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Abstract

Gleason-type theorems derive the density operator and the Born rule formal-

ism of quantum theory from the measurement postulate, by considering addi-

tive functions which assign probabilities to measurement outcomes. Additivity

is also the defining property of solutions to Cauchy’s functional equation. This

observation suggests an alternative proof of the strongest known Gleason-type

theorem, based on techniques used to solve functional equations.

1 Introduction

Gleason’s theorem [11] is a fundamental result in the foundations of quantum the-

ory simplifying the axiomatic structure upon which the theory is based. The theorem

shows that quantum states must correspond to density operators if they are to con-

sistently assign probabilities to the outcomes of projective measurements in Hilbert

spaces of dimension three or larger.1

More explicitly, let P (H) be the lattice of self-adjoint projections onto closed sub-

spaces of a separable Hilbert space H of dimension at least three. Consider functions

f : P (H) → [0, 1], which are additive for projections P1 and P2 onto orthogonal sub-

spaces of H, i.e.

f (P1) + f (P2) = f (P1 + P2) . (1)

1By a consistent assignment of probabilities we mean one in which the probabilities for all out-

comes of a given measurement sum to one.
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Gleason concluded that the solutions of Eq. (1) necessarily admit an expression

f (·) = Tr (ρ·) , (2)

for some positive-semidefinite self-adjoint operator ρ on H.

The result does not hold, however, in Hilbert spaces of dimension two since the

constraints (1) degenerate in this case: the projections lack the “intertwining” prop-

erty [11] present in higher dimensions. In 2003, Busch [3] and then Caves et al.

[5] extended Gleason’s theorem to dimension two by considering generalised quan-

tum measurements described by positive operator-valued measures, or POMs. In

analogy with Gleason’s original requirement, a state is now defined as an addi-

tive probability assignment not only on projections but on a larger set of operators,

the space E (H) of effects2 defined on a separable Hilbert space. Then, any function

f : E (H) → [0, 1] satisfying additivity,

f (E1) + f (E2) = f (E1 + E2) , (3)

for effects E1, E2 ∈ E (H) such that

E1 + E2 ∈ E (H) , (4)

is found to necessarily admit an expression of the form given in Eq. (2).3 The effects

E1 and E2 are said to coexist since the condition in Eq. (4) implies that they occur

in the range of a single POM. More recently, it has been shown that this Gleason-type
theorem4 also follows from weaker assumptions: it is sufficient to require Eq. (3) hold

only for effects E1 and E2 that coexist in projective-simulable measurements obtained

by mixing projective measurements [16].

Additive functions were first given serious consideration in 1821 when Cauchy

[4] attempted to find all solutions of the equation

f (x) + f (y) = f (x + y) , (5)

for real variables x, y ∈ R. In addition to the obvious linear solutions, non-linear

solutions to Cauchy’s functional equation are known to exist [12]. However, the non-

linear functions f satisfying Eq. (5) cannot be Lebesgue measurable [2], continuous

at a single point [8] or bounded on any set of positive measure [13]. Similar results

also hold for Cauchy’s functional equation with arguments more general than real

numbers, reviewed in [1], for example.

2An effect E on H is a self-adjoint operator satisfying 0 ≤ 〈ψ|Eψ〉 ≤ 〈ψ|ψ〉 for all vectors |ψ〉 ∈ H.
3This result does not imply Gleason’s result since in dimensions greater than two the requirement

(3) is stronger than the requirement (1).
4It is important to clearly distinguish Gleason-type theorems from Gleason’s original theorem.
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Recalling that the Hermitian operators on Cd form a real vector space, it becomes

clear that the Gleason-type theorems described above can be viewed as results about

the solutions of Cauchy’s functional equation for vector-valued arguments: additive

functions on subsets of a real vector space, subject to some additional constraints,

are necessarily linear. Taking advantage of this connection, we use results regarding

Cauchy’s functional equation to present an alternative proof of known Gleason-type

theorems.

In Sec. 2, we spell out the conditions which single out linear solutions to Cauchy’s

functional equation defined on a finite interval of the real line. The main result of

this paper—an alternative method to derive Busch’s Gleason-type theorem—is pre-

sented in Sec. 3. We conclude with a summary and a discussion of the results in Sec.

4.

2 Cauchy’s functional equation on a finite interval

In 1821 Cauchy [4] showed that a continuous function over the real numbers satisfy-

ing Eq. (5) is necessarily linear. It is important to note, however, that relaxing the

continuity restriction does allow for non-linear solutions [12], as pathological as they

may be.5 Other conditions known to ensure linearity of an additive function include

Lebesgue measurability [2], positivity on small numbers [9] or continuity at a sin-

gle point [8]. We begin by proving a slight extension of these results, in which the

domain of the function is restricted to an interval, as opposed to the entire real line.

Theorem 1. Let a ≥ 1 and f : [0, a] → R be a function which satisfies

f (x) + f (y) = f (x + y) , (6)

for all x, y ∈ [0, a] such that (x + y) ∈ [0, a]. The function f is necessarily linear, i.e.

f (x) = f (1) x , (7)

if it satisfies any of the following four conditions:

(i) f (x) ≤ b for some b ≥ 0 and all x ∈ [0, a];

(ii) f (x) ≥ c for some c ≤ 0 and all x ∈ [0, a];

(iii) f is continuous at zero;

(iv) f is Lebesgue-measurable.
5The existence of non-linear solutions depends on the existence of Hamel bases and, thus, on the

axiom of choice.
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Theorem 1 says that non-linear solutions of Eq. (6) cannot be bounded from be-

low or above, continuous at zero or Lebesgue measurable. We will now prove the

linearity of f for Case (i). The proofs for the remaining cases are given in Appendix

A.

Proof. For any real number x ∈ [0, a], Eq. (6) implies that

f (x) = f
(n

n
x
)

= n f
(

1

n
x
)

, (8)

where n is a positive integer. If we choose an integer m ∈ N with m/n ∈ [0, a], then

we have

f
(m

n
x
)

= m f
(

1

n
x
)

=
m
n

f (x) . (9)

Any real number r ∈ (0, a/n) satisfies nr ∈ (0, a) implying that

n f (r) = f (nr) ≤ b (10)

holds. Given any real number x ∈ [0, a] choose a rational number qx ∈ [0, a] close to

it, 0 < (x − qx) < a/n. The difference between the additive function f (x) and the

linear function f (1)x can be written as

f (x)− f (1) x = f (x − qx + qx)− f (1) x

= f (x − qx) + f (qx)− f (1) x

= f (x − qx) + (qx − x) f (1) .

(11)

By letting r = (x − qx) in Eq. (10), it follows that the modulus of the difference is

given by

| f (x)− f (1) x| ≤ | f (x − qx)|+ |(qx − x) f (1)| <
(a + 1) b

n
, (12)

which, upon taking the limit n → ∞, implies that f (x) must have the form given in

Eq. (7).

3 When Cauchy meets Gleason: additive functions on

effect spaces

The first Gleason-type theorem discovered in 2003 assumes additivity of the frame

function not only on projections which occur in the same PVM but on the larger set

of effects which coexist in the same POM.
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Theorem 2 (Busch [3]). Let Ed be the space of effects on Cd and Id be the identity operator
on Cd. Any function f : Ed → [0, 1] satisfying

f (Id) = 1 , (13)

and
f (E1) + f (E2) = f (E1 + E2) , (14)

for all E1, E2 ∈ Ed such that (E1 + E2) ∈ Ed, admits an expression

f (E) = Tr (Eρ) , (15)

for some density operator ρ, and all effects E ∈ Ed.

Theorem 2 rephrases the (finite-dimensional case of the) theorem proved by Busch

[3] and the theorem due to Caves et al. [5]. Busch uses the positivity of the frame

function f to directly establish its homogeneity whereas Caves et al. derive homo-

geneity by showing that the frame function f must be continuous at the zero oper-

ator. These arguments seem to run in parallel with Cases (ii) and (iii) of Theorem 1

presented in the previous section. In Sec. 3.2, we will give an alternative proof of

Theorem 2 which can be based on any of the four cases of Theorem 1.

3.1 Preliminaries

To begin, let us introduce a number of useful concepts and establish a suitable no-

tation. Throughout this section we will make use of the fact that the Hermitian op-

erators on Cd constitute Hd2
, a real vector space of dimension d2. We may therefore

employ the standard inner product 〈A, B〉 = Tr (AB), for Hermitian operators A and

B, in our reasoning as well as the norm ‖·‖ which it induces.

A discrete POM on Cd is described by its range, i.e. by a sequence of effects

JE1, E2, . . . K that sum to the identity operator on Cd. A minimal informationally-com-
plete (MIC) POM M on Cd consists of exactly d2 linearly independent effects, M =

JM1, . . . , Md2K. Hence, MIC-POMs constitute bases of the vector space of Hermitian

operators, and it is known that they exist in all finite dimensions [6].

Positive linear combinations of effects will play an important role below, giving

rise to the following definition.

Definition 1. The positive cone of a set of Hermitian operators S =
{

Hj, j ∈ J
}

on Cd,

where J is some index set, consists of the operators

C (S) =

{

H = ∑
j∈J

ajHj , aj ≥ 0

}

. (16)
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Next, we introduce so-called “augmented” bases of the space Hd2
which are built

around sets of d projections {|e1〉〈e1|, . . . , |ed〉〈ed|} where the vectors {|e1〉, . . . |ed〉}

form an orthonormal basis of Cd.

Definition 2. An augmented basis of the Hermitian operators on Cd is a set of d2

linearly independent rank-one effects B = {B1, . . . , Bd2} satisfying

(i) Bj = c|ej〉〈ej| for 1 ≤ j ≤ d, with 0 < c < 1 and an orthonormal basis

{|e1〉, . . . |ed〉} of Cd;

(ii) ∑
d2

j=1 Bj ∈ Ed .

Given any orthonormal basis {|e1〉, . . . , |ed〉} of Cd, we can construct an aug-

mented basis for the space of operators acting on it. First, complete the d projectors

Πj = |ej〉〈ej| , j = 1 . . . d , (17)

into a basis
{

Πj, 1 ≤ j ≤ d2
}

of the Hermitian operators on Cd, by adding d(d − 1)

further rank-one projections; this is always possible [6]. The sum

G =
d2

∑
j=1

Πj , (18)

is necessarily a positive operator. The relation Tr G = d2 implies that G must have at

least one eigenvalue larger than 1. If Γ > 1 is the largest eigenvalue of G, then G/Γ

is an effect since it is a positive operator with eigenvalues less than or equal to one.

Defining

Bj = Πj/Γ , j = 1 . . . d2 , (19)

the set B = {B1, . . . , Bd2} turns into an augmented basis. One can show that B can

never correspond to a POM. Nevertheless, the effects Bj are coexistent, in the sense

that they can occur in one single POM, for example JB1, . . . , Bd2 , I−G/ΓK.

Given an effect, one can always represent it as a positive linear combination of

elements in a suitable augmented basis.

Lemma 1. For any effect E ∈ Ed there exists an augmented basis B such that E is in the
positive cone of B.

Proof. By the spectral theorem we may write

E =
d

∑
j=1

λj|ej〉〈ej| , λj ∈ [0, 1] , (20)
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for an orthonormal basis
{

|ej〉, 1 ≤ j ≤ d
}

of Cd. Take B to be an augmented basis

with

Bj = c|ej〉〈ej| , (21)

for 1 ≤ j ≤ d and some c ∈ (0, 1). Then we may express E as the linear combination

E =
d2

∑
j=1

ejBj , (22)

with non-negative coefficients

ej =

{

1
c λj j = 1 . . . d ,

0 j = (d + 1) . . . d2 ,
(23)

showing that the positive cone of the basis B indeed contains the effect E.

Finally, we need to establish that the intersection of the positive cones associated

with an augmented basis and a MIC POM, respectively, has dimension d2.

Lemma 2. Let B = {B1, . . . , Bd2} be an augmented basis and M = JM1, . . . , Md2K a
MIC-POM on Cd. The effects in the intersection C(B) ∩ C(M) of the positive cones of B
and M span the real vector space Hd2

of Hermitian operators on Cd.

Proof. Since the effects in a POM sum to the identity, we have

1

d
Id =

d2

∑
j=1

1

d
Mj . (24)

With each of the coefficients in the unique decomposition on the right-hand side

being finite and positive (as opposed to non-negative), the effect Id /d is seen to be

an interior point of the positive cone C (M). At the same time, the effect Id /d is

located on the boundary of the cone C(B) since its expansion in an augmented basis

has only d non-zero terms. Let us define the operator

Eδ =
1

d
Id +δ

d2

∑
j=d+1

Bj =
1

cd

d

∑
j=1

Bj + δ
d2

∑
j=d+1

Bj , (25)

which, for any positive δ > 0, is an interior point of the cone C (B): each of the

positive coefficients in its unique decomposition in terms of the augmented basis B

is non-zero; we have used Property 1 of Def. 2 to express the identity Id in terms of
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Figure 1: Sketch of the construction of the open ball Bγ (Eδ) of dimension d2; the

positive cones C (M) (solid border) and C (B) (dotted border) intersect in the cone

C(B) ∩ C(M) (shaded cone); the intersection entirely contains the d2-dimensional

ball Bγ (Eδ) around Eδ (solid circle) sitting inside the ball Bε (Id /d) of radius ε

around Id /d (dashed circle); the distance between Eδ and Id /d (solid line) is given

in Eq. (26) .

the basis B. For sufficiently small values of δ, the operator Eδ is also an interior point

of the open ball Bε (Id /d) with radius ε about the point Id/d since

∥

∥

∥

∥

Eδ −
1

d
Id

∥

∥

∥

∥

= δ

∥

∥

∥

∥

∥

d2

∑
j=d+1

Bj

∥

∥

∥

∥

∥

< ε (26)

holds whenever

0 < δ < ε

∥

∥

∥

∥

∥

d2

∑
j=d+1

Bj

∥

∥

∥

∥

∥

−1

. (27)

Being an interior point of both the positive cones C (B) and C (M), the operator Eδ is

at the center of an open ball Bγ (Eδ), located entirely in the intersection C(B)∩C(M)

(cf. Fig. 1). Since the ball Bγ (Eδ) has dimension d2, the effects contained in it must

indeed span the real vector space Hd2
of Hermitian operators.

Combining Theorem 1 with Lemmata 1 and 2 will allow us to present a new proof

of Busch’s Gleason-type theorem.
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3.2 An alternative proof of Busch’s Gleason-type theorem

Recalling that the trace of the product of two Hermitian operators constitutes an

inner product on the vector space of Hermitian operators, Theorem 2 essentially

states that the frame function f acting on an effect can be written as the inner product

of that effect with a fixed density operator. To underline the connection with the

inner product we adopt the following notation. Let A = {A1, . . . Ad2} be a basis

for the Hermitian operators on Cd. We describe the effect E by the “effect vector”

e = (e1, . . . , ed2)
T ∈ Rd2

, given by its expansion coefficients in this basis,

E =
d2

∑
j=1

ej Aj ≡ e · A , (28)

where A is an operator-valued vector with d2 components. Theorem 2 now states

that the frame function is given by a scalar product,

f (E) = e · c , (29)

between the effect vector e and a fixed vector c ∈ Rd2
. Let us determine the relation

between the density matrix ρ in (15) in the theorem and the vector c in (29). Consider

any orthonormal basis W =
{

Wj
}

of the Hermitian operators on Cd and let e′ ∈ Rd2

be the vector such that E = e′ · W. Then we may write

f (E) = e · c = e′ · c′ = Tr

(

d2

∑
j=1

e′jWj

d2

∑
k=1

c′kWk

)

= Tr

(

E
d2

∑
j=1

c′jWj

)

; (30)

here c′ ∈ Rd2
is a fixed vector given by c′ = C−Tc and C−T is the inverse transpose of

the change-of-basis matrix C between the bases B and W , i.e. the matrix satisfying

Ch = h′ for all Hermitian operators H = h · B = h′ · W. By the definition of a frame

function the operator

ρ ≡
d2

∑
j=1

c′jWj =
d2

∑
j=1

(

C−T
)

jk
ckWj (31)

must be positive semi-definite (since f is positive) and have unit trace (due to Eq.

(13)) i.e. be a density operator.

We will now prove that a frame function always admits an expression as in Eq.

(29).
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Proof. By Lemma 1, there exists an augmented basis B = {B1, . . . , Bd2} for any E ∈ Ed

such that

E = e · B ≡
d2

∑
j=1

ejBj , (32)

with coefficients ej ≥ 0, as in Eq. (28).

For each value j ∈
{

1, . . . , d2
}

, we write the restriction of the frame function f to

the set of effects of the form xBj, for x ∈ R, as

f
(

xBj
)

= Fj (x) , (33)

where Fj :
[

0, aj
]

→ [0, 1] and aj = max
{

x|xBj ∈ Ed
}

. By Eq. (14) we have that Fj

satisfies Cauchy’s functional equation, i.e. Fj (x + y) = Fj (x) + Fj (y). Due to the

assumption in Theorem 2 that f : Ed → [0, 1], each Fj must satisfy Condition (i) of

Theorem 1 which implies

f
(

xBj
)

= Fj (x) = Fj (1) x = f
(

Bj
)

x . (34)

Thus we find

f (E) =
d2

∑
j=1

f
(

ejBj
)

=
d2

∑
j=1

ej f
(

Bj
)

= e · fB , (35)

where the j-th component of fB ∈ Rd2
is given by f

(

Bj
)

, by repeatedly using addi-

tivity and Eq. (34). Note that Eq. (35) is not yet in the desired form of Eq. (29) since

the vector fB depends on the basis B and thus the effect E.

Let M = JM1, . . . , Md2K be a MIC-POM on Cd. Since the elements of M are a

basis for the space Hd2
, the Hermitian operators on Cd, we have for any E ∈ Ed

E = e′′ · M , (36)

for coefficients e′′j ∈ R which may be negative. There exists a fixed change-of-basis

matrix D such that

De = e′′ , (37)

for all E ∈ Ed. Now we have

f (E) = e · fB

= (De) ·
(

D−TfB

)

= e′′ ·
(

D−TfB

)

.

(38)

Any effect G in the intersection of the positive cones C (B) and C (M) can be ex-

pressed in two ways,

G = g · B = g′′ · M , (39)
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where both effect vectors g and g′′ have only non-negative components. Eqs. (35)

and (38) imply that

g′′ · fM = f (G) = g′′ ·
(

D−TfB

)

. (40)

Since, by Lemma 2, there are d2 linearly independent effects G in the intersection

C (M) ∩ C (B), we conclude that

D−TfB = fM . (41)

Combining this equality with Equation (38) we find, for a fixed MIC-POM M =

JM1, . . . , Md2K and any effect E ∈ E
Cd , that the frame function f takes the form

f (E) = e′′ · fM . (42)

Here fM ≡ c is a fixed vector since it does not depend on E.

Note that Eq. (34) may also be found using the other three cases of Theorem 1.

For Case (ii), we observe that each of the functions Fj, j = 1 . . . d2, is non-negative by

definition. Alternatively, each function Fj can be shown to be continuous at zero (Case

(iii)) using the following argument which is similar to the one given in [6]. Assume

Fj is not continuous at zero.Then there exists a number ε > 0 such that for all δ > 0

we have

Fj (x0) > ε , (43)

for some 0 < x0 < δ < 1. For any given ε choose δ = 1/n < ε, there is a value of

x0 < δ such that Fj (x0) > ε. However, nx0 < 1, which leads to

Fj (nx0) = nFj (x0) > nε > 1 , (44)

contradicting the the existence of an upper bound of one on values of Fj. Finally,

each of the functions Fj is Lebesgue measurable (Case (iv)) which follows from the

monotonicity of the function.

4 Summary and discussion

We are aware of two papers linking Gleason’s theorem and Cauchy’s functional

equation. Cooke et al. [7] used Cauchy’s functional equation to demonstrate the

necessity of the boundedness of frame functions in proving Gleason’s theorem. Dvu-

rečenskij [10] introduced frame functions defined on effect algebras but did not pro-

ceed to derive a Gleason-type theorem in the context of quantum theory.

In this paper, we have exploited the fact that additive functions are central to

both Gleason-type theorems and Cauchy’s functional equation. Gleason-type the-

orems are based on the assumption that states assign probabilities to measurement
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outcomes via additive functions, or frame functions,on the effect space. Linearity of

the frame functions has been shown to follow from positivity and other assump-

tions, which are well-known in the context of Cauchy’s functional equation. Alto-

gether, the result obtained here amounts to an alternative proof of the extension of

Gleason’s theorem to dimension two given by Busch [3] and Caves et al. [6].

Other Gleason-type theorems are known which are stronger, in the sense that they

depend on assumptions weaker than those of Theorem 2. The smallest known set of

assumptions requires Eq. (14) to only be valid for effects E1 and E2 which coexist in a

projective-simulable POM [15], i.e. a POM which may be simulated using only classic

mixtures of projective measurements, as opposed to any POM. Since the proof given

in [16] relies on Theorem 2, the alternative proof presented in Sec. 3.2 also gives rise

to a new proof of the strongest existing Gleason-type theorem.

We have not been able to exploit the structural similarity between the require-

ments on frame functions and on the solutions of Cauchy’s functional equation in

order to yield a new proof of Gleason’s original theorem. Additivity of frame func-

tions defined on projections instead of effects does not provide us with the type of

continuous parameters which are necessary for the argument developed here. It

remains an intriguing open question whether such a proof does exist.
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A Proofs of Cases (ii), (iii) and (iv) of Theorem 1

It is shown that each of the conditions given in Cases (ii) to (iv) imply Theorem 1

which states that an additive function on a particular interval must be linear.

Proof. Case (ii): Suppose that there exists a non-linear function f satisfying Eq. (6) and

Case (ii) of Theorem 1. Then the function g : [0, a] → R defined by g (x) = − f (x) is

non-linear but satisfies Eq. (6) and g (x) ≤ b and b ≥ 0, with b = −c, contradicting

Case (i).

Proof. Case (iii): Since f is continuous at zero and f (0) = 0, as follows from Eq.

(6), we have that for any ε > 0, there exists a δ > 0 such that | f (x)| < ε for all x
satisfying |x| < δ. Let x, x0 ∈ [0, a] be such that |x − x0| < δ. First consider the case

x < x0. Using additivity,

f (x) + f (x0 − x) = f (x + x0 − x) = f (x0) , (45)

we find

| f (x)− f (x0)| = | f (x0 − x)| < ε . (46)

On the other hand, if x > x0 we have

f (x) = f (x − x0 + x0) = f (x − x0) + f (x0) , (47)

and then

| f (x)− f (x0)| = | f (x − x0)| < ε . (48)

It follows that f is continuous on [0, a]. As in the proof for Case (i), Eqs. (8) and (9)

show that

f (q) = f (1) q , (49)

for rational q ∈ [0, a]. Therefore, if (q1, q2, . . .) is a sequence of rational numbers

converging to x, the function f (x) must be linear in x:

f (x) = lim
j→∞

f
(

qj
)

= lim
j→∞

f (1) qj = f (1) x . (50)

In Case (iv), where f is Lebesgue measurable, the proof of the analogous result

for functions on the full real line by Banach [2] remains valid, as we will now show.

Given Case (iii), it suffices to prove that f is continuous at 0, i.e. that for every ε > 0

there exists a number δ > 0 such that

| f (h)− f (0)| = | f (h)| < ε (51)

holds for all 0 < h < δ.
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Proof. Case (iv): Lusin’s theorem [14] states that, for a Lebesgue measurable function

g on an interval J of Lesbesgue measure µ (J) = m, there exists a compact subset of

any measure m′
< m such that the restriction of g to this subset is continuous. Thus

we may find a compact set F ⊂ [0, 1] with µ (F) ≥ 2/3 on which f is continuous. Let

ε > 0 be given. Since F is compact, f is uniformly continuous on F and there exists a

δ ∈ (0, 1/3) such that

| f (x)− f (y)| < ε (52)

is valid for two numbers x, y ∈ F such that |x − y| < δ. Let h ∈ (0, δ). Suppose F
and F − h = {x − h|x ∈ F} were disjoint. Then we would have

1 + h = µ ([−h, 1]) ≥ µ (F ∪ (F − h)) = µ (F) + µ (F − h) ≥
4

3
, (53)

which contradicts h < δ < 1/3. Taking a point x ∈ F ∩ (F − h) then a number

δ ∈ (0, 1/3) can be found such that

| f (h)| = | f (x)− f (x)− f (h)| = | f (x)− f (x + h)| < ε , (54)

for h ∈ (0, δ). Hence, the function f (x) is continuous at x = 0.
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