ

6wκ(u)

}
+ P

{
|X(1)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
P

{
ζ
(κ)
m,k(qκt) > u

}

+P

{
|X(2)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
P

{
ζ
(κ)
m,k(qκt) > u

}
,

where the first term can be treated as II4u, see (33). For the rest two terms, using (28)

P

{
|X(j)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
≤ P

{
|X(j)(0)| > κ

12
√
2B

λ

tα/4

}
≤ K

(
λ

tα/4

)−p

, j = 1, 2.(34)

In order to deal with I∗2u and I
∗
3u, set below (X(1)

r (t),X(2)
r (t)) :=

(
X1(0)−r1(t)X1(t), . . . , Xm+k(0)−rm+k(t)Xm+k(t)

)

which by definition is independent of {ζ(κ)m,k(t), t ≥ 0}. For j = 1, 2

P

{
|X(j)

r (qκt)| > x
}
≤ P

{
|X(j)(0)| > 2

√
λx√

u−2τ/κtα

}
.(35)

Using further the triangle inequality |X(1)
r (qκt)|κ ≥ (r(qκt))

κ|X(1)(qκt)|κ − |X(1)(0)|κ and (27) (recalling

|X(1)(qκt)|κ ≥ ζ
(κ)
m,k(qκt) > u)

I∗2u ≤ P

{
|X(1)

r (qκt)|κ > u

(
(r(qκt))

κ − tψκ

u1+τ

)}
P

{
ζ
(κ)
m,k(qκt) > u

}

≤ P

{
|X(1)

r (qκt)|κ >
(1− 2−κ)u

2κ

}
P

{
ζ
(κ)
m,k(0) > u

}

≤ P

{
|X(1)(0)| > (1− 2−κ)1/κ

√
λ

tα/2

}
P

{
ζ
(κ)
m,k(0) > u

}

≤ K

(
λ

tα

)−p/2

P

{
ζ
(κ)
m,k(0) > u

}
.(36)

For I∗3u, using instead |X(1)(qκt)|κ > u+ λ/wκ(u) and

|X(1)(0)|κ = ζ
(κ)
m,k(0) + |X(2)(0)|κ ≤ u

(
1 +

tψκ

u1+τ

)

we have

I∗3u ≤ P

{
|X(1)

r (qκt)|κ > u

(
(r(qκt))

κ

(
1 +

λ

uwκ(u)

)
−
(
1 +

tψκ

u1+τ

))}
P

{
ζ
(κ)
m,k(qκt) > u

}

= P

{
|X(1)

r (qκt)|κ > u−τ
(
λκ(r(qκt))

κ − u1+τ (1− (r(qκt))
κ)− tψκ

)}
P

{
ζ
(κ)
m,k(0) > u

}
,

where by (27)

λκ(r(qκt))
κ − u1+τ (1− (r(qκt))

κ)− tψκ ≥ λκ

2κ+1
− tψκ ≥ λκ

2κ+2
.
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Consequently by (35)

I∗3u ≤ P

{
|X(1)(0)| > 2−2/κκ1/κ

λ1/κ+1/2

tα/2

}
P

{
ζ
(κ)
m,k(0) > u

}

≤ K

(
λ1/κ+1/2

tα/2

)−p

P

{
ζ
(κ)
m,k(0) > u

}
,

which together with (33), (34) and (36) completes the proof for κ ∈ (0, 1) by taking p > 4/α+ k.

Consequently, the desired claim of Lemma 3.4 holds for all κ ∈ (0,∞). �

Proof of Lemma 3.5: We give only the proof for (22) since (23) follows by similar arguments. Since the claims

for k = 0 are already shown in [?], we only consider that k ≥ 1 below. Define, for j = 1, 2, independent ran-

dom vectors
(
|Y (j)(s1)|, . . . , |Y (j)(sp)|

)
and

(
|Ỹ (j)

(t1)|, . . . , |Ỹ
(j)

(tp′)|
)
, which are independent of the process

ζ
(κ)
m,k and have the same distributions as those of

(
|X(j)(s1)|, . . . , |X(j)(sp)|

)
and

(
|X(j)(t1)|, . . . , |X(j)(tp′)|

)
,

respectively. Note that, for any u > 0, the left-hand side of (22) is clearly bounded from above by

∣∣∣∣∣∣
P





p⋂

i=1

{
|X(2)(si)|κ ≥ |X(1)(si)|κ − u

}
,

p′⋂

j=1

{
|X(2)(tj)|κ ≥ |X(1)(tj)|κ − u

}




− P





p⋂

i=1

{
|Y (2)(si)|κ ≥ |X(1)(si)|κ − u

}
,

p′⋂

j=1

{
|Ỹ (2)

(tj)|κ ≥ |X(1)(tj)|κ − u

}


∣∣∣∣∣∣

+

∣∣∣∣∣∣
P





p⋂

i=1

{
|X(1)(si)|κ ≤ |Y (2)(si)|κ + u

}
,

p′⋂

j=1

{
|X(1)(tj)|κ ≤ |Ỹ (2)

(tj)|κ + u

}


− P





p⋂

i=1

{
|Y (1)(si)|κ ≤ |Y (2)(si)|κ + u

}
,

p′⋂

j=1

{
|Ỹ (1)

(tj)|κ ≤ |Ỹ (2)
(tj)|κ + u

}


∣∣∣∣∣∣
.(37)

Next, note by Cauchy-Schwarz inequality that u2 + v2 ≤ (u2 − 2ρuv + v2)/(1 − |ρ|) for all ρ ∈ (−1, 1) and

u, v ∈ R. It follows that fij(·, ·) the joint density function of
(
|X(1)(si)|, |X(1)(tj)|

)
satisfies that

fi,j(x, y) =

∫

|x|=x,|y|=y

m∏

l=1

1

2π
√
1− r2l (tj − si)

exp

(
−x

2
l − 2rl(tj − si)xlyl + y2l

2(1− r2l (tj − si))

)
dxdy

≤ 1

(2π)m(1− (r̃(tj − si))2)m/2

∫

|x|=x,|y|=y

m∏

l=1

exp

(
− x2l + y2l
2(1 + |rl(tj − si)|)

)
dxdy

≤ 1

(2π)m(1− (r̃(tj − si))2)m/2
exp

(
− x2 + y2

2(1 + r̃(tj − si))

)∫

|x|=x,|y|=y

dxdy

=
(xy)m−1

2m−2(Γ(m/2))2(1− (r̃(tj − si))2)m/2
exp

(
− x2 + y2

2(1 + r̃(tj − si))

)
, x, y > 0.

Therefore, in view of Lemma 2 in [?], with K a constant whose value might change from line to line, the first

absolute value in (37) is bounded from above by

K

p∑

i=1

p′∑

j=1

∫

xκ>u

∫

yκ>u

r̃(tj − si)
(
(xκ − u)(yκ − u)

)(k−1)/κ

exp

(
− (xκ − u)2/κ + (yκ − u)2/κ

2(1 + r̃(tj − si))

)
fij(x, y) dxdy

≤ K

p∑

i=1

p′∑

j=1

r̃(tj − si)

(∫ ∞

u

(x− u)(k−1)/κxm/κ−1 exp

(
− x2/κ

2(1 + r̃(tj − si))

)
dx

)2

≤ Ku2((m−k+1)/κ−2)

p∑

i=1

p′∑

j=1

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
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where the last inequality follows by a change of variable x′ = u(x − u). Similarly, denoting by g(·) the pdf of

|X(2)(0)| we obtain that the second absolute value in (37) is bounded from above by

K

p∑

i=1

p′∑

j=1

r̃(tj − si)

∫ ∞

0

∫ ∞

0

(
(xκ + u)(yκ + u)

)(m−1)/κ

exp

(
− (xκ + u)2/κ + (yκ + u)2/κ

2(1 + r̃(tj − si))

)
g(x)g(y) dxdy

≤ K

p∑

i=1

p′∑

j=1

r̃(tj − si)

(∫ ∞

0

(x+ u)(m−1)/κxk/κ−1 exp

(
− (x+ u)2/κ

2(1 + r̃(tj − si))

)
dx

)2

≤ Ku2(m−k−1)/κ

p∑

i=1

p′∑

j=1

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)

where the last step follows by a change of variable x′ = ux. Hence the proof of (22) is established by noting

that
m− k − 1

κ
−
(
m− k + 1

κ
− 2

)
= −2

(
1

κ
− 1

)
.

This completes the proof. �

Proof of Lemma 3.6: The proof follows by the same arguments as for Lemma 12.3.1 in [?], using alternatively

the following asymptotic relation (recall (24) and Lemma 3.1)

u2/κ = 2 lnTκ +K0 ln lnTκ + lnD0(1 + o(1)), Tκ → ∞(38)

with D0,K0 defined in Theorem 2.3. We split the sum in (25) at T βκ , where β is a constant such that 0 <

β < (1 − δ)/(1 + δ) and δ = sup{r̃(t) : t ≥ ǫ} < 1 (cf. Lemma 8.1.1 (i) in [?]). Below K is again a

positive constant which might change from line to line. From (38) we conclude that exp
(
−u2/κ/2

)
≤ K/Tκ

and u2/κ = 2 lnTκ(1 + o(1)). Further (recall ς := 2/κ(m− k − 1 + max(0, 2(1− κ))))

uς
Tκ
qκ

∑

ε≤aqκj≤T
β
κ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

≤ uς+
4τ
ακT β+1

κ exp

(
− u2/κ

1 + δ

)

≤ K(lnTκ)
κς
2 + 2τ

α T
β+1− 2

1+δ
κ ,

which tends to 0 as Tκ → ∞ since β + 1 − 2/(1 + δ) < 0. For the remaining sum, denoting δ(t) =

sup{|r̃(s) ln s| ; s ≥ t}, t > 0, we have r̃(t) ≤ δ(t)/ ln t as t→ ∞, and thus in view of (38) for aqκj ≥ T βκ

exp

(
− u2/κ

1 + r̃(aqκj)

)
≤ exp

(
−u2/κ

(
1− δ(T βκ )

lnT βκ

))

≤ K exp(−u2/κ) ≤ KT−2
κ (lnTκ)

−K0 .

Consequently

uς
Tκ
qκ

∑

Tβ
κ ≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

≤ uς
(
Tκ
qκ

)2

T−2
κ (lnTκ)

−K0
1

lnT βκ

1

Tκ/qκ

∑

Tβ
κ ≤aqκj≤Tκ

r̃(aqκj) ln(aqκj)

≤ K(lnTκ)
κς
2 + 2τ

α −K0−1 1

Tκ/qκ

∑

Tβ
κ ≤aqκj≤Tκ

r̃(aqκj) ln(aqκj).(39)

Since the Berman condition limt→∞ r̃(t) ln t = 0 holds and further β < 1 andK0 = m−2+2τ/α+k(1−2/κ)I{κ ≤
2}, the right-hand side of (39) tends to 0 as u→ ∞. Thus the proof is complete. �
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