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Sensitivity Ellipsoids for Force Control of Magnetic

Robots with Localization Uncertainty

Piotr R. Slawinski1, Student Member, IEEE, Nabil Simaan1, Senior Member, IEEE,

Addisu Z. Taddese1, Keith L. Obstein1,2, Pietro Valdastri3, Senior Member, IEEE

Abstract—The navigation of magnetic medical robots typically
relies on localizing an actuated, intracorporeal, ferromagnetic
body and back-computing a necessary field and gradient that
would result in a desired wrench on the device. Uncertainty
in this localization degrades the precision of force transmission.
Reducing applied force uncertainty may enhance tasks such as
in-vivo navigation of miniature robots, actuation of magnetically
guided catheters, tissue palpation, as well as simply ensuring a
bound on forces applied on sensitive tissue. In this paper, we
analyzed the effects of localization noise on force uncertainty by
using sensitivity ellipsoids of the magnetic force Jacobian and
introduced an algorithm for uncertainty reduction. We validated
the algorithm in both a simulation study and in a physical
experiment. In simulation, we observed reductions in estimated
force uncertainty by factors of up to 2.8 and 3.1 when using
one and two actuating magnets, respectively. On a physical
platform, we demonstrated a force uncertainty reduction by a
factor of up to 2.5 as measured using an external sensor. Being
the first consideration of force uncertainty resulting from noisy
localization, this work provides a strategy for investigators to
minimize uncertainty in magnetic force transmission.

Index Terms—force control, localization, magnetic actuation,
medical robots and systems

I. INTRODUCTION

MAGNETIC actuation for use in medicine has been

investigated since 1842 with the first use of computer

guidance occurring in the late 1980s [1]. The use of mag-

netic actuation to manipulate a ferromagnetic body via an

extracorporeal field offers advantages in terms of invasiveness

and miniaturization; thereby eliminating the need for on-board

actuation mechanisms and motion-dedicated power. It has been
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widely applied for medical applications including drug deliv-

ery, nano- micro- and meso- scale navigation, the actuation

of continuum robots and needles, ablation, diagnostics, tissue

penetration, and the actuation of laparoscopic devices [2]–[6].

The control of magnetic devices is implemented by impart-

ing a field misalignment and gradient on the driven magnet

which induces a wrench. The computation of this field and

its gradient results in closed-loop magnetic control which has

been developed previously by estimating the device state, e.g.

localizing it, and using magnetic field models to compute

necessary fields and gradients for motion [7]–[9]. Another

approach for closed-loop control that was recently developed

relies on estimating the relationship between the actuating field

and device motion directly [10]. This method bypasses the

need for localizing an actuated device; however, it cannot

be applied in systems where magnetic wrench estimation

or absolute positioning is desired. Methods that have been

investigated for obtaining feedback of the position, and-or

orientation, of intracorporeal actuated devices include:

1) visual feedback [11];

2) microwave imaging [12];

3) radio-frequency localization [13];

4) ultrasound [14];

5) positron emission tomography [15];

6) magnetic localization [9], [16]–[18];

This paper is motivated by the lack of investigation into

the effects of localization uncertainty on magnetic force trans-

mission. Regardless of the localization method used, location

uncertainty, or noise, introduces a disturbance in the applied

magnetic wrench and thus negatively effects position and force

control accuracy and robustness. Similar uncertainty effects

have been extensively investigated in mechanical linkage

architectures, but little consideration exists in the realm of

magnetic actuation [19]–[21]. Localization uncertainty, as it

pertains to the task of magnetic force transmission, has not

been investigated. Furthermore, a framework for considering

such uncertainty has not been developed.

A prior study concerning uncertainty in magnetic actuation

was conducted on a system consisting of a single permanent

magnet that rotated to generate a rotating magnetic field. To

avoid unexpected behavior and loss of control of a rotat-

ing robot, the authors characterized the effects of error in

the chosen applied field rotation axis, field magnitude, and

instantaneous rotational velocity while attributing worst-case

bounds [22]. The distinction between rotating and non-rotating

device control is significant as the mechanics of actuation
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are different: a rotating robot is typically propelled via the

mechanics of threading through a medium, whereas a non-

rotating robot is simply subject to applied forces and torques

and dynamically reacts to them.

The primary contributions of this work are (1) the proposi-

tion of a method for characterizing the effects of localization

noise on uncertainty in the applied magnetic force on an

actuated intracorporeal magnet and (2) the application of this

characterization to a force control task where one desires

to reduce force uncertainty in a chosen direction. We use

sensitivity ellipsoids [23] to characterize the mapping between

localization noise and the uncertainty in applied force. We use

force ellipsoids in this analysis and note that magnetic actua-

tion is unique with respect to typical rigid-link manipulators in

that a duality between joint and task manipulability does not

exist, as the only motion of the robot results from an applied

wrench. We have demonstrated that actuation redundancy in a

magnetic system can be utilized to adjust the shape of force

sensitivity ellipsoids that, in turn, results in a force control

that has a lower uncertainty in a direction of choice. This

methodology is valid for magnetic actuation systems with

one or more actuating permanent magnets. The approach we

present can be expanded for systems of electromagnets by

replacing EM twist relations with current inputs, or combining

the two in the case of mobile electromagnet systems [24].

We begin by summarizing our magnetic modeling technique

in Section II. In Section II-C, we discuss the implication

of sensitivity ellipsoids and demonstrate how the actuation

workspace can be analyzed. In section III, we propose an

algorithm for using sensitivity ellipsoid information in a force

control task and demonstrate the algorithm’s function both in

simulation (Section IV-B) and on our experimental platform

(Section IV-C). Finally, we summarize our work and discuss

its implications in Sections V and VI.

II. MODELING OF MAGNETIC FORCE

UNCERTAINTY

A. Assumptions

In this work, we will make use of five assumptions related

to the magnetic field, the motion of the actuated intracorporeal

magnet (IM), and the localization of the actuating, extracor-

poreal, magnet (EM). First, we will assume that the magnets

can be modelled as ideal dipoles; this is an appropriate

approximation as a permanent magnet with identical length

and diameter, as we use in our system, has been shown to

resemble a dipole field with approximately 1% error at one

normalized distance from the EM’s center (10 cm in our

case) [25]. Second, we assume that slow motions of the IM

which simplifies the mathematical formulations. This assump-

tion has been used in our previous works with success [26].

Third, we assume ideal knowledge, i.e. no uncertainty, of

the configuration of the EM. In this work, the EM is fixed

at the end-effector of a serial industrial manipulator and the

configuration of the EM is computing using direct kinematics.

The assumption of ideal EM configuration knowledge is valid

as the kinematics of the rigid-link manipulator are likely to

have a significantly higher accuracy than magnetic localization

TABLE I
NOMENCLATURE

Symbol Description

v Vector (lowercase, bold)

M Matrix (uppercase)

I Identity matrix

J Jacobian matrix

J̃ Jacobian matrix written in terms of differential rota-
tion

δ Infinitesimal change

v̂ Unit vector

pek
Position of kth EM in inertial frame ∈ IR3

pi Position of IM in inertial frame ∈ IR3

pk = pi −pek
Relative position vector from kth EM to IM ∈ IR3

m̂ek
Magnetic moment vector of kth EM ∈ IR3

m̂i Magnetic moment vector of IM ∈ IR3

xe = [pe;m̂e] Pose of EM ∈ IR6

xi = [pi;m̂i] Pose of IM ∈ IR6

xd = [pd ;m̂d ] IM pose disturbance from localization uncertainty ∈
IR6

systems. Fourth, we assume Jacobian linearity to be always

valid. This assumption is discussed in a latter portion of this

section, however, it is a safe assumption as our controller

runs at over 50 Hz. Fifth, we assume that the Jacobian used

for magnetic actuation is not affected by localization noise.

We show that our results suggest this to be an acceptable

assumption owing to our high control rate.

B. Error Propagation in Magnetic Coupling

The point-dipole model describes the field of a particle and

can be used to approximate the fields of permanent magnets

of various shape [25]. In this section, we briefly summarize

the model for the purpose of understanding control relations,

and present linearizations that are used in sensitivity analysis

and control.

The discussion, methodology, and experiments in this doc-

ument serve as a case study for our approach to sensitivity

analysis and optimization. We present the methodology for

a system of one or more EMs that actuate, via imparted

wrenches, a single IM. The gradient and direction of the

magnetic field at the IM is controlled by imparting twists

on the EM(s). We distinguish references to the magnets by

using an “e” subscript to reference EMs and an“i” subscript

to refer to the IM. In the event that multiple EMs are

used, an additional enumeration subscript “k” is applied. The

nomenclature used in this document is shown in Table I, with

some parameters visualized in Fig. 1 where a planar dipole

field shape is shown for reference.

The magnetic field of a single EM applied at an IM can

be expressed via Eq. (1) whereas, owing to magnetic fields

being vector fields, the total field at an IM can be expressed

via Eq. (2) [27].

bek
(pk) =

µ0

4π ‖pk‖
3
(3p̂kp̂T

k mek
−mek

) (1)

be =
n

∑
j=1

be j
(p j) (2)

The magnetic wrench induced on the IM by external fields
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Fig. 1. Nomenclature of magnets and visual representation of the dipole fields
of an IM and EM, without superposition, as well as the force and torque that
are imparted on the IM by the EM.

can be expressed via Eq. (3) and Eq. (4) [7].

f = (mi ·∇)be =
n

∑
i= j

(3µ0

∥

∥me j

∥

∥‖mi‖

4π
∥

∥p j

∥

∥

4
(m̂e j

m̂T
i

+m̂im
T
e j
+(m̂T

i (I−5p̂ jp̂
T
j )m̂e j

)I)
)

p̂

(3)

τ = mi ×be

=
n

∑
j=1

(µ0

∥

∥me j

∥

∥‖mi‖

4π
∥

∥p j

∥

∥

3
m̂i × (3p̂ jp̂

T
j − I)m̂e j

) (4)

The linearization that relates infinitesimal EM motion and the

change in wrench, δw, applied on the IM can be evaluated

either numerically or analytically. An analytical formulation of

Jacobians that relates the motion of a single EM to changes in

magnetic force on the IM and heading of the IM was developed

by Mahoney and Abbott [7] and later expanded by Taddese et

al. [28] to include consideration for magnetic torque in cases

where alignment of the IM to the external field should not be

assumed. This expression is shown in Eq. (5). We separate

EM and IM terms in Eq. (6), and expand the expression for

cases of actuation via multiple EMs in Eq. (7). We refer the

reader to [28] for explicit definitions of differential terms.

δwk =

[

δ fk

δτk

]

=





∂ fk

∂pk

∂ fk

∂m̂ek

∂ fk

∂m̂i

∂τk

∂pk

∂τk

∂m̂ek

∂τk

∂m̂i









δpk

δm̂ek

δm̂i



 (5)

[

δ fk

δτk

]

=





∂ fk

∂pek

∂ fk

∂m̂ek
∂τk

∂pek

∂τk

∂m̂ek





[

δpek

δm̂ek

]

+

[

∂ fk

∂pi

∂ fk

∂m̂i
∂τk

∂pi

∂τk

∂m̂i

]

[

δpi

δm̂i

]

= Jek

[

δpek

δm̂ek

]

+

[

∂ fk

∂pi

∂ fk

∂m̂i
∂τk

∂pi

∂τk

∂m̂i

]

[

I 0

0 S(m̂i)
T

][

δpi

ωi

]

= Jek

[

δpek

δm̂ek

]

+

[

JF pi
J̃Fωi

JT pi
J̃T ωi

][

δpi

ωi

]

= Jek

[

δpek

δm̂ek

]

+ J̃ik

[

δpi

ωi

]

(6)

Here, S(a) ∈ so(3) denotes the skew-symmetric form of the

cross-product operation. In J̃i of Eq. (6), we use partial

derivatives with respect to differential rotation (ωi), rather than

dipole heading, as angular velocity is the mode of localization

feedback. In Eq. (7) we expand Eq. (6) to account for multiple

EMs used for actuation.

δw = δwe +δwi
[

δ f

δτ

]

= Je

[

δpe

δm̂e

]

+ J̃i

[

δpi

ωi

]

δw =

[

JFe

JTe

]

δxe +

[

J̃Fi

J̃Ti

][

δpi

ωi

]

=

[

JFe1
... JFek

JTe1
... JTek

]

[δxe1
; ...;δxek

]T+

...
( n

∑
i=1

[

J̃Fik

J̃Tik

]

)

[

δpi

ωi

]

(7)

We now have a full expression for applied wrench of δw

in Eq. (7) which we interpret as: the infinitesimal change

in wrench applied on the IM by the EM(s) results from the

change in pose of the EM(s) and IM. It should be noted that

the influences of Jacobians JFek
and J̃Fi are nearly identical

if a single EM is used. The relative impact of J̃Fi decreases

as more EMs are used and has approximately 60% of the

influence of JFek
when two EMs are used. As δwi is null

owing to an assumption of slow IM motion, we replace it

with an algorithmic wrench disturbance term to account for the

effects of localization uncertainty in a force application task.

This new term can be interpreted as a numerical uncertainty

in wrench that does not exist in the physical world, but is

perceived by the controller. With this disturbance wrench,

our expression for the change in applied wrench becomes

δw = δwe + δwd . We will model δwd the same way as

δwi i.e. we use the Jacobian J̃i and refer to the disturbance

twist as δxd . Hereafter, we use Je ∈ IR6×6k for actuation and

J̃i ∈ IR6×6 for analyzing the mapping of localization noise

to a disturbance wrench. Whereas ideal knowledge of EM

positioning is assumed here, Eq. (7) should be augmented in

the event that a larger uncertainty exists in the configuration

of the EM.

The expression in Eq. (7) remains valid as long as the

linearity assumption holds; i.e. linear and angular perturbations

of IM pose are small enough. To evaluate an approximate

linearity range, we conducted a numerical simulation using

90,000 configurations of an IM and EM, where the IM was

spanned to be between 14 and 16 cm from the EM, and

found the linearity range to be 14.3 mm and 6.1◦. The

conditions for linearity in magnetic force were as follows: the

error magnitude of the linearized force less than or equal to

10%, and the direction error between the linearized force and

nonlinear truth is less than or equal to 10◦. We note that the

aforementioned angular range of 6.1◦ refers to rotation of the

IM, while the angular error of linearized force refers to an

angle between resultant force vectors. Furthermore, we note

that we assume JFek
to be unaffected by localization noise. The

implication of this noise is a deviation of commanded magnet

motion from the optimal, i.e. the direction that reduces force
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Fig. 2. Graphical representation of a single EM that actuates an IM, possible
uncertain poses of the IM when zoomed in, and the sensitivity ellipsoid that
relates position uncertainty with uncertainty in applied force. Both force and
motion are considered only in the XY plane for visualization.

Fig. 3. A planar representation of shape variation of the ∂ f/∂pi Jacobian
sensitivity ellipsoid. The IM orientation is kept constant while it is translated
throughout this planar workspace in a set of discrete points where the
ellipsoids are shown. All ellipsoids are normalized in scale for visualization.

error. This assumption degrades as the rate of control decreases

and the resultant effect is a non-smooth motion of the EM(s).

C. Analysis of Force Uncertainty Using Sensitivity Ellipsoids

To characterize the effect of localization uncertainty, we

study J̃i, a linear mapping between infinitesimal changes in

IM pose and uncertainty in applied wrench. An instantaneous

visualization of the Jacobian mapping, a sensitivity ellipsoid,

has been frequently used in rigid-link robotics for considering

losses in degrees-of-freedom (DoFs), kinematic and dynamic

manipulability, and sensitivity, but has not before been utilized

in magnetic control. For derivations of ellipsoid usage we refer

the reader to texts by Yoshikawa and Nakamura [23], [29] as

they will be omitted here for brevity apart from relations that

are necessary for understanding the topic at hand. The force

uncertainty that results from localization noise is dictated by

J̃Fi which maps infinitesimal IM twist to a change in force

applied on the IM.

The mapping of J̃Fi can be visualized by considering a set

of unit inputs of δxd uniformly distributed such as to resemble

a unit sphere. The set of mapped force vectors is defined by

the hyper-ellipsoid:

δ fT
d (J̃FiJ̃

T
Fi)

−1δ fd = 1 (8)

The major and minor axes of this hyper-ellipsoid constitute the

directions of maximum and minimum wrench uncertainty, re-

spectively. The mapping can be explicitly characterized using

singular value decomposition. We consider the decomposition

of J̃Fi to be UΣVT where U and V are two orthonormal

spaces where the columns of U are called left-singular vectors

and the columns of V are called right-singular vectors. The

diagonal of Σ contains the singular values, si, of J̃Fi which are

arranged such that s1 > s2 > s3. Conceptually, the left-singular

vectors indicate the principal directions of infinitesimal wrench

application whereas the right-singular vectors indicate the

corresponding directions of infinitesimal twists that cause

the respective wrenches. Thus, the longer that a sensitivity

ellipsoid is in a particular direction, the more uncertain the

applied wrench is. In a force control task, we desire for this

ellipsoid to be as small as possible in the direction that force

is to be controlled with the most certainty. A 2D conceptual

representation of a sensitivity ellipsoid, developed via the

dipole model, is shown in Fig. 2. The shape of the ellipsoids

may vary significantly throughout an EM’s workspace as

demonstrated in Fig. 3; here, a constant orientation of an IM is

chosen and the dipole ellipsoids are plotted at a discrete set of

IM positions on a plane. As the accuracy of the dipole model

of the EM increases with distance, so does the accuracy of the

sensitivity ellipsoids.

We aim to reduce the uncertainty in a force application task,

such as applying a contact force, in a direction of interest that

we will hereafter refer to as ĉ, where “c” denotes “contact”.

This inherently results in a desired task of reducing the spatial

derivative of force in the direction of contact. We wish to

identify the size of the mapping of Jacobian J̃Fi in the direction

of ĉ. To do so, we compute the volume of the sensitivity

ellipsoid of J̃Fi projected in the direction of ĉ via projection

matrix Pc = ĉĉT. We hereafter refer to the ellipsoid length of

J̃Fi in the direction of ĉ via the scalar g. The definition of

g is shown in Eq. (9) whereas the expression for computing

the volume of a hyper-ellipsoid, as defined in [29], is shown

in Eq. (10) where Γ(⋆) is the gamma function and m is the

length of the hyper-ellipsoid. We note that the vol() function

of Eq. (10) computes the product of non-zero singular values;

this facilitates not only the computation of volume, but also

area, or length, in the case of the Jacobian being rank deficient.

We refer to the magnetic force whose uncertainty we wish to

minimize as fc = f · ĉ and refer to this as the “contact force”.

The force fc is the force that is exerted on the environment by

the IM. The parameters of a sensitivity ellipsoid are visualized

in Fig. 4.

g ≡ vol(PcJ̃Fi) (9)

vol(J) =
πm/2

Γ(1+m/2)

j

∏
i=1

σi (10)
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Fig. 4. Conceptual schematic of a force sensitivity ellipsoid. The ellipsoid
view represents a plane-cut through the ellipsoid, which would be achieved by
projecting a Jacobian. Sub-figure a) shows a side view of ellipsoid, whereas
sub-figure b) shows the top view of ellipsoid. In the top view, we show the
non-circular projection where g takes on a value between the magnitudes of
the ellipsoid length in the ûmin and ûmax direction.

Localization feedback with noise will result in an uncertain

estimated force as mapped by the nonlinear Eq. (3). We refer

to this mapped wrench hereafter as fca where the subscript “a”

is used to denote that this is the contact force as interpreted

by an algorithm. We note that the difference between fc and

fca is that fc is a true force that is exerted on the environment,

whereas fca is the force as perceived by a control algorithm.

The value of fc can be more precisely controlled when the

uncertainty of fca is minimized. We quantify force uncertainty

using coefficients of variation CVa and CVt which represent

the algorithmic contact force uncertainty, Eq. (11), and the true

contact force uncertainty, Eq. (12), respectively. Here, STD

indicates the standard deviation.

CVa = 100×|
ST D( fca)

MEAN( fca)
| (11)

CVt = 100×|
ST D( fc)

MEAN( fc)
| (12)

To visualize the relationship between these values in the

presence of localization noise, we conducted a set of 5000

numerical simulations where a uniform localization noise of

15 mm and 15◦ was applied with a single stationary EM and

a stationary IM. This linear noise translates to approximately

135% of the size (11.11 mm diameter and length) of the IM

used in our previous experimental work [9], [26]. In each of

the 5000 simulations, the EM’s pose was randomly chosen

within a distance between magnets of 15 cm with a STD of

1 cm, or in a bound of approximately 7% of the separating

distance. The position of the EM around the IM was chosen

by a uniform random distribution of relative position vectors

p. Similarly, the heading of the EM was chosen randomly as

well. For each pose of the EM, 1000 mappings from uncertain

localization to fca were computed. Noise was assumed to

have a Gaussian distribution. We note that the nonlinear

force mapping was applied here. From this, we computed the

relationships between g and the STD of | fca |, Fig. 5, as well

as between mean(g)/mean(| fca |) and CVa, Fig. 6. We note

that mean(g)/mean(| fca |) is not equal to mean(g/| fca |). We

do not directly plot the relationship between g and CVa as

the latter is normalized with the contact force magnitude. We

Fig. 5. Numerical simulation result that shows the relationship between the
STD of fca , which is the contact force as estimated by the system, and the
mean value of g. Here, the mean refers to the mean value of the 1000 data
points of each of the 5000 simulation.

Fig. 6. Numerical simulation result that shows the relationship between the
mean normalized value of g and CVa. Here, the mean refers to the mean
value of the 1000 data points of each of the 5000 simulation.

found that g and the STD of | fca | are related linearly with

a coefficient of determination of 0.94, whereas the relation

between g/| fca | and CVa has a coefficient of determination

of 0.87. As the results in Fig. 6 are normalized with force

magnitude, a nonlinearity is introduced that results from the

relation shown in Eq. (3). We conclude that reducing g will

result in a reduction in uncertainty

The uncertainty of fca , the contact force as estimated by the

system, is directly affected by the value of g and thus, since

g can be controlled by the actuating field, the uncertainty of

fca can also be controlled. The uncertainty in the true force

on the environment, fc, however, is dependent not only on

the estimate fca , but also on environmental factors, and thus

cannot directly be controlled. We proceed with an assumption

that if the estimated contact force has a lower uncertainty, then

the true contact force will likely have a lower uncertainty as

well.

III. FORCE CONTROL

To implement magnetic control, we wish to determine which

EM motions will result in desired wrenches on the IM that,
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in turn, will act on the IM and result in desired force and-or

motion. The motion of an IM is dictated by device mechanics

and dynamics, as well as environmental interactions. Rather

than precisely modeling environmental effects which may

be cumbersome, prior works have successfully implemented

closed-loop control without environmental modelling [7], [9],

[26] which we have done in this work as well. To choose a

desired EM motion, a desired infinitesimal change in force

must be determined, which we refer to as δ fdes. Given that

this is a 3 DoF actuation task, and the actuation system has

5 DoFs, JFe contains 2 DoFs of redundancy, which we use

here for sensitivity minimization. The action of the controller

is dependent on the method of inversion of the JFe Jacobian.

One acceptable inversion method is to use a weighted right

pseudo-inverse as shown in Eq. (13) [30]. This inversion is a

constrained linear optimization that minimizes the objective

function δxT
e Wδxe where W is a diagonal weight matrix

whose diagonal weights can be chosen such that certain values

of δxe are minimized with preference. The weight matrix W

can be used for performance tuning as the vector δxe contains

terms of various units; an example result of weight tuning

could be a preference for EM rotation rather than translation.

In implementations in this paper, W was set to an identity

matrix.

δxe = W−1JT
Fe(JFeW−1JT

Fe)
−1δ fdes = J#

Feδ fdes (13)

To reduce uncertainty in fc, we aim to reduce the value of

g. In this section we present a control method that reduces the

value of g using a gradient projection method [31] in magnetic

control. Here, we alter the shape of the sensitivity ellipsoid

using EM DoFs that are redundant for completing the desired

task of 3 DoF force control. We thus augment the control

strategy of Eq. (13) to Eq. (14) where the scalar value β is

a user defined constant that, when set to a negative value,

projects the gradient onto the null space of JFe as to minimize

an objective function. The value of δ fdes is task dependent

and will be specified in reference to experiments later in this

manuscript. The gradient of g is computed via Eq. (15) where

a gradient with respect to a single EM motion is computed.

This same method is utilized by stacking gradients if more

than one EM is used. We compute the gradient numerically

using Python and have observed a computation time between

2 and 4 ms when using a single EM. In our implementation,

we normalized the gradient and capped the impact of the

homogeneous solution.

δxe = δxeparticular
+δxehomogeneous

= δxep +δxeh

= J#
Feδ fdes +β (I−J#

FeJFe)∇xeg(xe,xi)
(14)

∇xeg =

[

∂vol(PcJFi)
∂pe

∂vol(PcJFi)
∂m̂e

]

(15)

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

We conducted experiments in both a simulation environment

and a physical platform, as shown in Fig. 7 and Fig. 8,

respectively. All system software was written using Python and

Robotic Operating System middleware [32]. The simulation

was developed in Gazebo, an open-source software that is

equipped with a physics engine, and component-wise emulates

our physical platform. We used a custom magnetic dipole

plugin that was previously developed by our group [28] for

integrating magnetic wrenches with Gazebo’s dynamics. The

IM in the simulation is housed in a spherical shell. The shape is

chosen to minimize effects of geometry on algorithm function.

The IM’s shell contains a tether whose primary purpose is to

stabilize dynamics of the IM; however, an additional advantage

of the tether is that it acts as a disturbance to IM motion that

is likely to be more realistic than a simple untethered sphere.

The physical platform has been previously developed for ap-

plication in robotic-magnetic endoscopy [26], [28], [33]. The

platform consists of a six DoF serial manipulator (RV6SDL,

Mitsubishi, Inc., Japan) with an EM mounted at the end-

effector and an IM housed in a tethered shell. Whereas the

magnets in the simulation are modeled as perfect dipoles,

in reality the EM is a cylindrical permanent magnet (N52

grade, 101.6 mm diameter and length, NdFeB, ND N-10195,

Magnetworld AG, Germany) that is magnetized in the axial di-

rection and has a magnetic flux density of 1.48 T and the IM is

another cylindrical permanent magnet (N52 grade, 11.11 mm

diameter and length, NdFeB, D77-N52, K&J Magnetics, USA)

with a magnetic flux density of 1.48 T. A force and torque

sensor (Nano 17 SI-25-0.25, ATI Technologies) was used in

force-control validation experiments. Data from this sensor

was acquired using a 12 bit Analog-to-Digital converter that

provided accuracy of 0.1 N and 0.5 m ·Nm. This sensor was

mounted on, and manipulated by, a second serial manipulator

(RV6SDL, Mitsubishi, Inc., Japan). The two manipulators

were registered using a least-squares fitting [34].

The magnetic control solution to Eq. (14) is an EM motion,

thus joint values of the serial manipulator must be computed

to achieve the desired end-effector motion. To compute the

necessary robot joint step, δq to achieve δxe, we use an

actuation Jacobian, JA, defined in Eq. (16), where JR is the

manipulator’s geometric Jacobian. The Jacobian JA contains

a redundancy in that a dipole can rotate about about its

magnetization axis without change in applied field owing to

its field symmetry about its magnetization axis.

δxe =

[

I 0

0 S(m̂e)
T

]

JRδq = JAδq (16)

The robot joint solution is shown in Eq. (17) where J+A denotes

the Moore-Penrose Pseudo Inverse of the actuator Jacobian.

Similar to β in Eq. (14), βR is a user defined value that scales

the projection of the gradient of an objective function, h(q),
onto the null space of JR. We chose h(q) to represent the

value of the manipulator’s wrist, thus, after a threshold is

reached, the manipulator uses available redundancy to prevent

a collision between our EM’s casing and the manipulator’s

link. The strategy is particular to our application and can be

customized per future operator’s needs.

δq = J+R δxe +βR(I−J+R JR)∇qh(q) (17)

In the remainder of this section, we provide experimental

demonstration of the functionality of our proposed method.
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Fig. 7. Our Gazebo simulation environment with a) a single-EM environment
and b) a double-EM environment. In all trials, a desired force was set in the
-x direction while motion was controlled in the y direction where a desired
position was set.

Fig. 8. The experimental platform that we used in physical experiments. A
manipulator maneuvers an EM while another identical manipulator maneuvers
an IM. The wrench applied on the IM is measured with a force and torque
sensor.

We begin with a simulation study followed by experimental

validation on a physical system.

B. Simulation Study

To evaluate our ability to algorithmically lower the value

of g, and thus fca and in turn fc, when manipulating an IM,

we conducted a series of simulation trials. The control was

applied as stated in Eq. (14). The δ fdes term was used for

both position and force control as shown in Eq. (18) where ep

and e f indicate position and force errors, respectively. Position

is controlled in a motion direction that is orthogonal to ĉ and

indicated by p̂m. Both the contact force control and motion

control directions are orthogonal to the vertical axis along

which gravity is applied. The projection matrix that projects

into this direction of motion is defined as Pm = p̂mp̂T
m. Imple-

mentation of proportional-integral-derivative (PID) control is

indicated via pid(). We conducted simulations with ĉ directed

in the inertial −x and y directions, referred to via −x̂ and ŷ,

respectively.

δ fdes = (I−Pm)pid(e f )+Pmpid(ep) (18)

We conducted one set of experiments using a Gaussian

localization uncertainty of 10 mm and 10◦ and another with

15 mm and 15◦; the localization uncertainty was varied to

observe whether algorithm performance was affected by noise

magnitude. The localization uncertainty is applied in each

pose component, i.e. position and orientation along all axes.

These localization noise magnitudes were selected as they are

near the upper boundary of uncertainty observed in physical

systems [9], [12], [16], [35]–[37]. Each set of experiments

consisted of both “static” and “dynamic” trials. During the

static trials, the IM is kept fully constrained while during

dynamic trials, the IM and its tether are able to move freely and

thus be subject to motion control in addition to force control.

During static trials when ĉ was in the −x̂ direction, the IM’s

heading was aligned with ĉ, while during static trials when ĉ

was in the ŷ direction, the IM’s heading was orthogonal to ĉ,

though still on the horizontal. This was done to evaluate the

influence of various orientations.

We conducted the static and dynamic trials using both a

single EM and two EMs, and conducted two sets of experi-

ments for each combination of experimental parameters. These

combinations can be visualized in the results Table II. Trials

of “Set No.” 1 were subject to a desired force of 0.27 N in

the direction of ĉ and 0.75 N in the vertical; this resulted in

a desired force with a magnitude of 0.8 N and an orientation

of 70◦ from ĉ. Trials of “Set No.” 2 were subject to a desired

force of 0.61 N in the direction of ĉ and 0.51 N in the vertical;

this resulted in a desired force with a magnitude of 0.8 N and

an orientation of 40◦ from ĉ.

The dynamic trials of “Set No.” 1 resulted in the IM pressed

against the contact-wall, as well as the upper-barrier, or ceiling,

as shown in Fig 7. The dynamic trials of “Set No.” 2 resulted

in the IM pressed against the contact wall, but floating in the

vertical direction. Each “trial” consisted of five simulations

run without the use of algorithm and five simulations with the

algorithm. Each simulation ran for 80.0 s. Only the final 30.0 s

of each simulation, the steady-state period, was post-processed

as to avoid capturing data from the early, transient, period

where magnets move to reduce force error and to reduce g.

The homogeneous force solution that minimizes g was limited

to a threshold magnitude after 35.0 s. A larger influence of the

homogeneous component in the transient period allowed for

the EM(s) to maneuver closer to a g minimum before the start

of the steady-state period. We do not vary the magnitude of the

particular solution between trials as modifying it would have

an influence on force uncertainty and thus would not allow for

a direct evaluation of the algorithm’s efficacy.

Results are shown in Table II (10 mm, 10◦ noise) and

Table III (15 mm, 15◦ noise). The reported results in this table

are the following: “ fc err”: force error in ĉ from the desired,

“g/| fca |”: the value of g normalized against force magnitude,

CVa, CVt , and the ratios of CVa and CVt with and without

the use of the algorithm. The values of CVa were computed

via dipole model using the noisy force estimate, i.e. what the

algorithm “sees”, while the values of CVt were computed via

dipole model using the true IM pose. The final ratios explicitly

show the factor of improvement in uncertainty when using our

algorithm. The values reported here result from computation

of the mean of the means of each simulation, i.e. the value

reported as CVa is the mean value of the CVa’s of each

simulation and five simulations are conducted for each data

point. A filter was used to smooth both EM commands and

the computed gradient of g. We did not consider, nor compute

the physics of, the interactions between the two actuating

EMs. In a platform implementation, a component of actuation

redundancy should be used to minimize the interaction force
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between the EMs. We observed in our experiments that the

EMs did tend to collide at times. Localization feedback was

acquired at 100 Hz and was not filtered. The motion control

in dynamic experiments was used to simply keep the IM in

its initial position.

We observed that when the algorithm was used, the EMs

changed orientation until a local minimum in g was reached.

We found that the use of our algorithm robustly reduces uncer-

tainty. The factor of improvement of CVa was always above

1.0, and the factor of improvement of CVt was typically at, or

near, 1.0. The maximum factor of improvement of CVt when

using a single EM was 2.81 in static experiments and 1.69 in

dynamic experiments. The maximum factor of improvement

of CVt during double-EM experiments was 1.65 in static

experiments and 3.10 in dynamic experiments. We observe

that uncertainty-improvement results for single-EM static trials

were improved when the IM’s heading was orthogonal to ĉ,

as compared to when the heading was aligned with ĉ; this

suggests a varied ability for the EM to find various local

minima in g. There was not a discernible effect in uncertainty

reduction with varying levels of localization noise.

These results demonstrate that the algorithm robustly im-

proves both the expected uncertainty, CVa, and the true force

uncertainty CVt . It is noteworthy that the use of our algorithm

also tended to reduce the error in fc. Furthermore, we observed

that the value of g/ fca was always reduced, demonstrating the

controllability of ellipsoid size. We note that the improvement

factor of CVt was drastically smaller during double-magnet

experiments of Set No. 2, and the error in fc increased. This

increase in uncertainty results from the IM’s weight being

nearly balanced by applied forces. The result differed signifi-

cantly between cases of using the algorithm and not because

when it was used, both EMs were near the workspace, i.e. near

the IM and in proximity to each other. When the algorithm

was not used, one EM drifted away from the workspace.

As we are normalizing the gradient of g and capping the

impact of the homogeneous solution, the two proximal EMs,

which are moving with uncertainty, induce more uncertainty

in applied force, which results in an increase in IM oscillation.

This adverse effect would likely be improved by slowing the

homogeneous solution and also would likely not be as evident

in a physical system owing to the presence of environmental

damping. We note that the factor of improvement of CVa in

these cases was greater than 1.0.

We found that one reason for limited controllability over

the value of g is that the major axis of J̃Fi tends to align

with the magnetic force vector. The conclusion is based on a

numerical simulation we conducted where 10,000 random EM

poses were generated with a constant IM pose and the angle

between the major ellipsoid axis of J̃Fi and the magnetic force

vector was recorded. The angle difference was found to be

22.9± 16.6◦. This simulation was repeated with a constraint

that the m̂i aligns with the field of the EM where the result

was 3.9 ± 1.4◦. These results suggest that a bias exists in the

shape of the ellipsoid of J̃Fi, which is expected owing to the

force being a direct result of field gradient. As a result of this,

our algorithm typically had greater impact in experiments of

Set. No. 1.

Fig. 9. The results of 5 static trials with and without the uncertainty-reducing
algorithm where a 10 mm and 10◦ was applied. When using the algorithm,
it was activated after 20 s. After 60 s, the homogeneous solution was scaled
down, which we refer to as the start of the “steady-state period”. We do not
alter the particular solution. In the top plot, the algorithm reduces the value
of g. In the bottom plot, we show that the uncertainty is visibly lowered when
the algorithm is in effect and its homogeneous twist that reduces g is scaled
down. All data in these plots were filtered to improve visualization.

Finally, to demonstrate the algorithm’s functionality in the

transient during static experiments, we refer the reader to

Fig. 9. Here, we followed a similar experiment protocol as

shown in the results in Table II; however, the algorithm was

activated after 20 s rather than immediately, to ensure that

force error had reached a noisy steady state. The reduction in

the value of g can be seen after 20 s, when the algorithm was

activated. We observe that the force uncertainty drops during

steady-state operation of the algorithm.

C. Evaluation on Physical System

Physical platform experiments were conducted to demon-

strate the methodology on a real magnetic system. As we are

not using an ideal dipole EM or IM for design purposes, we

first begin by characterizing the sensitivity ellipsoids of our

system in Section IV-C1. As the ability to draw conclusions

and make algorithmic decisions based on sensitivity ellipsoid

hinges on the validity of the dipole approximation, such

characterization is recommended. We therefore conducted a

series of experiments that show that the general behavior of

ellipsoids in our physical system aligns with that which we

expect from the linearized dipole model. We then discuss a

set of experiments we conducted to evaluate the performance

of our force-uncertainty-reducing algorithm in Section IV-C2.

The experimental setup used for all platform experiments is

shown in Fig. 8.

1) Validation of Sensitivity Ellipsoids: To validate the cor-

respondence of ellipsoid shapes on our non-dipole platform

with a dipole prediction, we utilize an EM that is moved by

a serial manipulator and use a second serial manipulator to

perturb the position and orientation of the IM. In general,

force and torque can be applied in 3 DoF each, resulting in a 6

DoF task space. Only two torque DoFs are controllable owing

to a dipole’s symmetry. We are concerned with four primary
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TABLE II
SIMULATION EXPERIMENT RESULTS. LOCALIZATION NOISE: 10 MM, 10◦

No Algorithm Algorithm CVano−alg

CVaalg

CVtno−alg

CVtalgMode EMs ĉ Set No. fc err (%) g/| fca | CVa CVt fc err (%) g/| fca | CVa CVt

S
ta

ti
c

1
−x̂

1 6.2 ± 0.6 120.7 81.4 6.4 6.5 ± 0.7 105.2 74.9 5.8 1.09 1.10
2 1.7 ± 0.3 57.7 32.7 2.0 2.2 ± 0.3 54.7 32.3 2.5 1.01 0.81

ŷ
1 8.8 ± 2.5 107.9 78.3 6.0 3.2 ± 0.4 69.4 36.0 3.2 2.18 1.89
2 4.1 ± 1.0 59.3 36.3 2.5 2.4 ± 0.1 55.3 33.2 2.8 1.10 0.88

2
−x̂

1 8.9 ± 1.1 122.8 80.8 10.4 5.3 ± 0.5 52.2 57.7 6.3 1.40 1.65
2 3.4 ± 0.7 56.7 33.2 3.8 2.3 ± 0.4 28.6 22.1 2.6 1.50 1.47

ŷ
1 7.6 ± 1.5 119.6 72.5 8.8 6.4 ± 1.1 18.9 59.7 6.9 1.21 1.28
2 4.4 ± 0.8 61.4 36.6 4.3 2.5 ± 0.4 9.5 24.0 2.9 1.52 1.48

D
y

n
am

ic

1
−x̂

1 18.1 ± 2.1 95.7 56.1 3.0 7.0 ± 1.2 81.9 49.3 1.8 1.14 1.62
2 6.9 ± 0.7 55.8 29.7 1.2 7.3 ± 0.8 53.4 28.0 1.4 1.06 0.89

ŷ
1 20.8 ± 1.1 94.3 55.0 2.7 7.4 ± 0.8 82.1 49.9 1.6 1.10 1.69
2 7.8 ± 1.6 55.4 29.8 1.3 7.7 ± 1.3 52.8 28.3 1.2 1.05 1.07

2
−x̂

1 16.1 ± 1.8 97.0 56.9 3.63 6.6 ± 1.7 25.1 24.6 1.2 2.31 3.10
2 7.6 ± 0.5 55.3 30.2 1.8 94.2 ± 71.9 34.4 24.9 10.6 1.21 0.17

ŷ
1 17.0 ± 0.7 95.4 57.8 3.2 6.3 ± 2.6 27.6 26.4 2.1 2.19 1.52
2 7.3 ± 1.5 54.9 29.9 1.8 218.0 ± 100.9 44.2 27.6 13.0 1.09 0.14

TABLE III
SIMULATION EXPERIMENT RESULTS. LOCALIZATION NOISE: 15 MM, 15◦

No Algorithm Algorithm CVano−alg

CVaalg

CVtno−alg

CVtalgMode EMs ĉ Set No. fc err (%) g/| fca | CVa CVt fc err (%) g/| fca | CVa CVt

S
ta

ti
c

1
−x̂

1 18.2 ± 3.0 138.3 143.4 10.2 14.7 ± 3.2 114.5 124.8 9.5 1.15 1.07
2 3.4 ± 0.8 59.2 51.7 3.2 3.3 ± 0.5 57.1 51.0 3.2 1.01 1.01

ŷ
1 18.6 ± 4.5 108.3 126.7 11.0 5.1 ± 1.2 73.0 62.1 3.9 2.04 2.81
2 9.9 ± 1.9 59.9 60.7 4.3 8.0 ± 3.3 58.0 57.1 4.3 1.06 1.01

2
−x̂

1 15.3 ± 2.7 139.5 147.3 13.0 13.5 ± 4.1 86.6 107.5 11.0 1.37 1.18
2 4.6 ± 1.0 59.9 53.1 4.9 4.0 ± 0.5 39.1 38.4 4.7 1.38 1.05

ŷ
1 8.8 ± 1.4 126.0 119.3 9.8 10.5 ± 1.9 39.4 91.7 8.3 1.30 1.18
2 5.9 ± 1.6 65.4 58.1 6.2 6.5 ± 0.9 14.2 37.9 3.7 1.53 1.65

D
y

n
am

ic

1
−x̂

1 30.9 ± 3.0 98.9 88.1 2.0 15.3 ± 3.4 87.0 81.4 1.5 1.08 1.33
2 18.8 ± 1.0 59.1 47.7 1.7 15.0 ± 1.2 55.3 46.6 1.8 1.02 0.95

ŷ
1 33.4 ± 4.0 98.1 82.0 2.2 18.5 ± 3.1 87.3 79.6 1.7 1.03 1.32
2 21.2 ± 2.3 58.3 48.8 1.9 18.4 ± 1.7 55.3 46.0 1.8 1.06 1.03

2
−x̂

1 27.3 ± 3.7 103.6 90.9 3.9 8.2 ± 3.6 24.75 41.75 2.4 2.18 1.63
2 17.8 ± 1.7 58.4 48.0 2.1 35.5 ± 29.6 30.7 34.6 8.3 1.39 0.25

ŷ
1 28.8 ± 2.6 99.8 89.2 3.9 12.5 ± 2.0 26.4 44.4 1.7 2.01 2.28
2 17.1 ± 2.3 58.4 48.3 2.2 28.8 ± 9.1 29.4 30.0 10.3 1.61 0.21

Jacobians that were defined in Eq. (6): JF pi
, J̃Fωi

, JT pi
, and

J̃T ωi
, each of which are ∈ IR3×3. As we wish to convey the

similarity in ellipsoid shape, it is most intuitive to visualize the

ellipsoids in 2D. For each Jacobian, nine 2 DoF combinations

exist, thus, the reader will see nine individual plots for each

Jacobian that was validated.

Discrete points that form the sensitivity ellipsoids are exper-

imentally recorded by perturbing the pose of the IM in planes

e.g. moving the IM in a circle on the XY plane, then XZ

plane, then YZ plane, and repeating for angular DoFs. As the

IM is mounted on a force and torque sensor, force and torque

are recorded at each of these poses. We chose to discretize

each circle in 12 data points. At each of these 12 points,

2000 force and torque readings were collected. As many of

the perturbations were within the sensitivity of the force and

torque sensor, the large number of data points allowed for a

more accurate mean reading. Finally, the resultant ellipsoids

of force and torque perturbations were plotted along with

the predicted dipole-dipole Jacobian value as well as the

discrete theoretical expected result obtained from dipole force

and torque equations. This theoretical discrete expected result

was computed by gathering data at each discrete point as

traveled by the IM; however, instead of a measurement, it

is the force and torque as estimated via dipole-dipole model.

This computed result is shown to visualize potential losses

of Jacobian linearity. Given that the dipole force and torque

estimates may have slight inaccuracies, we are more interested

in the general behavior of a Jacobian; thus, we accept improper

scaling of an ellipsoid, or minor deviations from the expected

shape. We conducted multiple sets of experiments and show

the results of one of these in Fig. 10.

We evaluated the ellipsoids’ correctness by computing the

measured and dipole-predicted major to minor axis length

ratio, as well as the angle tilt of the ellipsoid. For the data

shown in Fig. 10, we found the ellipsoid axis ratio to be have

an error of 27.0 ± 25.7% and an ellipse tilt error of 10.0

± 17.8◦ (36 ellipsoids). Results of 8 tests were recorded, 2

of which were marked as outliers. The results of the 6 tests

were: an ellipse ratio error of 47.7 ± 79.9% and an ellipse

tilt error of 13.5 ± 20.5◦. When processing the result for

all 8 trials, including the outliers, the results were 86.1 ±
204.4% and 13.5 ± 19.6◦ for ellipse ratio error and ellipse tilt

error, respectively. The high errors are likely attributed to the

greater impact of sensor noise and robot registration errors
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in instances where the magnetic Jacobian is ill-conditioned

i.e. the Jacobian’s ellipsoids are thinner in certain DoFs. We

emphasize that the correctness of sensitivity ellipsoid direction

compared to magnitude is more important in our application

as this direction is used by our algorithm to dictate EM

motions. As the measured behavior of the ellipsoids is, in

general, consistent with the linearized dipole model, only one

set of results is shown. We conclude that on our physical

system, we can use the dipole model to draw conclusions

regarding sensitivity. Any errors that may exist in the ellipsoid

assumption will adversely affect performance.

2) Force Control Algorithm Evaluation: We experimentally

validated the force control algorithm’s function on our physical

platform by using an external sensor measurement to confirm

that force uncertainty was reduced. These experiments were

conducted while keeping the IM in a fixed pose as shown

in Fig. 8. Owing to the presence of two serial robots in

close proximity, the experimental workspace was small. Given

an initial condition of magnet positions, the use of our

uncertainty-reducing algorithm results in a new EM pose that

is unknown at the start of the experiment; this presents a path-

planning problem for collision avoidance. In this work, we

avoided the development of a path-planning algorithm, and

instead conducted a brute-force numerical simulation that tests

initial experimental parameters and determines if the EM is

likely to approach an undesirable configuration. Given a set

of acceptable conditions, i.e. that would not result in robot

collision, we chose conditions that were expected to reduce

the size of g more significantly, and thus be more likely to

reduce CVt by a larger amount. We note that such a search

was not done in any simulation trials. Whereas we wished to

demonstrate how much CVt can be affected by applying our

methodology, we emphasize that the system can use the force

uncertainty reducing algorithm constantly; the system will take

advantage of the null-space reduction of g when possible.

In these experiments, we commanded a desired force, based

on a PID control on force error, to apply on the IM using the

relations shown in Eq. (14) and Eq. (19).

δ fdes = pid(e f ) (19)

Similar to the protocol for simulations, we conducted eight

experiments which each consisted of five trials without the

algorithm, and five trials with the algorithm. We recorded

data for 80 s and analyzed the final 30 s to capture steady-

state behavior. A trial period of 80 s allowed the system

to reach a steady-state point in any attempted experiment

configuration. The joint values sent to the manipulator were

filtered to avoid shaking of the robot. As in some simulations,

during all experiments, a Gaussian localization uncertainty was

set to 15 mm and 15◦. Localization feedback was acquired at

approximately 100 Hz and was not filtered. The true value of

fc was measured using a force and torque sensor mounted on

the end-effector of a second serial manipulator (Fig. 8).

The experimental results are reported in Table IV. The

reported values were computed in the same manner as they

were in simulation trials; however, the value of CVt here was

computed using the external sensor, rather than a dipole-model

estimate. The outcome of our results analysis is the mean value

of g that is normalized by dividing by the mean | fca |, as well as

CVa that was defined in Eq. (11), and CVt that was defined in

Eq. (12). The true value of contact force, fc, was obtained from

sensor measurements. We found that, by using our algorithm,

we were able to reduce CVa by a factor of up to 4.6, and

reduce CVt by a factor of up to 2.5 (trial 4).

V. DISCUSSION

We have demonstrated the functionality of our force un-

certainty reducing algorithm in both simulations and plat-

form experiments. We found that our algorithm was able

to reduce force uncertainty in the majority of simulations

and all platform experiments. We evaluated the algorithm in

the case of using a single EM as well as using two EMs.

We demonstrated functionality in two directions as well as

with two various levels of localization noise. We conducted

all simulations in both a static manner, where the IM was

fixed in space, as well as in a dynamic manner, where the

IM was free to move in response to environmental forces.

Our algorithm reduced force uncertainty in both static and

dynamic experiments. Furthermore, the methodology applied

in this manuscript may be improved by differentiating magnet

heading in an S
2 manifold, as the magnetic strength of a

permanent magnet is constant. Furthermore, we note that a

further improvement to the proposed method may include

a consideration for the sensitivity of actuation Jacobians,

e.g. JFek
(Eq. (7)), to localization noise and, in turn, the

implications of their ellipsoid shapes.

In this work, we did not focus on optimizing force control

accuracy i.e. ensuring that the obtained force was precisely

what was desired, for two reasons: (1) on our platform, the

magnets are not ideal dipoles and thus any measured force

error is attributed to both robot registration error as well as

imperfect field modeling and (2) we found that the same

control methodology cannot be applied for all experiments

i.e. control gains must be adjusted based on amount of force

and amount of localization noise. To address (1), a future

researcher can use spherical magnets or implement more

accurate field models such as the current model [27]. Works

in robotic capsule endoscopy have implemented such models

previously [38]. To address (2), an adaptive controller is likely

a proper solution assuming that the field modelling is accurate.

We specifically opted to not adjust control parameters between

trials as to minimize the number of variables in the analysis.

To compensate for this effect, we presented our results in a

normalized manner with respect to force magnitude.

This work is relevant for groups working with magnetic

manipulation of in-vivo devices whether they be untethered

or partially constrained by a catheter or continuum robot.

The methods were developed for permanent magnet systems

where the IM is a single dipole, but can be extended to cases

where multiple IMs are used or if the controlled device is

composed of a sphere of soft-magnetic material such that

effects of shape on magnetization are negligible [39], [40]. In

such case, the actuation system would gain torque redundancy

as the soft-magnetic material would be less likely to align

with the external field. Our methods can also be extended
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(a) (b)

(c) (d)

Fig. 10. Results of a pose perturbation experiment showing the consistency between theoretical and observed behavior of the J̃i Jacobian. The configuration
of the magnets is arbitrary: p = [0.125,−0.069,−0.065], m̂i = [0.422,−0.887,−0.187], and m̂e = [−0.909,0.415,0.044]. The magnets were separated by 16
cm, with respective nominal dipole force and torque magnitudes of 1.0 N and 37 N-mm. Here, the red line represents the experimental result, the solid blue
line represents the discrete theoretical result, and the dashed blue line represents the theoretical Jacobian prediction. The gray circle indicates the sensors
sensitivity. Shown are the experimental and theoretical results for the Jacobians: (a) JF pi

, (b) J̃Fωi
, (c) JT pi

, and (d) J̃T ωi

to electromagnetic actuation systems by adding derivative

relations between coil currents. As four coils are needed for

a force control task and eight coils are needed for a force-

and-torque control task, torque redundancy can be used for

implementing our proposed algorithm [41]. Our methodology

was evaluated on a cm-scale system but can be applied for

control of robots in smaller scales where precision of motion

is especially necessary. Finally, this work gives insight into

the use of manipulability ellipsoids for magnetic actuation, as

is commonly done for rigid-link manipulators.

VI. CONCLUSION

In this work, we used a sensitivity ellipsoid analysis of

a magnetic actuation Jacobian to improve the uncertainty in

applied force in the presence of localization noise. Our method

relies on defining a direction during a force control task

in which the precision of force application is favored. By

manipulating the configuration of the EM in the differential

force nullspace, our proposed algorithm minimizes the shape

of a sensitivity ellipsoid in the direction of desired force

precision improvement. We demonstrated that this method

decreases the uncertainty in applied force both in simulation

and physical experiments. In simulation experiments, an IM

that was embedded in a tethered shell was commanded to a

force control task in cases where the IM was fixed in space,

as well as free to rotate. The latter experiments demonstrated

that although the IM was rotated owing to the algorithm acting

in the force nullspace and thus applying varying torques, the

force uncertainty was still decreased. We conducted physical

experiments on our platform intended for magnetic endoscopy
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TABLE IV
PLATFORM EXPERIMENT RESULTS

No Algorithm Algorithm CVano−alg

CVaalg

CVtno−alg

CVtalgTrial No. Des. Force (N) g/| fca | CVa CVt g/ fca CVa CVt

1 [−0.05,−0.16,0.47] 306.6 346.3 41.0 62.0 123.1 18.6 2.81 2.20
2 [−0.04,−0.31,0.39] 395.4 384.5 35.4 288.1 295.5 32.7 1.30 1.08
3 [−0.08,−0.27,0.41] 212.9 224.1 28.4 63.6 95.9 12.3 2.34 2.31
4 [−0.07,−0.07,0.49] 238.3 287.0 45.5 54.9 86.0 18.2 3.34 2.50
5 [−0.12,−0.39,0.29] 168.6 171.6 17.9 61.7 16.6 9.3 2.24 1.93
6 [−0.10,−0.11,0.48] 154.6 174.2 20.5 63.3 89.2 11.5 1.95 1.79
7 [−0.11,−0.34,0.34] 158.3 153.0 17.7 72.0 67.7 10.1 2.26 1.66
8 [−0.09,−0.30,0.39] 211.1 246.4 27.9 53.7 53.5 11.4 4.61 2.45

and demonstrated a decrease in force uncertainty when the

IM was constrained. Whereas force control is useful in and

of itself, it is the intrinsic method for actuating magnetically

controlled robots as no rigid coupling exists between an

actuator and an end-effector. This method may be applied

in systems with mechanical constraints, such as magnetically

guided catheters or continuum robots, where the orientation of

a guiding IM is partially constrained. Increasing accuracy of

the force applied will affect the motion of magnetic robots to

a degree that will vary based on the magnitude of localization

uncertainty.
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