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Abstract
Copy number variants (CNV) are a major cause of disease, with over
30,000 reported in the DECIPHER database. To use read depth data from
targeted Next Generation Sequencing (NGS) panels to identify CNVs with
the highest degree of sensitivity, it is necessary to account for biases
inherent in the data. GC content and ambiguous mapping due to repetitive
sequence elements and pseudogenes are the principal components of
technical variability. In addition, the algorithms used favour the detection of
multi-exon CNVs, and rely on suitably matched normal dosage samples for
comparison. We developed a calling strategy that subdivides target
intervals, and uses pools of historical control samples to overcome these
limitations in a clinical diagnostic laboratory. We compared our enhanced
strategy with an unmodified pipeline using the R software package
ExomeDepth, using a cohort of 109 heterozygous CNVs (91 deletions, 18
duplications in 26 genes), including 25 single exon CNVs. The unmodified
pipeline detected 104/109 CNVs, giving a sensitivity of 89.62% to 98.49%
at the 95% confidence interval. The detection of all 109 CNVs by our
enhanced method demonstrates 95% confidence the sensitivity is
≥96.67%, allowing NGS read depth analysis to be used for CNV detection
in a clinical diagnostic setting.
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Introduction
Placed in the continuum of genetic variation between single  
nucleotide variation (SNV) and large-scale chromosomal changes, 
copy number variants (CNV) are identified as segments of DNA 
that have been deleted or duplicated when compared to a refer-
ence genome. Initially described as ranging in size from roughly 
a kilobase to less than five megabases, but increasingly referring 
to events greater than 50bp in size due to improved detection sen-
sitivity (http://dgv.tcag.ca/dgv/app/statistics?ref=GRCh37/hg19),  
it is estimated that CNVs cover between 4.8 and 9.5% of the  
human genome1. They are a major cause of monogenic disease, 
with over 30,000 CNVs reported in the DECIPHER database to 
date. Where CNVs include disease associated genes or their regula-
tory regions, they can result in a phenotypic presentation through: 
alteration of the copy number of dosage sensitive genes, acting in 
conjunction with a recessively acting mutation on the non-deleted 
allele, deletion of regulatory elements, or disruption of the coding 
sequence2.

Current diagnostic testing strategies for pathogenic CNVs in patient 
samples principally rely on either genome-wide array compara-
tive genomic hybridisation (aCGH), or performing locus specific  
multiplex ligation-dependent probe amplification (MLPA) that can 
interrogate dosage levels in up to 40 targeted regions per patient 
sample3. These approaches have both technological (lower size limit 
of detection, potential for false positive results, limited number of 
targets) and logistical (they must be run alongside Sanger sequenc-
ing for complete analysis) limitations. With the widespread use 
of targeted Next Generation Sequencing (NGS) panels in the  
diagnostic setting, new methods of CNV detection are required 
to allow the detection of CNVs in addition to SNV/indels from a  
single data set4.

The most applicable NGS methods to detect CNVs from hybridi-
sation enrichment targeted gene panel data, generated during 
routine diagnostic testing, use read depth to infer copy number. 
Alternative strategies, such as split-read mapping, are often 
dependent on sequencing the breakpoints of the CNV5. While the 
use of read depth analysis to detect CNVs provides a single wet- 
laboratory workflow that addresses many of the issues encountered 
when using older strategies, it presents its own unique challenges, 
and requires validation using patient samples with known patho-
genic CNVs in a clinical diagnostic setting. For highly sensitive 
analysis of read depth, it is necessary to account for the technical  
variability in relative average read depth of target regions that is 
not caused by the presence of a CNV. Such variation can be princi-
pally attributed to extremes of sequence GC content and ambiguous 
mapping of reads due to repetitive sequence elements6. In addition, 
the algorithms used to interrogate the data favour the detection of  
multi-exon CNVs, and rely on the use of a number of suitably 
matched samples without CNVs across the target regions for com-
parison. In the clinical diagnostic setting, it is not cost-effective 
to include a large number of positive controls with every batch of 
patient samples.

We have developed a strategy for calling CNVs using read depth in 
targeted NGS panels that subdivides the target intervals into smaller 
windows of uniform length, and uses a pool of historical samples 
for comparison to overcome the main limitations of a relative read 

depth approach in a diagnostic testing pathway. We validated our 
strategy, using the R software package ExomeDepth7 against an 
unmodified calling pipeline, to assess sensitivity on a cohort of  
109 samples with MLPA detected heterozygous CNVs (91 deletions, 
18 duplications in 26 genes), including 25 single exon CNVs.

Methods
DNA samples from 109 patients with known CNVs identified by 
MLPA dosage analysis, comprising 91 deletions and 18 duplica-
tions in 26 genes and including 25 single exon CNVs, were tested 
(Supplementary Table 1). Samples were fragmented using either 
a Bioruptor (Diagenode, Liège, Belgium) or Covaris S2 (Covaris, 
Inc., Woburn, MA, USA), indexed for multiplexing, and hybridised 
to one of three custom Agilent SureSelect exon capture reagents, 
according to the manufacturer’s instructions (Agilent Technologies, 
Santa Clara, CA, USA). Sequencing was performed with an Illu-
mina HiSeq 2500 (Illumina, San Diego, CA, USA) using 100bp 
paired end reads. Library preparation and sequencing was per-
formed in one of two testing centres.

The resulting per-sample fastq files were aligned to the hg19 refer-
ence genome using the BWA mem algorithm (v0.7.5a-r405, http://
bio-bwa.sourceforge.net), before being subjected to PCR dupli-
cate removal using Picard (v1.140, http://broadinstitute.github.io/
picard/) and local realignment around indels using GATK (v3.4, 
https://software.broadinstitute.org/gatk/). CNV analysis was per-
formed using the R software package ExomeDepth (v1.1.8) (9), 
which compares normalised read count data between a test and an 
aggregate reference made up of samples from the same sequenc-
ing run to determine copy number at exon level resolution. The 
algorithm assumes a beta-binomial distribution of read count data, 
with closeness of fit measured by a correlation score. Standard  
and modified calling strategies were employed and assessed for 
sensitivity. Calls were identified by the genomic coordinates  
of windows implicated in the CNV. Statistical confidence in  
these calls was represented by the “Bayes factor”, a log

10
 of the 

likelihood ratio of data for the call divided by the null.

Development of modified calling strategy
The development of a modified calling strategy integrated three 
alterations to the standard calling strategy. These were aimed 
at either improving the appropriateness of the method for use in 
a diagnostic setting (creation of normal dosage gender matched  
control pools), or the detection sensitivity (windowing of target 
intervals, removal of GC extremes).

Creation of normal dosage gender matched control pools. Con-
trol pools containing a minimum of 50 normal dosage samples 
were created by running ExomeDepth analysis to compare gender-
matched samples from multiple historical batches for each capture 
panel over exon length intervals. Samples with known CNVs were 
removed, as were samples with low correlation scores (less than 
90% correlation as determined by ExomeDepth), as these repre-
sent low quality samples with a markedly different coverage profile 
from the average, and were unlikely to be selected as controls.

The resultant R data frames containing read counts of each  
window for every sample for each pool were saved. These  
data frames were provided to ExomeDepth for selection of the 
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aggregate reference for CNV calling in the patient samples. This 
allows a large number of samples to be provided for selection of 
the aggregate reference, ensuring an appropriate number of gender-
matched samples without CNVs are available, with no additional 
runtime required for each batch.

Choice of window size. To determine the optimum window size for 
CNV calling, BED interval files for target exons were created for 
a range of window sizes (200bp, 170bp, 150bp, 120bp, 100bp) for 
one of the three panels tested (number of samples = 24). Exon call-
ing intervals were divided into windows of the appropriate length 
in one of two ways, depending on the size of the exon, such that 
every exon was covered by a minimum of two windows. For exons 
two windows or shorter in length, two windows were placed radi-
ating out from the mid-point of the exon. For exons greater than 
two windows in length, a window was placed over the centre-point 
of the exon with additional windows added, radiating out until the 
exon was completely covered (see Supplementary File 1 for python 
script used to produce interval files). The reason for adopting this 
strategy is that the placement of windows best matches the expected 
distribution of reads across the exon, such that the variability in 
read depth within each window is minimised.

Window GC content. The GC content of each window was cal-
culated using the bedtools nuc module (v2.17.0). Windows with 
extremes of GC content (higher than 80%) were removed from 

the interval file, having confirmed that this left a minimum of one  
window over every exon, retaining the ability to detect CNVs at 
this location.

Comparison between standard and modified pipelines
Following determination of the optimum window size for CNV 
detection, interval files and corresponding normal dosage gender 
matched control pools were recreated at this window size for all 
panels, as described above. CNV analysis was undertaken on all 
109 patient samples using these files, with performance compared 
to the standard calling strategy (see Supplementary File 2 for exam-
ple Exomedepth script containing all settings used).

Standard calling strategy. The standard ExomeDepth pipeline 
followed the strategy outlined in the vignette accompanying the 
package (https://cran.r-project.org/web/packages/ExomeDepth/
vignettes/ExomeDepth-vignette.pdf). Exon length interval BED 
files were created for each of the three panels. Samples were 
interrogated for CNVs over the appropriate targets by compari-
son against all gender-matched samples within a sequencing run  
(range 1 to 14 gender-matched samples).

Results
Variable window size
The performance of the five window lengths tested is displayed in 
Figure 1. All window lengths detected 100% of the positive control 

Figure 1. Performance comparison of window length. All window lengths tested detected all copy number variants (CNVs) in the controls 
set, although the 120bp windows performed best consistently identifying the positive control CNV as the top confidence call. The performance 
of the 100bp windows was considered to be the poorest, given the low confidence in the positive control CNV calls, and the greatly increased 
number of additional calls when compared to other window sizes tested.
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CNVs. However, 120bp windows performed best for prioritisation 
of the known CNV, in all cases providing the highest confidence 
call for this CNV, while producing a limited number of additional 
calls. On this basis, the decision was made to use 120bp windows 
for future analysis.

Standard versus modified pipeline
The results of the comparison of the standard and modified call-
ing strategies is displayed in Table 1. The standard testing pipeline  
detected 104/109 CNVs, giving a sensitivity of 89.62-98.49% 
at the 95% confidence interval. Of the five CNVs not detected 
using this pipeline, three were single exon events (1 duplication,  
2 deletions), one only had a single sample selected as a control, and 
one was on the same sequencing run as a larger overlapping CNV. 

Since our modified protocol detected 109/109 CNVs, we have 
95% confidence that the enhanced strategy sensitivity is ≥96.67% 
(96.67-100.00% at 95% CI).

Bayes factor for separation of positive calls from noise
The combination of windowing of exon length intervals and remov-
ing areas of highly variable coverage caused by high GC content 
decreases the number of additional calls made by the software  
(78 calls across all samples using 120bp windows compared to  
89 using exon length intervals). The majority of the additional 
calls present are reported with significantly lower confidence  
than positive CNVs of equal length (Figure 2), raising the possibil-
ity of excluding these additional calls on the basis of the Bayes 
factor of the call produced by ExomeDepth.

Table 1. Detection rates of standard and modified pipelines.

Detection 
strategy

No. of 
CNVs 
identified

Sensitivity 
(95% CI)

Positive control CNVs 
missed

Standard 104/109 89.62-98.49% PHEX Exon 12 duplication 
PRKARIA Exon 6 deletion 
ABCC8 Exon 13 deletion 
GLIS3 Exons 1-2 deletion 
APC Exons 7-15 deletion

Modified 109/109 96.67-100.00% N/A

Figure 2. Bayes factors of control copy number variants (CNVs) and additional calls. While complete separation between positive control 
CNVs and additional calls (which have not been confirmed, and may reflect carrier status for CNVs in these patient samples) is not possible 
based on Bayes factor alone, it has potential to assist in the filtering of variants with other available information. This may include the presence 
of heterozygous variants within a called deletion, clipped reads to identify breakpoints if present, and by limiting the reporting of variants to 
clinically relevant genes/sub-panels.

Page 5 of 10

Wellcome Open Research 2017, 2:49 Last updated: 15 MAY 2019



Discussion
We have developed a highly sensitive strategy for CNV detection 
in targeted NGS panels, and validated this using a series of posi-
tive control samples from patients with rare genetic diseases. Since 
our protocol detected 109/109 CNVs, we have 95% confidence 
that the modified strategy sensitivity is ≥96.67%. This represents 
an improvement over the standard calling strategy, which detected 
104/109 CNVs, giving a sensitivity of 89.62-98.49% at the 95% 
confidence interval.

For a highly sensitive analysis of read depth, it is necessary to 
account for the technical variability in relative average read depth 
of target regions that is not the result of the presence of a CNV. 
This is particularly true in the case of duplications, which result 
in a smaller proportional change in the number of mapped reads 
when compared to deletions. Strategies for combining calls from 
adjacent target regions, such as the hidden Markov model employed 
by ExomeDepth, result in comparatively lower confidence in the 
calling of smaller CNVs that are commonly seen in disease. By 
dividing exonic targets into multiple windows, we have improved 
the detection sensitivity of single exon CNVs, narrowing the gap  
in the size of sequence variation that can be detected between CNV 
packages and the variant callers used for SNV/indel detection. This 
is supported by the fact that of the five CNVs missed by the stand-
ard strategy, but detected by the modified calling pipeline, three 
were single exon events (PHEX exon 12 duplication, PRKARIA 
exon 6 deletion, ABCC8 exon 13 deletion).

The selection of window size to use for CNV calling is clearly a crit-
ical factor when using read depth based tools such as ExomeDepth. 
If the window size is too large, smaller CNVs may not represent the 
highest confidence call in a background of variable coverage. If the 
window size is too small, false positive calls are likely to be intro-
duced into the results. The performance comparison of window 
size in this study showed the relative highest confidence in positive 
CNV calls in the 120bp windows, and a two-fold increase in the 
number of additional calls produced by the software when using 
100bp windows compared to 120bp windows. These data suggest 
that 120bp windows may represent the optimum size when using 
the read-length generated by the current sequencing technology.

The modifications made to the pipeline aimed at increasing sensi-
tivity potentially decrease specificity. The degree to which this is 
true is difficult to establish, as not all targets covered by the NGS 
panels have been tested using MLPA to determine normal copy 
number. For use in a clinical diagnostic setting, where CNVs are 
confirmed by an alternative method prior to reporting, high sen-
sitivity is of greater importance than high specificity to reduce the 
number of false negatives. It may be possible to improve specificity 
and separate true calls from false positives or CNVs unrelated to the  
clinical referral using additional data. This may incorporate the 
Bayes factor of the call when using ExomeDepth, but is more 
likely to be successful when also considering the presence of  
heterozygous variants within a called deletion, clipped reads 
to identify breakpoints if present, and limiting the reporting of  
variants to clinically relevant genes/sub-panels.

Read depth CNV detection strategies are dependent on uniform-
ity of coverage across the entire capture region, so that any vari-
ation seen is indicative of genuine copy number change present  
in the sample. Regions of the genome to which it is difficult to 
unambiguously align the short reads produced by the current NGS 
technology (i.e. GC content extremes, pseudogene homology)  
interfere with this uniformity. In addition to affecting detection 
in these regions, this causes problems across the entire region of 
interest because of decreasing the correlation of the patient and 
reference samples used for comparison, increasing noise. Exclud-
ing those regions from analysis allows a more suitable match  
to be made, increasing the sensitivity.

While removing areas of GC content extremes or with a high degree 
of homology to pseudogenes from analysis improves the correla-
tion between test and reference genomes, and as such the sensitivity 
of the method, we acknowledge it does so at the cost of the ability to 
detect CNVs in these areas. Although this is a limitation of any cur-
rent method, which will only be possible to fully overcome when 
the use of long read sequencing becomes routine, the windowing of 
exons can ameliorate this, allowing the removal of windows with 
particularly high GC content, while retaining the ability to detect 
CNVs in the remaining areas of the exon.

When using read depth to infer copy number in NGS data, it is 
often recommended to compare samples within a sequencing run 
in order to avoid run specific technical artefacts. While this strat-
egy can work well in large sequencing projects, it is not a feasible 
approach for a clinical diagnostic laboratory for a number of rea-
sons, including cost. If overlapping CNVs are present in multiple 
samples, it can result in false negative results, and for calls on the 
sex chromosomes, it relies on having a suitable number of gender 
matched controls on the same run. Having made modifications 
to the interval files to account for the major components of vari-
ability in coverage between samples, this recommendation can be 
relaxed. This allows control pools of normal dosage samples from 
multiple runs to be used for comparison, making this method more  
suitable for use in a diagnostic testing pathway. This approach 
allowed the detection of both an APC exon 7-15 deletion, and a 
GLIS3 exon 1-2 deletion. The APC exon 7-15 was missed using 
the standard testing strategy due to the incorporation of a sample 
containing a larger overlapping CNV in the aggregate reference. 
The aggregate reference selected by ExomeDepth for the GLIS3 
exon 1-2 deletion only contained one sample when using the  
standard strategy, which resulted in a poor correlation score and a 
false negative result.

In this study, we have used ExomeDepth as the CNV calling tool of 
choice. While the strategy we have suggested is yet to be tested on 
the multitude of other packages available, the modified approach we 
have developed tackles the limitations of the technology rather than 
the specific tool used; therefore, we anticipate that this will improve 
the sensitivity of the range of software available. Modification of 
the standard CNV analysis pipeline to address issues inherent in 
the targeting techniques routinely used by diagnostic laboratories 
allows for improved detection capability.
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Ethical statement
The samples used in this study were collected for research studies 
or were from patients undergoing clinical diagnostic testing. The 
research studies were conducted in accordance with the latest ver-
sion of the Declaration of Helsinki and consent was obtained from 
all patients or their parents. Declarations of written or oral consent 
are recorded in clinical notes. Samples were collected with ethical 
approval from the Wales Research Ethics Committee Bangor. The 
samples collected for clinical diagnostic testing were used for qual-
ity assurance purposes to validate the detection of CNVs by next 
generation sequencing.

Data availability
The individual data files used for the study are not available online, 
due to patient confidentiality issues of the samples collected for 
clinical diagnostic testing and the storage requirements of the fastq 
(~ 1Gb per sample) or BAM files (~ 4Gb per sample) required 
for the analysis of all samples. We anticipate that users will have 
their own datasets against which to test this strategy, but please 

contact andrew.parrish@nhs.net if fastq and/or BAM files from 
the consented research samples used in this study provided via  
SFTP would be helpful.
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, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence
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   Christian Gilissen
Department of Human Genetics, Donders Institute of Neuroscience, Radboud University Nijmegen
Medical Centre, Nijmegen, The Netherlands

Parrish et al. describe the optimization of an existing tool to identify CNVs from exome sequencing data
tailored to application within diagnostic testing. They improve the existing algorithm “ExomeDepth” on
three points: the reference cohort, splitting targets into smaller windows, and removal of GC rich windows.
They show that with these improvements ExomeDepth is able to identify all of the 109 CNVs from a
dataset of known CNVs, whereas only 104/109 were identified with the standard algorithm.
 
The paper is very clearly structured and written. The methods and results are fairly straightforward and
clear.

The authors focus very much on the sensitivity of the methods, rightfully claiming that this is more
important in a diagnostic setting than specificity. The authors show the number of additional calls
for various choices of the window size, but not for the standard ExomeDepth method. This should
be included such that the readers can verify that the optimizations are not at an large cost of
specificity. 
 
The authors claim that additional CNV calls in their analysis have lower quality values is clear from
Figure 2. But it would be good to also quantify the difference in quality scores between Control
CNVs and additional calls with a statistical measure, since the phrasing “significantly lower
confidence” is used by the authors. 
 
For reproducibility please include the target regions that were finally used in the analysis and the
details of the calling of the control CNVs and additional calls for the final algorithm (location, type,
size, Bayes factor, etc.).
 
The authors rely on a method called ExomeDepth, which seems to suggest the current study is
done with exomes. Although the authors mention that this analysis is performed for a gene panel
this can be a bit confusing. It would be good if the authors provided some details on the panels in
the material and methods and perhaps discuss on the application of their method for whole
exomes.
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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 Dominic McMullen
West Midlands Regional Genetics Laboratory,  Birmingham Women's and Children's NHS Foundation
Trust, Birmingham, UK

This report very clearly demonstrates that robust CNV calling from NGS data using an enhanced Exome
Depth methodology is achievable without the need for running large batches and having large internal
control sets.

As is evidenced this approach seems most applicable to gene panels, where sensitivity is key and will
help to reduce the need for e.g MLPA as a primary CNV detection method alongside gene panel (physical
and virtual) testing. 

The authors state: "The modifications made to the pipeline aimed at increasing sensitivity potentially
decrease specificity. The degree to which this is true is difficult to establish, as not all targets covered by

the NGS panels have been tested using MLPA to determine normal copy number. For use in a clinical
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the NGS panels have been tested using MLPA to determine normal copy number. For use in a clinical
diagnostic setting, where CNVs are confirmed by an alternative method prior to reporting, high sensitivity
is of greater importance than high specificity to reduce the number of false negatives"
 
Thus for gene agnostic /genome-wide CNV detection this method may be more difficult currently to
reliably implement as a replacement for e.g aCGH/SNP-array, which now both have very high specificity
genome-wide. It will very be interesting to see if the Bayes factor used to separate positive calls from
noise can be further novelly enhanced for this purpose.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:
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it is of an acceptable scientific standard.
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