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Abstract 

The dorsal attention network (DAN), including frontal eye fields and posterior parietal 

cortices, and its link with the posterior thalamus, contribute to visual-spatial abilities. 

Very premature birth impairs both visual-spatial abilities and cortico-thalamic structural 

connectivity. We hypothesized that impaired structural DAN-pulvinar connectivity 

mediates the effect of very premature birth on adult visual-spatial abilities. 

70 very premature (median age 26.6 years) and 57 mature born adults (median age 

26.6 years) were assessed with cognitive tests and diffusion tensor imaging. 

Perceptual organization (PO) index of the Wechsler Adult Intelligence Scale-III was 

used as a proxy for visual-spatial abilities, and connection probability maps in the 

thalamus, derived from probabilistic tractography from the DAN, were used as a proxy 

for DAN-thalamic connectivity. 

Premature born adults showed decreases in both PO-index and connection probability 

from DAN into the pulvinar, with both changes being positively correlated. Moreover, 

path analysis revealed that DAN-pulvinar connectivity mediates the relationship 

between very premature birth and PO-index.  

Results provide evidence for long-term effects of very premature birth on structural 

DAN-pulvinar connectivity, mediating the effect of prematurity on adult visual-spatial 

impairments. Data suggest DAN-pulvinar connectivity as a specific target of prognostic 

and diagnostic procedures for visual-spatial abilities after premature birth. 

 

Keywords: Premature birth, cortico-thalamic connectivity, visual-spatial abilities, 

perceptual organization index, probabilistic tractography  

 



Abbreviations 

DAN Dorsal Attention Network 

DTI Diffusion tensor imaging 

iFC intrinsic functional connectivity 

MB Mature Born 

PO-index Perceptual Organization index 

Resting-state fMRI resting-state functional magnetic resonance imaging  

VC-index Verbal Comprehension Index 

VPB Very Premature Born  

WAIS-III Wechsler Adult Intelligence Scale-III 



Introduction 

Very premature birth (VPB), defined as birth before the completion of 32 weeks of 

gestation and/or with birth weight below 1500g, affects about 1-2% of all live births 

[Martin et al., 2008; Volpe, 2009a]. VPB infants are at increased risk of perinatal brain 

injury due to hypoxia-ischemia, infections, inflammatory processes and/or drug 

exposure [Deng, 2010; Penn et al., 2016]. This increased risk has been attributed to 

the fact that premature infants are born at a time when many body systems (e.g. the 

respiratory system, the cardiovascular system, the immune system, and the central 

nervous system) are not fully developed making them vulnerable to superimposed 

injury [Volpe, 2009b]. While for 5-10% of surviving VPB children brain changes lead to 

major motor deficits (e.g. cerebral palsy), 25-50% of VPB infants do not have major 

motor impairments but cognitive, attentional, behavioral, and social deficits; therefore, 

cognitive deficits without major motor deficits are the dominant neurodevelopmental 

sequelae after VPB [Anderson et al., 2003; Breeman et al., 2015; Eryigit Madzwamuse 

et al., 2015; Larroque et al., 2008; Platt et al., 2007; Volpe, 2009b; Woodward et al., 

2005]. In particular, premature born individuals often show impaired visual-spatial 

abilities, for example impairments in visual attention, non-verbal reasoning, visual-

motor integration, and visual-spatial problem-solving [Bohm et al., 2010; Finke et al., 

2015; Foulder-Hughes et al., 2003; Leung et al., 2018; Marlow et al., 2007; Menegaux 

et al., 2017]. Visual-spatial abilities, in turn, are an important prerequisite for learning 

and educational and academic performance, and thus highly relevant for socio-

economic success and life quality [Aarnoudse-Moens et al., 2011; Johnson et al., 

2011; Molloy et al., 2017]. A detailed understanding of brain mechanisms that mediate 

the impact of premature birth on visual-spatial abilities is necessary, as it might be a 

critical starting point for the development of targeted treatments or prognostic 

procedures. These brain mechanisms, however, are poorly understood. Thus, the aim 



of the present study was to identify brain systems that may mediate between very 

premature birth and adult visual-spatial abilities.  

 

Previous studies indicated a relation between premature birth, the development of 

visual-spatial abilities, and brain regions of the dorsal visual stream i.e., posterior 

occipital and parietal regions being involved in visual-spatial attention and visual-motor 

integration [Atkinson et al., 2007; Chaminade et al., 2013]. In terms of large-scale 

functional brain networks, posterior parietal regions of the visual stream overlap most 

with the dorsal attention network (DAN). The DAN is an intrinsic brain network of 

coherent ongoing brain activity of the frontal eye fields and intra-parietal sulci, and it 

underpins attentional top-down control, spatial attention, and visual-motor control 

[Corbetta et al., 2008; Corbetta et al., 2002; Vossel et al., 2014]. Critically, the 

development of visual-spatial abilities is linked with the DAN. For example, a recent 

study demonstrated that the development of selective visual attention in 4 to 7 years - 

old children are reflected in functional connectivity changes between frontal eye fields 

and intra-parietal sulci [Rohr et al., 2017]. Consequences of premature birth, which 

impair visual-spatial abilities, might therefore be mediated by impaired integrity of the 

DAN. Toward formulating a more specific hypothesis of how prematurity might impact 

the DAN, we have to recall two points - the primary impact of prematurity on cortico-

thalamic connectivity and the role of cortico-thalamic connectivity for cortico-cortical 

communication within the DAN. (i) Previous studies showed that premature birth has 

a preferential and lasting impact on cortico-thalamic connectivity [Ball et al., 2013; Ball 

et al., 2015; Meng et al., 2016]. These connections are formed typically late in intra-

uterine development in gestational weeks of about 18-35 under the guidance of both 

subplate neurons and oligodendrocyte-progenitor cells [Hoerder-Suabedissen et al., 

2015; Salmaso et al., 2014; Volpe, 2009a]. The selective vulnerability of subplate 



neurons and oligodendrocyte-progenitor cells to hypoxic-ischemic events is thought to 

lead to impaired cortico-thalamic connectivity and brain network development after 

premature birth [Back et al., 2001; Bystron et al., 2008; Lopez-Bendito et al., 2003; 

Volpe, 2009a], with connectivity and network impairments persisting into adulthood 

[Bauml et al., 2015; Meng et al., 2016; Sripada et al., 2015]. (ii) Coordinated cortico-

cortical communication within the DAN depends on cortico-thalamic control, and 

thereby on structural cortico-thalamic connectivity [Daitch et al., 2013; Saalmann, 

2014; Sherman, 2016]. For example, Saalmann et al. [2012] demonstrated in 

monkeys, that the pulvinar’s structural connectivity with distinct cortical regions of the 

DAN regulates cortico-cortical communication according to visual attention selection, 

demonstrating the pulvinar as part of the DAN.  

 

Based on both the impact of premature birth on cortico-thalamic connectivity and the 

role of the pulvinar for DAN cortico-cortical communication, we hypothesized that 

structural connectivity between pulvinar and the DAN mediates the impact of 

premature birth on visual-spatial abilities. As a proxy for visual-spatial functioning, we 

used the perceptual organization (PO) index of the Wechsler Adult Intelligence Scale 

[Von Aster M, 2006] – an integrative measure which reflects visual-spatial processes, 

problem-solving, non-verbal reasoning and visual-motor integration [Lange, 2011]. As 

a proxy for structural connectivity between the pulvinar and the DAN, we used 

connection probability maps in the thalamus, which were derived from diffusion tensor 

imaging (DTI) data, and probabilistic tractography from the DAN into the thalamus. The 

DAN was defined for each participant by individual resting-state functional connectivity 

maps, derived from resting-state functional MRI (resting-state fMRI); the thalamus was 

defined by canonical anatomical atlas. PO-index assessment, resting-state fMRI, and 

DTI were applied in a sample of 70 VPB and 57 mature-born (MB) adults at the age of 



26 years. Connection probability values were associated with prematurity at birth and 

PO-index at the age of 26 years via correlation and mediation analysis. Finally, to 

investigate the relevance of PO-index and DAN structural connectivity for educational 

performance, we explored the possible link between structural alterations, PO-index 

and educational success at the age of 26 years as well as the role of structural 

alterations as a potential mediator between prematurity and educational success. 

 

 

 

 



Materials and Methods 

Sample and clinical-cognitive measures 

Participant description 

Participants were recruited as part of the prospective Bavarian Longitudinal Study 

(BLS) [Riegel et al., 1995; Wolke et al., 1999]. The BLS investigates a geographically 

defined whole-population sample of neonatal at-risk children and healthy term born 

controls. All live-birth infants who were born between January 1985 and March 1986 

in Southern Bavaria and required admission to a neonatal unit of 17 children’s hospitals 

within the first ten days of life comprised the target sample [Wolke et al., 1999]. A total 

of 7505 children (10.6% of all live births) were classified as neonatal at-risk children, 

of whom 2759 children were born before 37 weeks of gestation [Riegel et al., 1995]. 

During the same period, 916 healthy term infants (>36 weeks gestation; normal 

postnatal care) born in the same hospitals were recruited as control infants. Over the 

following years, subjects of both groups were repeatedly assessed via neurological 

and psychological tests and parental interviews. Full design of the BLS is provided 

elsewhere [Gutbrod et al., 2000; Wolke et al., 1999]. At 26 years of age and based on 

the study design of premature born population versus reference population, all eligible 

411 surviving VPB and 308 MB adults, similar regarding the overall distribution of 

gender, family socioeconomic status (SES), and maternal age, were invited for a 

follow-up assessment and of these 260 VBP and 229 MB adults participated at 26 

years of age [Eryigit Madzwamuse et al., 2015].  183 subjects underwent structural T1- 

and diffusion-weighted MRI as well as resting-state fMRI. MRI assessments were 

carried out at two different sites: The Department of Neuroradiology, Klinikum Rechts 

der Isar, Technische Universität München, Germany, and the Department of 

Radiology, University Hospital Bonn, Germany. The study was approved by the local 

ethics committees of the Klinikum rechts der Isar and University Hospital Bonn in 



accordance with the ethical standards of the 1964 Declaration of Helsinki and its later 

amendments. All study participants gave written informed consent and received travel 

expenses and a payment for attendance. The following inclusion criteria were applied: 

normal or corrected-to-normal vision, free from non-correctable reduction of sight in 

either eye, from medication, from psychiatric or neurological diseases at the 

assessment or qualitative signs of brain injury (such as ventriculomegaly or 

polymicrogyria). Exclusion criteria were poor structural, diffusion, or functional MRI 

data quality, or dropout of MRI acquisition.  

 

A full description of the sample, which underwent DTI (n=183), and corresponding 

details about exclusion (n=29) can be found in [Meng et al., 2016].  Further 27 subjects 

were excluded because of missing resting state fMRI acquisition (n=11) and/or head 

motion artifacts (n=16) in the resting state fMRI acquisition. Thus, the current study 

sample consists of 70 VPB adults and 57 MB adults (see Table 1 for more details). 

 

Birth-related variables 

Gestational age was estimated from maternal reports of the last menstrual period and 

serial ultrasounds during pregnancy. Further clinical assessment with the Dubowitz 

method was applied in case of a variation of these two measures by more than two 

weeks [Dubowitz et al., 1970].  Birth weight was obtained from obstetric records. The 

intensity of neonatal treatment index as a measure of neonatal complications was 

ascertained by daily assessments of care level, respiratory support, feeding 

dependency and neurological status [Casaer P, 1985]. 

 

Assessment of Cognitive Performance and Educational Success 



Cognitive performance at the age of 26 years was assessed by independently trained 

psychologists using the German version of the Wechsler Adult Intelligence Scale-III 

(WAIS-III), including our measure-of-interest, namely PO-index [Von Aster M, 2006]. 

The psychologists were blinded to group membership. Full-Scale Intelligence Quotient 

(IQ) as a measure of global cognitive functioning as well as Verbal Comprehension 

Index (VC-index) was additionally derived from WAIS-III.  

 

Educational and occupational accomplishments were asked at the age of 26 years in 

a life course interview, similar to the German Socioeconomic Panel Study [Frick JR, 

2007; Wagner et al., 2007]. Educational success was categorized into four levels: 

1=basic educational level (up to 10 years of schooling; no further education or 

apprenticeship), 2=middle educational level (up to 10 years of schooling and 

profession-oriented education (10+ years)), 3=higher educational level (high school 

(12+ years) giving access to higher education, i.e. university access qualification), and 

4=university degree (undergraduate or postgraduate).   

 

MRI Data Acquisition 

MRI data were acquired on 3T Philips scanners in Munich and Bonn (Achieva (Philips 

Medical System, Netherlands) and Ingenia (Philips Medical System, Netherlands)) with 

standard 8 channel head coils using consistent sequences and parameter settings 

across scanners. To account for different scanners in data analyses, scanner identities 

were included in the analyses as covariates of no interest. (i) For all subjects, diffusion 

images were acquired using a single-shot spin-echo echo-planar imaging sequence, 

resulting in one non-diffusion weighted image (b = 0 s/mm2) and 32 diffusion weighted 

images (b = 1000 s/mm2, 32 non-collinear gradient directions) covering whole brain 

with following parameters: echo time (TE) = 47 ms, repetition time (TR) = 20,150 ms, 



flip angle = 90°, field of view = 224 x 224 mm2, matrix = 112 x 112, 75 transverse slices, 

slice thickness = 2 mm, and 0 mm interslice gap, voxel size = 2 x 2 x 2 mm3. (ii) A 

whole-head, high-resolution 3D gradient echo T1-weighted image was acquired using 

the following parameters: echo time (TE) = 3.9 ms, repetition time (TR) = 7.7 ms, flip 

angle = 15°, field of view = 256 x 256 mm2, matrix = 256 x 256, 180 sagittal slices, slice 

thickness = 1 mm, and 0 mm interslice gap, voxel size = 1 x 1 x 1 mm3. (iii) Resting-

state fMRI data were collected for 10 min 52 s from a gradient-echo echo-planar 

sequence (TE = 35 ms, TR = 2608 ms, flip angle = 90°, FOV = 230 mm², matrix size = 

64 × 63, 41 slices, thickness 3.58 and 0 mm interslice gap, reconstructed voxel size = 

3.59 × 3.59 × 3.59 mm³) resulting in 250 volumes of BOLD fMRI data for each subject. 

Immediately before undergoing the resting-state sequence, subjects were instructed 

to keep their eyes closed and to restrain from falling asleep. 

 

Individual DAN definition via resting-state fMRI analysis 

To identify for each participant individual DAN as the mask for subsequent structural 

connectivity tractography, we performed resting-state fMRI data analysis, including 

group independent component analysis and dual regression analysis via FSL (FMRIB 

Software Library, Oxford, UK, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, [Jenkinson et al., 

2012]). For each participant, the first 5 functional scans of each resting-state fMRI 

session were discarded due to magnetization effects. Data were then preprocessed 

using FSL [Jenkinson et al., 2012]. Functional volumes were realigned to correct for 

head motion [Jenkinson et al., 2012] and non-brain tissue was removed using BET 

[Smith, 2002]. Following, spatial smoothing was applied using a Gaussian kernel of 

FWHM 5 mm, and data were high-pass temporal filtered (200s). Each subject’s fMRI 

data were subsequently coregistered to that subject’s high-resolution structural T1 

image by using boundary-based registration [Greve et al., 2009]. The remaining data 



were then transformed to MNI space at 2 x 2 x 2-mm resolution using nonlinear 

registration [Andersson et al., 2007]. To ensure comparable data quality across 

groups, particularly concerning motion-induced artifacts, point-to-point head motion 

was estimated for each subject [Van Dijk et al., 2012]. Point-to-point motion was 

defined as the absolute displacement of each brain volume compared to its previous 

volume. Two-sample t-tests yielded no significant differences between groups 

regarding mean point-to-point translation or rotation of any direction (P = 0.43).  

 

Individual DAN maps were derived from resting-state fMRI data following a multi-step 

procedure: first, we parcellated the cortex into distinct intrinsic brain networks (IBNs) 

using independent component analysis (ICA). For this purpose, preprocessed data 

from both groups were concatenated in time and entered into a single group ICA 

framework as implemented in FSL MELODIC [Beckmann et al., 2005]. We used a fixed 

dimensionality of 25 spatially independent components. To identify the DAN 

component, the spatial correlations between the DAN template, provided by Allen and 

colleagues [2011], and the components identified in our sample were calculated. The 

sub-component with the highest correlation score (Allen IC72; r = 0.32) was used for 

further analysis. The DAN component was then mapped back to each subject’s dataset 

through dual regression [Filippini et al., 2009] to obtain subject-specific DAN maps. 

Specifically, back-projected maps were thresholded (Z > 5) and the resulting DAN 

maps were used as regions-of-interest (ROIs) for fiber tracking. 

We performed the same procedure in order to identify further networks (namely, the 

posterior and anterior Default Mode Network (DMN, IC50/53/25), sensorimotor 

network (SMN, IC23/24/29), salience network (SN, IC55), auditory network (IC17), 

visual (IC46) and lateral visual network (IC48) and frontal networks (IC42/20)), which 



were used later to test for specificity of impaired structural connectivity between DAN 

and pulvinar and its mediating role for the effect of VPB on adult PO-index. 

 

Functional connectivity analysis – control analyses 

(i) In order to control that DANs across groups were comparable and do not confound 

group differences in structural connectivity between DAN and thalamus, we compared 

DANs’ intra-network connectivity. We used ICA/dual-regression based individual DAN 

maps as proxies for intra-network functional connectivity of the DAN, and applied firstly, 

one sample t-tests for DANs’ of MB and VPB adults, respectively, to visualize DAN of 

each group (see supplemental Figure 1). After that we used a two-sample t-test to 

compare DANs’ functional connectivity across groups. 

 

(ii) In order to control whether structural connectivity changes between DAN and 

pulvinar in the VPB group were specific for modality, we analyzed the functional 

connectivity between DAN and thalamus and compared it across MB and VPB groups. 

To define cortico-thalamic functional connectivity, we relied on previously applied 

partial correlation approach of our group on functional connectivity as described in 

[Avram et al., 2018]. More specifically, we used a voxel-wise partial correlation 

approach to map intrinsic functional connectivity (iFC) between each voxel in the 

thalamus and characteristic time series associated with a specific cortical ROI, in each 

case regressing out the time series of all other cortical ROIs, the signal in white matter 

and cerebrospinal fluid as well as head motion parameters [O'Reilly et al., 2010]. These 

analyses were performed in native space to reduce spatial inaccuracy introduced by 

suboptimal normalization [O'Reilly et al., 2010]. For each subject the component maps 

(i.e. the ROIs) were thresholded at Z > 5, and the remaining voxels inside the mask 

were used to extract the first Eigen time series from the preprocessed individual 



functional data. In a second step, masks representing white matter and cerebrospinal 

fluid were created using FSL tissue segmentation tool FAST [Zhang et al., 2001] and 

transformed into individual functional space. Both WM and CSF masks were 

thresholded at P > 0.5, and the remaining voxels inside each mask were used to extract 

the first Eigen time series from the preprocessed individual functional data. For every 

subject, these procedures resulted in 12 component Eigen time series (i.e. one per 

component) and two Eigen time series representing WM and CSF. In a last step, we 

extracted the subject-specific 6 head motion parameters which were estimated with 

MCFLIRT [Jenkinson et al., 2002]. Finally, a thresholded thalamus mask (P > 0.3) was 

created using the Harvard-Oxford Subcortical Structural Atlas in FSL and transformed 

back into individual functional space. This partial correlation procedure resulted in one 

partial r-map per component and subject (total: 12 x 176) that were subsequently 

converted to Z values using Fisher’s r-to-z transformation.  

Before performing group analyses, thalamic Z maps were transformed back into 

Montreal Neurological Institute space using nonlinear registration implemented in 

FNIRT. To statistically evaluate network-specific thalamic iFC, for each group (term 

and preterm) and each cortical ROI, we calculated voxel-wise one-sample t-tests on 

participants’ thalamic Z maps using SPM 8 controlling for sex and scanner-ID (P < 

0.05, FDR corrected). Group differences in DAN-thalamus iFC were tested via voxel-

wise two-sample t-tests using SPM 8 controlling for sex and scanner-ID (P < 0.05, 

FDR corrected). 

To relate between group differences in DAN-thalamus iFC to PO-indices, we used 

the following approach: voxels whose iFC differed significantly between groups were 

saved as images in SPM 8. After binarization, ROI-restricted network-specific iFC 

was extracted and averaged subject-wise with Matlab-based in-house software. This 

procedure resulted in one mean iFC Z-value per cluster and subject. Then, this 



thalamo-cortical iFC was used to predict PO-index within a multiple regression model 

using SPSS 24 with further regressors being sex and scanner-ID. 

 

Diffusion MRI Data Processing 

DTI data were processed using FSL [Jenkinson et al., 2012] applying the following 

steps: DTI preprocessing including eddy current and head motion correction by 

coregistrating all diffusion-weighted images to b0 image, DTI data quality check based 

on visual inspection by several independent raters (B.M., B.J., C.S.), reconstruction of 

the distribution of diffusion directions at each voxel, probabilistic tractography and 

analysis of connection probability as explained in the following. 

 

DTI preprocessing and quality check 

Diffusion data were preprocessed using FSL’s FDT toolbox. Eddy-current distortion 

and head motion were corrected by linear registration of all diffusion-weighted images 

to the first b0 volume using FSL “eddy_correct”. Brain-tissue extraction was performed 

by removing the skull and non-brain tissue using FSL BET [Smith, 2002]. 

Each image was visually checked by three independent raters (C.M., C.S., A.M.) and 

fitting residuals (the sum-of-squared-error maps generated by FSL DTIFIT) were used 

to identify data corrupted by artifacts. Detailed information about the exclusion process 

can be found in Meng et al. [2016].  

 

Seed and target definition for tractography 

Before applying probabilistic tractography, seed and target ROIs were defined, based 

on the study´s hypothesis. The seed for tractography was placed in individual DAN 

derived from resting-state fMRI data analysis (see above), its target into the bilateral 

thalamus. The target ROI was taken from the Oxford thalamic connectivity atlas, based 



on the probability of anatomical connections between thalamus and cortex in MNI 

space [Behrens et al., 2003]. 

 

Each subject´s native 3D T1-weighted image was brain extracted by removing the skull 

and non-brain tissue using FSL BET [Smith, 2002] as well as bias-corrected using 

FAST (FMRIB's Automated Segmentation Tool). A two-step transformation procedure 

was used to register these T1-weighted images to the MNI ICBM 152 non-linear (6th 

Generation) symmetric standard-space T1-weighted average structural template 

image [Grabner et al., 2006]. In the first step, linear (affine) transformation was 

performed using FLIRT (FMRIB's Linear Image Registration Tool), then the generated 

affine transform was used as a guide for non-linear registration using FNIRT (FMRIB's 

Non-Linear Image Registration Tool). The output of this transformation procedure was 

an individual native to standard (MNI space) non-linear warp field. 

 

The brain-extracted b0-image of each subject was registered to the corresponding 

brain extracted and bias-corrected T1 image in native space using linear registration 

(FLIRT) with twelve degrees of freedom and correlation ratio cost function. This 

individual diffusion-to-native transformation matrix was combined with the above 

described native-to-standard non-linear transformation matrix, that resulted in 

diffusion-to-standard space transformations and their corresponding inverses. These 

warp-fields were then applied to the ROI masks of seed and target (in standard MNI 

space), namely DAN and thalamus, to align them into each subject’s individual 

diffusion space with the implementation of nearest neighbor interpolation, followed by 

a visual check by an experienced neuroradiologist (M.B.). 

 

Probabilistic fiber tracking and connection probability 



Probabilistic tractography was used to get cortico-subcortical connection probabilities 

between DAN and thalamus (Figure 2A). To estimate the fiber orientations, the 

distribution of diffusion directions at each voxel was reconstructed by the use of 

BEDPOSTX (Bayesian Estimation of Diffusion Parameters Obtained using Sampling 

Techniques, FSL) with two crossing fibers modeled per voxel [Behrens et al., 2007]. 

Probabilistic tractography was performed using PROBTRACKX2 (probabilistic tracking 

with crossing fibres, FSL) using the following parameters: number of samples  =  5000, 

step length  =  0.5  mm, curvature-threshold  =  0.2, subsidiary fiber volume fraction 

threshold  =  0.01. By creating probabilities of an existing path in the diffusion field of 

each subject between individual DAN, used as seed ROI, and thalamus, used as 

waypoint ROI, a surrogate measure of white matter connectivity was created [Behrens 

et al., 2007; Jbabdi et al., 2011]. As a previously used step of normalization, the 

resulting individual streamline maps were divided by the total number of generated 

tracts of each individual tractography (“waytotal”), taking into account the high inter-

subject variability of these tracts as well as ROI-sizes [Arnold et al., 2012; Rus et al., 

2017; Zhang et al., 2010]. 

 

Based on Behrens et al. [2003], a map of thalamic voxels containing information about 

the probability of connectivity with the DAN was extracted for each subject. That was 

used for identification of thalamic substructures that exhibit group differences, and also 

for correlation analyses between these connectivity values and clinical-

neuropsychological data. To enable inter-subject comparisons, the thalamic 

connectivity maps were warped into MNI space using the above-mentioned diffusion-

to-standard space transformations with the implementation of nearest neighbor 

interpolation. 

 



Statistical Analysis 

Concerning voxel-wise connection probability maps in the thalamus, voxel-wise one- 

and two-sample t-tests were performed for VPB and MB adults, using SPM8 and 

controlling for sex and scanner identities (P < 0.05, FWE-cluster corrected). 

Connection probability values of group difference clusters were extracted and 

averaged using Matlab-based in-house software and used for further correlation and 

mediation analyses. 

 

Mediation analysis 

Mediation analysis was carried out to test whether structural connectivity alterations 

between individual DAN and pulvinar mediate the effect of group (VPB vs. MB adults) 

on PO-index. In the mediation model, group affiliation was entered as the causal 

variable, PO-index as the outcome variable and residuals from structural connectivity 

values as the mediator variable. These residuals were calculated by regressing out the 

effects of sex and scanner identities, in order to control for effects of these variables 

on mediation. Path coefficients were estimated using (unstandardized) regression 

coefficients of multiple regression analyses. Statistical significance of the indirect 

pathway, reflecting the impact of mediation, was evaluated using a non-parametric 

bootstrap approach with 10.000 replication samples to obtain a 95% confidence 

interval [Hayes et al., 2017; Preacher et al., 2004]. 

 

Analyzing the relevance for educational success 

To explore, whether adult PO-index and DAN-pulvinar connectivity might be relevant 

for educational performance after premature birth, we tested the relationship between 

prematurity, educational success, PO-index, and DAN-pulvinar connectivity, 

respectively. Mann-Whitney-U-test was used to estimate the impact of premature birth 



on educational success. Spearman rank correlation was applied to quantify the 

relationship between PO-index and educational success. After performing linear 

regression to get residuals of the connectivity values (corrected for sex and scanner 

identities), Spearman rank bivariate correlation was performed with PO-index and 

educational success. Mediation analysis was carried out to test whether structural 

connectivity alterations between individual DAN and pulvinar mediate the effect of 

group (VPB vs. MB adults) on educational success. 



Results 

Lowered perceptual organization index in very premature born adults 

PO-index in VPB adults (93.78 ± 14.11) was lower than in MB adults (106.39 ± 12.11, 

p<0.001, two-sample t-test) (Figure 1). 

 

Reduced connection probabilities from the DAN to the pulvinar of very 

premature born adults  

Qualitatively, connection probability maps of the DAN into the thalamus were similar 

between VPB and MB groups, justifying group comparison (Figure 2B; one-sample t-

tests, p<0.05 FWE-cluster corrected). In more detail, peak voxels of both groups were 

located in the pulvinar and the overall pattern covered posterior thalamic parts.  

However, quantitative two-sample t-test revealed decreased connection probability 

from the DAN to the pulvinar in VPB adults (p < 0.05, FWE-cluster corrected) (Figure 

2C). To control that group different DAN-pulvinar structural connectivity was not due to 

group different DANs as defined by functional connectivity (see Supplemental Figure 

1), we compared DAN functional connectivity maps across groups. We did not find any 

group difference, suggesting that DANs were comparable across groups, with distinct 

spatial outline of DANs being unlikely to confound group differences in DAN-pulvinar 

structural connectivity. 

 

Structural connectivity changes mediate the effect of prematurity on perception 

In a mediation analysis (Figure 3), the effect of group (VPB vs. MB) on adult PO-index 

(total effect c = 12.61 ± 2.38, p < 0.001) was still present, but reduced when controlling 

for DAN-pulvinar connection probability (direct effect c´ = 10.84 ± 2.55, p<0.001); 

critically, the bootstrapped 95% confidence interval for the indirect effect (i.e., 

mediation: total - direct effect) was different from zero (CI: 0.26 – 4.03), indicating that 



DAN-pulvinar connectivity significantly mediated the relationship between very 

premature birth and PO-index performance. 

Control analyses – specificity: (i) Next, we tested whether the mediating role of 

impaired DAN-pulvinar connectivity for the association between premature birth and 

visual-spatial functioning was specific for visual-spatial functioning i.e., PO -index. 

Therefore, we repeated our mediation approach on DAN-pulvinar connectivity but 

now focusing on verbal instead of non-verbal visual-spatial abilities. Specifically, we 

performed again a mediation analysis for DAN-pulvinar connectivity but with the VC-

index of the WAIS as outcome/dependent variable, which reflects verbal abilities. 

Verbal functioning is thought to depend more on lateral fronto-parieto-temporal 

networks than the dorsal fronto-parietal DAN [Lau et al., 2008]. First, we found a 

significant reduction of the VC-index in the VPB group (p<0.05; Table 1). Then we 

performed path analysis for VC index in the exact same way as for PO index. 

Critically, we found, that the bootstrapped 95% confidence interval for the indirect 

effect of DAN-pulvinar on VC index covered the zero (CI: -1.35 – 3.27), indicating that 

DAN-pulvinar connectivity does not mediate the link between prematurity and verbal 

intelligence. This finding supports the notion of the specificity of DAN-pulvinar 

connectivity to mediate prematurity effects on PO-index, with respect to other 

cognitive impairments such as verbal abilities in VPB. 

 

(ii) Next we tested whether DAN-pulvinar connectivity plays a specific role for 

distinguishing VPB from MB adults. Therefore, we tested global network connectivity, 

defined by averaging the connectivities of all networks, except DAN-pulvinar, for each 

individuum at thalamus connectivity map level, and searched for group difference in 

the global connectivity map between VPB and MB adults. No group difference (p<0.05, 



FWE-cluster corrected) could be found, indicating no main difference in the global 

cortico-thalamic connectivity between VPB and MB adults. By analyzing the single 

networks (such as posterior and anterior DMN, sensorimotor network (SMN), salience 

network (SN), auditory network, visual networks and frontal network) and their 

connectivity to the thalamus, we found decreased connection probability from the 

lateral visual network, the salience network, and the anterior DMN into the posterior 

thalamus for VPB adults (p < 0.05, FWE-cluster corrected). 

However, the relationships between PO-index and the group different structural 

connectivity probability clusters from the lateral visual network into the thalamus 

(r=0.05, p=0.66), anterior DMN (r=0.001, p=0.99), and the salience network (r=-0.23, 

p=0.06), respectively, were not significant, supporting the specificity of DAN-pulvinar 

connectivity and its link with PO-indices. 

 

(iii) Finally, we tested whether the mediating role of DAN-pulvinar structural 

connectivity for the VPB effect on PO-index was specific with respect to DAN-pulvinar 

structural connectivity. As control modality of connectivity, we chose functional 

connectivity between DAN and the thalamus. Voxel-wise two-sample t-tests indicated 

that DAN-thalamus iFC was not significantly different between MB and VPB adults (see 

supplemental Figure 2). However, our results suggest a trend to significance (p = 

0.071) where VPB adults show an increased DAN-pulvinar iFC. Moreover, correlation 

analyses indicated that aberrant DAN-pulvinar iFC was not associated with PO-index 

measures, neither within term (r = -0.11, p = 0.40), nor within VPB adults (r = -0.01, p 

= 0.94). This result indicates that specifically the impaired structural connectivity 

between DAN and pulvinar is linked with PO-indices. 

 

DAN-pulvinar connectivity, premature birth, and educational success 



Finally, to investigate the relevance of reductions in both visual-spatial abilities and 

related DAN-pulvinar connectivity for educational performance after premature birth, 

we analyzed whether PO-index and DAN-pulvinar connectivity are related to 

educational success after premature birth. First, we found a positive correlation 

between PO-index and educational success in VPB adults (r = 0.3, p = 0.012), 

demonstrating a link between visual-spatial abilities and educational success. Then, 

we saw that DAN-pulvinar connectivity was associated with both PO-index (r = 0.27, p 

= 0.03) and educational success (r = 0.28, p = 0.02) for VPB adults. This final result 

supports the idea that prematurity, educational success, and PO-index abilities are 

linked by impaired DAN-pulvinar connectivity. Indeed, in a mediation analysis, the 

effect of group (VPB vs. MB) on educational success (total effect c = 0.28 ± 0.15, p = 

0.06) was still present, but reduced when controlling for DAN-pulvinar connection 

probability (direct effect c´ = 0.13 ± 0.16, p = 0.43). The bootstrapped 95% confidence 

interval for the indirect effect was different from zero (CI: 0.04 – 0.30), indicating that 

DAN-pulvinar connectivity significantly mediated the relationship between very 

premature birth and educational success. 

In order to estimate which type of ability is more linked to educational success, we 

compared correlation coefficients for both VC- and PO-indices by the use of Fisher-z-

testing. We found no significant differences between the two correlations (z=-1.7, 

p=0.09). This indicates that not only visuo-motor but also verbal comprehension 

abilities are relevant for educational success. 



Discussion 

Using cognitive assessment and diffusion MRI in very premature and mature born 

adults, we tested the hypothesis that aberrant structural connectivity between the 

pulvinar and dorsal attention network mediates the effect of very premature birth on 

impaired visual-spatial functioning in adulthood. In VPB adults, the perceptual 

organization index, which reflects visual-spatial skills and problem-solving, was 

reduced, as well as DAN-pulvinar connectivity. Critically, DAN-pulvinar connectivity 

partially mediated specifically the link between prematurity and adult PO-index. To the 

best of our knowledge, this result is the first one outlining a specific neural system 

mediating adverse effects of very premature birth on visual-spatial functioning. Our 

finding defines a specific target – DAN-pulvinar connectivity – to develop focused 

treatment or prognostic strategies to improve long-term visual-spatial functioning after 

premature birth. Next, we discuss these points in more detail. 

 

Aberrant DAN-pulvinar connectivity mediates prematurity effects on adult 

visual-spatial abilities 

The main result of the current study is that impaired DAN-pulvinar connectivity 

mediates the effect of very premature birth on adult PO-index (Figure 3). This finding 

is based on three elements – (i) the effect of prematurity on PO-index, (ii) impaired 

DAN-pulvinar connectivity, and (iii) the proper mediation function of this connectivity. 

(i) Impaired PO-index after premature birth. PO-index was reduced in VPB adults 

(Figure 1). PO-index is derived from the Wechsler Adult Intelligence Scale (WAIS) [Von 

Aster M, 2006], and measures visual-spatial processes and problem-solving, 

nonverbal fluid reasoning, and visual-motor integration [Lange, 2011]. Therefore, PO-

index is an integrative measure of visual-spatial functioning, which interacts with more 

specific functions such as visual attention (including for example visual short-term 



memory capacity or top-down attentional weighting) or visuo-motor integration 

(including for example control of eye movements) [Kimchi, 2009]. Impaired visual 

attention and visuo-motor integration, in turn, are common findings in premature born 

children [Butcher et al., 2012; Foulder-Hughes et al., 2003; Goyen et al., 2011; Marlow 

et al., 2007] and seem to persist into adulthood [Breeman et al., 2015]. 

Correspondingly, specifically impaired visual short-term memory capacity was found 

for a subsample of the current sample [Finke et al., 2015]. It might be that these 

attentional and visuo-motor deficits trace back to early impairments in newborns; for 

example, Papageorgiu and colleagues demonstrated that the individual differences in 

eye fixation duration of newborns predict attentional and visuo-motor control deficits in 

childhood [Papageorgiou et al., 2014].  

(ii) Impaired DAN-pulvinar structural connectivity. We found reduced connection 

probabilities in the pulvinar from the DAN in VPB adults (Figure 2). In the mature born 

adults, peak values of connection probabilities from the DAN focused on the posterior 

thalamus (Figure 2B), being in line with both anatomical connections between the 

posterior parietal cortex and the pulvinar [Fischer et al., 2012]  and recent diffusion-

based tractography results of thalamo-cortical connectivity [Kumar et al., 2017]. In the 

VPB group, connection probability maps were qualitatively similar to those of the 

mature born group, indicating that DAN-thalamus connectivity was not substantially re-

organized in the VPB group, but with changes being focused on the pulvinar (Figure 

2B and C). Our analysis of cortico-thalamic structural connectivity was based on 

individually defined DANs via resting-state fMRI and corresponding ICA/dual 

regression analysis (Figure 2A). We performed this approach in order to increase 

individual specificity of DAN tractography. One should note that such an approach 

includes the possibility for individual DAN detection by resting-state fMRI, a possibility 

that might be relevant for individual treatments of the DAN-pulvinar system (see below 



for more details). The finding of impaired DAN-pulvinar structural connectivity 

corresponds with more generally impaired thalamo-cortical structural connectivity after 

premature birth, as explicitly shown in premature born newborns [Kostovic et al., 2010] 

and children [Ball et al., 2013; Ball et al., 2015], and implicitly suggested in adults 

[Meng et al., 2016; Sripada et al., 2015]. In more detail, only extended white matter 

changes have been demonstrated for premature born adults so far, but the current 

study demonstrates directly impaired thalamo-cortical connectivity.   

(iii) Impaired DAN-pulvinar connectivity as mediator for the prematurity effect on PO-

index. DAN-pulvinar connectivity partly mediated the effect of very prematurity on PO-

index (Figure 3). The mediating role of DAN-pulvinar structural connectivity was 

threefold specific - specific for PO-index but not for reduced VC-index, specific for the 

DAN but not for global connectivity or other networks - thalamic connectivities, and 

specific for structural connectivity but not for the functional connectivity between DAN 

and the thalamus. The absent group differences between VPB and MB adults for global 

connectivity values show that the DAN-pulvinar connectivity changes are specific for 

VPB and not simply a reflection of a wider reduction of cerebral connectivity. The 

functional connectivity analysis showed a trend to increased DAN-pulvinar iFC for VPB 

adults, maybe due to increased variance in regional BOLD fluctuations on the basis of 

a structural integrity change with decreased structural connectivity. 

Furthermore, impaired DAN-pulvinar connectivity was unlikely confounded by distinct 

DANs across groups, as we did not find any group differences for DANs’ functional 

connectivity maps. The pulvinar is known to control cortico-cortical communication, 

especially within the dorsal attention network [Saalmann, 2014; Shipp, 2003]. For 

example, in monkeys, the pulvinar’s structural connectivity with the DAN is associated 

with attention selection via controlling cortico-cortical communication [Saalmann et al., 

2012]. Reduced structural connectivity between DAN and pulvinar after premature birth 



may reflect impaired development of thalamo-cortical connectivity and consequently 

impaired coordination of cortico-cortical communication. For example, Ball and 

colleagues showed that impaired thalamo-cortical connectivity of neonates was 

predictive for cognitive performance at the age of 2 years [Ball et al., 2013; Ball et al., 

2015]. Future studies have to test this idea in more detail. 

 

One should note that our analysis revealed a partial mediation effect of DAN-pulvinar 

on the association between prematurity and PO-index, suggesting further brain 

mechanism to mediate prematurity effects on visual-spatial functioning. Due to the 

complexity of visual-spatial functioning in general and PO-index in particular, it is not 

surprising that multiple mechanisms underpin these abilities. For example, we 

previously found impaired visual attention, specifically reduced visual short-term 

memory capacity in VPB adults, that was associated with impaired integrity of 

connections between the posterior thalamus and the primary occipital gyri [Menegaux 

et al., 2017]. This result indicates that structural connectivity of more posterior occipito-

thalamic systems also contributes to prematurity effects on visuo-motor functioning. 

Furthermore, beyond structural connectivity, coherence of ongoing slowly fluctuating 

activity in both DAN and occipital networks covering primary occipital gyri has been 

shown to modulate impaired visual short-term memory after premature birth, indicating 

that physiological mechanisms on top of structural connectivity link with impaired 

visual-spatial abilities in the context of prematurity [Finke et al., 2015]. An example for 

such physiological mechanism might be alterations in local temporal variability of 

ongoing activity within the thalamus - as being found in premature born adults (Shang 

et al., 2019) -, which impair functional integration in cortico-thalamic networks (Garrett 

et al., 2018). It is clear, that this list of potential mechanisms is not exhaustive; in order 

to increase potential targets for ‘clinical’ procedures such as treatment or prognostics 



of visual-spatial deficits, future studies are necessary to reveal further brain 

mechanisms mediating prematurity effects on visual-spatial functioning. 

 

Relevance for educational success 

Visual-spatial abilities are basic abilities for other cognitive functions, learning, and 

thereby for educational success, which in turn are important determinants of socio-

economic status [Fernandes et al., 2016; Haapala et al., 2014; Piaget, 1952]. In line 

with this knowledge, we found a positive correlation between PO-index and 

educational success in adulthood, suggesting a link between PO-index relevant 

abilities such as visual-spatial skills, problem-solving and educational performance.  

By comparing correlation coefficients for both VC- and PO-indices, no significant 

differences indicate that bot visuo-motor and verbal comprehension abilities are 

relevant for educational success. This result specifies our finding for PO-index and its 

dependence on DAN-pulvinar connectivity further, in terms of partial relevance 

amongst other factors such as verbal comprehension. 

Furthermore, DAN-pulvinar connectivity, that was found to be impaired for VPB adults, 

is positively correlated with PO-index and educational success. This finding suggests 

that structural connectivity alterations caused by prematurity contribute to perceptual 

as well as educational outcome. 

 

A link between premature birth and less favorable academic outcome has been 

demonstrated for several times [Aarnoudse-Moens et al., 2011; Johnson et al., 2011; 

Leung et al., 2018; Molloy et al., 2017]. In the present study, this correlation between 

prematurity and lower educational outcome in adulthood was mediated by adult DAN-

pulvinar connectivity. This finding together with the role of DAN-pulvinar connectivity 

for visual-spatial functioning after premature birth suggests the model that prematurity-



induced changes in DAN-pulvinar connectivity lead to impaired visual-spatial 

functioning, which in turn is relevant for educational success. This model is supported 

by above-mentioned findings of Ball and colleagues, indicating the predictive role of 

neonatal thalamo-cortical connectivity for later attention functioning [Ball et al., 2015]. 

Furthermore, changes in functional connectivity within the DAN were linked with both 

DAN development from 4-7 years and corresponding development in selective 

attention of 4-7 years old girls [Rohr et al., 2017]. 

 

Integrating these findings, we suggest that DAN-pulvinar connectivity after premature 

birth might have some potential for targeted clinical procedures such as specific 

treatment of developing visual-spatial and visual-motor functioning or predicting the 

development of visual-spatial abilities at birth. (i) Concerning treatment: Targeted brain 

stimulation, especially transcranial magnetic stimulation (TMS) of cortical DAN 

structures might be of interest when combined with appropriate visual-motor training.  

(ii) Concerning prediction of visual-spatial abilities at birth: use at birth DAN-pulvinar 

structural connectivity could be helpful to predict later visual-spatial abilities, that is in 

line with the above-mentioned studies. However, based on these preceding as well as 

current findings, further studies are needed to derive a concrete concept useful for the 

prediction of visual-spatial abilities. 

Strength and limitations  

Some points should be considered when interpreting our results. First, the current 

sample might be biased to VPB adults with less severe neonatal complications and 

less functional impairments. Individuals with stronger birth complications and/or severe 

lasting impairments in the initial BLS sample were more likely to be excluded in the 

initial screening for MRI or to reject MRI scanning or even continuation in the study. 



Thus, reported differences in outcomes including DAN-pulvinar connectivity between 

VPB and MB adults are conservative estimates. Second, the current sample size is 

rather large (70 VPB, 57 MB), enhancing the generalizability of our findings.  

Third, the study was performed with the existing methodologies of structural 

connectivity analysis to the point of time when acquiring the data and postprocessing 

them with well-established software. Recently developed techniques are not possible 

to apply on these data but should be performed for consequential studies in future, e.g. 

correction for susceptibility-induced geometric distortions. 

A further limitation of the study is the use of three distinct MRI scanners to acquire 

diffusion data. However, all of them were 3T Phillips scanners of the same type with 

standard 8 channel head coils using identical sequences and parameter settings. 

Furthermore, to account for potential confounds induced by different scanners, 

scanner identities were statistically integrated as covariates of no interest in distinct 

data analyses, demonstrating no essential influence of scanner types in our findings. 

 

Conclusion 

Impaired DAN-pulvinar structural connectivity makes a major contribution to the impact 

of very prematurity.  
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Tables:  

Table 1 Demographics and neuropsychological data 

 

 

Group comparisons: two-sample t-tests for age, gestational age, birth weight, full-scale IQ, PO-index and VC-index; 

Mann-Whitney U test for educational success; chi-squared statistics for gender and MRI centers (first and second 

MRI scanner in Bonn as well as the scanner in Munich, respectively coded as BN1, BN2, MUC). Data are presented 

as mean ± standard deviation as well as the interquartile range; Abbreviations: VPB: very premature born, MB: 

mature born, INTI: Intensity of Neonatal Treatment Index, IQ: intelligence quotient, PO-index: perceptual 

organization index 

 

  

 

 

 

 

 

 

 

 

 

VPB (n = 70) MB (n = 57)

Age (year) median 26.57 (range 25.72-27.76) median 26.60 (range 25.58-27.89)

Gender (m/f) n (41/29) n (35/22)

mean SD IQR mean SD IQR p-value

Gestational age (week) 30.23 1.95 29-31 39.63 0.99 39-40 <0.001

Birth weight (g) 1300.57 321.81 1045-1496 3471.39 358.01 3210-3715 <0.001

INTI 6.44 2.09 4.27-8.09 -

intracranial hemorrhage n=13 -

Full-scale IQ 94.41 12.86 86-100 102.88 12.16 95-111 <0.001

PO-index 93.78 14.11 83-104 106.39 12.11 96-114 <0.001

VC-index 104.23 14.51 95-111 109.54 15.03 98-122 0.048

Educational success 2.79 0.85 2-4 3.07 0.88 2-4 0.08

MRI center

Scanner MUC n = 45 n = 37 0.94

Scanner BN1 n = 3 n = 8 0.05

Scanner BN2 n = 22 n = 12 0.19



Figure Legends:  

Figure 1: Perceptual organization index in very premature and mature born 

adults  

The boxplot shows the median and interquartile range of PO-indices, a sub-scale of 

the Wechsler Adult Intelligence Scale-III, for VPB adults on the left (96, 83-104) and 

MB adults on the right (107, 96-114). Groups are different in PO-index (two-sample t-

test, p <0.001). Abbreviations: VPB, very premature born; MB, mature born; PO-index, 

perceptual organization index. 

 

Figure 2: Structural connectivity between dorsal attention network and thalamus 

- probabilistic tractography and group comparisons  

A) Seeds of probabilistic tractography in individual DAN (in red, spatial maps are 

generated via independent component analysis and dual regression analysis of resting 

state fMRI data) and target in the thalamus (in blue, atlas based on [Behrens et al., 

2003]), and an example of connectivity distributions (produced via probtrackx (FSL) 

[Behrens et al., 2007]) on the right, displayed in individual diffusion space of a 

representative VPB adult. B) Connection probability (between DAN and thalamus) with 

DAN of the thalamic voxels (one sample t-test for MB and VPB adults on a significance 

level of 0.05, FWE corrected, extracted from SPM8), the peak is marked in the pulvinar, 

overlaid to a T1-weighted sequence in MNI space. C) Thalamic voxels of reduced 

structural connection probability with the DAN in VPB adults compared to MB adults, 

located in the right pulvinar (two-sample t-test, p<0.05, FWE corrected), overlaid to a 

T1-weighted sequence in MNI space. Abbreviations: VPB, very premature born; MB, 

mature born. 

 



Figure 3: Structural connectivity changes mediate the effect of prematurity on 

perception 

Structural connectivity alterations between thalamus (located in right pulvinar) and 

individual DAN mediate the effect of group (VPB vs. MB adults) on PO-index. Paths 

are labeled with the (unstandardized) regression coefficients of the respective effect (± 

SE). a, effect of causal variable on mediator; b, direct effect of mediator on outcome; 

c, total effect of causal variable on outcome; c´, direct effect of causal variable on 

outcome. Abbreviations: VPB, very premature born; MB, mature born; PO-index, 

perceptual organization index. 

 

 

  

 

 


