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ABSTRACT. Silver complexes of tethered N-heterocyclic carbene-carboranyl ligands have been 

prepared and fully characterized. The first example of silver bonded directly to the cage of ortho-

carborane has been identified in the solid state. The presence of a carboranyl N-substituent on the 

N-heterocyclic carbene significantly enhances the in vitro cytotoxicity of the silver complex 

against HCT116 p53+/+ and HCT116 p53-/- colon cancer cells compared to a phenyl derivative. 

Conversely, the presence of a carboranyl on the backbone of a xanthine derived N-heterocyclic 

carbene decreases the in vitro cytotoxicity of the silver complex compared to its phenyl derivative. 

Stability studies on the xanthine-derived ligands and complexes show that decomposition via 

deboronation occurs in hydrous dimethyl sulfoxide, which may attribute to the contrasting in vitro 

behavior of the carborane-containing complexes. 

INTRODUCTION. Both N-heterocyclic carbenes (NHCs)1-2 and carboranes3-6 are distinct 

classes of ligand, which have shown interaction with elements across the whole periodic table 

through varying coordination modes. Complexes of NHCs and carboranes have displayed broad 

ranging applications, including in the areas of catalysis, materials and biomedicine.1, 7-10 Silver is 

renowned for its antimicrobial properties,11 with the anticancer effects of silver being recognized 

relatively recently.12-13 One of the first silver compounds reported to exhibit cytotoxic properties 

against cancer cells was a silver fluorobenzoate dimer.14 Five years later the first AgI-NHC 

complexes to display in vitro cytotoxicity were reported by Youngs and co-workers (1, Figure 1),15 

and were screened against OVCAR-3 (ovarian), MB157 (breast) and HeLa (cervical) cancer cell 

lines. The complexes exhibited greatest cytotoxicity towards the MB157 cell line and had little 

effect on the HeLa cell line, highlighting the selectivity towards specific cancers for this type of 

complex. Work from our group has extended the natural xanthine-derived NHC ligand class,16 and 
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shown that increased steric bulk on the ligand and increased hydrophilicity of the silver complex 

delivers greater cytotoxic effects against the cancer cells screened (2, Figure 1).17 

Recently, work from our group and from Lavallo and co-workers has demonstrated that NHCs 

and carboranes may be combined into the same ligand architecture. Lavallo has reported NHC 

ligands in which carborane clusters are linked directly to the nitrogen atom of the N-heterocycle.18-

21 We have reported ligands with flexible (CH2)n spacers between the NHC and ortho- or nido-

carboranes, which offer versatile coordination to a range of metals (3, Figure 1).22-23 Preparation 

of Rh, Ir and Ru complexes of these ligands involves in situ deprotonation by silver oxide prior to 

transmetallation on to the transition metals. We envisaged that isolation of the Ag intermediates 

of these reactions would provide further insight into their reactivity, in addition to novel Ag 

complexes with enhanced tuneability which may be applied in cancer therapeutics. Though Ag-

NHCs have shown significant promise in recent years as potent inhibitors of cancer cells,24 in vivo 

stability presents a serious challenge that needs addressing. Carboranes have also attracted 

attention for medicinal applications owing to their high catabolic stability.6, 25 Incorporating 

carboranes into NHC ligands has the potential to modify the stability, solubility and activity of 

these complexes, allowing for further tuning for cancer therapy. Furthermore, the approach offers 

the possibility of combined chemotherapy/BNCT and the ability to modify the carborane 

derivative for targeted therapy.26  



 4 

 

Figure 1. Structures of the first cytotoxic AgI-NHCs (1), xanthine-derived AgI-NHCs (2), a 

tethered NHC-carboranyl ligand coordinated to RhI (3) and AgI NHC-carboranyl complexes 

developed in this work. 

RESULTS AND DISCUSSION. Previously we reported that RhI- and IrIII-NHC complexes 

could be prepared from ligand precursor L1. Activation of the carborane substituent resulted in a 

closo-dicarbadodecaborane anion, which chelated the Rh center through a carbon atom (3, Figure 

1) and to the Ir center through a boron atom of the cage. Activation of both the imidazolium NCHN 

proton and the carborane CH or BH proton was promoted using silver oxide in CH3CN solvent. 

L1 was reacted with Ag2O in anhydrous CD2Cl2 and the reaction monitored using 1H NMR 

spectroscopy (Scheme 1). The imidazolium NCHN proton resonance disappeared completely after 

9 hours at 40°C, indicating that a Ag-NHC (C1) had formed (Figure 2). The carboranyl CH 

resonance is masked by the CH2 resonance at 4.31ppm. A 2D 1H13C HMQC experiment revealed 

that the carboranyl resonance is still present after 9 hours reaction time, with strong coupling 

observed between this and the carboranyl cage carbon atom at 63.3ppm (Figure 2). 
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Scheme 1. Synthesis of [Ag(NHC)Br]2 C1 with formation of [Ag2(NHC-carboranyl)2] macrocycle 

C1’, and synthesis of Ag(NHC)2Br C2 and Ag(NHC)2Br C3. 
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Figure 2. 1H NMR and 1H13C HMQC spectra (300MHz, CD2Cl2) of [Ag(NHC)Br]2 C1. Inset 

highlights the coupling between the masked carboranyl CH proton resonance and the carboranyl 

cage carbon resonance at 63.3ppm. 

Complex C1 appeared very unstable hence it was not possible to obtain further data on this 

complex. However, crystals of a second complex, C1’, were found in the product mixture. Single 

crystal X-ray diffraction analysis revealed a remarkable structure, in which the Ag is bound to the 

NHC of one ligand and the carborane carbon atom of a second ligand, to give a macrocycle (Figure 

3). The geometry about each silver atom is slightly distorted linear, with the solid state structure 

exhibiting relatively long Ag-Ccarbene bond lengths (2.112(3) Å and 2.128(3) Å). As complex C1 

appears unstable, with the solution darkening over time, presumably C1’ is a decomposition 

product. As a second product was not observed in the NMR data, it is likely that C1’ is a 
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crystallization effect with concomitant HBr formation, and was found to be too unstable to re-

dissolve and analyze in solution. This is, however, the first structurally elucidated example of silver 

bound directly to the cage of ortho-carborane. 

 

Figure 3. Molecular structure of C1’. Ellipsoids are drawn at 50 % probability, and H atoms have 

been omitted for clarity. Ag(1)-C(7): 2.112(3)Å; Ag(1)-C(1A): 2.128(3)Å; Ag(1A)-C(7A): 

2.097(2)Å; Ag(1A)-C(1): 2.118(2)Å; C(1)-Ag(1A)-C(7A): 177.15(10)°; C(7)-Ag(1)-C(1A): 

176.29(10)°. 

In an attempt to increase the stability of the Ag-NHC complex, ligand precursor L2 was prepared 

in which the steric encumbrance of the N-substituent was decreased from a tbutyl to a mesityl 

group (Scheme 1). Reaction of mesityl imidazole with 1-bromoethyl-ortho-carborane resulted in 

imidazolium bromide L2, which was fully characterized including through X-ray diffraction 

analysis (Figure 4). Reaction of L2 with Ag2O in CH2Cl2 results in Ag(NHC)2Br complex C2, 

which was fully characterized using multinuclear NMR spectroscopy, mass spectrometry, 

elemental analysis and X-ray diffraction analysis. The structure reveals a T-shape geometry around 
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the Ag center, bound by two NHCs linear to each other, and a Br ion (Figure 4). The Ag-Ccarbene 

bond lengths are relatively long (2.117(6) Å and 2.087(5) Å;), though within the normal range for 

complexes with T-shaped geometry.27 It is unusual for a Ag-bis(NHC) complex to result from an 

imidazolium salt with a coordinating anion, with 2Ag(NHC)X  [Ag(NHC)2][AgX2] (X = 

coordinating anion) being more common.28 Elemental analysis confirms the Ag(NHC)2Br 

stoichiometry in the bulk of C2, which was isolated in 68% yield. AgBr formed in the process (i.e. 

to the right of the mono-NHC/bis-NHC equilibrium) would be removed during work-up which 

involved filtration of the solution through Celite®. 
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Figure 4. Molecular structures of L2 (top) C2 (middle) and C3 (bottom). Ellipsoids are drawn at 

50 % probability, and H atoms have been omitted for clarity. C2 Ag(1)-C(7): 2.117(6)Å; Ag(1)-

C(7A): 2.087(5)Å; Ag(1)-Br(1): 3.0021(8)Å; C(7)-Ag(1)-C(7A): 158.2(2)°; C(7)-Ag(1)-Br(1): 

105.39(18)°. C3 Ag(1)-C(7): 2.061(6)Å; Ag(1)-C(7A): 2.070(6)Å; C(7)-Ag(1)-C(7A): 176.4(2)°. 

Exchanging the solvent from CH2Cl2 to CH3CN has previously resulted in CH 

activation/deprotonation of the carborane cage in addition to imidazolium NCHN deprotonation.23 

Ag2O was added to L2 in CD3CN and heated at 40°C, with the mixture being analyzed over time 

using 1H NMR spectroscopy. The imidazolium NCHN proton resonance had disappeared after 22 
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hours reaction time, though the carboranyl CH resonance remains present, even after a further 21 

hours reaction time and addition of more Ag2O with further heating. This indicates that 

deprotonation of the carboranyl CH proton is metal assisted upon formation of a transition metal 

complex, whereby a M-NHC (M = Rh, Ir) is formed initially, with subsequent deprotonation of 

the carboranyl CH. 

C3, which is a non-carborane phenyl derivative of C2, was prepared from L3 in an analogous 

manner to C2 for comparison in biological studies. Single crystals of complex C3 were grown via 

slow evaporation of Et2O into a concentrated CH2Cl2 solution. In this case the molecular structure 

exhibits the more common cationic structure, in which the NHC ligands coordinate in a planar 

arrangement with no contact between the silver center and the bromide anion (Figure 4), though 

the overall stoichiometry of complexes C2 and C3 is the same. 

Silver complexes of NHC ligands derived from natural xanthine precursors have shown in vitro 

cytotoxicity against cancer cells in the micromolar range.17 In addition to the low toxicity of 

xanthine-derivatives, these compounds have themselves shown medicinal properties against 

cancer and other disease.29 We therefore extended our library of NHC-carboranyl silver complexes 

to include xanthine-derived ligands. Theobromine was reacted with a range of alkenyl halides to 

incorporate alkenyl groups on to the xanthine backbone (T4-T7), with subsequent reactions with 

B10H12(CH3CN)2 under anhydrous conditions producing carboranyl imidazole precursors P4-P6 

(Scheme 2). Each precursor was methylated using MeI to produce imidazolium salts L4-L6. In 

addition, a phenyl derivative, L7, was prepared directly from T7. 
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Scheme 2. Synthesis of xanthine-derived imidazolium salts L4-L7, and AgI-NHCs C5 and C7. 

Attempts were made to prepare AgI complexes of the xanthine-derived ligands through reaction 

with Ag2O in a range of solvents, though surprisingly deprotonation of the imidazolium salts did 

not occur. Reaction of L5 and L7 with AgOAc at room temperature allowed the corresponding 

Ag-NHC complexes C5 and C7 to be isolated (Scheme 2), which were fully characterized using 

multinuclear NMR spectroscopy and mass spectrometry. Although the mass spectra exhibited 

major molecular ion peaks corresponding to [Ag(NHC)2]+, elemental analysis confirmed the 

Ag(NHC)OAc stoichiometry, with ligand scrambling in the mass spectrometer being well 

documented.30 The molecular structures of complexes C5 and C7 were elucidated by X-ray 

diffraction analysis (Figure 5). Crystals suitable for both complexes were obtained via the slow 

diffusion of Et2O into concentrated CH2Cl2 solutions. The Ag-Ccarbene bond lengths of 2.067(10) 

Å (C5) and 2.060(3) Å (C7) are within the expected range for Ag(NHC)OAc type complexes,17, 
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31 and the geometry about the silver atoms deviate slightly from linearity. Analogous reactions 

using ligand precursors L4 and L6 resulted in the formation of a black precipitate rather than the 

corresponding Ag-NHCs. 

 

Figure 5. Molecular structures of C5 (top) and C7 (bottom). Ellipsoids are drawn at 50 % 

probability, and H atoms have been omitted for clarity. C5 Ag(1)-C(8): 2.067(10)Å; Ag(1)-O(3): 
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2.131(9)Å: C(8)-Ag(1)-O(3): 175.7(4)°; C(2)-C(3)-N(1): 113.2(10)°. C7 Ag(1)-C(8): 2.060(3)Å; 

Ag(1)-O(3): 2.104(2)Å: C(8)-Ag(1)-O(3): 171.80(12)°; C(2)-C(3)-N(1): 112.5(3)°. 

The in vitro cytotoxicity of silver complexes C2, C3, C5 and C7 against the colon cancer cell 

lines HCT116 p53+/+ and HCT116 p53−/− was determined using MTT-based assays involving a 96 

hour drug-exposure period (Table 1). The IC50 values for each complex are the same irrespective 

of the cell line they are screened against. HCT116 p53−/− does not possess the p53 gene, a key 

tumor suppressor protein that is a most commonly mutated gene in cancer patients. Apoptosis 

induced by the silver complexes appears to be independent of the p53 gene, which is a desired 

feature in the search for new chemotherapeutic compounds.  

Entry Complex HCT116 p53+/+ 

IC50 (ȝM) 
HCT116 p53−/− 
IC50 (ȝM) 

1 C2 1.3 ± 0.2 1.5 ± 0.4 

2 C3 10.5 ± 4.8 9.8 ± 3.7 

3 C5 17.6 ± 2.1 20.2 ± 5.0 

4 C7 11.6 ± 4.6 11.3 ± 4.6 

Table 1. IC50 (ȝM) for Ag-NHC complexes screened against HCT116 p53+/+ and HCT116 p53−/− 

cell lines. Each value represents the mean ± standard deviation for three independent experiments. 

Carborane-containing complex C2 displayed greater cytotoxicity than its phenyl derivative C3 

by an order of magnitude (Table 1, entries 1-2). The C2B10Hx cage occupies approximately the 

same volume as a rotating phenyl ring, with both the carborane and the phenyl being hydrophobic 

entities. We have previously shown that increased sterics around the AgI center enhances the 

cytotoxicity of Ag-NHCs, with the three-dimensional structure of the carborane in C2 likely 

providing greater steric protection than the phenyl group in C3 and a slower release of AgI over 

the drug exposure period. C5, in which the carborane moiety is remote from the AgI center, has 

comparable cytotoxicity to its phenyl derivative C7 within error (Table 1, entries 3-4). The steric 
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encumbrance around the AgI centers in C5 and C7 is the same, hence this further corroborates that 

steric factors play a pivotal role in the activity of these complexes. In an attempt to understand the 

relative stabilities of these complexes which may link to pharmacokinetic differences, a series of 

stability studies were carried out. 

Complexes C5 and C7 were dissolved in hydrous DMSO-d6 (the same solvent that complexes 

are dissolved in prior to cell line studies) and observed over time both visually and using NMR 

spectroscopy. The phenyl complex C7 remains stable in hydrous DMSO-d6, with no sign of 

decomposition by 1H NMR spectroscopy, even after several weeks. In contrast, complex C5 starts 

to decompose within hours, with the formation of black precipitate and a downfield resonance at 

9.25ppm in the 1H NMR spectrum indicative of imidazolium formation. In addition, a broad 

resonance appears at -3ppm which is characteristic of a bridging proton of the open face of nido-

carborane. After 9 days in hydrous DMSO, complex C5 fully converts to imidazolium-nido-

carborane D5 and black precipitate, presumably Ag0 (Figure 6). Deboronation under such mild 

conditions is unusual, though there is precedent. Kahl et al. reported the degradation of a closo-

carboranyl porphyrin to the nido-species in hydrous DMSO.32 Following a series of studies, it was 

concluded that deboronation was i) dependent on the ability of the solvent to stabilize nucleophilic 

attack by water, and ii) facilitated by electron withdrawing Į-substituents. Release of silver during 

decomposition upon dissolution in DMSO will lead to the relatively low cytotoxicity of complex 

C5 observed in MTT assays. 

To expand this understanding to our theobromine-derived carboranyl compounds, imidazoles 

P4-P6 and imidazolium salts L4-L6 were dissolved in anhydrous DMSO-d6 (<0.02% H2O) and 

monitored by 1H and 11B{1H} NMR spectroscopy. In accordance with Kahl’s findings, no 

deboronation occurred in the absence of water after 4 days in solution. To each sample was added 
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40µL D2O, with deboronation being observed in P4 and L4 within a few hours (Figure 6). The 

disubstituted carboranyl compounds P5 and L5 were found to be resistant towards deboronation 

after 4 days, due to the electron donating nature of the methyl substituent reducing the 

electropositive nature of the boron atoms and thus their susceptibility towards nucleophilic attack. 

Compounds containing a longer tether between the electron withdrawing theobromine unit and the 

cage, P6 and L6, also resist deboronation, again, due to the decreased electropositive nature of the 

cage. These results indicate that complex C5, which has a disubstituted cage, might also resist 

deboronation, hence it is somewhat surprising that the complex was found to decompose in this 

manner in the presence of H2O. The presence of silver may render the theobromine-derived NHC 

more electron withdrawing than its imidazole/imidazolium counterparts and result in a more 

electropositive carborane cage. The weakly basic acetate present in the complex may also be 

involved in the deboronation step, though we are not aware of any literature precedent for this.  
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Figure 6. Reactions of theobromine derived imidazole, imidazolium and NHC with D2O in DMSO 

for 48 hours. 100% conversion to D5 after 9 days. 

CONCLUSION. In summary, reactions of imidazolium salts bearing carboranyl N-substituents, 

either on the N-heterocycle or on the backbone of a xanthine derivative, with basic silver precursors 

have been investigated. When the carboranyl substituent is tethered to the heterocycle, the steric 

properties of the second N-substituent affect the stability of the resulting silver-NHC complex. 

Decomposition of a silver-NHC bearing a sterically encumbering ligand led to isolation of the first 

complex in which silver is bonded directly to the cage of ortho-carborane (C1’). Reducing the 

steric bulk of the second N-substituent allowed a stable AgI-NHC-carborane complex to be 

prepared (C2). A series of xanthine-derived imidazoles and imidazolium salts, in which the 

carboranyl substituent was tethered to the backbone, were also prepared. Reactions with AgOAc 

found that when the carborane carbon atom possesses an acidic CH proton, a stable silver complex 

could not be isolated. However, when this was substituted for a methyl group, the corresponding 

AgI-NHC (C5) was prepared in good yield. The in vitro cytotoxicity of the silver complexes were 

examined against the colon cancer cells HCT116 p53+/+ and HCT116 p53-/- and compared to the 

phenyl derivatives. Complex C2 was found to be more cytotoxic than its phenyl derivative by an 

order of magnitude, whereas complex C5 was found to have significantly higher IC50 values than 

its phenyl derivative. This was attributed to the instability of complex C5 in hydrous DMSO, which 

was found to decompose via deboronation and imidazolium formation. 

EXPERIMENTAL SECTION 

Anhydrous solvents were prepared by passing over activated alumina to remove water, copper 

catalyst to remove oxygen and molecular sieves to remove any remaining water, via the Dow-

Grubbs solvent system, and then freeze-pump-thaw degassed prior to use. Decaborane was 
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purchased from KatChem and all other chemicals used in this work were bought from either Sigma 

Aldrich or Alfa and used without further purification. L1 was prepared according to the published 

procedure.23 NMR spectra were recorded on a Bruker AV500 or a Bruker DPX300 spectrometer. 

1H NMR and 13C{1H} NMR chemical shifts were referenced against residual solvent peaks. 

Assignment of 1H and 13C{1H} NMR spectra was aided by the use of 2D 1H1H COSY, 1H13C 

HMQC, 1H13C HMBC and 13C{1H} DEPT 135. Mass spectra were collected on a Bruker Daltonics 

(micro TOF) instrument operating in the electrospray mode. Elemental analyses were performed 

by Mr Stephen Boyer at London Metropolitan University.  

X-ray diffraction data were collected on an Agilent SuperNova diffractometer fitted with an 

Atlas CCD detector with Mo- KĮ radiation (Ȝ = 0.71073 Å) or Cu- KĮ (Ȝ = 1.54184 Å). Crystals 

were mounted under oil on nylon fibers and data collected at 110, 120 or 293 K. Data sets were 

corrected for absorption using a Gaussian integration method, the structures were solved by direct 

methods using SHELXS-9733 or intrinsic phasing using SHELXT34 and refined by full-matrix least 

squares on F2 using ShelXL2014,35 interfaced through the program Olex2.36 Molecular graphics 

for all structures were generated using POV-RAY in the X-Seed program.37 

C1/C1’. L1 (15 mg, 0.04 mmol), Ag2O (9 mg, 0.04 mmol) and anhydrous CD2Cl2 (0.5 mL) were 

added to a Youngs NMR tube in the Glovebox. The tube was wrapped in foil and kept at room 

temperature for 9 hours, with regular agitation (see SI Figure S34 for NMR spectrum). The reaction 

mixture was filtered through Celite® and slow diffusion of Et2O into the filtrate produced crystals 

of C1 and C1’. 

L2. To an ampoule was added mesityl imidazole (100 mg, 0.531 mmol) and 1-bromoethyl-ortho-

carborane (149 mg, 0.591 mmol) and degassed. Anhydrous toluene (5 mL) was added and the 

solution was heated at 90°C for 18 hours. The resulting white solid was filtered, washed with 
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toluene, hexane and Et2O. The product was collected as a white solid. Yield: 159 mg, 0.363 mmol 

(68 %). 1H NMR (500 MHz, DMSO-d6)μ į (ppm) 9.53 (s, 1H, NCHN), 8.18 (s, 1H, NCH), 7.95 

(s, 1H, NCH), 7.15 (s, 2H, Ar), 5.38 (s, 1H, carboranyl CH), 4.46 (t, 2H, J = 10 Hz, CH2) 3.12 (t, 

2H, J = 10 Hz, CH2) 2.33 (s, 3H, CH3) 2.03 (s, 6H, CH3). 13C NMR (126 MHz, DMSO-d6): į 

(ppm) 140.3 (C), 137.9 (CH), 134.2 (CH), 131.0 (C), 129.3 (C), 123.9 (NCH), 123.1 (NCH), 72.7 

(carboranyl-C), 63.4 (carboranyl-CH), 47.7 (CH2), 34.8 (CH2), 20.6 (CH3), 16.9 (CH3). 11B{1H} 

NMR (161 MHz, DMSO-d6)μ į (ppm) -3.0, -5.5, -9.7, -12.1. HRMS (ESI+): m/z [C16H29B10N2]+ 

357.3346, calcd for [M − Br]+ 357.3328.  

C2. An ampoule was charged with imidazolium precursor L2 (200 mg, 0.46 mmol) and Ag2O 

(53 mg, 0.23 mmol) and degassed. Anhydrous CH2Cl2 (5 mL) was added and the mixture was 

stirred at room temperature for 24 hours. The solution was filtered through Celite® and the solvent 

removed in vacuo. The residue was dissolved in Et2O (5 mL) and the product was precipitated 

with hexane (15 mL), filtered and dried in vacuo to give a beige powder. Yield: 141 mg, 0.16 

mmol (68 %). 1H NMR (500 MHz, CD2Cl2)μ į (ppm) 7.07 (d, J = 1.8 Hz, 1H, NCH), 6.97 (s, 2H, 

Ar), 6.87 (d, J = 1.8 Hz, 1H, NCH), 5.33 (br. s, 1H, carboranyl CH), 4.07 (m, 2H, CH2), 3.05 (m, 

2H, CH2), 2.37 (s, 3H, CH3), 1.89 (s, 6H, CH3). 13C NMR (126 MHz, CD2Cl2): į (ppm) 139.6 (C), 

136.7 (C), 135.7 (C), 129.7 (CH), 122.7 (NCH), 121.2 (NCH), 73.1 (carboranyl-C), 64.4 

(carboranyl-CH), 50.7 (CH2), 37.8 (CH2), 21.4 (CH3), 18.2 (CH3). 11B{1H} NMR (161 MHz, 

DMSO-d6)μ į (ppm) −2.9, −5.3, −9.4, −12.9. HRMS (ESI+): m/z [C32H56B20AgN4]+ 819.5598, 

calcd for [M − Br]+ 819.5562. Anal. Calcd for C32H56B20AgBrN4: C, 42.67; H, 6.27; N, 6.22. 

Found: C, 42.49; H6.16; N, 6.17. 

L3. To an ampoule was added CH3CN (2 mL), mesityl imidazole (576 mg, 3.09 mmol) and 2-

bromoethyl-benzene (0.42 mL, 3.09 mmol) and the solution was heated at reflux for 18 hours. The 
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reaction was cooled to room temperature and the product precipitated with Et2O (30 mL), filtered 

and dried in vacuo to give a white microcrystalline solid. Yield: 886 mg, 2.39 mmol (77 %). 1H 

NMR (500 MHz, DMSO-d6)μ į (ppm) 9.35 (t, J = 1.5 Hz, 1H, NCHN), 8.12 (t, J = 1.7 Hz, 1H, 

NCH), 7.87 (t, J = 1.8 Hz, 1H, NCH), 7.28 (m, 2H, CH), 7.24 (s, 2H, CH), 7.22 (m, 1H, CH), 7.10 

(s, 2H, CH), 4.62 (t, J = 6.8 Hz, 2H, CH2), 3.26 (t, J = 6.8 Hz, 2H, CH2), 2.30 (s, 3H, CH3), 1.86 

(s, 6H, CH3). 13C NMR (126 MHz, DMSO-d6)μ į (ppm) 140.2 (C), 137.2 (NCHN), 136.6 (C), 

134.1 (C), 130.9 (C), 129.1 (CH), 128.7 (CH), 128.5 (CH), 126.8 (CH), 123.8 (NCH), 123.1 

(NCH), 50.2 (CH2), 34.9 (CH2), 20.5 (CH3), 16.7 (CH3). HRMS (ESI+): m/z [C20H23N2]+ 291.1870, 

calcd for [M − Br]+ 291.1856. 

C3. An ampoule was charged with L3 (200 mg, 0.54 mmol) and Ag2O (69 mg, 0.30 mmol) and 

degassed. Anhydrous CH2Cl2 (5 mL) was added and the mixture stirred at room temperature for 

24 hours. The solution was filtered through Celite® and the solvent removed in vacuo. CH3OH    

(5 mL) was added, the insoluble particulate filtered and the product was precipitated from the 

filtrate with Et2O (30 mL). The product was collected via filtration and dried in vacuo to give a 

white powder. Yield: 145 mg, 0.19 mmol (70 %). 1H NMR (500 MHz, CD2Cl2)μ į (ppm) 7.20 (s, 

1H, NCH), 7.18 (m, 3H, CH), 6.90 (m, 4H, CH), 6.84 (s, 1H, NCH), 4.26 (t, J = 6.5 Hz, 2H, CH2), 

3.00 (t, J = 6.5 Hz, 2H, CH2), 2.31 (s, 3H, CH3), 1.74 (s, 6H, CH3). 13C NMR (126 MHz, DMSO-

d6)μ į (ppm) 182.λ (carbenic-C), 139.9 (C), 137.7 (C), 136.1 (C), 135.4 (C), 129.6 (CH), 129.4 

(CH), 129.1 (CH), 127.4 (CH), 123.0 (NCH), 122.4 (NCH), 53.4 (CH2), 38.0 (CH2), 21.4 (CH3), 

17.9 (CH3). HRMS (ESI+): m/z [C40H44AgN4]+ 689.2621, calcd for [M − Br]+ 689.2615. Anal. 

Calcd for C, 62.51; H, 5.77; N, 7.29. Found: C, 62.38; H, 5.89; N, 7.17. 

T4. To a round-bottom flask was added CH3CN (30 mL), theobromine (3.00 g, 16.70 mmol), 

Cs2CO3 (10.80 g, 33.30 mmol) and propargyl bromide (2.27 mL, 25.00 mmol, 80 wt % toluene) 
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and the mixture heated at 80 °C for 18 hours. The reaction was cooled to room temperature and 

the solvent removed in vacuo. CH2Cl2 (50 mL) was added, the mixture filtered and H2O (30 mL) 

was added to the filtrate, with the organic phase being collected. This was further washed with 

H2O (2 × 30 mL), dried over MgSO4, filtered and the solvent removed in vacuo. The off-white 

residue was recrystallized from CH2Cl2 (20 mL) with pentane (50 mL) to give a white powder. 

Yield: 2.99 g, 13.70 mmol (82 %). 1H NMR (500 MHz, CDCl3)μ į (ppm) 7.52 (m, 1H, NCHN), 

4.79 (d, J = 2.5 Hz, 2H, CH2), 3.99 (m, 3H, CH3), 3.59 (s, 3H, CH3), 2.17 (t, J = 2.5 Hz, 1H, CH). 

13C NMR (126 MHz, CDCl3)μ į (ppm) 154.5 (CO), 151.0 (CO), 149.3 (C), 141.9 (NCHN), 107.7 

(C), 78.8 (CŁCH), 70.6 (CŁCH), 33.8 (CH3), 30.6 (CH2), 29.9 (CH3). HRMS (ESI+): m/z 

[C10H10N4O2Na]+ 241.0700, calcd for [M + Na]+  241.0696. 

P4. To a Schlenk flask was added T4 (1.00 g, 4.58 mmol) and B10H12(CH3CN)2 (927 mg, 4.58 

mmol) and degassed. Anhydrous toluene (10 mL) and anhydrous CH3CN (3 mL) were added and 

the mixture was slowly heated to 100 °C and kept at this temperature for 18 hours. The reaction 

was cooled to room temperature and the solvent removed in vacuo. Et2O (2 × 15 mL) was added 

to the product and filtered to remove insoluble material. The filtrate was washed with 1 M NaOH 

solution (2 × 10 mL), H2O (2 × 10 mL), dried over MgSO4, filtered and the solvent removed from 

the filtrate in vacuo. The residue was recrystallized from Et2O (10 mL) with hexane (30 mL), 

filtered and the white solid dried in vacuo. Yield: 807 mg, 2.40 mmol (52 %). 1H NMR (500 MHz, 

CDCl3)μ į (ppm) 7.56 (s, 1H, NCHN), 4.88 (d, J = 14.9 Hz, 1H, CH2), 4.60 (d, J = 14.9 Hz, 1H, 

CH2), 4.20 (br. s, 1H, carboranyl-CH), 3.98 (s, 3H, CH3), 3.58 (s, 3H, CH3). 13C NMR (126 MHz, 

CDCl3)μ į (ppm) 154.5 (CO), 151.6 (CO), 149.4 (C), 142.6 (NCHN), 107.3 (C), 74.0 (carboranyl-

C), 61.3 (carboranyl-CH), 45.3 (CH2), 33.9 (CH3), 30.2 (CH3). 11B{1H} NMR (161 MHz, CDCl3): 
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į (ppm) −1.4, −4.8, −10.0, −10.8, −12.9. HRMS (ESI+): m/z [C10H21B10N4O2]+ 337.2670, calcd 

for [M + H]+ 337.2667. 

T5. Prepared as described for T4 from theobromine (3.00 g, 16.70 mmol), Cs2CO3 (10.80 g, 

33.30 mmol) and 1-bromo-2-butyne (1.60 mL, 18.40 mmol) in CH3CN (30 mL). After work up 

the product was obtained as a white powder. Yield: 2.95 g, 12.70 mmol (76 %). 1H NMR (500 

MHz, CDCl3)μ į (ppm) 7.50 (m, 1H, NCHN), 4.72 (q, J = 2 Hz, 2.5 Hz, 2H, CH2), 3.98 (s, 3H, 

CH3), 3.58 (s, 3H, CH3), 1.76 (t, J = 2Hz, 3H, CH3). 13C NMR (126 MHz, CDCl3)μ į (ppm) 154.7 

(CO), 151.1 (CO), 149.1 (C), 141.7 (NCHN), 107.7 (C), 78.3 (CŁC), 73.9 (CŁC), 33.7 (CH3), 31.1 

(CH2), 29.9 (CH3), 3.8 (CH3). HRMS (ESI+): m/z [C11H12N4O2Na]+ 255.0857, calcd for [M + Na]+ 

255.0852. 

P5. To a Schlenk flask was added T5 (1.00 g, 4.31 mmol) and B10H12(CH3CN)2 (871 mg, 4.31 

mmol) and degassed. Anhydrous toluene (10 mL) and anhydrous CH3CN (3 mL) were added and 

the reaction slowly heated to 100 °C and kept at this temperature for 18 hours. The reaction was 

cooled to room temperature and the solvent removed in vacuo. The residue was dissolved in a 

minimum amount of CH2Cl2 and purified by silica chromatography, which was eluted with ethyl 

acetate/hexane 1:2. The product fractions were combined and the solvent removed in vacuo. The 

residue was dissolved in Et2O (5 mL) and the product was precipitated as a white powder with 

hexane (30 mL), which was filtered and dried in vacuo. Yield: 573 mg, 1.63 mmol (38 %). 1H 

NMR (500 MHz, CDCl3)μ į (ppm) 7.56 (d, J = 0.6 Hz, 1H, NCHN), 4.86 (d, J = 14.8 Hz, 1H, 

CH2), 4.64 (d, J = 14.8 Hz, 1H, CH2), 3.99 (d, J = 0.6 Hz, 3H, CH3), 3.59 (s, 3H, CH3), 2.34 (s, 

3H, carboranyl-CCH3). 13C NMR (126 MHz, CDCl3)μ į (ppm) 154.7 (CO), 151.5 (CO), 149.5 (C), 

142.4 (NCHN), 107.4 (C), 77.4 (carboranyl-C), 75.9 (carboranyl-CCH3), 42.5 (CH2), 33.9 (CH3), 
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30.2 (CH3), 23.5 (carboranyl-CCH3). 11B{1H} NMR (161 MHz, CDCl3)μ į (ppm) −3.2, −6.0, −9.9. 

HRMS (ESI+): m/z [C11H23B10N4O2]+ 351.2824, calcd for [M + H]+ 351.2824. 

T6. Prepared as described for T4 from theobromine (3.00 g, 16.70 mmol), Cs2CO3 (10.80 g, 

33.30 mmol) and 4-bromo-1-butyne (1.88 mL, 20.00 mmol) in CH3CN (30 mL). After work up 

the product was obtained as a white powder. Yield: 1.55 g, 6.68 mmol (40 %). 1H NMR (300 MHz, 

CDCl3)μ į (ppm) 7.50 (s, 1H, NCHN), 4.23-4.20 (m, 2H, CH2), 3.98 (s, 3H, CH3), 3.56 (s, 3H, 

CH3), 2.58 (td, J = 7.3, 2.7 Hz, 2H, CH2), 1.96 (t, J = 2.7 Hz, 1H, CH). 13C NMR (75 MHz, CDCl3): 

į (ppm) 155.1 (CO), 151.4 (CO), 149.0 (C), 141.7 (NCHN), 107.7 (C), 81.0 (CŁCH), 69.9 (CH2), 

39.7 (CH2), 33.7 (CH3), 29.8 (CH3), 17.8 (CŁCH). HRMS (ESI+): m/z 255.0860 [C11H12N4O2Na]+, 

calcd for [M + Na]+ 255.0858. 

P6. To a Schlenk flask was added T6 (1.00 g, 4.31 mmol) and B10H12(CH3CN)2 (871 mg, 4.31 

mmol) and degassed. Anhydrous toluene (10 mL) and anhydrous CH3CN (3 mL) were added and 

the reaction slowly heated to 100 °C and kept at this temperature for 18 hours. The reaction was 

cooled to room temperature and the solvent removed in vacuo. The residue was dissolved in a 

minimum amount of CH2Cl2 and purified by silica chromatography, which was eluted with ethyl 

acetate/hexane 1:2, and then the product was eluted with CH2Cl2/CH3OH (10 %). The product 

fractions were combined and the solvent removed in vacuo. The residue was dissolved in Et2O (5 

mL) and the product precipitated as a white powder with hexane (30 mL), filtered and dried in 

vacuo. Yield: 680 mg, 1.93 mmol (45 %). 1H NMR (300 MHz, CDCl3)μ į (ppm) 7.52 (s, 1H, 

NCHN), 4.12 (m, 2H, CH2), 3.96 (s, 3H, CH3), 3.73 (br. s, 1H, carboranyl-CH), 3.55 (s, 3H, CH3), 

2.52 (m, 2H, CH2). 13C NMR (75 MHz, CDCl3)μ į (ppm) 154.8 (CO), 151.2 (CO), 149.2 (C), 142.0 

(NCHN), 107.6 (C), 72.4 (carboranyl-CH), 61.6 (carboranyl-C), 40.0 (CH2), 35.12 (CH2), 33.8 

(CH3), 29.89 (CH3). 11B{1H} NMR (96 MHz, DMSO-d6)μ į (ppm) −2.1, −5.3, −9.1, −11.6. HRMS 
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(ESI+): m/z [C13H23B10N5O2Na]+ 413.2600, calcd for [M + CH3CN + Na − 2H]+ 413.2716. (Note: 

only one of the CH2 resonance is observed). 

T7. Prepared as described for T4 from theobromine (3.00 g, 16.70 mmol), Cs2CO3 (10.80 g, 

33.30 mmol) and benzyl bromide (1.99 mL, 16.70 mmol) in CH3CN (30 mL). After work up the 

product was obtained as a white powder. Yield: 3.62 g, 13.40 mmol (80 %). 1H NMR (500 MHz, 

CDCl3)μ į (ppm) 7.49 (m, 3H, 1H, NCHN), 7.30 (m, 2H, Ar-CH), 7.24 (m, 1H, Ar-CH), 5.19 (s, 

2H, CH2), 3.98 (m, 3H, CH3), 3.57 (s, 3H, CH3). 13C NMR (126 MHz, CDCl3)μ į (ppm) 155.4 

(CO), 151.8 CO), 149.0 (C), 141.7 (NCHN), 137.5 (Ar-C), 129.0 (Ar-CH), 128.5 (Ar-CH), 127.7 

(Ar-CH), 107.8 (C), 44.6 (CH2), 33.7 (CH3), 29.9 (CH3). HRMS (ESI+): m/z [C14H14N4O2Na]+ 

293.1025, calcd for [M + Na]+  293.1009. 

L4. An ampoule was charged with CH3CN (5 mL), P4 (1.17 g, 3.48 mmol) and MeI (6.49 mL, 

104.3 mmol) and heated at 80 °C for 7 days. The reaction was cooled to room temperature and the 

solvent removed in vacuo. To the residue was added Et2O (30 mL) which was then sonicated, the 

solid filtered, washed with Et2O (20 mL) and dried in vacuo to give a white powder. Yield:  631 

mg, 1.46 mmol (42 %). 1H NMR (500 MHz, DMSO-d6)μ į (ppm) 9.35 (s, 1H, NCHN), 5.11 (br. 

s, 1H, carboranyl-CH), 4.81 (d, J = 15.1 Hz, 1H, CH2), 4.58 (d, J = 15.1 Hz, 1H, CH2), 4.16 (s, 

3H, CH3), 4.06 (s, 3H, CH3), 3.76 (s, 3H, CH3). 13C NMR (126 MHz, DMSO-d6)μ į (ppm) 152.7 

(CO), 150.1 (CO), 140.5 (NCHN), 139.9 (C), 107.5 (C), 73.2 (carboranyl-C), 62.4 (carboranyl-

CH), 45.1 (CH2), 37.0 (CH3), 35.8 (CH3), 31.8 (CH3). 11B{1H} NMR (161 MHz, DMSO-d6)μ į 

(ppm) −2.9, −5.2, −10.0, −11.6, −13.0. HRMS (ESI+): m/z [C11H23B10N4O2]+ 352.2800, calcd for 

[M − I]+ 352.2800. 

L5. Prepared as described for L4 from P5 (500 mg, 1.43 mmol) and MeI (2.67 mL, 42.6 mmol) 

in CH3CN (5 mL). After purification the product was obtained as a white powder. Yield: 287 mg, 
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0.64 mmol (45 %). 1H NMR (500 MHz, DMSO-d6)μ į (ppm) 9.34 (s, 1H, NCHN), 4.86 (d, J = 

15.4 Hz, 1H, CH2), 4.64 (d, J = 15.4 Hz, 1H, CH2), 4.16 (s, 3H, CH3), 4.07 (s, 3H, CH3), 3.77 (s, 

3H, CH3), 2.35 (s, 3H, carboranyl-CCH3). 13C NMR (126 MHz, DMSO-d6)μ į (ppm) 152.9 (CO), 

150.1 (CO), 140.5 (NCHN), 140.0 (C), 107.4 (C), 77.9 (carboranyl-C), 75.7 (carboranyl-CCH3), 

43.0 (CH2), 37.0 (CH3), 35.8 (CH3), 31.8 (CH3), 22.6 (carboranyl-CCH3). 11B{1H} NMR (161 

MHz, DMSO-d6): į (ppm) −2.9, −5.2, −10.0, −11.6, −12.9. HRMS (ESI+): m/z [C11H23B10N4O2]+ 

366.2963, calcd for [M − I]+ 366.2944. 

L6. Prepared as described for L4 from P6 (450 mg, 1.28 mmol) and MeI (2.40 mL, 38.5 mmol) 

in CH3CN (5 mL). After purification the product was obtained as a yellow powder. Yield: 189 mg, 

0.86 mmol (67 %). 1H NMR (500 MHz, DMSO-d6)μ į (ppm) 9.29 (s, 1H, NCHN), 5.38 (br. s, 1H, 

carboranyl-CH), 4.14 (s, 1H, CH3), 4.04 (s, 3H, CH3), 3.98 (m, 2H, CH2), 3.72 (s, 3H, CH3). 13C 

NMR (75 MHz, DMSO-d6)μ į (ppm) 152.8 (CO), 149.7 (CO), 140.0 (NCHN), 139.5 (C), 107.8 

(C), 73.0 (carboranyl-CH), 63.6 (carboranyl-C), 36.9 (CH3), 35.6 (CH3), 33.0 (CH2), 31.4 (CH3). 

11B NMR (96 MHz, CD3CN)μ į (ppm) −2.89, −5.25, −9.97, −11.40, −12.97. HRMS (ESI+): m/z 

[C11H23B10N4O2]+ 366.2960, calcd for [M − I]+ 366.2944. (Note: only one of the CH2 resonances 

is observed). 

L7. An ampoule was charged with CH3CN (5 mL), P7 (1.00 g, 3.70 mmol) and MeI (6.91 mL, 

111 mmol) and heated at 80 °C for 100 hours. The reaction was cooled to room temperature and 

the solvent removed in vacuo. To the residue was added CH2Cl2 (5 mL) and the product 

recrystallized with hexane (30 mL) which was filtered yielding a sticky orange solid. This was 

dissolved in CH2Cl2 (5 mL) and hexane (5 mL), and the solvent removed in vacuo to give a fluffy 

golden solid, which was highly hygroscopic. Yield: 1.30 g, 3.15 mmol (85 %). 1H NMR (500 

MHz, DMSO-d6)μ į (ppm) 9.32 (s, 1H, NCHN), 7.33 (m, 4H, Ar-CH), 7.28 (m, 1H, Ar-CH), 5.09 
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(s, 2H, CH2), 4.15 (s, 3H, CH3), 4.07 (s, 3H, CH3), 3.74 (s, 3H, CH3). 13C NMR (126 MHz, DMSO-

d6)μ į (ppm) 153.2 (CO), 150.0 (CO), 139.8 (NCHN), 139.6 (C), 136.2 (Ar-C), 128.3 (Ar-CH), 

127.7 (Ar-CH), 127.4 (Ar-CH), 107.8 (C), 44.5 (CH2), 36.9 (CH3), 35.7 (CH3), 31.5 (CH3). HRMS 

(ESI+): m/z [C15H17N4O2]+ 285.1343, calcd for [M − I]+ 285.1346. 

C5. An ampoule was charged with L5 (150 mg, 0.31 mmol) and AgOAc (102 mg, 0.61 mmol) 

and degassed. Anhydrous CH2Cl2 (5 mL) was added and the reaction and stirred at room 

temperature for 48 hours. The reaction mixture was filtered through Celite®, washed with CH2Cl2 

(5 mL) and the solvent volume from the filtrate reduced to 5 mL in vacuo. The product was 

precipitated with Et2O (30 mL), filtered and dried in vacuo to give a white powder. Yield: 90 mg, 

0.17 mmol (55 %). 1H NMR (500 MHz, CD2Cl2): į (ppm)  4.88 (d, J = 14.9 Hz, 1H, CH2), 4.61 

(d, J = 14.9 Hz, 1H, CH2), 4.21 (s, 3H, CH3), 4.11 (s, 3H, CH3), 3.81 (s, 3H, CH3), 2.32 (s, 3H, 

carboranyl-CCH3), 1.95 (s, 3H, OAc-CH3). 13C NMR (126 MHz, CD2Cl2): į (ppm) 188.4 (NCN), 

178.8 (OAc-C), 153.3 (CO), 151.2 (CO), 141.2 (C), 110.1 (C), 78.2 (carboranyl-CCH3), 75.8 

(carboranyl-C), 43.6 (CH2), 40.5 (CH3), 39.2 (CH3), 32.9 (CH3), 23.7 (carboranyl-CCH3), 22.9 

(OAc-CH3). 11B{1H} NMR (161 MHz, CD2Cl2): į (ppm) −3.3, −6.2, −10.0. Anal. Calcd for 

C14H27AgB10N4O4: C, 31.65; H, 5.12; N, 10.54. Found: C, 31.58; H, 4.97; N, 10.37. Complex 

could not be characterized by HRMS due to ligand scrambling. 

C7. Prepared as described for C5 from L7 (300 mg, 0.73 mmol) and AgOAc (255 mg, 1.53 

mmol) in anhydrous CH2Cl2 (5 mL) with stirring at room temperature for 48 hours. After 

purification the product was obtained as a white powder. Yield: 191 mg, 0.42 mmol (58 %). 1H 

NMR (500 MHz, CD2Cl2)μ į (ppm) 7.42-7.39 (m, 2H, Ar-CH), 7.33-7.24 (m, 3H, Ar-CH), 5.15 

(s, 2H, CH2), 4.16 (s, 3H, CH3), 4.11 (s, 3H, CH3), 3.76 (s, 3H, CH3), 1.94 (s, 3H, OAc-CH3). 13C 

NMR (126 MHz, CD2Cl2)μ į (ppm) 187.2 (NCN), 178.7 (OAc-C), 153.9 (CO), 151.2 (CO), 140.8 
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(C), 137.2 (Ar-C), 129.1 (Ar-CH), 128.9 (Ar-CH), 128.3 (Ar-CH), 110.4 (C), 45.6 (CH2), 40.3 

(CH3), 39.1 (CH3), 32.4 (CH3), 22.9 (OAc-CH3). Anal. Calcd for C17H20AgN4O4: C, 45.15; H, 

4.46; N, 12.39. Found: C, 45.17; H, 34.10; N, 12.48. Complex could not be characterized by 

HRMS due to ligand scrambling. The major molecular ion peak observed corresponds to m/z 

[C30H32AgN8O4]+ 675.1602, calcd for [Ag(NHC)2]+ 675.1592. 

MTT Assays. In vitro cell tests were performed in the School of Applied Sciences at the 

University of Huddersfield. Cells were incubated in 96-well plates, at 2 × 103 cells per well in 200 

µL of growth media (RPMI 1640 supplemented with 10 % fetal calf serum, sodium pyruvate (1 

mM) and L-glutamine (2 mM)). Cells were incubated for 24 hours at 37 °C under an atmosphere 

of 5 % CO2 prior to drug exposure. Silver compounds were dissolved in DMSO at a concentration 

of 25 mM and diluted with medium to obtain drug solutions ranging from 25 µM to 0.049 µM. 

The final DMSO concentration was 0.1 % (v/v) which is non-toxic to cells. Drug solutions were 

applied to cells and incubated for 96 hours at 37 °C under an atmosphere of 5 % CO2. The solutions 

were removed from the wells and fresh medium added to each well along with 20 µL MTT (5 mg 

mL-1), and incubated for 4 hours at 37 °C under an atmosphere of 5 % CO2. The solutions were 

removed and DMSO (150 µL) was added to each well to dissolve the purple formazan crystals. A 

plate reader was used to measure the absorbance at 540 nm. Lanes containing medium only (no 

cells), and cells in medium only (no drug), were used as blanks for the spectrophotometer and 100 

% cell survival respectively. Cell survival was determined as the true absorbance of treated cells 

divided by the true absorbance of controls and expressed as a percentage. The concentration 

required to kill 50 % of cells (IC50) was determined from plots of % survival against drug 

concentration. The values presented are an average of three separate runs. 

ASSOCIATED CONTENT 
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