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ƐՊ |ՊINTRODUCTION

The use of remote still and video surveillance cameras in wildlife re-

search and management has grown rapidly in recent years (Nguyen 

et al., 2017; Villa, Salazar, & Vargas, 2017; Zeppelzauer, 2013). The 

purpose of surveillance may vary widely from identification of pest 

species or problem behavior to estimating the abundance and dis-

tribution of species of conservation importance, but they usually 

share a common need, which is to identify particular target species. 

This surge of interest in remote surveillance has, however, been 

accompanied by increasing recognition of the challenges associated 

with screening the enormous quantities of image data for the species 

of interest. The conventional approach of sifting through images by 

eye can be laborious and expensive (although some studies have re-

duced costs by crowd sourcing; e.g., Hsing et al. (2018)). Thus, there 

is considerable interest in the development of automated methods 

(Zeppelzauer, 2013).

In recent years, machine learning methods for automated rec-

ognition of animals have increasingly been used in biological and 

fisheries monitoring. These technologies have improved the ability 
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Abstract

1. Wildlife conservation and the management of human�wildlife conflicts require 

cost-effective methods of monitoring wild animal behavior. Still and video cam-

era surveillance can generate enormous quantities of data, which is laborious and 

expensive to screen for the species of interest. In the present study, we describe 

a state-of-the-art, deep learning approach for automatically identifying and isolat-

ing species-specific activity from still images and video data.

2. We used a dataset consisting of 8,368 images of wild and domestic animals in 

farm buildings, and we developed an approach firstly to distinguish badgers from 

other species (binary classification) and secondly to distinguish each of six animal 

species (multiclassification). We focused on binary classification of badgers first 

because such a tool would be relevant to efforts to manage Mycobacterium bovis 

(the cause of bovine tuberculosis) transmission between badgers and cattle.

3. We used two deep learning frameworks for automatic image recognition. They 

achieved high accuracies, in the order of 98.05% for binary classification and 

90.32% for multiclassification. Based on the deep learning framework, a detection 

process was also developed for identifying animals of interest in video footage, 

which to our knowledge is the first application for this purpose.

4. The algorithms developed here have wide applications in wildlife monitoring 

where large quantities of visual data require screening for certain species.

K E Y WO RD S

automatic image recognition, bovine tuberculosis, convolutional neural networks, deep 
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www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-9298-438X
http://creativecommons.org/licenses/by/4.0/
mailto:ruth.cox@apha.gov.uk


ƑՊ |Պ ՊՍ CHEN ET AL.

to capture high-resolution images in challenging environments and 

have consequently led to more effective management of natural 

resources (Spampinato et al., 2015). However, the method used to 

detect animals is somewhat specific to the situation. For example, au-

tomated detection and tracking of elephants using color to separate 

the animal from the background have been successful (Zeppelzauer, 

2013), and while the approach could be adapted to other species, it 

would not be applicable where color is absent, for example, for noc-

turnaѴ	speciesĺ	AnimaѴ	faciaѴ	recognition	has	aѴso	been	successfuѴѴy	
empѴoyed	for	wiѴdѴife	detection	ŐBurghardt	ş	ݫaѴiࣀķ	ƑƏƏѵőķ	aѴthough	
it is clearly only applicable where the face is visible. In addition to au-

tomatic recognition from still photographs, recognition by automatic 

video processing has also been trialed. For example, the dairy sector 

has	 used	 this	 approach	 to	 Ѵocate	 and	 track	 dairy	 cows	 ŐMartinezŊ
Ortizķ	Eversonķ	ş	Mottramķ	ƑƏƐƒőķ	 aѴthough	one	of	 the	 chaѴѴenges	
here is to be able to distinguish specific individual animals, while re-

jecting images that contain people or other animals.

Stills cameras and CCTV have been used for many years to mon-

itor wildlife visits to farms in the UK as part of the management of 

bovine	tubercuѴosis	ŐbTBĸ	eĺgĺķ	Payneķ	Chappaķ	Harsķ	Dufourķ	ş	GiѴotŊ
Fromont, 2016; Robertson et al., 2016, 2017). This disease is a pressing 

animal health problem in the UK (Defra, 2014), and dealing with bTB 

in cattle costs the taxpayer an estimated £100 million a year (Defra, 

ƑƏƐѶőĺ	AѴthough	cattѴe	often	acquire	bTB	from	one	another	ŐDonneѴѴy	
& Nouvellet, 2013), European badgers (Meles meles) are a potential 

source	of	 infection	 ŐMurhead	ş	Burnsķ	ƐƖƕƓő	and	 their	presence	on	
cattle pasture and in farm buildings provides opportunities for trans-

mission through direct or indirect contact (Drewe, O�Connor, Weber, 

McDonaѴdķ	ş	DeѴahayķ	ƑƏƐƒĸ	Garnettķ	DeѴahayķ	ş	Roperķ	ƑƏƏƑĸ	Judgeķ	
McDonaѴdķ	WaѴkerķ	ş	DeѴahayķ	ƑƏƐƐĸ	ToѴhurstķ	DeѴahayķ	WaѴkerķ	Wardķ	
& Roper, 2009; Ward, Tolhurst, & Delahay, 2006). Despite much re-

search, there remains a paucity of evidence on where and when trans-

mission occurs (Godfray et al., 2013), and hence, monitoring of badger 

behavior in farm environments remains a research priority.

Attempts	 to	monitor	badger	behavior	 can	be	particuѴarѴy	 chaѴ-
lenging because images are often collected under poor illumination, 

without color, in changeable weather and from cameras situated at 

different positions with respect to the monitored area. While CCTV 

technology can potentially record detailed behavioral data (Tolhurst 

et al., 2009), it requires regular (often daily) visits to replace batter-

ies	or	memory	cardsĺ	As	a	consequenceķ	most	badger	 surveiѴѴance	
studies have employed stills cameras (e.g., Defra, 2014) as they can 

remain in the field for several weeks at a time. Despite being motion-

triggered, both approaches produce a large amount of visual data 

that need to be manually reviewed for target and nontarget species.

To address these challenges, we piloted the use of machine learn-

ing methods for automatic recognition of wildlife. In order to classify 

images, image features are required. Hand-crafted image feature 

methods such as the histogram of oriented gradient (HOG; Dalal & 

Triggs, 2005) and scale-invariant feature transform (SIFT) have been 

wideѴy	 appѴied	 ŐZhuķ	 Yuenķ	 MihayѴovaķ	 ş	 Leungķ	 ƑƏƐƕőĺ	 Howeverķ	
state-of-the-art automatically learned features by convolutional 

neural networks (CNNs) have outperformed all the hand-crafted 

feature methods on large datasets (Krizhevsky, Sutskever, & Hinton, 

2012). Convolutional neural networks have only recently been ap-

plied to automatic classification of wildlife images, with limitations 

in performance reported. For example, Chen, Han, He, Kays, and 

Forrester (2014) first demonstrated the technique, although their 

framework was only 38% accurate. Since this time, improvements 

have been made by training on very large datasets. For example, 

Gomez, Salazar, and Vargas (2016) developed a CNN to identify wild 

animals from the world's largest camera trap project published to 

date, known as the Snapshot Serengeti dataset (3.2 million images of 

48 species; Swanson et al., 2015). Overall accuracy for animal iden-

tification was not reported, but was estimated at approximately 57% 

elsewhere (Norouzzadeh et al., 2018). Very recently, Norouzzadeh 

et	aѴĺ	ŐƑƏƐѶő	appѴied	different	CNN	architectures	incѴuding	AѴexNet	
(Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2015), and 

ResNet (He, Zhang, Ren, & Sun, 2016) to the same dataset and 

achieved an accuracy of 92% for species identification. While these 

methods show improved accuracy, we are not aware of any studies 

that have considered how to detect wildlife images of interest from 

fiѴm	sequencesĺ	A	specific	chaѴѴenge	here	is	identifying	when	an	ani-
mal of interest enters the area in front of the camera. Detecting such 

images of interest would enable collection of detailed film footage, 

while optimizing storage space by only saving frames of interest. 

Here, we aim to develop a robust framework to classify wildlife im-

ages, and we then apply the same image recognition algorithm to 

video footage.

ƑՊ |ՊAIMS

1. Develop an automated image classification algorithm which can 

identify still images containing badgers, while rejecting those 

containing other animals.

2. Test, refine, and calibrate the image classification algorithm 

to identify and classify six different animal species from still 

photographs.

3. Test, refine, and calibrate the image classification algorithm so 

that it can be used to identify badger presence in a sample of 

video footage.

ƒՊ |ՊMETHODS

ƒĺƐՊ|ՊDeep Ѵearning for wiѴdѴife species recognition

Building an image recognition framework involves a training stage 

and a testing stage (Figure 1). During the training stage, parameters 

in the recognition framework are learned from the training images, 

which have already been labeled by hand (a label being the animal 

that is shown in the image). During the testing stage, the trained 

framework takes incoming images as input and outputs a label 

prediction.

Traditional image recognition frameworks involve separate 

processes for feature extraction and classification. However, 
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CNNs automatically learn the image features and build a classifier. 

In this sense, CNNs could be regarded as a �black box� which au-

tomatically builds a mapping relationship between the input image 

and its output label. Inside the �black box,� there are different 

layers similar to neural networks, where each element in a layer 

is regarded as a neuron, and each neuron in the current layer is 

fully connected to neurons in the next layer (Schmidhuber, 2015). 

Data are transferred from the current layer to the next layer, and 

the	 Ѵast	 Ѵayer	 is	directѴy	connected	to	the	output	 ѴabeѴĺ	A	typicaѴ	
CNN architecture is mainly composed of convolutional layers 

ŐCőķ	pooѴing	Ѵayers	ŐPőķ	and	fuѴѴy	connected	Ѵayers	ŐFcĸ	Chenķ	JaѴaѴķ	
MihayѴovaķ	ş	Mooreķ	ƑƏƐѶĸ	Figure	Ƒőĺ

A	 convoѴutionaѴ	 Ѵayer	 is	 composed	 of	 different	 convoѴutionaѴ	
maps. In a convolution stage, feature maps are convoluted with dif-

ferent kernels, which are equivalent to filters in the field of image 

processing	ŐChen	et	aѴĺķ	ƑƏƐѶőĺ	A	pooѴing	Ѵayer	is	composed	of	many	
different	pooѴing	mapsĺ	A	pooѴing	process	 is	often	appѴied	on	con-

voѴutionaѴ	Ѵayersĺ	A	pooѴing	process	decreases	the	size	of	the	input	
feature	mapsķ	which	can	be	regarded	as	a	downsampѴing	stageĺ	As	
shown in Figure 2, these two processes are repeated. In this figure, a 

convolutional process is always followed by a pooling operation, al-

though this is not necessary and different CNN structures are valid.

In the current study, we describe the development and testing of 

two CNN frameworks. The first is a self-trained framework (CNN-1) 

based on a newly created wildlife dataset. The second is a transferred 

framework	 based	 on	AѴexNet	 ŐCNNŊƑőķ	which	 is	 then	 fineŊtuned	 on	
our	wiѴdѴife	datasetĺ	AѴexNet	is	another	CNNŊbased	modeѴ	which	was	
trained on one of the world's largest public image datasets known as 

ImageNet, consisting of 1.2 million labeled images with 1,000 catego-

ries (Deng et al., 2009).

Studies have shown that CNNs learned from a large-scale data-

set in the source domain can be effectively transferred to a new tar-

get	domain	ŐDonahue	et	aѴĺķ	ƑƏƐƓĸ	Yosinskiķ	CѴuneķ	Bengioķ	ş	Lipsonķ	

2014). In this transfer learning process, the already trained weights 

are used as the initial weights and are then fine-tuned using the task 

dataset. The assumption is that the network has already learned 

useful features and could therefore attain greater accuracy than a 

model trained on a smaller dataset (Nguyen et al., 2017).

We designed two frameworks because each has advantages and 

disadvantagesĺ	A	CNN	buiѴt	using	a	smaѴѴer	training	dataset	ŐCNNŊƐő	
would require less computing memory than one trained on a large 

dataset (CNN-2); however, it would be more likely to suffer from 

overfitting. The performance of a CNN initialized with well-trained 

weights from a large dataset (CNN-2) would be highly dependent 

on the image similarity between the source domain (ImageNet) and 

target domain (Wildlife). Given that the two datasets that we used 

were similar, we expect CNN-2 to outperform CNN-1.

ƒĺƐĺƐՊ|ՊCNNŊƐ

In both CNN-1 and CNN-2, the training process aimed to teach the 

weights in the �black box.� In CNN-1, all the weights were randomly 

initialized and updated based on the training data. The CNN-1 frame-

work consists of four convolutional layers, four max-pooling layers, and 

a fully connected layer (Figure 3). The input image of size [480 pix-

els × 640 pixels × 3 channels] was transferred to 50 convolutional maps 

of size [117 pixels × 157 pixels] in the first convolutional layer (C1). In 

the	first	pooѴing	Ѵayer	ŐPƐőķ	ƔƏ	pooѴing	maps	were	generated	based	on	
C1. This transformation was achieved by using 50 convolutional ker-

neѴs	of	size	ŒƐƒ	pixeѴs	Ƶ	Ɛƒ	pixeѴsœ	with	a	stride	of	ŒƓ	pixeѴs	Ƶ	Ɠ	pixeѴsœĺ	A	
stride represents how much the convolution kernels shift during each 

step on the input. Thus, the convolutional kernels shifted 4 pixels, ei-

ther along the horizontal axis or along the vertical axis in each step.

The	 second	 convoѴutionaѴ	 process	was	 appѴied	on	PƐ	by	 using	
100 convolutional kernels; hence, 100 convolutional maps were gen-

erated	in	CƑĺ	The	same	process	was	repeated	in	PƑķ	Cƒķ	Pƒķ	CƓķ	and	

F I G U R E  Ɛ Պ The training and testing 

processes of a recognition framework

F I G U R E  Ƒ ՊAn	exampѴe	of	a	generic	
CNN architecture (Chen et al., 2018)
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PƓĺ	In	PƓķ	there	were	ƐƏƏ	pooѴing	maps	of	size	Œƕ	pixeѴs	Ƶ	ƐƏ	pixeѴsœĺ	
EѴements	 in	PƓ	were	reshaped	to	a	vector	 form	of	ƕķƏƏƏ	neuronsķ	
and these neurons were fully connected to 1,000 neurons in the first 

fully connected layer (Fc1). Fc1 was then fully connected with the 

output neurons, which represent the corresponding label informa-

tionĺ	Appendix	Ɛ	detaiѴs	the	architecture	of	CNNŊƐĺ

F I G U R E  ƒ Պ The architecture of CNN-1

F I G U R E  Ɠ Պ The architecture of CNN-2
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ƒĺƐĺƑՊ|ՊCNNŊƑ

The weights of CNN-2 were learned from the trained model 

AѴexNetĺ	CNNŊƑ	kept	aѴѴ	 the	weights	except	 for	 the	 Ѵast	 three	 Ѵay-
ers	 from	AѴexNetĺ	 The	output	 Ѵayer	was	 seѴfŊdefinedķ	 and	weights	
were fine-tuned based on the badger dataset. The developed CNN-2 

framework (Figure 4) has five convolutional layers, three max-pool-

ing	 Ѵayersķ	 and	 two	 fuѴѴy	 connected	 Ѵayersĺ	Appendix	Ƒ	detaiѴs	 the	
architecture of CNN-2.

ƒĺƑՊ|ՊTrained CNNS appѴied to video footage

The trained CNNs were directly applied to video footage, because 

film can be considered as a sequence of image frames. In order to 

speed up the detection process, all images were converted to gray-

scale. If an image was detected as a potential frame of interest, then 

the color framework was used for recognition. Images of interest 

were those that contained objects of interest (any animal). In film 

footage, the movement of an animal results in pixel value variations 

in adjacent frames. Intuitively, differences between adjacent frames 

could therefore be calculated. Here, instead of directly applying 

frame differences, a dynamic background (B) was used with the fol-

lowing updating process:

where i; j represents the vertical and horizontal pixel location, I is the 

input frame, and It
ij
 represents the current pixel value at the location 

index (i, j). The initial B is set as the first input frame and dynamically 

updates, hence, the difference between the current frame and the 

background is given by:

where |·| calculates the absolute value.

However, frame difference does not necessarily indicate that 

there is an animal present, since differences can also be caused, for 

example, by moving vegetation. Here, the following assumptions were 

made in order to decrease the false-positive detection rate: (a) if an 

animal moves, the frame difference should be relatively large and (b) 

the movement of the animal is the main cause of the pixel changes, and 

the camera is not occluded by the animal's body.

In order to remove tiny variations, a dynamic threshold process 

was applied based on the maximum value among all Dt
ij:

This process was followed by a median filter aimed at removing 

noiseĺ	AnimaѴ	movements	tend	to	happen	in	a	smaѴѴ	areaĸ	thereforeķ	

if a large area is moving, it is likely that the camera is either moving 

or it has been blocked by an animal's body. Hence, a frame was omit-

ted when its D had nonzero values that were either too small or too 

large. Here, animal size was restricted to 200 pixels and half of the 

total pixels of the image. Frames with large pixel variations were re-

moved in order to decrease the false-positive detection rate caused 

by other factors such as camera movement, windy weather, and a 

suddenly changing scene.

For the considered frames, an energy term Et can be calculated 

by summing all the nonzero values in Dt:

The average variation of each pixel is given by:

where n is the number of nonzero value pixels in D. For frames 

with animal motion, the image should have large total energy Et. In 

addition, the pixel variation made by animals should be larger than 

other factors; thus, the variation made by animal objects should be 

the main portion of the total energy, and therefore, its y should be 

large. Hence, by comparing the yt with a threshold, the tth frame 

would be sent to the classification stage if its y value was beyond 

the threshold.

If an animal is detected, the classification result should be consis-

tent within a short period of time (e.g., 0.1 s). Therefore, a confirma-

tion process (as shown in Figure 5) was applied in order to decrease 

the number of false positives. When the prediction agreed with the 

previous prediction, the classification result was confirmed as the 

output.

ƒĺƒՊ|ՊProcessing

The performance evaluations of CNN-1 and CNN-2 were conducted 

in	MATLAB	on	a	desktop	PC	with	the	foѴѴowing	specificationĹ	InteѴ	
IƕŊƕƕƏƏK	ŐƓĺƑ	GHz	Ƶ	Ɠőķ	Ɛѵ	GB	of	RAMķ	and	an	Nvidia	GeForce	RTX	
2080. In the training stage, the choice of optimizer was stochastic 

gradient descent with momentum of 0.9, and batch sizes were set to 

128. We trained CNN-1 for 200 epochs with an initial learning rate 

of 0.001 since weights were randomly initialized. Since CNN-2 was 

pretrained on another dataset, we trained it for 50 epochs using an 

initial learning rate of 0.0001. In CNN-2, images were reshaped to 

[227 × 227] in order to transfer the weights, while in CNN-1 images 

were reshaped to [480 × 640].

ƒĺƓՊ|ՊDataset generation

The photograph images were captured at a selection of UK farms 

where	surveiѴѴance	had	taken	pѴaceĺ	AѴѴ	were	manuaѴѴy	assigned	to	
either badger, bird, cat, fox, rat, or rabbit (Figure 6). We randomly 

(1)Bt
ij
=

(

1−�

)

× It
ij
+�×Bt−1

ij

(2)Dt
ij
=
|
|
|
It
ij
−Bt

ij

|
|
|

(3)Dt
ij
=

⎧
⎪⎨⎪⎩

0 ifDt
ij
<� ⋅max

�
D

t
�
,

Dt
ij
Otherwise

(4)Et=Σi,jD
t
ij

(5)yt=Et∕nt
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selected 70% of the images to be used in the training process, and 

the rest were assigned for testing (Table 1). Images were selected 

randomly in order to provide a diverse variety for training and test-

ing. Training and testing images could not be separated by farm 

because some farms generated a large proportion of images and be-

cause certain animals tended to occur only on one farm.

To design and evaluate automatic classification, two different 

scenarios were considered: (a) binary classification distinguishing an 

image as either belonging to the badger or the nonbadger category 

and (b) multiclassification to identify an image as one of six animal 

species.

ƓՊ |ՊRESULTS

ƓĺƐՊ|ՊBadger versus nonbadger cѴassification

CNN-1 and CNN-2 were evaluated for their binary classification 

performance by apportioning results to four categories: True 

positives	 ŐTPő	were	 the	 number	 of	 badger	 test	 images	 that	were	
correctѴy	 cѴassified	 as	 badgersķ	 and	 faѴse	 positives	 ŐFPő	 were	 the	
number of nonbadger test images that were wrongly classified as 

badgers. False negatives (FN) were the number of badger test im-

ages which were wrongly classified as being in the nonbadger cat-

egory, and true negatives (TN) were the number of the nonbadger 

test images that were correctly classified as belonging to the non-

badger	categoryĺ	Accuracy	represents	the	ratio	between	correctѴy	
classified images and total images. The F1 score is the harmonic 

average	of	 the	precision	 ŐTPņŐTP	Ƴ	FPőő	and	recaѴѴ	 ŐTPņ	 ŐTP	Ƴ	FNőő	
with values from 0 to 1.

ƓĺƐĺƐՊ|ՊPerformance of CNNŊƐ

The CNN-1 framework had an accuracy of 95.58% (Table 2). The 

false-negative rate (17.77%) was much higher than the false-positive 

rate (1.37%). This is because there were unbalanced data in each 

category, which resulted in a test image having a higher probabil-

ity of being allocated to the majority group in the training dataset. 

In order to decrease this effect, a resampling process was applied 

to the minority group. Specifically, images in the badger category 

were resampled four additional times in order to provide an equiva-

lent number of images in both categories. This resampling process 

dropped the false-negative rate from 17.77% to 10.71% and im-

proved the F1 score from 0.87 to 0.89.

ƓĺƐĺƑՊ|ՊPerformance of CNNŊƑ

CNN-2 performed better than the CNN-1 framework (Table 3). Since 

the unbalanced training dataset caused biased results (described 

above), we assessed CNN performance using the training dataset 

both with and without a resampling process.

The greatest accuracy was achieved using CNN-2 with a value of 

97.61%, increasing to 98.05% with resampling.

ƓĺƑՊ|ՊMuѴticѴassification

ƓĺƑĺƐՊ|ՊThe performance of CNNŊƐ

For multiclassification, the F1 score is not valid, and instead, the 

accuracy and mean accuracy were used to evaluate performance. 

Mean	accuracy	was	obtained	by	averaging	the	accuracies	from	in-

dividual categories. We use mean accuracy because it provides a 

less biased measurement than accuracy when the dataset is not bal-

anced. In the training stage, when using an unbalanced dataset, the 

weights may be biased toward larger groups, and so, a random test 

image is more likely to be allocated to a larger group. For example, 

given 100 testing images which contain 95 badger images and one 

image in another category, the general accuracy would be 95% if all 

images were classified to the badger category, while the mean ac-

curacy would be 17.67% (the accuracy in the other animal categories 

would be zero).

The accuracy of CNN-1 was 83.07% and the mean accuracy was 

79.98%, both of which were lower than for the binary classification 

ŐTabѴe	Ɠőĺ	As	aboveķ	a	resampѴing	process	was	appѴied	to	the	training	
dataset. During this process, the fox category, which contained the 

(6)Accuracy=
TP+TN

TP+FP+FN+TN

(7)F1 score=
2TP

2TP+FP+FN

F I G U R E  Ɣ Պ The process of applying 

trained CNNs to video footage
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most images, was not resampled, while the others were resampled 

so that the number of images was similar to the fox category. Thus, 

the badger and bird categories were resampled once, cat and rabbit 

twice, and rat four times. The resampling process improved the ac-

curacy of categories that had less training data, such as cat, rat, and 

rabbit. Overall, the accuracy of CNN-1 improved slightly to 83.51% 

and 82.71%, respectively, with resampling (Table 5).

ƓĺƑĺƑՊ|ՊPerformance of the CNNŊƑ

CNN-2 had an accuracy of 90.32% for multiclassification (Table 6). 

Accuracies	 were	 higher	 and	more	 baѴanced	 than	 resuѴts	 achieved	
using CNN-1. The lowest accuracy (77.23%) was in the cat category, 

which can be explained by their resemblance to other animal im-

ages, in particular foxes, especially when viewed from behind. The 

F I G U R E  ѵ Պ Example images from the testing dataset. From the first row to the last row are badger, bird, cat, fox, rat, and rabbit
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resampling process did not have a considerable influence on the per-

formance of CNN-2 (Table 7) because the well-trained weight from 

AѴexNet	was	 Ѵess	 ѴikeѴy	to	suffer	 from	overfittingĺ	Such	overfitting	
means the model performs perfectly on the training dataset, but 

does not perform well on the testing dataset.

ƓĺƒՊ|ՊDetection and cѴassification in video footage

We applied the trained CNN-2 to video footage classification 

(Figure 7). During this process, adjacent frames are compared to de-

termine the mean variation of pixel values (integers from 0 to 255) 

TA B L E  Ɛ Պ Number of images per category in the wildlife dataset

Category TotaѴ images Training images Testing images

Badger 1,556 1,089 467

Bird 1,528 1,070 458

Cat 1,083 758 325

Fox 2,693 1,885 808

Rat 570 399 171

Rabbit 938 657 281

Total 8,368 5,858 2,510

 

Test data

Badger Nonbadger Accuracy Őѷő F1 score

Without resampling

Prediction

Badger ƒѶƓ	ŐTPő ƑѶ	ŐFPő 95.58 0.87

Nonbadger 83 (FN) 2015 (TN)

With resampling

Prediction

Badger ƓƐѵ	ŐTPő Ɣƒ	ŐFPő 95.86 0.89

Nonbadger 51 (FN) 1990 (TN)

TA B L E  Ƒ Պ The performance of CNN-1 

for binary classification without and with 

the resampling process

 

Test data

Badger Nonbadger Accuracy Őѷő F1 score

Without resampling

Prediction

Badger ƓƑƖ	ŐTPő ƑƑ	ŐFPő 97.61 0.93

Nonbadger 38 (FN) 2021 (TN)

With resampling

Prediction

Badger ƓƓƑ	ŐTPő ƑƓ	ŐFPő 98.05 0.95

Nonbadger 25 (FN) 2019 (TN)

TA B L E  ƒ Պ The performance of CNN-2 

for binary classification without and with 

the resampling process

TA B L E  Ɠ Պ The performance of CNN-1 for multiclassification without the resampling process

 

Test data

Accuracy Őѷő Mean accuracy ŐѷőBadger Bird Cat Fox Rat Rabbit

Prediction

Badger 395 2 6 29 9 6 83.07 79.98

Bird 1 441 3 7 2 4

Cat 4 3 207 34 10 6

Fox 54 11 90 704 24 46

Rat 7 0 5 3 122 3

Rabbit 6 1 14 31 4 214

Individual accuracy (%) 84.58 96.29 63.69 87.13 71.35 76.87   
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within	an	areaĺ	A	 threshoѴd	was	appѴied	so	 that	any	 frame	with	an	
average variation above this value was sent for classification. The 

threshold value influences the false-positive and false-negative rate. 

For example, a high threshold would only detect animals when large 

movements occur, while a lower threshold would result in small back-

ground movements being mistakenly identified as animals. Since we 

included a checking process between adjacent frames, we applied 

a relatively low threshold value (20), so that only active frames that 

are highly likely to contain animals are sent for classification. Our 

analysis demonstrates that CNN-2 is able to detect movement in 

adjacent frames and could identify badger presence in a sample of 

video footage.

ƔՊ |ՊDISCUSSION

Two deep learning frameworks were developed to automatically rec-

ognize animal images. We demonstrated high levels of performance 

for both frameworks, achieving accuracy of 95.86% and 98.05%, for 

binary classification. For multiclassification, they achieved accura-

cies of 83.07% and 90.32%, respectively. Our results indicated that 

the models are robust despite unbalanced data and that they im-

proved with resampling.

While our results are not directly comparable with other frame-

works because different datasets have been used, it is relevant to 

discuss the accuracy of other frameworks if they are to be used for 

practical purposes. The accuracy of our framework for binary classi-

fication was greater than that recorded in other recent work. Nguyen 

et al. (2017), for example, achieved accuracy of 91.5%�96.6% when 

detecting images containing wild animals.

For multiclassification, the accuracy of our CNN was compara-

ble to that of another recent CNN, which reported 89.16%�90.4% 

accuracy for three species; however, our CNN outperformed this 

network, (84.39% accuracy) when classifying among six species 

(Nguyen et al., 2017). Our results for multiclassification yielded only 

slightly lower accuracy than the 93.8% recorded by Norouzzadeh et 

al. (2018), which used the Snapshot Serengeti database of more than 

3 million images for training purposes.

In the present study, CNN-2 was the more accurate classifica-

tion	frameworkĺ	An	additionaѴ	advantage	was	thatķ	since	the	weights	
for CNN-2 were already pretrained, the training time of 2,289 s was 

considerably less than the 6,076 s required for CNN-1. Subsequently, 

the weights only needed to be fine-tuned to our wildlife monitoring 

application by using our dataset. Fine-tuning was advantageous, 

since	 we	 determined	 that	 using	 AѴexNet	 without	 the	 pretrained	
weights resulted in accuracy dropping to 89.68% and 70.28%, re-

spectively, for binary and multiclassification, respectively. Our use 

of transfer learning is a critical departure from other wildlife rec-

ognition frameworks which have trained all the weights using the 

target datasets (Nguyen et al., 2017; Norouzzadeh et al., 2018; Villa 

TA B L E  Ɣ Պ The performance of the CNN-1 for multiclassification with the resampling process

 

Test data

Accuracy Őѷő Mean accuracy ŐѷőBadger Bird Cat Fox Rat Rabbit

Prediction

Badger 402 2 2 34 8 5 83.51 82.71

Bird 0 438 4 12 0 3

Cat 4 3 235 41 8 4

Fox 11 0 9 652 12 29

Rat 11 0 9 7 132 3

Rabbit 5 5 14 62 11 237

Individual accuracy (%) 86.08 95.63 72.31 80.69 77.19 84.34   

TA B L E  ѵ Պ The performance of CNN-2 for multiclassification without the resampling process

 

Test data

Accuracy Őѷő Mean accuracy ŐѷőBadger Bird Cat Fox Rat Rabbit

Prediction

Badger 431 1 6 10 3 11 90.32 87.57

Bird 2 447 3 5 3 5

Cat 3 0 251 8 6 5

Fox 16 5 47 763 10 15

Rat 5 2 3 6 133 3

Rabbit 10 3 15 16 16 242

Individual accuracy (%) 92.29 97.60 77.23 94.43 77.78 86.12   
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et al., 2017). One drawback of our more accurate framework is that it 

required	more	computationaѴ	memoryķ	ƑƏƏ	Mb	for	CNNŊƑ	compared	
to	ƑƏ	Mb	for	CNNŊƐĺ	In	additionķ	the	impѴementation	stage	aѴso	took	
longer to complete. Specifically, CNN-2 took 18 s to recognize all of 

the testing images (2,510), while CNN-1 took only 8 s.

Both deep learning frameworks presented here are data-driven, 

and an unbalanced dataset is likely to be more biased toward groups 

that have more training images. Our resampling process allowed us 

to understand how an equally balanced training dataset might influ-

ence the accuracy of the CNNs. The results show that resampling 

decreased the error bias in both binary and multiclassification, but 

was not necessary to improve the accuracy. For example, during bi-

nary classification by CNN-1, the number of false negatives changed 

from 83 to 51 and the number of false positives changed from 28 to 

53 after resampling, while the accuracy did not change considerably 

(95.58% and 95.86%, respectively). During multiclassification, the 

TA B L E  ƕ Պ The performance of CNN-2 for multiclassification with the resampling process

 

Test data

Accuracy Őѷő Mean accuracy ŐѷőBadger Bird Cat Fox Rat Rabbit

Prediction

Badger 434 3 6 24 2 11 86.85 87.04

Bird 2 439 1 2 3 4

Cat 13 2 281 90 7 7

Fox 7 1 26 644 7 8

Rat 6 5 2 13 137 6

Rabbit 5 8 9 35 15 245

Individual accuracy (%) 92.93 95.85 86.46 79.70 80.12 87.19   

F I G U R E  ƕ ՊAn	exampѴe	of	a	detected	active	frameĺ	Őaő	An	input	frameĸ	Őbő	the	average	variation	of	the	activated	pixeѴs	in	the	current	
frame, which is calculated in Equation 5; (c) the activated pixels in Equation 4, with the blue arrow indicating the estimated movement in the 

next frame; (d) the classification result of the frame of interest

Frame 15 of 51 of the input
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accuracy of CNN-2 for the categories containing more data (badger, 

bird, and fox) was greater without resampling than with resampling, 

while accuracy for categories with less data (cat, rat and rabbit) was 

greater with resampling. Note that a resampling process does not 

necessarily improve the general accuracy, although it does decrease 

the variance.

As	weѴѴ	as	using	the	recognition	framework	for	binary	and	muѴ-
ticlassification, in the present study we demonstrated its utility in 

identifying and isolating badger activity in film footage. For such 

footage, the recognition results for adjacent frames must be consis-

tent; this checking process decreased the probability of misrecog-

nition. For example, the probability of a cat image being classified 

as a fox is 14.46%. However, the framework only displayed an in-

correct result if two adjacent cat images were both misclassified as 

foxes. The probability of this occurring was very low (2.09% (0:142)) 

if these two images are considered to be independent (which they 

may or may not be).

The ability to identify and isolate badger activity from surveillance 

footage has multiple benefits. In the short term, it would enable more 

efficient and cost-effective analysis of existing footage, and in the lon-

ger term, it could allow such surveillance to be extended to more farms 

and more locations within farms. Ultimately, this work could inform 

new approaches to managing TB spread between cattle and wildlife 

(e.g., improved biosecurity to limit opportunities for disease transmis-

sion) and could potentially help address some of the social factors that 

influence disease management at a farm level. For instance, farmers 

tend to underestimate the level and frequency of badger visits to their 

farm holdings, suggesting a lack of awareness of the need to prevent 

badger access to buildings and feed stores (Robertson et al., 2017). 

Furthermore, research on improving biosecurity (e.g., limiting cattle�

badger interactions) indicates that farmers require evidence on the 

efficacy of prevention measures (e.g., raising cattle troughs, installing 

badger exclusion measures on feed stores) before they will implement 

them, and yet little evidence is available (Enticott, Franklin, & Winden, 

ƑƏƐƑĸ	Gunnķ	Heffernanķ	HaѴѴķ	McLeodķ	ş	Hoviķ	 ƑƏƏѶĸ	 LittѴeķ	 ƑƏƐƖőĺ	
Remote monitoring facilitated by automatic recognition analysis 

could help to address this knowledge gap. Further applications could 

include the development of a system, whereby real-time (or near real-

time) alerts could be generated when certain images are identified. 

This could allow farmers to react to contemporary badger activity on 

their farm and help them to identify areas for improvement (e.g., to 

prevent badger entry or badger�cattle contact).

On a wider scale, our work may have applications in many other 

areas of wildlife management and conservation. We demonstrated 

rapid classification of thousands of images. Specifically, manual 

image classification took a minimum of 2 s per image or at least 

84 min to classify 2,510 images. In contrast, classification by CNN-2 

saved considerable time, taking only 8 s to classify 2,510 images 

(0.003 s per image). The ability to process large volumes of photo-

graph and film images, perhaps in real time, allows the possibility for 

more detailed or larger-scale studies. It could, for example, facilitate 

the capture of more definitive evidence that animals visiting vac-

cine bait stations are actually obtaining baits (Bjorklund et al., 2017; 

Robertson et al., 2015). It could also make monitoring of wildlife 

use	of	road	tunneѴs	Őeĺgĺķ	Defraķ	ƑƏƐƔĸ	PTESķ	ƑƏƐѶő	more	feasibѴe	or	
allow the presence of a species of interest to be confirmed, while 

discarding footage of other species using the same location. It could 

also allow analysis of existing, underexploited datasets. For exam-

pѴeķ	 the	NationaѴ	WiѴdѴife	Management	Centre	hoѴds	 a	 dataset	 of	
more than 100,000 hr of film from farm surveillance, which at the 

present time cannot be analyzed owing to limited resources.

One additional output of this work is a new image dataset, which 

contains 8,368 images belonging to six categories: badger, bird, cat, 

fox, rat, and rabbit. This is an important resource, because prior 

to the Snapshot Serengeti dataset being made available in 2015 

(Swanson et al., 2015), there was no publicly available dataset that 

the computer science community could use to develop an auto-

mated framework for camera trap images. Our dataset is therefore a 

valuable resource for the transfer learning process of any automatic 

wildlife framework project.

Currently, our recognition framework is unable to recognize more 

than one animal category in the same image, nor can it recognize 

how	many	animaѴs	are	presentĺ	Adaptations	to	enabѴe	these	features	
would allow automatic estimation of ecologically important metrics 

such as population abundance and diversity. Indeed, recent work on 

two classifiers has shown promise in quantifying animal species with 

accuracies of between 77% and 93% (Schneider, Taylor, & Kremer, 

2018). Further work is also required to develop this approach to 

make	it	more	accessibѴe	to	wiѴdѴife	researchersĺ	A	nonexpert	can	run	
the software developed here by using only the executable version 

of the code. However, the development of an interactive interface 

menu is required for a more user-friendly tool. Our work has proven 

the feasibility of automating species-specific recognition, but the 

bespoke application of this technology, in the form of a program or 

web-based service, requires further development.

In summary, we focused on three tasks where very little work 

has been conducted in a rapidly growing field of research, namely 

using CNN (a) for automatic wild animal detection, (b) to filter out 

nonanimal images, and (c) for wild animal recognition from film foot-

age. Our approach to automated wildlife recognition can overcome 

a major obstacle in camera trap surveillance. The ability to collect 

data automatically, at little cost and with a high level of accuracy, 

could have a significant positive impact on wildlife research and 

management.
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APPENDIX Ɛ
Architecture of CNNŊƐ

Require

Load	images	from	the	sourceķ	weights	are	randomѴy	initiaѴized

Ensure

1. Image input layer [480 × 640 × 3] with �zero center� normalization

2. Convolution layer 1. 50 [13 × 13 × 13] convolution kernels with stride of [4 4], no padding is applied

ƒĺ	ReLU	nonѴinear	function	Ɛ

Ɠĺ	Max	pooѴing	Ɛķ	with	size	Œƒķƒœ	with	stride	Ƒķ	no	padding	is	appѴied

5. Batch normalization 1

6. Convolution layer 2. 80 [5 × 5 × 50], with padding [1 1 1 1] applied ([top bottom left right])

ƕĺ	ReLU	nonѴinear	function	Ƒ

Ѷĺ	Max	pooѴing	Ƒķ	with	size	ŒƑ	Ƒœ	with	stride	ŒƑ	Ƒœķ	no	padding	is	appѴied

9. Batch normalization 2

10. Convolution layer 3. 100 [3 × 3 × 80] with stride of [1 1], with padding [1 1 1 1] is applied

ƐƐĺ	ReLU	nonѴinear	function	ƒ

ƐƑĺ	Max	pooѴing	ƒķ	with	size	ŒƑ	Ƒœ	with	stride	ŒƑ	Ƒœķ	no	padding	is	appѴied

13. Batch normalization 3

14. Convolution layer 4. 100 [3 × 3 × 100] with stride of [1 1], with padding [1 1 1 1] is applied

ƐƔĺ	ReLU	nonѴinear	function	Ɠ
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Ɛѵĺ	Max	pooѴing	Ɠķ	with	size	ŒƑ	Ƒœ	with	stride	ŒƑ	Ƒœķ	with	padding	ŒƏ	Ə	Ə	Ɛœ	is	appѴied

17. Batch normalization 4

18. Fully connected layer 1, with 1,000 neurons

ƐƖĺ	ReLU	nonѴinear	function

20. Dropout layer, with probability is set to 0.5

21. Fully connected layer 2, with 6 neurons. (If the task is only to distinguish badger and nonbadger, change the number of neurons to 2.)

22. Softmax layer

23. Classification layer

APPENDIX Ƒ
Architecture of CNNŊƑ

Require

Resize the input images to the size of [227 × 227 × 3] (image size [227 × 227] and image channel [3])

Ensure

1. Image input layer [227 × 227 × 3] with �zero center� normalization

2. Convolution layer 1. 96 [11 × 11 × 3] convolution kernels with stride of [4 4], no padding is applied

ƒĺ	ReLU	nonѴinear	function	Ɛ

Ɠĺ	Max	pooѴing	Ɛķ	with	size	Œƒ	ƒœ	with	stride	Ƒķ	no	padding	is	appѴiedĺ

5. Batch normalization 1

6. Convolution layer 2. 256 [5 × 5 × 48], with padding [1 1], padding size of [2 2 2 2]

ƕĺ	ReLU	nonѴinear	function	Ƒ

8. Batch normalization 2

Ɩĺ	Max	pooѴing	Ƒ

10. Convolution layer 3. 384 [3 × 3 × 256] with stride of [1 1], with padding [1 1 1 1]

ƐƐĺ	ReLU	nonѴinear	function	ƒ

12. Convolution layer 4. 384 [3 × 3 × 192] with stride of [1 1], with padding [1 1 1 1]

Ɛƒĺ	ReLU	nonѴinear	function	Ɠ

14. Convolution layer 5. 256 [3 × 3 × 192] with stride of [1 1], with padding [1 1 1 1]

ƐƔĺ	ReLU	nonѴinear	function	Ɣ

Ɛѵĺ	Max	pooѴing	Ɣ

17. Fully connected layer 1, with 4,096 neurons

ƐѶĺ	ReLU	nonѴinear	function

19. Dropout layer 1, with probability set to 0.5

20. Fully connected layer 2, with 4,096 neurons

ƑƐĺ	ReLU	nonѴinear	function

22. Dropout layer 2, with probability set to 0.5

23. Fully connected layer 3, with 6 neurons. (If the task is only to distinguish badger and nonbadger, change the number of neurons to 2.)

22. Softmax layer

23. Classification layer


