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Abstract

The sensory cells responsible for hearing include the cochlear inner hair cells (IHCs) and outer 

hair cells (OHCs), with OHCs being necessary for sound sensitivity and tuning. Both cell types are 

thought to arise from common progenitors, however our understanding of the factors that control 

IHC and OHC fate remains limited. Here we identify Ikzf2/helios as an essential transcription 

factor required for OHC functional maturation and hearing. Ikzf2/helios is expressed in postnatal 

mouse OHCs, and a mutation in Ikzf2 causes early-onset sensorineural hearing loss in the cello 
mouse model. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, 

a hallmark of OHC functional maturation, and show reduced levels of critical OHC-expressed 

genes such as Slc26a5/prestin and Ocm. Moreover, we show that ectopic expression of Ikzf2/

helios in IHCs induces expression of OHC-specific genes, reduces canonical IHC genes, and 

confers electromotility to IHCs, demonstrating that Ikzf2/helios is capable of partially shifting the 

IHC transcriptome towards an OHC-like identity.

The mature mammalian cochlea contains two distinct types of sensory cells, named inner 

and outer hair cells (HCs), each of which are highly specialized and, in humans, do not 

regenerate once damaged or lost1. Progressive loss of these cells, particularly the outer HCs 

(OHCs), underlies much of the aetiology of age-related hearing loss – a worldwide 

epidemic2,3. While these two cell types were first described by Retzius in the 1800’ s, the 

mechanisms underlying the specification of their common progenitor cells to functional 

inner versus outer HCs remain poorly understood. Additionally, attempts to direct stem cells 

towards HC fates have, to date, resulted only in the formation of immature HC-like cells that 

lack many of the markers of mature inner or outer HCs4. Given the vulnerability of the 

OHCs, identifying factors that specify OHC fate is crucial, not only for understanding the 

biology of this unique cell type, but ultimately for working towards regenerative therapies 

for hearing loss.

To define a set of high confidence OHC-expressed genes for downstream gene regulation 

analyses, we crossed the prestin-CreERT2 mice, which can be induced to express Cre-

recombinase specifically in OHCs, with the RiboTag mouse model, allowing for OHC-

specific ribosome immunoprecipitation (IP)5,6. Cochlear ducts from 

RiboTagHA/+;prestinCreERT2/+ mice were collected at five postnatal time points (postnatal 

day (P) 8, P14, P28, 6 weeks (wk), and 10 wk), and actively translated OHC transcripts were 

enriched for by ribosome IP, followed by RNA sequencing (RNA-seq) of all IP and paired 

input RNA (Extended Data Fig.1a-b, Supplementary Table 1). We calculated an OHC 

enrichment factor (EF) based on the IP/input log2 fold change (LFC) for each gene at each 

time point (Supplementary Table 2). Reassuringly, known postnatal HC- and OHC-

expressed genes such as Pou4f3, Gfi1, Strc, Ocm and Slc26a5 generally had high EFs across 

time points (EF>1), while prominent IHC marker genes such as Otof, Atp2a3 and Slc17a8 
were generally depleted from the IP samples (EF<-1). Additionally, marker genes for 

supporting cells, neurons and otic mesenchyme were also depleted (Extended Data Fig.1c). 

Further informatics analyses of our RiboTag OHC dataset demonstrated a systematic 

enrichment of OHC markers and depletion of IHC markers identified by a published adult 
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mouse OHC and IHC transcriptomic dataset (Liu et al.)7, and overall classified the OHC-

enriched transcripts into three clusters (Extended Data Fig.1d-f, Supplementary Table 3). 

Intersecting genes whose transcripts were enriched in OHCs in our most mature RiboTag 

OHC data point (10wk, EF>0.5) with the Liu et al. dataset resulted in a list of 100 highly 

confident postnatal OHC markers that are significantly and consistently enriched in postnatal 

OHCs (Fig.1a, Supplementary Table 4). We and others have previously shown that relevant 

transcriptional regulators can be discovered by analysing the promoters of cell-type specific 

genes to identify statistically over-represented transcription factor (TF) binding motifs8,9. A 

TF binding motif prediction analysis of the 100 OHC marker genes identified multiple 

enriched motifs in the 20 kb regions centered around the transcription start site, the top five 

of which correspond to the TFs HNF4A, MZF1, POU3F2, IKZF2/helios and RFX310. Of 

these TFs, only IKZF2/helios: was included in the list of 100 OHC marker genes; was found 

to be markedly enriched in OHCs at all time points (Fig.1b-c); and showed a ~4-fold 

enrichment in OHCs compared to IHCs in the Liu et al. dataset (Supplementary Table 4). 

Further characterization of helios protein expression in the inner ear confirmed that it is 

restricted to the OHC nuclei starting from P4, and persists in functionally mature OHCs 

(Fig.1d-f, Extended Data Fig.2a). Together, these data suggest an important role for Ikzf2/

helios in regulating the OHC transcriptome from early postnatal to adult stages.

A recent phenotype-driven ENU-mutagenesis screen, undertaken at the MRC Harwell 

Institute, identified a C-to-A transversion at nucleotide 1551 of Ikzf2 in the cello mouse 

mutant, causing a non-synonymous histidine-to-glutamine substitution (p.H517Q) in the 

encoded helios TF (Fig.1g, Extended Data Fig.2b-d)11. A combination of in silico mutation 

analyses, structural 3D modelling, immunolabeling of helios in the cello mutant mice, and 

in-vitro assays predicted and validated a deleterious effect of the cello mutation on the 

ability of helios to dimerize without impairing its cellular localization (Fig.1g, Extended 

Data Fig.2e and 3). We further investigated the functional role of Ikzf2 in hearing by 

assessing Auditory Brainstem Response (ABR) thresholds in wild-type and cello mice 

across several time points. Results show that Ikzf2cello/cello mice have progressive 

deterioration of hearing function starting as early as P16 (>60 dB SPL) with a threshold of 

≥85 dB SPL by 9-months (Fig.2a-b, Extended Data Fig.4a-c). Using scanning electron 

microscopy, we show that the ultrastructure of the cochlear sensory epithelia and HC 

stereocilia bundles in the cello mice appear normal up to 1-month of age, after which the 

OHCs bundles, and later the IHCs bundles, begin to degenerate (Extended Data Fig.4d, 5a-d, 

Supplementary Tables 5-6). These data indicate that the hearing impairment in cello mice 

precedes the loss of HC bundles, and suggest that the helios mutation instead leads to a 

functional OHC deficit. Furthermore, by utilizing a second Ikzf2 mutant allele (Ikzf2del890), 

which leads to an in-frame deletion of the 3rd coding exon, we confirm Ikzf2 as the causative 

gene underlying the auditory dysfunction in the cello mutants. At 1-month of age, 

Ikzf2cello/del890 compound heterozygotes display elevated ABR thresholds (up to 40 dB 

SPL) compared to heterozygotes and wild-type mice (Extended Data Fig. 5e-f), confirming 

Ikzf2cello as the causative allele in the cello mutant.

To explore the effect of the cello mutation on OHC physiology we investigated the 

basolateral properties of OHCs. We found that the MET current (Extended Data Fig. 6a-c) 

and the adult-like potassium (K+) current IK,n (Extended Data Fig. 6d-h) have normal 
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biophysical characteristics in Ikzf2cello/cello OHCs. The resting membrane potential (Vm) of 

OHCs is also similar between genotypes (Ikzf2cello/+: −68 ± 2 mV; Ikzf2cello/cello: −70 ± 1 

mV). We then investigated whether helios regulates OHC electromotile activity. We found 

that stepping the membrane potential from −64 mV to +56 mV causes the OHCs from both 

genotypes to shorten (Fig.2c-d), as previously described12–14. However, Ikzf2cello/cello 

OHCs show significantly reduced movement compared to Ikzf2cello/+ control OHCs (Fig.

2e), even when the values are normalized to their reduced surface area (Fig.2f). We also 

found that young adult Ikzf2cello/cello mice have significantly reduced DPOAE responses (≤

−15 dB SPL) compared to littermate controls (Fig.2g), further demonstrating impaired OHC 

function.

To identify genes regulated by helios in OHCs, we compared gene expression from cochleae 

of P8 Ikzf2cello/cello and their wild-type littermate controls by RNA-seq. We identified 105 

upregulated and 36 downregulated genes in Ikzf2cello/cello cochleae (Supplementary Table 

7), including downregulation of the canonical OHC markers Slc26a5 and Ocm, which was 

confirmed by NanoString validation (Fig.2h). Furthermore, we did not observe modulation 

of other OHC-expressed TFs selected from Li et al., 2016 (Fig.2i)15, suggesting that the 

observed OHC gene dysregulation results from disruption of a specific transcriptional 

cascade. Interestingly, by P16 the transcript levels of Car7, Ocm, and Slc26a5, but not 

Ppp1r17, are similar to wild-type littermate controls, suggesting the possibility that other 

factors may be compensating for the functional loss of Ikzf2 by this time point (Extended 

Data Fig.6i).

To further characterize the transcriptional cascade downstream of Ikzf2/helios, we 

performed in vivo Anc80L65 adeno-associated virus (AAV) gene delivery of a myc-tagged 

Ikzf2 or GFP (from hereon Anc80-Ikzf2 and Anc80-eGFP) to neonatal inner ears of 

Myo15Cre/+;ROSA26CAG-tdTomato mice, sorted the cochlear HCs at P8, and measured 

resultant changes in gene expression using single cell RNA-seq (scRNA-seq) (Fig.3a, 

Extended Data Fig.7)16,17. The HCs from Anc80-Ikzf2 injected inner ears separated into 

two distinct sets of clusters, containing both IHCs and OHCs. One set of IHCs and OHCs 

completely overlapped with the HCs from the Anc80-eGFP control injected ears (Fig.3b, 

bottom clusters), while the other set clustered separately (Fig.3b, top clusters). Separation of 

the two sets of clusters showed a clear correlation with Anc80-Ikzf2 transgene expression 

(Fig.3b), where HCs in the bottom clusters had a lower expression of Anc80-Ikzf2, and the 

HCs in the top clusters had a higher expression of Anc80-Ikzf2 (hereon defined as Anc80-

Ikzf2 low (-) and high (+), respectively). Because the HCs defined as Anc80-Ikzf2 (-) 

clustered together with the HCs transduced with Anc80-eGFP, these two groups of HCs 

were merged and named Anc80-Ikzf2 (-) IHCs and OHCs for all downstream analyses (Fig.

3b-c).

While overexpression of Ikzf2 in IHCs and OHCs did not change the expression of HC 

markers such as Pou4f3 and Calb1 (Fig.3d), it led to a significant downregulation of many 

genes whose transcripts were identified as IHC-enriched in the control HC populations, 

including Otof, Rprm, Atp2a3, and Fgf8 (Fig. 3e, Extended Data Fig. 8, Supplementary 

Tables 8, 9, 10). Interestingly, some of the genes that are downregulated in both Anc80-Ikzf2 
transduced IHCs and OHCs are genes that are normally expressed in both cell types in early 

Chessum et al. Page 4

Nature. Author manuscript; available in PMC 2019 May 30.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



postnatal development, and that later become IHC-specific (e.g., Pvalb and Otof, 
Supplementary Table 10)18,19. This suggests that helios overexpression in OHCs results in 

an accelerated downregulation of these genes. Additionally, helios overexpression in IHCs 

results in the upregulation of genes that are normally enriched in OHCs, such as Ocm, 
Pde6d, Ldhb and Lbh (Fig.3f, Extended Data Fig.8). Overall, these data suggest that during 

normal OHC development, helios likely functions to both decrease the expression of early 

pan-HC markers, such as Otof, in the maturating OHCs, as well as to upregulate OHC 

marker genes. A correlation analysis further validates the role of Ikzf2 in regulating OHC-

related gene expression (Extended Data Fig.8, 9, Supplementary Table 11). The effect of 

Ikzf2 transduction on IHC gene expression was further validated by immunolabeling or in 
situ hybridization for OTOF, VGLUT3, OCM, prestin and Fcrlb (Fig.4, Extended Data Fig.

10a-b). Further analysis of the surface characteristics of the transduced IHCs does not show 

a change from an IHC-like to an OHC-like stereociliary bundle, consistent with a partial role 

for helios in regulating OHC-fate (Extended Data Fig.10c). However, Ikzf2 transduction 

resulted in the appearance of prominent voltage-dependent (non-linear) capacitance in IHCs 

(Extended Data Fig.10d-e), which is an electrical “signature” of prestin-dependent OHC 

electromotility20,21. These data indicate that Anc80-Ikzf2 transduced IHCs start to acquire 

the major function of normal OHCs.

In conclusion, our study demonstrates that Ikzf2/helios is necessary for hearing and is a 

critical regulator of gene expression in the maturing postnatal OHC. In particular, our results 

suggest that Ikzf2/helios functions to suppress IHC and early pan-HC gene expression in 

OHCs, as well as upregulate canonical OHC marker genes. It further shows that Ikzf2/helios 

is sufficient to induce the essential functional characteristic of electromotility and many of 

the molecular characteristics of OHCs when expressed in early postnatal IHCs, albeit not all 

of them – supportive of the notion that additional OHC-expressed transcription factors are 

involved in postnatal OHC development. This is the first study to demonstrate functional 

shifts in postnatal HC molecular identities via viral gene delivery, and suggests that delivery 

of combinations of TFs may lead to successful regeneration of functional OHCs in the 

deafened cochlea.

Methods

Animal procedures

Animal procedures performed at the University of Maryland School of Medicine were 

carried out in accordance with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and have been approved by the Institutional Animal Care and Use 

Committee at the University of Maryland, Baltimore (protocol numbers 1112005 and 

1015003). The RiboTag (maintained on a C57BL/6N background), prestin-CreERT2 and 

Myo15-Cre mouse models (maintained on a C57BL/6J background) have been described 

previously5,6,22, and were generously provided for this study by Dr. Mary Kay Lobo, Dr. 

Jian Zuo, and Drs. Christine Petit and Thomas Friedman, respectively. CBA/CaJ mice (stock 

#000654) and B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J mice (stock #007914, referred 

to as ROSA26CAG-tdTomato) were procured from the Jackson Laboratory (Bar Harbor, ME). 

PrestinCreERT2 specificity was determined by crossing prestinCreERT2/CreERT2 mice to 
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ROSA26CAG-tdTomato mice, and resulting offspring were dissected at P21 for whole-mount 

immunohistochemistry. To generate animals for the RiboTag OHC RNA-seq dataset, 

RiboTagHA/HA  mice were crossed to prestinCreERT2/CreERT2 mice to produce 

RiboTagHA/+;prestinCreERT2/+ mice. These mice were further intercrossed to obtain double 

homozygous RiboTagHA/HA ;prestinCreERT2/CreERT2 animals, which were then crossed to 

CBA/CaJ mice to generate F1 RiboTagHA/+;prestinCreERT2/+ offspring on a mixed CBA/

C57BL/6 background, avoiding the recessively inherited age related hearing loss phenotype 

inherent to C57BL/6 mice23. Recombination was induced by tamoxifen injection (3 mg/40 

g body weight in mice younger than 21 days, 9 mg/40 g body weight in mice 21 days or 

older), and cochlear tissues were collected at the following ages: P8, P14, P28, 6 weeks, and 

10 weeks. For the cello RNA-seq and NanoString experiments, cochlear ducts from Ikzf2+/+, 

Ikzf2cello/+ and Ikzf2cello/cello mice were dissected at P8 and P16. CD-1 or C57BL/6 

pregnant females were procured from Charles River (Frederick, MD) or the University of 

Maryland School of Medicine Veterinary Resources (Baltimore, MD). Resulting neonates 

were injected with Anc80L65 virus between P1 – P3, and dissected for later analyses 

between P8 and 8wk. For the Anc80L65 transduced IHC scRNA-seq experiment, 

Myo15Cre/Cre mice were crossed to ROSA26CAG-tdTomato mice, resulting offspring were 

injected with Anc80L65 virus between P1-P3, and the cochlear epithelium was collected at 

P8. Additionally, a number of litters with Anc80-Ikzf2 injected pups and their control 

littermates (aged P7 – P8), together with a mother, were sent to the University of Kentucky 

for the measurements of non-linear (voltage-dependent) capacitance, an electrical 

“signature” of electromotility. All animal procedures for these experiments were approved 

by the Institutional Animal Care and Use Committee at the University of Kentucky (protocol 

00903M2005). Both male and female animals were used for all experiments.

Animal procedures performed at the MRC Harwell Institute were licenced by the Home 

Office under the Animals (Scientific Procedures) Act 1986, UK and additionally approved 

by the relevant Institutional Ethical Review Committees. The cello mutant mouse was 

originally identified from the MRC Harwell Institute phenotype-driven N-ethyl-N-

nitrosourea (ENU) Ageing Screen11. In this screen, ENU-mutagenized C57BL/6J males 

were mated with wild-type ‘ sighted C3H’  (C3H.Pde6b+) females24. The resulting G1 males 

were crossed with C3H.Pde6b+ females to produce G2 females, all of which were screened 

for the Cadherin23ahl allele23. Cadherin23+/+ G2 females were then backcrossed to their G1 

fathers to generate recessive G3 pedigrees, which entered a longitudinal phenotyping 

pipeline. Auditory phenotyping comprised clickbox testing at 3-, 6-, 9- and 12-months of 

age and ABR at 9-months of age. The Ikzf2del890 mutant line was generated by the 

Molecular and Cellular Biology group at the MRC Harwell Institute using a CRISPR-Cas9-

mediated deletion approach. Both male and female mice were used for experiments.

RiboTag immunoprecipitations

RiboTag immunoprecipitations were performed as described in Sanz et al., 20096. Briefly, 

for one biological sample, 10 cochlear ducts from 5 mice were pooled and homogenized in 1 

ml of supplemented homogenization buffer (50 mM Tris-HCl pH.7, 100 mM KCl, 12 mM 

MgCl2, 1% Nonidet P-40, 1 mM 1,4-Dithiothreitol, 1X protease inhibitor cocktail, 200 

U/mL RNAseOUT, 100 μg/ml cycloheximide, 1 mg/ml heparin). Homogenates were spun 
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down (10,000 rpm for 10 minutes at 4°C) to remove particulates. 40 μl of homogenate was 

reserved for total RNA isolation (input control), and the remaining homogenate was 

incubated with 5 μg HA antibody (BioLegend) at 4°C under gentle rotation for 4 – 6 hours. 

The supernatant was then added to 300 μl of rinsed Invitrogen Dynabeads Protein G 

magnetic beads (Thermo Fisher), and incubated overnight at 4°C under gentle rotation. The 

following day, bound beads were rinsed three times with 800 μl high salt buffer (50 mM 

Tris-HCl pH.7, 300 mM KCl, 12 mM MgCl2, 1% Nonidet P-40, 1 mM 1,4-Dithiothreitol, 

100 μg/ml cycloheximide) at 4°C for 10 minutes, rotating. 350 μl of buffer RLT from the 

RNeasy Plus Micro kit (Qiagen) was then added to the beads or reserved input sample, and 

vortexed for 30 seconds to bound ribosomes and RNA. RNA was extracted according to the 

manufacturer’ s instructions for the RNeasy Plus Micro kit (Qiagen), using 16 μl of nuclease 

free water for elution as recommended by Sanz et al. This method yielded an average of 10.9 

ng of IP RNA (average concentration = 0.68 ng/μl) and 185.6 ng of input RNA (average 

concentration = 10.9 ng/μl) for downstream analyses. All RNA samples used for RNA-seq 

had a minimum RNA integrity number (RIN) of 8.

cello cochlear RNA extractions

For the cello RNA-seq, cochlear ducts from P8 Ikzf2+/+ and Ikzf2cello/cello mice were 

dissected and pooled (6 cochlear ducts/sample) to generate two biological replicates per 

genotype. For the NanoString validations, cochlear ducts from P8 Ikzf2cello/cello, Ikzf2cello/+ 

and Ikzf2+/+ mice were dissected and pooled (2 – 4 cochlear ducts/sample) to generate four 

biological replicates per genotype. RNA was extracted using the Direct-zol™ RNA 

MiniPrep kit (Zymo Research) following the manufacturer’ s instructions. RNA quality and 

concentration were assessed using the Agilent RNA Pico kit (Agilent Technologies). All 

RNA samples used for RNA-seq had a minimum RNA integrity number (RIN) of 8.

RNA-seq and normalization

RiboTag OHC RNA-seq libraries were prepared using the NEBNext® Ultra™ Directional 

RNA Library Prep Kit for Illumina (New England Biolabs), and samples were sequenced in 

at least biological duplicates on a HiSeq 4000 system (Illumina) using a 75 bp paired end 

read configuration. P8 Ikzf2+/+ and Ikzf2cello/cello RNA libraries were prepared using the 

TruSeq RNA Sample Prep kit (Illumina), and samples were sequenced in biological 

duplicates on a HiSeq 2000 system (Illumina) and a 125 bp paired end read configuration. 

Reads were aligned to the Mus musculus reference genome (assembly GRCm38.87 

[RiboTag] or GRCm38.84 [P8 cello]) using TopHat v2.0.825, and HTSeq was used to 

quantify the number of reads aligning to predicted coding regions26. See Supplementary 

Table 12 for alignment statistics. Expression levels were normalized using quantile 

normalization. In downstream analyses, only genes covered by at least 20 reads in a 

minimum of two samples from the same biological condition were considered as expressed. 

Significant differential gene expression between samples was assessed using DEseq27. In 

addition to statistical significance between samples (FDR≤0.05), we also required a 

complete separation of expression levels between compared conditions for a gene to be 

called as differentially expressed. That is, for a gene to be called downregulated in condition 

A compared to condition B, we required that all normalized expression levels measured in 

the samples of condition A to be lower than all normalized expression levels measured in the 
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samples of condition B. To avoid inflation of fold change estimates for lowly expressed 

genes, a floor level equal to the 10th percentile of the distribution of the expression levels 

was applied (i.e., all expression values below the 10th percentile were set to the 10th 

percentile value). The OHC enrichment factors (EF) were calculated for each gene and time 

point by comparing the RiboTag IP samples to matched input samples, and are defined as 

the Log2 ratio of expression levels between the IP and input samples. Inspection of these 

EFs revealed a systematic association to transcripts length (Supplementary Fig.2a). 

Therefore, we used a locally weighted regression, implemented by the R lowess function, to 

remove this systematic effect (Supplementary Fig.2b). The RiboTag OHC RNA-seq and P8 

cello cochlea RNA-seq data have been submitted to the Gene Expression Omnibus database 

(GEO accession numbers GSE116703 and GSE116702), and are additionally available for 

viewing through the gEAR Portal (https://umgear.org/).

Gene expression analyses

Genes with a changed level of expression in OHC IP samples at any time point relative to P8 

were subjected to a clustering analysis using the CLICK algorithm, implemented in the 

EXPANDER package28,29. Gene Ontology (GO) enrichment analysis was carried out using 

the EXPANDER implemented tool TANGO28. The adult mouse IHC and OHC 

transcriptomic dataset used for comparisons was generated by Liu et al., 2014 and can be 

accessed through the Gene Expression Omnibus database (GEO accession number 

GSE111348)7. The expanded motif prediction analysis was performed using iRegulon10 

through the Cytoscape visualization tool30. The analysis was performed on the putative 

regulatory region of 20 kb centered around the TSS using default settings.

Immunohistochemistry

For cochlear sections, mice were culled by cervical dislocation and inner ears fixed in 4% 

paraformaldehyde (PFA) overnight at 4°C then decalcified in 4% ethylenediaminetetraacetic 

acid (EDTA) in PBS. Ears were positioned in 4% low melting temperature agarose (Sigma-

Aldrich) in upturned BEEM® capsules (Agar Scientific) at a 45° diagonal angle, with the 

apex of the cochlea facing down and the vestibular system uppermost. Once set, the agarose 

block was removed from the BEEM® capsule and 200 μm sections were cut through the 

mid-modiolar plane of the cochlea using a Leica VT1000S Vibratome. Sections were 

simultaneously permeabilized and blocked with 10% donkey serum (Sigma) in 0.3% Triton-

X for 30 minutes at room temperature (RT) then labelled with primary antibodies for 3 hours 

at RT. To enable detection, samples were incubated with fluorophore-coupled secondary 

antibodies for 2 hours at RT then stained with DAPI (1:2500, Thermo Fisher) for 5 minutes. 

Sections were transferred to WillCo glass bottom dishes (Intracel) and visualized free-

floating in PBS using a Zeiss 700 inverted confocal microscope (10x – 40x magnification). 

Primary antibodies: goat anti-Helios M-20 (1:400, Santa Cruz Biotechnology); mouse anti-

ͤ-Actin (1:500, Abcam). Secondary antibodies: Alexa Fluor® 568 donkey anti-goat 

(Invitrogen, 1:200) and Alexa Fluor® 488 donkey anti-mouse (Invitrogen, 1:200).

For cochlear whole-mounts, mice were euthanized by cervical dislocation and inner ears 

fixed in 2% PFA for 30 minutes at 4°C. Post-fixation, ears were fine dissected to expose the 

sensory epithelium then immediately permeabilized in 0.2% Triton-X for 10 minutes and 
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blocked with 10% donkey serum (Sigma) for 1 hour at RT. Cochleae were immunolabelled 

with goat anti-Helios M-20 (1:400, Santa Cruz Biotechnology) overnight at 4°C then 

incubated with Alexa Fluor® 568 donkey anti-goat secondary (1:200, Invitrogen) and the F-

actin marker Alexa Fluor® 488 Phalloidin (1:200, Invitrogen) for 1 hour at RT. Samples 

were washed with DAPI (1:2500, Thermo Fisher) for 60 seconds to stain nuclei then 

mounted onto slides with SlowFade® Gold (Life Technologies) and visualized using a Zeiss 

LSM 710 fluorescence confocal microscope and 63x oil magnification.

Identification of the cello mutation

DNA was extracted from ear biopsies of affected G3 mice using the DNeasy Blood and 

Tissue Kit (Qiagen) and used for an initial genome-wide linkage study, employing SNP 

markers polymorphic between the parental strains C57BL/6J and C3H.Pde6b+ (Tepnel Life 

Sciences). Following linkage to a 21.57 Mb region on Chromosome 1, additional SNP 

markers were identified and genotyped using standard PCR and restriction endonuclease 

protocols in order to delineate an 8.4 Mb critical interval between SNPs rs31869113 and 

rs13475914. Subsequently, high-quality DNA was extracted from the tail of an affected G3 

mouse using the Illustra™ Nucleon BACC2 Genomic DNA Extraction Kit (GE Healthcare) 

and sequenced by the Oxford Genomics Centre (Wellcome Trust Centre for Human 

Genetics, Oxford, UK) using the HiSeq system (Illumina). Sequencing reads were aligned to 

the mouse reference genome (assembly GRCm38) and known C57BL/6J and C3H.Pde6b+ 

SNPs were filtered out, leaving variants that were then given a quality score based on their 

sequencing read depth. Variants within the 8.4 Mb critical region which were deemed 

heterozygous, low-confidence (quality score <200), non-coding or synonymous were 

discounted. The putative Ikzf2 lesion was amplified by standard PCR (see Supplementary 

Table 13 for genotyping primers) and validated by Sanger sequencing, using DNA from an 

affected G3 animal, as well an unaffected G3 (control). Sequence gaps that spanned coding 

regions were amplified by PCR using DNA from an affected G3 mouse and analysed by 

Sanger sequencing. In all cases, sequence data were assessed for variation using DNASTAR 

Lasergene software (version 12.0.0).

In silico analyses

Three independent online tools were used to predict the functional effect of the cello 
mutation in silico: Sorting Intolerant From Tolerant (SIFT); Polymorphism Phenotyping 

version 2 (PolyPhen-2); and Protein Variation Effect Analyser (PROVEAN)31–33. 

Structural 3D representations of wild-type and H517Q helios ZnF6 were predicted with 

RaptorX34, using peptide sequences as input, and visualized using pyMOL software 

(version 1.7).

In vitro analyses

A full-length Ikzf2+ helios construct was prepared using the pGEM®-T Vector System II Kit 

(Promega) and used as a template for the generation of an Ikzf2cello helios construct with the 

QuikChange® Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). Plasmid 

DNA was prepared using the Wizard® Plus SV Miniprep Purification System (Promega) 

and validated by Sanger sequencing. Sequence-verified Ikzf2+ and Ikzf2cello constructs were 

subcloned in-frame into pCMV-Myc and pEGFP-C3 mammalian expression vectors 
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(generously provided by Dr. Chris Esapa), to yield N-terminally tagged Ikzf2+ and Ikzf2cello 

helios. See Supplementary Table 13 for cloning and mutagenesis oligonucleotide sequences.

Constructs were subsequently employed for subcellular localization studies using male 

Cercopithecus aethiops SV40 transformed kidney cells (Cos-7) cells (generously provided 

by Dr. Chris Esapa) that had been seeded onto 22 x 22 mm glass coverslips in six-well 

plates, at a volume of 1x105 cells per well. After 24 hours (or when at 50 – 60% 

confluency), cells were transiently transfected with 1 μg DNA of Ikzf2+-Myc or Ikzf2cello-

Myc helios construct using JetPEI® DNA Transfection Reagent (Polyplus Transfection). At 

24 hours post-transfection, cells were fixed in 4% PFA for 10 minutes and permeabilised 

with 1% Triton-X for 15 minutes at RT. After blocking in 10% donkey serum (Sigma) for 1 

hour at RT, cells were immunolabelled with goat anti-Helios M-20 primary antibody (1:600, 

Santa Cruz Biotechnology) overnight at 4°C then incubated with Alexa Fluor® 488 donkey 

anti-goat secondary antibody (1:200, Invitrogen) and F-actin marker Texas Red®-X 

Phalloidin (1:200, Invitrogen) for 1 hour at RT. Cells were washed with DAPI (1:2500, 

Thermo Fisher) for 60 seconds. Coverslips were mounted onto slides with SlowFade® Gold 

(Life Technologies) and cells were visualized using a Zeiss LSM 710 multiphoton 

fluorescence confocal microscope and 63x oil magnification.

Constructs were also utilized for co-immunoprecipitation studies using Homo sapiens 
embryonic kidney cells (HEK293T) cells (generously provided by Dr. Chris Esapa) that had 

been seeded directly onto six-well plates at a volume of 5x105 cells per well. Cells were 

transiently co-transfected 24 hours later with a total of 2 μg plasmid DNA to mimic the wild-

type (1 μg Ikzf2+-Myc helios + 1 μg Ikzf2+-GFP helios), heterozygous (1 μg Ikzf2+-Myc 

helios + 1 μg Ikzf2cello-GFP helios; 1 μg Ikzf2cello-Myc helios + 1 μg Ikzf2+-GFP helios) or 

homozygous (1 μg Ikzf2cello-Myc helios + 1 μg Ikzf2cello-GFP helios) states using JetPEI® 

DNA Transfection Reagent (Polyplus Transfection). Single transfections with either 1 μg 

Ikzf2+-GFP helios or 1 μg Ikzf2+-Myc helios were also carried out for negative controls. 

Cells were lysed in 250 μl of 1x RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% 

deoxycholate, 0.1% SDS, 50 mM Tris pH 7.5 in milliQ water) at 48 hours post-transfection, 

then incubated with Protein G Sepharose® Beads (Sigma) for 2 hours at 4°C. The beads 

were pelleted by centrifugation and the supernatant incubated with either 1 μg of mouse 

anti-cMyc 9E10 antibody (Developmental Studies Hybridoma Bank) or 1-2 μg of custom-

made rabbit anti-GFP antibody overnight at 4°C. The immunoprecipitation complexes were 

captured using Protein G beads, washed with RIPA buffer and released by incubation with 

NuPAGE Reducing Agent (Novex). Immunoprecipitation reactions and their corresponding 

reduced cell lysate were analysed by western blotting. Samples were electrophoresed on 

NuPage 4 – 12% Bis-Tris gels (Invitrogen) and transferred onto nitrocellulose membranes 

using the iBlot® system (Invitrogen). Membranes were incubated with mouse anti-cMyc 

9E10 antibody (1:5000, Developmental Studies Hybridoma Bank) and custom-made rabbit 

anti-GFP (1:1000, CUK-1819 MGU-GFP-FL) primary antibodies. Mouse 12G10 anti-ͣ-

Tubulin (1:10,000, Developmental Studies Hybridoma Bank) was also used as a loading 

control. For detection, membranes were incubated with goat anti-mouse IRDye 680RD 

(1:15000, LI-COR) and goat anti-rabbit IRDye 800CW secondary antibodies (1:15000, LI-

COR) and imaged using the Odyssey® CLx Infrared Imaging System (LI-COR). For 

quantification, band intensities were determined using the Image Studio Lite Ver 5.2 
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software and used to calculate the relative ratio of Co-IP to IP signal. Cos-7 and HEK293T 

cells were grown at 37°C under 5% carbon dioxide (CO2) conditions in Dulbecco’ s 

Modified Eagle Medium (Invitrogen) containing 10% heat-inactivated foetal bovine serum 

(FBS) (Invitrogen) and 1X penicillin/streptomycin (Invitrogen).

Auditory brainstem response (ABR)

ABR tests were performed using a click stimulus in addition to frequency-specific tone-burst 

stimuli to screen mice for auditory phenotypes and investigate auditory function35. Mice 

were anaesthetized by intraperitoneal injection of ketamine (100 mg/ml at 10% v/v) and 

xylazine (20 mg/ml at 5% v/v) administered at the rate of 0.1 ml/10 g body mass. Animals 

were placed on a heated mat inside a sound-attenuated chamber (ETS Lindgren) and 

electrodes were placed subdermally over the vertex (active), right mastoid (reference) and 

left mastoid (ground). ABR responses were collected, amplified and averaged using TDT 

System 3 (Tucker Davies Technology, Alachua, FL, USA) in conjunction with either BioSig 

RP (version 4.4.11) or BioSig RZ (version 5.7.1) software. The TDT system click ABR 

stimuli comprised clicks of 0.1 ms broadband noise spanning ~2-48 kHz, presented at a rate 

of 21.1/sec with alternating polarity. Tone-burst stimuli were of 7 ms duration, inclusive of 1 

ms rise/fall gating using a Cos2 filter, presented at a rate of 42.5/s and were measured at 8, 

16, and 32 kHz. All stimuli were presented free-field to the right ear of the mouse, starting at 

90 dB SPL and decreasing in 5 dB increments. Auditory thresholds were defined as the 

lowest dB SPL that produced a reproducible ABR trace pattern and were determined 

manually. All ABR waveform traces were viewed and re-scored by a second operator blind 

to genotype. Animals were recovered using 0.1 ml of anaesthetic reversal agent atipamezole 

(Antisedan™, 5 mg/ml at 1% v/v), unless aged P16, when the procedure was performed 

terminally.

Generation of Ikzf2del890 mice

The Ikzf2del890 mutant line was generated by the Molecular and Cellular Biology group at 

the Mary Lyon Centre, MRC Harwell Institute using CRISPR-Cas9 gene editing, as in 

Mianné et al., 2016 (see Supplementary Table 13 for single guide RNA (sgRNA) sequences, 

donor oligonucleotide sequences and genotyping primers)36. For construction of each 

sgRNA plasmid, a pair of single-stranded donor oligonucleotides (IDT) was hybridized and 

cloned using Gibson Assembly® Master Mix (NEB) into linearized p_1.1 plasmid digested 

with StuI and AflII  in order to express sgRNAs under the T7 promoter.

The p_1.1_sgRNA plasmids were linearized with XbaI, phenol-chloroform purified and the 

products used as templates from which sgRNAs were in vitro transcribed. sgRNAs were 

synthesized using MEGAshortscript™ T7 Transcription Kit (Ambion). RNAs were purified 

using MEGAclear™ Transcription Clean-Up Kit (Ambion). RNA quality was assessed 

using a NanoDrop (Thermo Scientific) and by electrophoresis on 2% agarose gel containing 

Ethidium Bromide (Fisher Scientific).

As this exon deletion mutant was generated as part of an experiment to generate a floxed 

mutant, a Ikzf2 flox long single-stranded DNA (lssDNA) donor was also synthesized as per 

Codner et al., 2018, for inclusion in the microinjection mix37.
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For microinjections, the pronucleus of one-cell stage C57BL/6NTac embryos were injected 

with a mix containing Cas9 mRNA (5meC,͚, Tebu-Bio/TriLink Biotechnologies) at 100 ng/

μl, the four Ikzf2 sgRNAs, each at 50 ng/μl and the Ikzf2 flox lssDNA donor at 50 ng/μl 

prepared in microinjection buffer. Injected embryos were re-implanted in pseudo-pregnant 

CD1 females, which were allowed to litter and rear F0 progeny.

For genotyping, genomic DNA was extracted from ear biopsies of F0 and F1 mice using 

DNA Extract All Reagents Kit (Applied Biosystems) and amplified by PCR using high 

fidelity Expand Long Range dNTPack (Roche) and specific genotyping primers (see 

Supplementary Table 13). PCR products were further purified using QIAquick Gel 

Extraction Kit (Qiagen) and analysed by Sanger sequencing. Copy counting experiments by 

ddPCR against a known two copy reference (Dot1l) were also carried out to confirm the 

exon deletion and that there were no additional integrations of the lssDNA donor. Mice 

carrying the del890 deletion allele were subsequently mated with mice carrying the cello 
mutation in order to generate Ikzf2cello/del890 compound heterozygotes for complementation 

testing.

Scanning electron microscopy

Mice were culled by cervical dislocation and inner ears were removed and fixed in 2.5% 

glutaraldehyde (TAAB Laboratories Equipment Ltd.) in 0.1 M phosphate buffer for 4 hours 

at 4°C. Following decalcification in 4.3% EDTA, cochleae were dissected to expose the 

organ of Corti, and subjected to ‘ OTO’  processing (1 hour incubation in 1% osmium 

tetroxide (TAAB Laboratories Equipment Ltd.), 30 minute incubation in 1% 

thiocarbohydrazide (Sigma), 1 hour incubation in 1% osmium tetroxide), before dehydration 

in increasing concentrations of ethanol (25%, 40%, 60%, 80%, 95%, 2 x 100%) at 4°C. 

Samples were critical point dried with liquid CO2 using an Emitech K850 (EM Technologies 

Ltd), then mounted on stubs using silver paint (Agar Scientific) and sputter coated with 

platinum using a Quorum Q150R S sputter coater (Quorum Technologies). Samples were 

examined using a JEOL JSM-6010LV Scanning Electron Microscope. Hair cell bundle 

counts were performed by counting the number of OHC and IHC bundles adjacent to ten 

pillar cells in the apical (<180° from apex), mid (180 – 450° from apex) and basal (> 450° 

from apex) regions of the cochlea. At least three ears (one ear per mouse) were analysed for 

each genotype at each time point.

Electrophysiological analyses

Electrophysiological recordings were made from OHCs of cello mice aged P9 – P18. 

Cochleae were dissected in normal extracellular solution (in mM): 135 NaCl, 5.8 KCl, 1.3 

CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6 D-glucose, 10 Hepes-NaOH. Sodium pyruvate (2 

mM), MEM amino acids solution (50X, without L-Glutamine) and MEM vitamins solution 

(100X) were added from concentrates (Fisher Scientific, UK). The pH was adjusted to 7.5 

(osmolality ~308 mmol kg-1). The dissected cochleae were transferred to a microscope 

chamber, immobilized as previously described38 and continuously perfused with a 

peristaltic pump using the above extracellular solution. The organs of Corti were viewed 

using an upright microscope (Nikon FN1, Japan) with Nomarski optics (x60 objective).
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MET currents were elicited by stimulating the hair bundles of P9 OHCs in the excitatory and 

inhibitory direction using a fluid jet from a pipette (tip diameter 8 – 10 μm) driven by a 

piezoelectric disc38. The pipette tip of the fluid jet was positioned near to the bundles to 

elicit a maximal MET current. Mechanical stimuli were applied as 50 Hz sinusoids (filtered 

at 0.25 kHz, 8-pole Bessel) with driving voltages of ± 40 V. MET currents were recorded 

with a patch pipette solution containing (in mM): 106 Cs-glutamate, 20 CsCl, 3 MgCl2, 1 

EGTA-CsOH, 5 Na2ATP, 0.3 Na2GTP, 5 Hepes-CsOH, 10 sodium phosphocreatine (pH 

7.3). Membrane potentials were corrected for the liquid junction potential (–11 mV).

Patch clamp recordings were performed using an Optopatch (Cairn Research Ltd, UK) 

amplifier. Patch pipettes were made from soda glass capillaries (Harvard Apparatus Ltd, 

UK) and had a typical resistance in extracellular solution of 2-3 Mᕴ. In order to reduce the 

electrode capacitance, patch electrodes were coated with surf wax (Mr Zoggs SexWax, 

USA). Potassium current recordings were performed at RT (22 – 24ºC) and the intracellular 

solution contained (in mM): 131 KCl, 3 MgCl2, 1 EGTA-KOH, 5 Na2ATP, 5 Hepes-KOH, 

10 Na2-phosphocreatine (pH 7.3; osmolality ~296 mmol kg-1). Data acquisition was 

controlled by pClamp software (version 10) using Digidata 1440A boards (Molecular 

Devices, USA). Recordings were low-pass filtered at 2.5 kHz (8-pole Bessel), sampled at 5 

kHz and stored on computer for off-line analysis (Origin: OriginLab, USA). Membrane 

potentials in voltage clamp were corrected for the voltage drop across the uncompensated 

residual series resistance and for a liquid junction potential (–4 mV).

The presence of electromotile activity in P16 – P18 OHCs was estimated by applying a 

depolarizing voltage step from the holding potential of –64 mV to +56 mV. Changes in cell 

length were viewed and recorded with a Nikon FN1 microscope (75x magnification) with a 

Flash 4.0 SCCD camera (Hamamatsu, Japan). Cell body movement was tracked using Fiji 

software. Lines were drawn across the basal membrane of patched OHCs, perpendicular to 

the direction of cell motion, and a projected time-based z-stack of the pixels under the line 

was made. Cell movement was measured with Photoshop as a pixel shift and then converted 

to nm (290 pixels = 10 μm).

Non-linear (voltage-dependent) capacitance of IHCs in Anc80-Ikzf2 injected mice and their 

non-injected littermates was studied at P12 – P16 using conventional whole cell patch clamp 

recordings. Apical turn of the organ of Corti was carefully dissected in Leibovitz's L-15 cell 

culture medium (Cat #21083027, Gibco/ThermoFisher, USA) containing the following 

inorganic salts (in mM): NaCl (137), KCl (5.4), CaCl2 (1.26), MgCl2 (1.0), Na2HPO4 (1.0), 

KH2PO4 (0.44), MgSO4 (0.81) and placed into the custom-made recording chamber, where 

it was held by two strands of dental floss. The organ of Corti explants were viewed with an 

upright microscope (BX51WIF, Olympus, Japan), equipped with a high numerical aperture 

(NA) objective (100x, 1.0 NA). To block voltage-gated ion channels in IHCs, the bath 

solution was made of L-15 medium supplemented with 10 mM tetraethylammonium-Cl, 2 

mM CoCl2, 10 mM CsCl, and 0.1 mM Nifedipine (all from Sigma, USA), while the 

intrapipette solution contained (in mM): CsCl (140), MgCl2 (2.5), Na2ATP (2.5), EGTA 

(1.0), HEPES (5). During recordings, the organs of Corti were continuously perfused with 

the above extracellular bath solution. Whole cell current responses were recorded with 

MultiClamp 700B patch clamp amplifier (Molecular Devices, USA), controlled by jClamp 
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software (SciSoft, USA). Membrane capacitance was measured during the voltage ramp 

with a dual sinusoidal, FFT-based method39. The recorded capacitance was fitted to the first 

derivative of a two-state Boltzmann function that is typically used to fit nonlinear 

capacitance of OHCs plus a small correction for the membrane area changes between 

expanded and contracted states of prestin40, as follows:

Cm = Cv + Clin, where Cm is the total membrane capacitance, Cv is a voltage-dependent 

(non-linear) component, and Clin is a voltage-independent (linear) component.

C
V

= Q
max

ze

kT

b

(1 + b)
2

+

ΔC
sa

(1 + b
−1

)

; b = exp(

−ze(V − V
pk

)

kT
)

where, Qmax is the maximum nonlinear charge moved, Vpk is a voltage at peak capacitance, 

V is membrane potential, z is valence, e is electron charge, k is Boltzmann’ s constant, T is 

absolute temperature, and ΔCsa is the maximum increase in capacitance that occurs when all 

prestin molecules change from compact to expanded state. To account for some variability in 

sizes of IHCs, statistical data are shown as the maximum of voltage-dependent component 

of capacitance (Cv) normalized to the linear capacitance of the cell (Cv/Clin).

Distortion Product Oto-Acoustic Emissions (DPOAEs)

DPOAE tests were performed using frequency-specific tone-burst stimuli at 8, 16 and 32 

kHz with the TDT RZ6 System 3 hardware and BioSig RZ (version 5.7.1) software (Tucker 

Davis Technology, Alachua, FL, USA). An ER10B+ low noise probe microphone (Etymotic 

Research) was used to measure the DPOAE near the tympanic membrane. Tone stimuli were 

presented via separate MF1 (Tucker Davis Technology) speakers, with f1 and f2 at a ratio of 

f2/f1 = 1.2 (L1=65 dB SPL, L2=55 dB SPL), centred around the frequencies of 8, 16 and 32 

kHz. Surgical anaesthesia was achieved by intraperitoneal injection of ketamine (100 mg/ml 

at 10% v/v), xylazine (20 mg/ml at 5% v/v) and acepromazine (2 mg/ml at 8% v/v) 

administered at a rate of 0.1 ml/10 g body mass. Once the required depth of anaesthesia was 

confirmed by the lack of the pedal reflex, a section of pinna was removed to allow 

unobstructed access to the external auditory meatus. Mice were then placed on a heated mat 

inside a sound-attenuated chamber (ETS-Lindgren) and the DPOAE probe assembly was 

inserted into the ear canal using a pipette tip to aid correct placement. In-ear calibration was 

performed before each test. The f1 and f2 tones were presented continuously and a fast-

Fourier transform was performed on the averaged response of 356 epochs (each ~21 ms). 

The level of the 2f1-f2 DPOAE response was recorded and the noise floor calculated by 

averaging the four frequency bins either side of the 2f1-f2 frequency.

NanoString validation

Cochlear RNA extracted from biological triplicates of Ikzf2cello/cello, Ikzf2cello/+ and 

Ikzf2+/+ animals at P8 were processed for NanoString validation at the UMSOM Institute for 

Genome Sciences using the nCounter Master Kit per manufacturer’ s instructions, and 

quantified using the NanoString nCounter platform. See Supplementary Table 13 for 

NanoString probe sequences. Data were analyzed using nSolver 4.0 software (NanoString).
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Anc80L65 AAV vector construction

The Anc80L65-Myc-Ikzf2+ (Anc80-Ikzf2) expression vector was designed to drive 
expression of a Myc-tagged Ikzf2 construct followed by a bovine Growth Hormone poly-

adenylation (BGH pA) site under control of the cytomegalovirus (CMV) promoter. The 

Anc80L65-eGPF (Anc80-eGFP) expression construct also contained a Woodchuck 

Hepatatis Virus Posttranscriptional Regulatory Element (WPRE) preceding the BGH pA 

site. Anc80L65 AAV vectors16,17 were produced by the Gene Transfer Vector Core, 

Grousbeck Gene Therapy Center at the Massachusetts Eye and Ear Infirmary (Boston, MA) 

(http://vector.meei.harvard.edu/).

Inner ear gene delivery

For in vivo HC transductions, mice were injected with Anc80L65 AAVs between P1 to P3 

via the posterior semicircular canal following the injection method described in Isgrig et al., 

201741. Briefly, animals were anesthetized on ice before a post-auricular incision was made 

on either the left or right side. Tissues were further dissected to reveal the posterior 

semicircular canal, and a Nanoliter 2010 microinjection system (World Precision 

Instruments) equipped with a loaded glass needle was used to inject 700 nl of 1.13E

+13GC/ml Anc80-Ikzf2 or 500 nl of 4.85E+12GC/ml Anc80-eGFP. Injections into the inner 

ear were performed in 50 nl increments over the course of 2 minutes. The needle was then 

removed, the incision sutured, and animals were placed on a 37°C heating pad to recover 

before being returned to their cage.

Fluorescence activated cell sorting (FACS)

For the scRNA-seq analysis of Anc80-Ikzf2 transduced HCs, inner ears of neonatal 

Myo15Cre/+;ROSA26CAG-tdTomato mice were injected with Anc80-Ikzf2 (4 mice) or control 

Anc80-eGFP (2 mice) via the posterior semicircular canal. Cochlear tissues from both 

injected and uninjected ears were harvested at P8 and further dissected to reveal the sensory 

epithelium. Inclusion of the uninjected ear in the single cell analysis allowed for the study of 

changes in gene expression that occur in response to a gradient of transgene expression. This 

is because, in mice, inner ear gene delivery often results in transduction in the contralateral 

ear, albeit at a lower intensity17. Cochlear tissues were then dissociated for fluorescence 

activated cell sorting (FACS) following the method described in Elkon et al., 20158. Briefly, 

the sensory epithelia from Anc80-eGFP and Anc80-Ikzf2 injected mice were pooled 

separately into 2 wells of a 48-well plate containing 0.5 mg/ml Thermolysin (Sigma). 

Tissues were incubated at 37°C for 20 minutes, after which the Thermolysin was removed 

and replaced with Accutase enzyme (MilliporeSigma). After a 3 minute incubation at 37°C, 

tissues were mechanically disrupted using a 23G blunt ended needle connected to a 1 ml 

syringe. This step was performed twice. After confirming tissue dissociation by direct 

visualization, the dissociation reaction was stopped by adding an equal volume of IMDM 

supplemented with 10% heat-inactivated FBS to the Accutase enzyme solution. Cells were 

passed through a 40 mm cell strainer (BD) to remove cell clumps. tdTomato expressing HCs 

were sorted into ice cold tubes containing IMDM with 10% FBS on a BD FACSAria II (BD 

Biosciences) and processed for scRNA-seq. Flow cytometry analyses were performed with 
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assistance from Dr. X. Fan at the University of Maryland Marlene and Stewart Greenebaum 

Comprehensive Cancer Center Flow Cytometry Shared Service.

Single cell RNA-seq (scRNA-seq)

tdTomato positive sorted HCs were pelleted once (300 g at 4°C) and resuspended in a 

minimal remaining volume (~30 μl). HC-enriched single cell suspensions were then used as 

input on the 10X Genomics Chromium platform with 3’  Single Cell v2 chemistry (10x 

Genomics). Following capture and library preparation, single cell RNA-seq libraries were 

sequenced on a NextSeq 500 (Illumina) in collaboration with the NIDCD Genomics and 

Computational Biology Core. Samples were sequenced to an average depth of over 300,000 

reads per cell, which resulted in detection of a median of >3,000 genes (Anc80-eGFP) and 

>4,000 genes (Anc80-Ikzf2) per cell, ensuring maximal transcriptional complexity and 

detection of low-abundance transcripts (see Extended Data Fig.9b-c). Reads were aligned to 

a modified mm10 mouse reference containing the sequences for the Ai14 locus, as well as 

Anc80-eGFP and Anc80-Ikzf2 viral sequences (Extended Data Fig.9a) using the 10X 

Genomics cellranger (version 2.0.2) package to generate the read counts matrix files. Read 

counts from viral and Ai14 loci were removed from the expression matrix before 

dimensionality reduction so as to not influence data clustering. Cells from these HC clusters 

were determined to be Anc80-Ikzf2(+) versus Anc80-Ikzf2(-), and IHCs versus OHCs, 

based on their expression of Anc80-Ikzf2 and Slc17a8, respectively (Fig.3, Extended Data 

Fig.8 and 9, Supplementary Table 9). Slc26a5 was not well detected in the scRNA-seq 

dataset and was therefore not used as an OHC marker. After clustering, four HCs were 

excluded based on co-expression of a contaminating cell type. Secondary analyses, 

including shared nearest neighbor (SNN) clustering, tSNE embedding, and differential 

expression testing (using either Wilcoxon Ranked Sum for marker gene identification or 

MAST for pairwise comparison between control inner and outer HCs) were performed in R 

with Seurat (version 2.1.0)42,43. Non-parametric analysis of variance between the four 

classified groups of HCs (IHCs and OHCs with either high or low Anc80-Ikzf2 expression) 

using a Kruskal-Wallis test was performed to help qualify genes that had statistical 

difference across these cell populations. This was followed by post-hoc pairwise Wilcoxon 

Ranked Sum comparisons to assess multiple-comparison-adjusted p-values. Additional plots 

were generated by NMF (version 0.20.6) and ggplot2 (version 2.2.1)44,45. These analyses 

utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

scRNA-seq data have been submitted to the Gene Expression Omnibus database (GEO 

accession number GSE120462), and are additionally available for viewing through the 

gEAR Portal (https://umgear.org/).

Immunohistochemistry of AAV-injected cochleae

Mouse inner ears injected with either Anc80-Ikzf2 or Anc80-eGFP were between P8 and 8 

weeks, fixed in 4% PFA in PBS overnight at 4°C, and decalcified in a solution of 5% EDTA 

in RNAlater (Invitrogen). Decalcified ears were processed by sucrose gradient and 

embedded in OCT compound (Tissue-Tek) for cryosectioning, or fine dissected for whole-

mount immunohistochemistry. 10 μm sections on positively charged glass slides were used 

for in situ hybridization (ISH) and section immunohistochemistry. For whole-mount 

immunolabeling at 6-8 weeks, HC loss was observed in the injected ear and therefore the 
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contralateral ear, expressing a lower level of the Anc80-Ikzf2 virus, was used. Primary 

antibodies: goat anti-prestin N-20 (1:200, Santa Cruz Biotechnology), goat anti-

Oncomodulin N-19 (1:100, Santa Cruz Biotechnology), rabbit anti-MyosinVI (1:1000, 

Proteus BioSciences), rabbit anti-GFP (1:100, Life Technologies), mouse anti-cMyc 9E10 

(1:100, Santa Cruz Biotechnology), and mouse anti-Otoferlin (1:100, Abcam). Dr. Rebecca 

Seal generously donated the guinea pig anti-Vglut3 antibody used in this study (1:5000). 

Corresponding Alexa Fluor® 488 and 546 (1:800, Invitrogen) were used for secondary 

detection, Alexa Fluor® 488 Phalloidin (1:1000, Invitrogen) was used to mark F-actin, and 

4ᓉ,6-Diamidino-2-Phenylindole Dihydrochloride (DAPI, 1:20,000, Thermo Fisher) was used 

to mark cell nuclei. Images were acquired using a Nikon Eclipse E600 microscope (Nikon, 

Tokyo, Japan) equipped with a Lumenera Infinity 3 camera. Whole-mount images were 

acquired using a Zeiss LSM DUO confocal microscope, located at the UMSOM Confocal 

Microscopy Core, at 63x oil magnification. Images were processed using Infinity Capture 

and Infinity Analyze software (Lumenera, Ottawa, ON), and ImageJ software.

RNA in situ hybridization (ISH)

ISH was performed as described in Geng et al., 201646. Briefly, slides were re-fixed in 4% 

PFA, and then treated with 2 ug/ml Proteinase-K for 10 minutes. Proteinase-K reaction was 

stopped by soaking slides again in 4% PFA, followed by acetylation and permeabilization. 

Hybridization for the digoxigenin labelled Fcrlb probe was performed overnight at 65°C (see 

Supplementary Table 13 for Fcrlb probe primers). Following a series of washes in saline 

sodium citrate, slides were incubated with sheep-anti-digoxigenin antibody conjugated to 

alkaline phosphatase (Sigma-Aldrich, 1:100) overnight at 4°C. Slide were then incubated in 

BM purple AP substrate precipitating solution (Roche) to localize bound anti-digoxigenin 

antibody.

Extended Data
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Extended Data Figure 1. RiboTag immunoprecipitation enriches for known OHC-expressed 
transcripts.
(a) Representative prestinCreERT2/+;ROSA26CAG-tdTomato cochlear whole-mount. Prestin-
CreERT2-driven tdTomato expression is OHC-specific at P21 (n=1). Scale=20 μm.

(b) Schematic of the RiboTag immunoprecipitation protocol. Red OHCs represent Cre/HA-

tagged ribosome expression.

(c) RiboTag RNA-seq log2 enrichment and depletion of transcripts for known inner ear cell 

type markers (enrichment factor (EF) = log2(IP/input)).
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(d) Genes at least 2-fold enriched in IHCs (n = 565 genes) or OHCs (n = 253 genes) in the 

dataset of Liu et al. are significantly depleted and enriched, respectively, by the RiboTag 

OHC immunoprecipitation (two-sided Wilcoxon's test). This was true for all time points 

examined. Black line represents median EF, box demarcates 1st and 3rd quartiles, whiskers 

demarcate 1st and 3rd quartiles ± 1.5×IQR values, dots represent single outliers.

(e) Clustering of genes differentially expressed across OHC postnatal development (error 

bars = SD). Prior to clustering, expression levels were standardized to mean=0 and SD=1.

(f) Enriched gene ontology (GO) functional categories identified for the gene clusters in (e) 

(cluster 1 n=160 genes, cluster 2 n=63 genes). No significantly enriched GO categories were 

found for cluster 3 (n=79 genes). Enrichment and statistical analyses were performed using 

the EXPANDER implemented tool TANGO.
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Extended Data Figure 2. Auditory phenotyping, SNP mapping and whole-genome sequencing of 
mouse pedigree MPC173, subsequently named cello.
(a) Specific expression of helios can be seen in the nuclei of wild-type P8 OHCs (white 

arrow, n=3 biologically independent samples, scale=50 μm), and is maintained in wild-type 

OHCs at 1-month (white arrows, n=3 biologically independent samples, scale=10 μm).

(b) Auditory brainstem response phenotyping of pedigree MPC173 at 9-months of age 

identified 17 biologically independent animals with elevated hearing thresholds (red 

triangles) compared to their normal hearing colony mates (n=15 biologically independent 

animals, black triangles).
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(c) The mutation mapped to an 8.4 Mb region on Chromosome 1 between SNPs rs31869113 

and rs13475914 (Chr1:63280183-71629721), containing 66 genes.

(d) Detection of a non-synonymous mutation in cello. DNA sequencing identified a 

nucleotide transversion (c.1551C>A) in the Ikzf2 gene at codon 517, thus altering the wild-

type (WT) sequence CAC, encoding a histidine (His), to the mutant (M) sequence CAA, 

encoding a glutamine (Gln). Electropherograms derived from a cello mutant mouse 

(Ikzf2cello/cello) and a wild-type colony mate (Ikzf2+/+) control showing the sequence 

surrounding Ikzf2 nucleotide 1551 (indicated by an arrow).

(e) Helios is expressed in the OHC nuclei of both Ikzf2+/+ and Ikzf2cello/cello mice at P8 

(n=3 biologically independent samples per genotype). Loss of labelling when the anti-helios 

antibody is ‘ pre-blocked’  confirms specificity (n=1 biologically independent sample). 

Scale=20 μm.
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Extended Data Figure 3. The Ikzf2cello mutation disrupts helios homodimerization.
(a) Cos-7 cells transfected with Ikzf2+- or Ikzf2cello-Myc. Nuclear localization is unaffected 

by the Ikzf2cello mutation (n=2 biologically independent experiments). Scale=10 μm.

(b) Co-immunoprecipitation (IP) of Myc-tagged (~62 kDa) and GFP-tagged (~88 kDa) 

Ikzf2+ and Ikzf2cello constructs. Transfected cell lysates were immunoprecipitated using an 

anti-Myc antibody and analysed by western blotting with both anti-Myc and anti-GFP 

antibodies. Results show that wild-type Ikzf2+ helios can dimerize, but that dimerization is 

impaired by the cello mutation. kDa = kilodaltons, LC = cell lysate loading control.
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(c) Reciprocal immunoprecipitation reactions using an anti-GFP antibody confirm 

dimerization of wild-type Ikzf2+helios and reduced dimerization of mutant Ikzf2cello helios. 

kDa = kilodaltons, LC = cell lysate loading control.

(d) Quantification of Co-IP western blots. Band intensities were determined and used to 

calculate the relative ratio of Co-IP to IP signal. Data shown are averaged percentages ± 

s.e.m. (n=4 biologically independent experiments). Myc IP p-values: Ikzf2+ -Myc + Ikzf2+-

GFP vs Ikzf2+ -Myc + Ikzf2cello-GFP <0.0001, Ikzf2+ -Myc + Ikzf2+-GFP vs Ikzf2cello -

Myc + Ikzf2+-GFP <0.0001, Ikzf2+ -Myc + Ikzf2+-GFP vs Ikzf2cello -Myc + Ikzf2cello-GFP 

<0.0001, Ikzf2+ -Myc + Ikzf2cello-GFP vs Ikzf2cello -Myc + Ikzf2+-GFP = 0.1488, Ikzf2+ -

Myc + Ikzf2cello-GFP vsIkzf2cello -Myc + Ikzf2cello-GFP = 0.9020, Ikzf2cello -Myc + Ikzf2+-

GFP vs Ikzf2cello -Myc + Ikzf2cello-GFP = 0.0476. GFP IP p-values: Ikzf2+ -GFP + Ikzf2+-

Myc vs Ikzf2+ -GFP + Ikzf2cello-Myc <0.0001, Ikzf2+ -GFP + Ikzf2+-Myc vsIkzf2cello -GFP 

+ Ikzf2+-Myc <0.0001, Ikzf2+ -GFP + Ikzf2+-Myc vs Ikzf2cello -GFP + Ikzf2cello-Myc 

<0.0001, Ikzf2+ -GFP + Ikzf2cello-Myc vs Ikzf2cello -GFP + Ikzf2+-Myc = 0.0202, Ikzf2+ -

GFP + Ikzf2cello-Myc vsIkzf2cello -GFP + Ikzf2cello-Myc = 0.0346, Ikzf2cello -GFP + Ikzf2+-

Myc vs Ikzf2cello -GFP + Ikzf2cello-Myc = 0.9894. Significance was assessed by one-way 

ANOVA with Tukey post-hoc test. See Supplementary Fig.1 for source images.
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Extended Data Figure 4. Auditory function and HC bundle survival in cello mice.
(a) Representative click ABR waveforms for Ikzf2+/+, Ikzf2cello/+ and Ikzf2cello/cello 

littermates at P16 (n=4 biologically independent animals per genotype).

(b-c) Averaged ABR thresholds for cello mice at 1-month of age (b, n=5 biologically 

independent animals per genotype) and 9-months of age (c, n=5 biologically independent 

animals per genotype). Age-matched Ikzf2+/+ and Ikzf2cello/+ controls display thresholds 

within the expected range (15 – 30 dB SPL) at all time-points tested. Data shown are 

averaged thresholds ± s.e.m. 1-month Ikzf2cello/cello vs 1-month Ikzf2+/+ (b) p-values: 8 
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kHz<0.0001, 16 kHz <0.0001, 32 kHz <0.0001, Click <0.0001. 1-month Ikzf2cello/cello vs 1-

month Ikzf2cello/+ (b) p-values: 8 kHz <0.0001, 16 kHz <0.0001, 32 kHz <0.0001, Click 

<0.0001. 9-month Ikzf2cello/cello vs 9-month Ikzf2+/+ (b) p-values: 8 kHz <0.0001, 16 kHz 

<0.0001, 32 kHz <0.0001, Click <0.0001. 9-month Ikzf2cello/cello vs 9-month Ikzf2cello/+ (b) 

p-values: 8 kHz <0.0001, 16 kHz<0.0001, 32 kHz <0.0001, Click <0.0001. Significance was 

assessed by one-way ANOVA with Tukey post-hoc test.

(d) OHC and IHC bundle counts for cello mice from P16 to 18-months of age. Data shown 

are averaged number of HC bundles adjacent to ten pillar cells ± s.e.m. n.s. non-significant, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Tukey post-hoc 

test. Number of biologically independent samples for OHC bundle counts: P16 Ikzf2+/+ n=3, 

P16 Ikzf2cello/+ n=3, P16 Ikzf2cello/cello n=3; 1-month Ikzf2+/+ n=4, 1-month Ikzf2cello/+ 

n=5, 1-month Ikzf2cello/cello n=3; 3-month Ikzf2+/+ n=4, 3-month Ikzf2cello/+ n=5, 3-month 

Ikzf2cello/cello n=4; 6-month Ikzf2+/+ n=4, 6-month Ikzf2cello/+ n=3, 6-month Ikzf2cello/cello 

n=5; 9-month Ikzf2+/+ n=3, 9-month Ikzf2cello/+ n=4, 9-month Ikzf2cello/cello n=4; 18-month 

Ikzf2+/+ n=3, 18-month Ikzf2cello/+ n=3, 18-month Ikzf2cello/cello n=3. Number of 

biologically independent samples for IHC bundle counts: P16 Ikzf2+/+ n=3, P16 Ikzf2cello/+ 

n=3, P16 Ikzf2cello/cello n=3; 1-month Ikzf2+/+ n=4, 1-month Ikzf2cello/+ n=4, 1-month 

Ikzf2cello/cello n=3; 3-month Ikzf2+/+ n=4, 3-month Ikzf2cello/+ n=5, 3-month Ikzf2cello/cello 

n=3; 6-month Ikzf2+/+ n=3, 6-month Ikzf2cello/+ n=3, 6-month Ikzf2cello/cello n=4; 9-month 

Ikzf2+/+ n=3, 9-month Ikzf2cello/+ n=4, 9-month Ikzf2cello/cello n=4; 18-month Ikzf2+/+ n=3, 

18-month Ikzf2cello/+ n=3, 18-month Ikzf2cello/cello n=3.

See also Supplementary Table 5 and 6.
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Extended Data Figure 5. Scanning electron microscopy of cello mice and auditory function of 
Ikzf2cello/del890 compound heterozygotes.
(a) Scanning electron micrographs of the organ of Corti of cello mice from P16 to 18-

months of age. Representative images from the mid region of the cochlear spiral are shown. 

Scale = 10 μm. Number of biologically independent samples: P16 Ikzf2+/+ n=4, P16 

Ikzf2cello/+ n=3, P16 Ikzf2cello/cello n=3; 1-month Ikzf2+/+ n=4, 1-month Ikzf2cello/+ n=5, 1-

month Ikzf2cello/cello n=3; 3-month Ikzf2+/+ n=4, 3-month Ikzf2cello/+ n=5, 3-month 

Ikzf2cello/cello n=4; 6-month Ikzf2+/+ n=4, 6-month Ikzf2cello/+ n=5, 6-month Ikzf2cello/cello 

n=4; 9-month Ikzf2+/+ n=3, 9-month Ikzf2cello/+ n=4, 9-month Ikzf2cello/cello n=4; 18-month 

Ikzf2+/+ n=3, 18-month Ikzf2cello/+ n=3, 18-month Ikzf2cello/cello n=3.
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(b-d) Scanning electron micrographs of OHC stereocilia bundles of cello mice at P16, 

showing that wild-type Ikzf2+/+ (b), Ikzf2cello+ (c) and mutant Ikzf2cello/cello (d) mice 

display overall expected bundle patterning. Images are from the mid region of the cochlear 

spiral. Scale = 1 μm. Number of biologically independent samples: Ikzf2+/+ n=3, Ikzf2cello/+ 

n=3, Ikzf2cello/cello n=3.

(e) The genomic/domain structure of the Ikzf2del890 allele/protein. Black = 5’  untranslated 

region, light grey = N-terminal DNA-binding domain, dark grey = C-terminal dimerization 

domain. The Ikzf2cello mutation lies in ZnF6. The del890 mutation deletes exon 4 and 

surrounding intronic sequence.

(f) Averaged ABR thresholds for Ikzf2cello/del890 compound heterozygotes at 1-month of 

age, showing significantly elevated thresholds (≥40 dB SPL) at all frequencies tested 

compared to Ikzf2+/+, Ikzf2cello/+ and Ikzf2del890/+ control colony mates. Data shown are 

averaged thresholds ± s.e.m. Number of biologically independent samples: Ikzf2+/+ n=4, 

Ikzf2cello/+ n=2, Ikzf2+/del890 n=4, Ikzf2cello/del890 n=5. Ikzf2cello/del890 vs Ikzf2+/+ p-values: 

8 kHz = 0.011, 16 kHz = 0.002, 32 kHz <0.0001, Click = 0.0001; Ikzf2cello/del890 vs 

Ikzf2cello/+ p-values: 8 kHz = 0.078, 16 kHz = 0.034, 32 kHz = 0.001, Click = 0.001; 

Ikzf2cello/del890 vs Ikzf2+/del890 p-values: 8 kHz = 0.025, 16 kHz = 0.009, 32 kHz = 0.0002, 

Click = 0.0002. Significance was assessed by one-way ANOVA with Tukey post-hoc test.
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Extended Data Figure 6. The MET current is normal in Ikzf2cello mice.
(a-b) MET currents were recorded from OHCs of P9 Ikzf2cello/cello and Ikzf2cello/+ (control) 

littermates. During voltage steps, hair bundles were displaced by applying a 50 Hz 

sinusoidal force stimuli (the driver voltage to the fluid jet is shown above the traces)47. At 

hyperpolarised membrane potentials (−121 mv), saturating excitatory bundle stimulation 

(i.e., towards the taller stereocilia) elicited a large inward MET current from both Ikzf2cello/+ 

and Ikzf2cello/cello OHCs, while inhibitory bundle stimulation (i.e. away from the taller 

stereocilia) closed the MET channels and reduced the resting current. Because the MET 
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current reverses near 0 mV, it became outward when excitatory bundle stimulation was 

applied during voltage steps positive to its reversal potential. At positive membrane 

potentials (+99 mV), excitatory bundle stimulation now elicited similar outward MET 

currents with larger resting amplitudes. Arrows indicate closure of the MET channels (i.e., 

disappearance of the resting current) during inhibitory bundle displacements, arrowheads 

indicate the larger resting MET current at +99 mV compared to -121 mV.

(c) Peak-to-peak current-voltage curves obtained from Ikzf2cello/+ (n=10 biologically 

independent samples) and Ikzf2cello/cello (n=8 biologically independent samples) OHCs at 

P9. The maximal MET current and the resting open probability of the MET channel were 

found to be similar between the two genotypes. Data shown are mean values ± s.e.m.

(d-e) Total K+ currents recorded from P18 Ikzf2cello/+ control (d) and Ikzf2cello/cello mutant 

(e) OHCs. The size of the K+ current, which is mainly due to the negatively-activated IK,n 

(in addition to a small delayed rectifier IK : Marcotti and Kros, 1999), was smaller in 

Ikzf2cello/cello OHCs.

(f) Average peak current-voltage relationship for the total K+ current recorded from the 

OHCs of Ikzf2cello/+ (n = 9 OHCs from 6 biologically independent animals) and 

Ikzf2cello/cello (n = 7 OHCs from 5 biologically independent animals) mice at P16–P18. Data 

shown are mean values ± s.e.m.

(g-h) After normalization to the significantly reduced surface area of Ikzf2cello/cello OHCs 

(for this set of experiments: Ikzf2cello/+: 14.2 ± 0.4 pF; Ikzf2cello/cello: 11.2 ± 0.5 pF; 

p<0.0005), both the total IK (g) and isolated IK,n (h) were not significantly different between 

the two genotypes at P16–P18. Data shown are mean values ± s.e.m. n.s. non-significant, 

two-sided Welch’ s t-test.

(i) NanoString validations of genes downregulated in P8 Ikzf2cello/cello cochleae at P16. Data 

shown are mean normalized reads relative to wild-type ± SD (n = 4 biologically independent 

samples per genotype). Ppp17r1 in Ikzf2cello/cello vs Ikzf2+/+ p-value = 0.038, Ppp17r1 in 

Ikzf2cello/cello vs Ikzf2cello/+ p-value = 0.037. Significance was assessed by two-sided 

Welch’ s t-test.
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Extended Data Figure 7. Transduction of cochlear HCs using Anc80L65 and HC enrichment by 
flow cytometry.
(a) Schematic representation of inner ear viral gene delivery via the posterior semicircular 

canal of CD-1 mice for HC marker immunolabeling.

(b) Immunolabeling for GFP in the Anc80-eGFP injected, and MYC in the Anc80-Ikzf2 
injected ears, showed mainly HC transduction, although some MYC staining could also be 

observed in supporting cells (blue arrow) (n=3 biologically independent samples per 

condition). Nuclear MYC staining suggests proper trafficking of the MYC-tagged helios 
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protein in transduced cells. White arrows indicate OHCs and white arrowheads indicate 

IHCs. Scale = 10 μm.

(c-d) Fluorescence activated cell sorting (FACS) of dissociated cochlear GFP positive and 

tdTomato positive cells from P8 Myo15Cre/+;ROSA26CAG-tdTomato mice injected with either 

Anc80-eGFP (c, 2 mice) or Anc80-Ikzf2 (d, 4 mice). Cells were first gated by forward and 

side scatter to exclude doublets. For the Anc80-eGFP transduced cochlear sample, 

transduced cells were identified based on GFP expression, and hair cells were further 

identified by tdTomato expression. tdTomato single positive, GFP single positive and 

tdTomato+GFP double positive cells were collected. For the Anc80-Ikzf2 transduced 

cochlear sample, HCs were gated based on tdTomato single positive expression and 

collected.
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Extended Data Figure 8. Transcriptional conversion of Anc80-Ikzf2 transduced IHCs.
(a) Heatmap for the top 30 differently expressed genes between all HCs profiled. Scaled 

expression values shown as z-scores, with yellow indicating higher and purple indicating 

lower expression than the mean.

(b) OHC enriched genes that are induced in Anc80-Ikzf2(+) IHCs. Anc80-Ikzf2(-) IHC 

(n=34) vs. Anc80-Ikzf2(+) IHC (n=40) FDR: Pde6d = 2.03E-12, Ldhb = 3.74E-11. Dots 

represent the expression values of individual cells, with width of violins summarizing 

overall relative distribution of expression.
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(c) IHC enriched genes that are highly expressed in control IHCs vs control OHCs, but are 

significantly reduced in Anc80-Ikzf2(+) IHCs. Anc80-Ikzf2(-) IHC (n=34) vs. Anc80-

Ikzf2(+) IHC (n=40) FDR: Fgf8 = 3.30E-14, Atp2a3 = 2.46E-13, Rprm = 2.27E-13 

(Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon Ranked Sum test adjusted for 

multiple comparisons).

(d) IHC enriched genes that show only moderately reduced expression in Anc80-Ikzf2(+) 

IHCs. Anc80-Ikzf2(-) IHC (n=34) vs. Anc80-Ikzf2(+) IHC (n=40) FDR: Shtn1 = 8.59E-05, 

Tbx2 = 3.88E-08, Cabp2 = 1.40E-10 (Kruskal-Wallis test followed by post-hoc pairwise 

Wilcoxon Ranked Sum test adjusted for multiple comparisons).

(e-f) Top 20 genes negatively (e) or positively (f) correlated with Ikzf2 expression in control 

HCs, shown alongside corresponding correlations of gene expression within all Anc80-Ikzf2 
transduced HCs, Anc80-Ikzf2 transduced IHCs, or Anc80-Ikzf2 transduced OHCs. See also 

Extended Data Figure 9.

(g) Genes that are negatively correlated with Ikzf2 (n=20, Pearson correlation < -0.6) are not 

enriched in OHCs at P8 compared to all other genes detected in the RiboTag OHC dataset 

(background genes, BG, n=13,124). Genes that are positively correlated with Ikzf2 (n=41, 

Pearson correlation > 0.6) are significantly enriched in OHCs at P8 compared to BG 

(n=13,103) (p = 0.025, two-sided Wilcoxon's test). Black line represents median enrichment 

factor (EF, log2 fold change), box demarcates 1st and 3rd quartiles, whiskers demarcate 1st 

and 3rd quartile ± 1.5×IQR values, dots represent single outliers.

(h) One of the most differentially expressed genes we observed in our scRNA-seq 

experiment was Fcrlb, a gene which encodes an Fc receptor like protein, and whose 

expression in the ear has not been previously described. Fcrlb is significantly downregulated 

in Anc80-Ikzf2(+) HCs. Anc80-Ikzf2(-) IHC (n=34) vs. Anc80-Ikzf2(+) IHC (n=40) FDR= 

4.89E-06. Anc80-Ikzf2(-) OHC (n=132) vs. Anc80-Ikzf2(+) OHC (n=148) FDR= 6.88E-08 

(Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon Ranked Sum test adjusted for 

multiple comparisons).

See also Supplementary Tables 8-11.
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Extended Data Figure 9. Single cell RNA-seq allows for high-resolution discrimination of cell 
types and their transcriptional changes due to overexpression of Ikzf2/helios.
(a) Custom annotation strategy with theoretical reads mapping to unambiguous regions of 

the various custom viral loci, as well as those regions that get discarded because of 

endogenous sequence similarity (i.e. ambiguous reads).

(b) Violin plots of the overall scRNA-seq detection metrics, including number of unique 

molecules detected in each of the major cell type cluster identified (low Anc80-Ikzf2 
expressing IHCs: vIk- IHCs n=34; low Anc80-Ikzf2 expressing OHCs: vIk- OHCs n=132; 
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high Anc80-Ikzf2 expressing IHCs: vIk+ IHCs n=40; high Anc80-Ikzf2 expressing OHCs: 

vIk+ OHCs n=140; and non-HCs: NonHCs n=219).

(c) FeaturePlots with red showing higher expression across all profiled cells, including cells 

identified as non-HCs. Expression from loci captured with custom annotation shown to 

support cluster identification. A final labeled tSNE plot shows all cells profiled clustered by 

predicted cell type. (Misc: Cells from all miscellaneous clusters with fewer than 5 cells, 

NSC: Non-Sensory Epithelial Cell, SC: Organ of Corti Supporting Cell, and other clusters 

defined by the highest differentially expressed marker gene).

(d) Pearson correlation scatter plots for selected genes within all profiled HCs, HCs from the 

Anc80-eGFP sample, or IHCs from the Anc80-Ikzf2 sample.

(e) A Pearson correlation heatmap of all HCs detected showing overall transcriptional 

similarities between the non-transduced IHCs and OHCs, along with the Anc80-Ikzf2 
transduced IHCs and OHCs.
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Extended Data Figure 10. Helios overexpression induces prestin expression and electromotility in 
IHCs but does not affect hair bundle morphology.
(a) The OHC electromotility protein prestin is expressed in the OHCs of Ikzf2cello/cello 

mutants (n=6 biologically independent samples). Additionally, the pattern of prestin 

expression is not affected by Anc80-eGFP transduction, but is induced in Anc80-Ikzf2 
transduced IHCs (n=3 biologically independent samples per condition). Scale=10 μm

(b) Expression of prestin can be seen in Anc80-Ikzf2 transduced IHCs as early as P8, and up 

to 8-weeks of age and overlaps with MYC staining (n=6 biologically independent samples at 

P8, n=3 biologically independent samples at 6-8 weeks). Scale = 20 μm.
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(c) Scanning electron micrographs of IHC and OHC stereocilia bundles of Anc80-Ikzf2 and 

Anc80-eGFP injected mice at P23 showing expected bundle patterning. Images are from the 

mid – basal region of the cochlear spiral. Scale=1 μm. Number of biologically independent 

samples (P16-P23): Anc80-Ikzf2 injected cochlea n=8, Anc80-Ikzf2 contralateral cochlea 

n=6, Anc80-GFP injected cochlea n=3.

(d) Representative traces of the voltage-dependent (non-linear) component of the membrane 

capacitance (an electrical “signature” of electromotility) in the IHCs of Anc80-Ikzf2 injected 

mouse (red) and its non-injected littermate (black). Mice were injected with Anc80-Ikzf2 at 

P2 and recorded at P16.

(e) Normalized maximal non-linear capacitance in all recorded IHCs of mice injected with 

Anc80-Ikzf2 at P2 (red) at different ages after injection and their non-injected littermates 

(black). Each symbol represents one biologically independent cell, the total number of cells 

is indicated in parentheses. Since Anc80-Ikzf2 transduction is not 100% efficient in the 

apical turn of the cochlea at the time points tested, some IHCs of Anc80-Ikzf2 injected mice 

do not show prominent non-linear capacitance while the other IHCs do. In the IHCs with 

maximal non-linear capacitance of more than 0.25 pF (due to presumable Ikzf2 expression), 

the parameters of the Boltzmann fit were as following (Mean±SEM): Qmax = 0.10±0.02 pC; 

Vpk = -31±1 mV; z=0.91±0.02; Clin = 11.7±1.2 pF; ΔCsa = 0.14±0.07 pF (n=12). For 

information on the fitting procedure, see methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Helios is a candidate regulator of OHC genes.
(a) The 100 OHC marker genes (n=100) are enriched in OHCs at all RiboTag OHC dataset 

time points compared to expression of all other genes detected (background, BG) 

(n=13,044). p-values: P8 = 1.73E-17, P14 = 6.55E-12, P28 = 1.60E-18, 6wk = 7.79E-18, 

10wk = 1.43E-33 (two-sided Wilcoxon's test). Black center line represents median 

enrichment factor (EF, log2 fold change), box demarcates 1st and 3rd quartiles, whiskers 

demarcate 1st and 3rd quartile ± 1.5×IQR values, dots represent single outliers.

(b) Transcription factor binding motif analysis using the 100 highly confident OHC marker 

genes identifies the binding signature for IKZF2/helios as significantly overrepresented. 
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NES = normalized enrichment score. NES≥3.0 corresponds to a false discovery rate of 3-9% 

(see Janky et al., 2014).

(c) Ikzf2 transcript enrichment in OHCs as measured by the RiboTag OHC RNA-seq.

(d) Specific expression of helios in the nuclei of wild-type P8 OHCs (white arrows, n=3 

biologically independent samples). Scale=50 μm.

(e) Helios expression is maintained in wild-type OHCs at 1-month (white arrows, n=3 

biologically independent samples). Scale=10 μm.

(f) Helios is detected in wild-type OHCs from P4 and is maintained in mature P16 OHCs 

(P3 n=2, P4 n=4, P8 n=4, P16 n=4 biologically independent samples). Loss of labelling 

when the anti-helios antibody is ‘ pre-blocked’  with its immunizing peptide confirms 

specificity (n=5 biologically independent samples). Scale=10 μm.

(g) The genomic/domain structure of Ikzf2/helios. Black = 5’  untranslated region, light grey 

= N-terminal DNA-binding domain, dark grey = C-terminal dimerization domain. The 

Ikzf2cello mutation lies in ZnF6. Further alignment of the helios ZnF6 sequence with its 

paralogues and the classical Cys2His2 ZnF motif shows that the H517Q cello mutation 

causes substitution of a highly conserved zinc-coordinating histidine residue. 3D modelling 

of wild-type Ikzf2+ ZnF6 and mutant Ikzf2cello ZnF6 illustrates the requirement of residue 

His517 for zinc-coordination, which is not possible when residue Gln517 is substituted.

HC, Hensen’ s cells; IHC, inner hair cells; OoC, organ of Corti; OHC, outer hair cells; PC, 

pillar cells; RM, Reissner’ s membrane; SG, spiral ganglion; SL, spiral ligament; SV, stria 

vascularis.
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Figure 2. Ikzf2/helios is required for hearing and OHC electromotility.
(a-b) Averaged ABR thresholds for cello mice at P16 (a, n=4 biologically independent 

animals per genotype) and 1- and 9-months of age (b, n=5 biologically independent animals 

per genotype for each time point). Age-matched Ikzf2+/+ and Ikzf2cello/+ controls display 

thresholds within the expected range (15 – 30 dB SPL) at all time-points tested. Data shown 

are averaged thresholds ± s.e.m. P16 Ikzf2cello/cello vs Ikzf2+/+ (a) p-values: 8 kHz <0.0001, 

16 kHz <0.0001, 32 kHz <0.0001, Click <0.0001. P16 Ikzf2cello/cello vs Ikzf2cello/+ (a) p-

values: 8 kHz <0.0001, 16 kHz <0.0001, 32 kHz <0.0001, Click<0.0001. 1-month 
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Ikzf2cello/cello vs 9-month Ikzf2cello/cello (b) p-values: 8 kHz = 0.0284, 16 kHz = 0.0166, 32 

kHz = 0.0303, Click = 0.0042. Significance was assessed by one-way ANOVA with Tukey 

post-hoc test (a) or two-sided Welch’ s t-test (b). See also Extended Data Figure 4.

(c-d) Images showing a patch pipette attached to an OHC from control Ikzf2cello/+ (c) and 

mutant Ikzf2cello/cello (d) cochleae at P16–P18. Red lines indicate the position of the OHC 

basal membrane before (left) and during (right) a depolarizing voltage from step from –64 

mV to +56 mV, highlighting the shorting of the cells. Scale=5 μm. Also shown are time-

based z-stack projections (right), where red lines indicate the resting position of the basal 

membrane and the green lines indicate the movement. Ikzf2cello/+ n = 10 and Ikzf2cello/cello n 

= 21 z-stack projections (one set per OHC) from 5 biologically independent animals per 

genotype.

(e-f) Average movement was significantly reduced in Ikzf2cello/cello OHCs compared to 

Ikzf2cello/+ at P16–P18 (e), even after normalization to respective membrane capacitance (f) 

(for this set of recordings, Ikzf2cello/+: 13.6 ± 0.4 pF; Ikzf2cello/cello: 10.0 ± 0.3 pF). Data 

shown are averaged movement ± s.e.m. Ikzf2cello/+ n = 10 and Ikzf2cello/cello n = 21 OHCs 

from 5 biologically independent animals per genotype. p-value <0.0001, two-sided Welch’ s 

t-test.

(g) Averaged DPOAE responses for cello mice at 1-month of age (n=5 biologically 

independent animals per genotype). Data shown are averaged thresholds ± s.e.m. 

Ikzf2cello/cello vs Ikzf2+/+ p-values: 8 kHz <0.0001, 16 kHz <0.0001, 32 kHz = 0.0004. P16 

Ikzf2cello/cello vs Ikzf2cello/+ p-values: 8 kHz <0.0001, 16 kHz <0.0001, 32 kHz = 0.0012. 

Significance was assessed by one-way ANOVA with Tukey post-hoc test.

(h-i) NanoString validations of genes downregulated in Ikzf2cello/cello cochleae at P8 (h) and 

results showing no change in expression of other OHC TFs (i). Data shown are mean 

normalized reads relative to wild-type ± SD (n=4 biologically independent samples per 

genotype). Ikzf2cello/cello vs Ikzf2+/+ p-values: Car7 = 0.028, Ppp17r1 = 0.006, Ocm = 0.017, 

Slc26a5 = 0.017 (two-sided Welch’ s t-test).
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Figure 3. Partial transcriptional conversion of Anc80-Ikzf2 transduced IHCs identified by 
scRNA-seq.
(a) Representative Myo15Cre/+;ROSA26CAG-tdTomato cochlear whole-mount. Myo15-Cre-
driven tdTomato expression is HC specific at P6 (n=3 biologically independent samples with 

similar results). Scale=50 μm.

(b) tSNE plots of all cochlear HCs profiled by scRNA-seq, including the cluster to which 

each cell was assigned, the experimental origin of each cell (Anc80-Ikzf2 or Anc80-eGFP 
injected cochlea), and the relative transcript abundance of Anc80-Ikzf2 measured in each 

cell.

(c) Anc80-Ikzf2 is highly expressed in the Anc80-Ikzf2(+) IHCs and OHCs, whereas 

Anc80-eGFP expression is only seen in the cells assigned to the Anc80-Ikzf2(-) IHC and 

OHC clusters. Dots represent the expression values of individual cells, with width of violins 

summarizing overall relative distribution of expression.

(d) Canonical HC markers are highly expressed in all HC clusters, and not notably changed 

as a result of Anc80-Ikzf2 expression.

(e) IHC-enriched genes that are highly expressed in control IHCs vs control OHCs, but are 

significantly reduced in Anc80-Ikzf2(+) IHCs. Anc80-Ikzf2(-) IHC (n=34) vs. Anc80-

Ikzf2(+) IHC (n=40) FDR: Slc17a8 = 2.25E-12, Otof = 6.76E-14. Significance was assessed 

by Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon Ranked Sum test adjusted 

for multiple comparisons.
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(f) OHC-enriched genes that are induced in Anc80-Ikzf2(+) IHCs. Anc80-Ikzf2(-) IHC 

(n=34) vs. Anc80-Ikzf2(+) IHC (n=40) FDR: Ocm = 3.65E-08, Lbh = 1.81E-10. 

Significance was assessed by Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon 

Ranked Sum test adjusted for multiple comparisons.

See also Extended Data Figures 8 and 9.
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Figure 4. Helios overexpression modulates expression of HC markers.
(a-b) IHC markers OTOF and VGLUT3 are downregulated in Anc80-Ikzf2 transduced IHCs 

(n=3 biologically independent samples). Arrows = OHCs, arrowheads = IHCs. Scale=10μM.

(c) The OHC marker OCM is expressed in Anc80-Ikzf2 transduced IHCs (n=3 biologically 

independent samples per condition). Arrows = OHCs, arrowheads = IHCs. Scale=10 μm.

(d) Fcrlb expression during wild-type mouse inner ear development as detected by in situ 
hybridization. While at E16, Fcrlb expression is not detected in the inner ear, by P0 it is 

detected in both IHCs and OHCs and by P8, Fcrlb expression is largely restricted to the 

IHCs (n=3 biologically independent samples per time point). Scale=10 μm.

(e) In the absence of functional helios (Ikzf2cello/cello mouse), Fcrlb is robustly expressed in 

IHCs and OHCs at P8. IHC expression of Fcrlb is not affected by Anc80-eGFP transduction, 
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whereas Fcrlb expression is lost in Anc80-Ikzf2 transduced HCs (n=3 biologically 

independent samples per condition). Scale=10 μm.

(f-g) Expression of prestin can be seen in Anc80-Ikzf2 transduced IHCs up to 8-weeks of 

age (n=3 biologically independent samples at 6-8 weeks) (f, scale=100 μm), and overlaps 

with Myc staining (g, scale=20 μm). See also Extended Data Figure 10.
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