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Abstract
In this paper we study the set of digit frequencies that are realised by elements of the
set of β-expansions. The main result of this paper demonstrates that as β approaches
1, the set of digit frequencies that occur amongst the set of β-expansions fills out the
simplex. As an application of our main result, we obtain upper bounds for the local
dimension of certain biased Bernoulli convolutions.

Keywords Expansions in non-integer bases · Digit frequencies · Bernoulli
convolutions
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1 Introduction

Let M ∈ N and β ∈ (1, M +1]. For any x ∈ Iβ,M := [0, M
β−1 ] there exists a sequence

(ai ) ∈ {0, . . . , M}N such that

x = �β((ai )) :=
∞∑

i=1

ai
β i

.

We call such a sequence a β-expansion of x . Note that x has a β-expansion if and
only if x ∈ Iβ,M . Expansions of this type were pioneered in the papers of Parry [19]
and Rényi [20]. When β = M + 1 then we are in the familiar setting of integer base
expansions, where every x ∈ [0, 1] has a unique (M + 1)-expansion, apart from a
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S. Baker

countable set of points that have precisely two. However, when β ∈ (1, M + 1) the
set of β-expansions can exhibit far more exotic behaviour.

Given M ∈ N, β ∈ (1, M + 1], and x ∈ Iβ,M , we let

�β,M (x) :=
{
(ai ) ∈ {0, . . . , M}N :

∞∑

i=1

ai
β i

= x
}
.

In [2] the author proved that for any M ∈ N there exists a critical constant G(M)

satisfying

G(M) =
{
k + 1 if M = 2k
k+1+√

k2+6k+5
2 if M = 2k + 1,

such that if β ∈ (1,G(M)) then card(�β,M (x)) = 2ℵ0 for every x ∈ (0, M
β−1 ).

Moreover G(M) is optimal in the sense that if β ∈ [G(M), M + 1], then there exists
x ∈ (0, M

β−1 ) such that �β,M (x) is at most countable. Note that if x is an endpoint of
Iβ,M then �β,M (x) is always either {(0)∞} or {(M)∞}. As such, all of the interesting
behaviour occurs within the interior of Iβ,M . For β ∈ [G(M), M+1) the cardinality of
�β,M (x) for a generic x is best described by a result of Sidorov, see [21,22]. This result
implies that for any β ∈ [G(M), M+1),we have card(�β,M (x)) = 2ℵ0 for Lebesgue
almost every x ∈ Iβ,M . We remark that all other possible values of card(�β,M (x)) are
achievable. That is, for any k ∈ N ∪ {ℵ0}, there exists β ∈ (1, 2) and x ∈ (0, 1

β−1 )

such that card(�β,1(x)) = k, see [3,6,23] and the references therein.
This paper ismotivated by the following general question. Supposewe are interested

in some property of a sequence (ai ) ∈ {0, . . . , M}N. Properties wemight be interested
in could be combinatorial, number theoretic, or statistical. Can we put conditions on
β, such that every x ∈ (0, M

β−1 ) admits a sequence (ai ) ∈ �β,M (x) that satisfies this
property? Alternatively, can we put conditions on β, such that Lebesgue almost every
x ∈ (0, M

β−1 ) admits a sequence (ai ) ∈ �β,M (x) that satisfies this property? Since
an x may well have infinitely many β-expansions, answering these questions is non-
trivial. The general problem put forward here has been studied previously in different
guises by several authors, see [1,5,10,14,15,18]. In this paper we are interested in
those sequences which exhibit exceptional digit frequencies. What exactly we mean
by exceptional will become clear.

The digit frequencies of a representation of a real number is a classical subject going
back to the pioneering work of Borel [8], and later Besicovitch [7] and Eggleston [12].
Despite being a subject that has its origins in the early 20th century, representations
of real numbers and their digit frequencies is still motivating researchers. For some
recent contributions in this area see [9,13,16] and the references therein. Most of the
existing work in this area was done in a setting where the representation is unique.
What distinguishes this work is that we are in a setting where the representations are
almost certainly not unique.

1.1 Statement of results

Given (ai ) ∈ {0, . . . , M}N and k ∈ {0, . . . , M}, we define the k-frequency of (ai ) to
be
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freqk(ai ) := lim
n→∞

#{1 ≤ i ≤ n : ai = k}
n

.

Assuming the limit exists.We say that (ai ) is simply normal if for each k ∈ {0, . . . , M}
the k-frequency exists and freqk(ai ) = 1

M+1 . Borel’s normal number theorem tells us
that Lebesgue almost every x has a simply normal (M + 1)-expansion, see [8].

Combining the results of [1,5] the following theorem is known to hold in the case
where M = 1.

Theorem 1.1 The following statements hold.

1. Let β ∈ (1, 1.80194 . . .]. Then for every x ∈ (0, 1
β−1 ) there exists (ai ) ∈ �β,1(x)

such that (ai ) is simply normal.

2. Let β ∈ (1, 1+√
5

2 ). Then for every x ∈ (0, 1
β−1 ) there exists (ai ) ∈ �β,1(x) such

that the 0-frequency of (ai ) and the 1-frequency of (ai ) both don’t exist.

3. Letβ ∈ (1, 1+√
5

2 ). Then there exists c = c(β) > 0 such that for every x ∈ (0, 1
β−1 )

and p ∈ [1/2 − c, 1/2 + c], there exists (ai ) ∈ �β,1(x) such that freq0(ai ) = p
and freq1(ai ) = 1 − p.

In the above the number 1.80194 . . . is the unique root of x3− x2−2x +1 = 0 that
lies within the interval (1, 2). Note that the intervals appearing in the three statements
of Theorem 1.1 are optimal. If β ∈ (1.80194 . . . , 2) then there exists an x ∈ (0, 1

β−1 )

with no simply normal β-expansions. Similar statements hold for parts (2) and (3) of
Theorem 1.1.

Theorem 1.1 provides no information as to what frequencies are realised as β

approaches 1, or what happens for larger alphabets. Examining the techniques used
in the proof of statement (3) from Theorem 1.1, we see that they cannot improve upon

the estimate 0 < c(β) ≤ 1/6 for all β ∈ (1, 1+√
5

2 ). One might expect that as β

approaches 1, the set of realisable frequencies fills out the relevant simplex. In this
paper we show this to be the case. We now express this formally.

Let

�M :=
{

(pk)
M
k=0 ∈ R

M+1 : pk ≥ 0,
M∑

k=0

pk = 1

}
.

We refer to an element of �M as a frequency vector. Given an ε > 0 we define

�M,ε :=
{

(pk)
M
k=0 ∈ R

M+1 : 0 ≤ pk ≤ 1 − ε,

M∑

k=0

pk = 1

}
.

Given M ∈ N, β ∈ (1, M + 1], and x ∈ Iβ,M , we let

�M,β(x) :=
{
(pk) ∈ �M : ∃(ai ) ∈ �β,M (x) such that freqk(ai ) = pk ∀ 0 ≤ k ≤ M

}
.
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We now introduce an important class of algebraic integers. To each n ∈ N we let
βn ∈ (1, 2) be the unique zero of

fn(x) := xn+1 − xn − 1

that is contained within the interval (1, 2). The fact that βn exists and is unique follows
from the observations fn(1) = −1, f ′

n(x) ≥ 1 for all x ≥ 1, and fn(2) > 0.
In this paper we prove the following result.

Theorem 1.2 For any M ∈ N and β ∈ (1, βn), we have

�M, 1
n+1

⊆ �M,β(x)

for all x ∈ (0, M
β−1 ).

Theorem 1.2 demonstrates that as β approaches 1, the set �M,β(x) fills out the
simplex �M for any x ∈ (0, M

β−1 ). The following corollary of Theorem 1.2 follows
immediately.

Corollary 1.3 Let M ∈ N and β ∈ (1, 1+√
5

2 ). Then every x ∈ (0, M
β−1 ) admits a

simply normal β-expansion.

One might also ask whether one can construct β-expansions for which the digit

frequencies do not exist. Theorem 1.1 tells us that when M = 1 and β ∈ (1, 1+√
5

2 )

every x ∈ (0, 1
β−1 ) has a β-expansion for which the digit frequencies do not exist.

The following theorem shows that the same phenomenon persists for larger alphabets.

Theorem 1.4 Let M ≥ 2 and β ∈ (1, βn). Let D ⊆ {0, . . . , M} be such that #D ≥ 2,
and (pk)k∈Dc be such that 0 ≤ pk ≤ n

n+1 for all k ∈ Dc and
∑

k∈Dc pk < 1. Then

for any x ∈ (0, M
β−1 ) there exists (ai ) ∈ �β,M (x) such that

freqk(ai ) =
{
does not exist if k ∈ D;
pk if k ∈ Dc.

Note that in Theorem 1.4 we cannot remove the condition #D ≥ 2, or the condition∑
k∈Dc pk < 1. Removal of either of these conditions forces all of the digit frequencies

to exist. Note that in Theorem 1.4 we could simply take D = {0, . . . , M}. As such we
have the following corollary.

Corollary 1.5 Let M ≥ 2 and β ∈ (1, 1+√
5

2 ). Then every x ∈ (0, M
β−1 ) admits a

β-expansion such that freqk(ai ) does not exist for all 0 ≤ k ≤ M.

It is natural to wonder how optimal the constant βn in Theorem 1.2 is. With this in
mind we introduce the following. Given M ∈ N and n ∈ N let

β∗
M,n := sup

{
β∗ : ∀β ∈ (1, β∗) we have �M, 1

n+1
⊆ �M,β(x)∀x ∈

(
0,

M

β − 1

)}
.
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Table 1 A table of values for βn n βn Upper bound for β∗
2,n

1 1+√
5

2 = 1.618 . . . 2

2 1.466 . . . 2

3 1.380 . . . 2

4 1.325 . . . 1.894 . . .

5 1.285 . . . 1.761 . . .

10 1.184 . . . 1.432 . . .

25 1.098 . . . 1.207 . . .

50 1.058 . . . 1.116 . . .

100 1.034 . . . 1.064 . . .

By Theorem 1.2 we know that βn ≤ β∗
M,n for all n ∈ N and M ∈ N. The following

result describes the asymptotics of βn and β∗
M,n .

Theorem 1.6 For any M ∈ N we have

1 + log n − log log n

n
< βn ≤ β∗

M,n ≤ 1 + log(n + 1)

n + 1
+ O

(
1 + logM

n + 1

)

In the above and throughout we make use of the standard big O notation. Theo-
rem 1.6 demonstrates that as n tends to infinity, βn becomes a better approximation to
the optimal value β∗

M,n . It is possible to obtain upper bounds for the quantity β∗
M,n via

existing results in [2], and by carefully examining the proof of Theorem 1.6. Omitting
the relevant calculations we include in Table 1 a table of values detailing some upper
bounds for β∗

2,n along with some values for βn .
The following corollary is an immediate consequence of Theorem 1.6.

Corollary 1.7 For any M ∈ N we have

(βn − 1) ∼ (β∗
M,n − 1) ∼ log n

n
.

It is a surprising consequence of Corollary 1.7 that the leading order term for the
rate at which β∗

M,n accumulates to 1 has no dependence of M .
The rest of this paper is structured as follows. In Sect. 2 we recall some useful

dynamical preliminaries and prove some technical results that will be required later.
In Sect. 3 we prove Theorems 1.2 and 1.4. In Sect. 4 we prove Theorem 1.6. We
conclude in Sect. 5 where we apply our results to obtain bounds on the local dimension
of certain biased Bernoulli convolutions.

2 Preliminaries

We start by detailing a useful dynamical interpretation of�β,M (x). Givenβ ∈ (1, M+
1] and k ∈ {0, . . . , M}, we introduce the map Tk(x) = βx − k. Given an x ∈ Iβ,M

we let
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�β,M (x) := {
(Tai ) ∈ {T0, . . . , TM }N : (Ta j ◦ · · · ◦ Ta1)(x) ∈ Iβ,M ∀ j ∈ N

}
.

The following lemma was proved in [3].

Lemma 2.1 For any x ∈ Iβ,M we have card(�β,M (x)) = card(�β,M (x)). Moreover,
the map sending (ai ) to (Tai ) is a bijection between �β,M (x) and �β,M (x).

Lemma 2.1 allows us to reinterpret Theorems 1.2 and 1.4 in terms of the existence of
an element of�β,M (x) exhibiting certain asymptotics. With this in mind we introduce
the following notation. Given α = (αi ) ∈ ∪∞

j=1{T0, . . . , TM } j we let |α| denote its
length, and for any k ∈ {0, . . . , M} we let

|α|k := #{1 ≤ i ≤ |α| : αi = Tk}.

Given α = (αi )
j
i=1 and x ∈ Iβ,M , we let α(x) := (α j◦ · · · ◦α1)(x). For notational

convenience we let {T0, . . . , TM }0 denote the set consisting of the identity map. Given
a finite sequence α ∈ {T0, . . . , TM } j , we let αk denote its k-fold concatenation with
itself, and let α∞ denote the infinite concatenation of α with itself. We make use of
analogous notational conventions for concatenations of finite sequences of digits.

It is straightforward to show that the unique fixed point of Tk is k
β−1 . It is also

straightforward to show that the following equality holds for any x ∈ R and l ∈ N

T l
k (x) − k

β − 1
= βl

(
x − k

β − 1

)
. (2.1)

Despite being a simple observation, Eq. (2.1) will be extremely useful. We point out
here three immediate consequences of it without proof.

Lemma 2.2 The following properties hold.

1. Let ε > 0. There exists L ∈ N depending only upon M, β and ε, such that for any
x > k

β−1 + ε and y ∈ [x, M
β−1 ] we have

T l
k (x) ∈ [y, Tk(y)]

for some 1 ≤ l ≤ L.
2. Let ε > 0. There exists L ∈ N depending only upon M, β and ε, such that for any

x < k
β−1 − ε and y ∈ [0, x] we have

T l
k (x) ∈ [Tk(y), y]

for some 1 ≤ l ≤ L.
3. Let ε > 0. There exists L ∈ N depending only upon M, β and ε such that if

k1, k2 ∈ {0, . . . , M} satisfy k1 < k2 and x ∈ [ k1
β−1 + ε,�β((k1, k2)∞)], then

T l
k1(x) ∈ [�β((k1, k2)

∞),�β((k2, k1)
∞)]
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for some 1 ≤ l ≤ L. Similarly, if x ∈ [�β((k2, k1)∞), k2
β−1 − ε] then

T l
k2(x) ∈ [�β((k1, k2)

∞),�β((k2, k1)
∞)]

for some 1 ≤ l ≤ L.

Statement (3) in Lemma 2.2 follows from the previous two statements and the
observations

Tk1(�β((k1, k2)
∞)) = �β((k2, k1)

∞) and Tk2(�β((k2, k1)
∞)) = �β((k1, k2)

∞).

In our applications the ε appearing in Lemma 2.2 will often be a function of β.

Therefore the relevant L will often only depend upon M and β. Despite being a fairly
trivial observation, Lemma 2.2 will be useful throughout. In particular statement (3).

When constructing β-expansions that satisfy certain asymptotics, it is useful to
partition the interval Iβ,M into subintervals for which we have a lot of control over
how the different Tk behave. This technique was originally used in [2,4] to study the
size of �β,M (x).

For any β ∈ (1, M + 1] and k1, k2 ∈ {0, . . . , M} such that k1 < k2, we let

Iβ,k1,k2 :=
[

k1
β − 1

,
k2

β − 1

]
.

Importantly, if β ∈ (1, 2] then every x ∈ Iβ,k1,k2 admits a β-expansion whose digits
are restricted to the set {k1, k2}. We also associate the following subinterval of Iβ,k1,k2 ,
let

Sβ,k1,k2 := [�β((k2, k
∞
1 )),�β((k1, k

∞
2 ))] =

[k2
β

+ k1
β(β − 1)

,
k1
β

+ k2
β(β − 1)

]
.

For any β ∈ (1, 2) the interval Sβ,k1,k2 is well defined and has non-empty interior. Note
that Sβ,k1,k2 is precisely the set of x such that Tk1(x) ∈ Iβ,k1,k2 and Tk2(x) ∈ Iβ,k1,k2 .

In the literature Sβ,k1,k2 is commonly referred to as the switch region corresponding
to k1 and k2. We refer the reader to Fig. 1 for a diagram detailing the above.

The following lemma proves that a useful class of subintervals depending on n, k1,
and k2, will always be contained in the switch region corresponding to k1 and k2 for
β ∈ (1, βn).

Lemma 2.3 For any β ∈ (1, βn) and k1, k2 ∈ {0, . . . , M} such that k1 < k2 we have

[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)

]
⊆

(
k2
β

+ k1
β(β − 1)

,
k1
β

+ k2
β(β − 1)

)

(2.2)
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Fig. 1 The overlapping graphs of Tk1 and Tk2

and

[
�β((k1, k2, k

n−1
1 )∞),�β((k2, k

n
1 )

∞)
]

⊆
(
k2
β

+ k1
β(β − 1)

,
k1
β

+ k2
β(β − 1)

)
.

(2.3)

Proof Fix n ∈ N.Wewill only show that (2.2) holds. The proof that (2.3) holds follows
similarly.

It suffices to show that for any β ∈ (1, βn) we have

�β

(
(k2, k1, k

n−1
2 )∞

)
<

k1
β

+ k2
β(β − 1)

(2.4)
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and

k2
β

+ k1
β(β − 1)

< �β((k1, k
n
2 )

∞). (2.5)

Rewriting the right hand side of (2.4) using the geometric series formula we see
that (2.4) is equivalent to

∞∑

i=0

1

β(n+1)i

(
k2
β

+ k1
β2 + k2

β3 + · · · + k2
βn+1

)
<

k1
β

+
∞∑

i=2

k2
β i

.

Comparing coefficients, we see that this inequality is equivalent to

k2 − k1
β

<

∞∑

i=0

k2 − k1
β(n+1)i+2

.

Cancelling coefficients and using the geometric series formula, we can rewrite this
expression as

βn+1 − βn − 1 < 0. (2.6)

If β ∈ (1, βn) then (2.6) is satisfied, and consequently (2.4) is also satisfied.
We now turn our attention to (2.5). Expressing the left hand side of (2.5) using the

geometric series formula, we see that it is equivalent to

k2
β

+
∞∑

i=2

k1
β i

<

∞∑

i=0

1

β i(n+1)

(
k1
β

+ k2
β2 + · · · + k2

βn+1

)
.

Comparing coefficients, we see that this is equivalent to

k2 − k1
β

<

∞∑

i=0

(k2 − k1)

β i(n+1)

(
1

β2 + · · · + 1

βn+1

)
.

Cancelling coefficients and using the geometric series formula, we can then rewrite
this expression as

1 <

(
1

β
+ · · · + 1

βn

)
βn+1

βn+1 − 1
. (2.7)

When n = 1 we can verify that (2.7) holds whenever β ∈ (1, 1+√
5

2 ). For n ≥ 2 it is
clear that (2.7) is implied by

1 <
1

β
+ 1

β2 .
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This is true for any β ∈ (1, 1+√
5

2 ). Therefore (2.5) holds for β ∈ (1, 1+√
5

2 ). To

complete the proof of our lemma one has to verify that βn ≤ 1+√
5

2 for any n ≥ 1.
However, this is a straightforward consequence of the definition of βn . ��
In what follows it is useful to define the following intervals, let

Dβ,M,n :=
[
T1(�β((0, 1, 0n−1)∞)), TM−1(�β((M, M − 1, Mn−1)∞))

]
.

It follows from Lemma 2.3 that for any β ∈ (1, βn) we have Dβ,M,n ⊆ (0, M
β−1 ).

Similarly, given k1, k2 ∈ {0, . . . , M} such that k1 < k2, let

Dβ,k1,k2,n :=
[
Tk2

(
�β

((
k1, k2, k

n−1
1

)∞))
, Tk1

(
�β

((
k2, k1, k

n−1
2

)∞))]
.

It follows from Lemma 2.3 that for any β ∈ (1, βn)we have Dβ,k1,k2,n ⊆ ( k1
β−1 ,

k2
β−1 ).

One can check that we also have Dβ,k1,k2,n ⊆ Dβ,M,n for any k1, k2 ∈ {0, . . . , M}
such that k1 < k2 and β ∈ (1, βn). Clearly Dβ,0,M,n = Dβ,M,n so our notation may
at first seem redundant. However it will be useful to adopt both conventions. As we
will see, within the interval Dβ,M,n we shall apply many different Tk’s to construct a
β-expansion with certain asymptotics. Importantly these Tk’s will never map the point
in question out of Dβ,M,n, so this interval can be thought of as the state space of our
construction.Whenwewant to emphasise the state space interpretation wewill use the
notation Dβ,M,n . Within an interval Dβ,k1,k2,n we will be able to build an element of
∪∞

j=1{Tk1, Tk2} j which exhibits certain asymptotics. When we want to emphasise the
fact we are building a sequence consisting of T0’s and TM ’s with certain asymptotics
we will use the notation Dβ,0,M,n .

The following lemma establishes the existence of an upper bound for the number of
maps required to map a point from the interior of Iβ,M into the interior of an Iβ,k1,k2 .

Lemma 2.4 Let M ∈ N, β ∈ (1, 2), and δ > 0. There exists L ∈ N and ε > 0,
such that for any x ∈ [δ, M

β−1 − δ] and k1 < k2, there exists η ∈ ∪L
j=0{T0, . . . , TM } j

satisfying

η(x) ∈
[ k1
β − 1

+ ε,
k2

β − 1
− ε

]
.

Proof We show that for each k1 < k2 there exists Lk1,k2 ∈ N and εk1,k2 > 0, such that

for any x ∈ [δ, M
β−1 − δ] there exists η ∈ ∪Lk1,k2

j=0 {T0, . . . , TM } j satisfying

η(x) ∈
[

k1
β − 1

+ εk1,k2 ,
k2

β − 1
− εk1,k2

]
.

Taking L = maxk1,k2 Lk1,k2 and ε = mink1,k2 εk1,k2 completes the proof. We now
proceed via a case analysis.

Case 1 (k1 = 0, k2 = M). If k1 = 0 and k2 = M then let ε0,M = δ. We then have
x ∈ [ε0,M , M

β−1 − ε0,M ] automatically by our hypothesis. So we can take L0,M = 0.
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Case 2 (k1 > 0, k2 < M). It is a straightforward calculation to prove that for any
β ∈ (1, 2) and k1 < k2 we have

[�β((k1 − 1, k2 + 1)∞), �β((k2 + 1, k1 − 1)∞)] ⊆
(

k1
β − 1

,
k2

β − 1

)
. (2.8)

It therefore suffices to show that there exists Lk1,k2 ∈ N, such that for any x ∈
[δ, M

β−1 − δ] there exists η ∈ ∪Lk1,k2
j=0 {T0, . . . , TM } j satisfying

η(x) ∈ [�β((k1 − 1, k2 + 1)∞),�β((k2 + 1, k1 − 1)∞)].

The existence of the desired εk1,k2 will then follow by (2.8).
Let us now fix x ∈ [δ, M

β−1 − δ] and k1, k2 such that 0 < k1 < k2 < M . If

x ∈ [
�β((k1 − 1, k2 + 1)∞), �β((k2 + 1, k1 − 1)∞)]

then there is nothing to prove. Suppose this is not the case and x < �β((k1 − 1, k2 +
1)∞), the case when x > �β((k2+1, k1−1)∞) is handled similarly. If x < �β((k1−
1, k2 + 1)∞) then

x ∈
[
δ,

1

β − 1

)
, x ∈

k1−1⋃

j=1

[ j

β − 1
,
j + 1

β − 1

)
, or

x ∈
[ k1
β − 1

,�β((k1 − 1, k2 + 1)∞)
]
.

If x ∈ [δ, 1
β−1 ), then byLemma2.2 there exists L1 ∈ N such that T l1

0 (x) ∈ [ 1
β−1 ,

2
β−1 ]

for some l1 ≤ L1. Consequently, it suffices to consider the case where

x ∈
k1−1⋃

j=1

[ j

β − 1
,
j + 1

β − 1

)
or x ∈

[ k1
β − 1

,�β((k1 − 1, k2 + 1)∞)
]
.

If x ∈
[

j
β−1 ,

j+1
β−1

)
for some 1 ≤ j ≤ k1 − 1, then by Lemma 2.2 and (2.8), there

exists L2 ∈ N such that

T l2
j−1(x) ∈ [�β(( j − 1, j + 2)∞),�β(( j + 2, j − 1)∞)] (2.9)

for some l2 ≤ L2. Lemma 2.2, (2.8), and (2.9), when combined then imply that there
exists L3 ∈ N, such that for some l3 ≤ L3 we have

(T l3
j ◦ T l2

j−1)(x) ∈ [�β(( j, j + 3)∞),�β(( j + 3, j)∞)]. (2.10)

We observe from equation (2.10) that x has been mapped from Iβ, j, j+1 into
[�β(( j, j + 3)∞),�β(( j + 3, j)∞)]. If j = k1 − 1 then our proof is complete.
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If j < k1 − 1, then we can repeat the steps used to derive (2.10) from (2.9) and map
the orbit of x into the interval [�β(( j+1, j+4)∞),�β(( j+4, j+1)∞)] using only a
bounded number of maps. Repeatedly applying this procedure we see that the orbit of
x must eventually be mapped into [�β((k1−1, k2+1)∞),�β((k2+1, k1−1)∞)] by
some η as required. Moreover, since the number of maps needed to map a point from
[�β(( j−1, j+2)∞),�β(( j+2, j−1)∞)] into [�β(( j, j+3)∞),�β(( j+3, j)∞)]
can always be bounded above by some constant, it follows that length of η can always
be bounded above by some Lk1,k2 . If

x ∈
[ k1
β − 1

,�β((k1 − 1, k2 + 1)∞)
]

then x is mapped into [�β((k1 − 1, k2 + 1)∞),�β((k2 + 1, k1 − 1)∞)] by repeatedly
applying Tk1−1. We can bound the number of maps required to do this by Lemma 2.2.

Case 3 (k1 > 0, k2 = M). For any β > 1 we always have the inclusion

[�β((k1, M)∞),�β((M, k1)
∞)] ⊆

( k1
β − 1

,
M

β − 1

)
.

Therefore it suffices to show that there exists Lk1,M ∈ N, such that for any x ∈
[δ, M

β−1 − δ] there exists η ∈ ∪Lk1,M

j=0 {T0, . . . , TM } j satisfying

η(x) ∈ [�β((k1, M)∞),�β((M, k1)
∞)].

Fix x ∈ [δ, M
β−1 − δ]. If x ∈ [�β((k1, M)∞),�β((M, k1)∞)] then there is nothing

to prove. If x ∈ (�β((M, k1)∞), M
β−1 − δ], then by Lemma 2.2 it follows that there

exists L1 ∈ N, such that

T l1
M (x) ∈ [�β((k1, M)∞),�β((M, k1)

∞)]
for some l1 ≤ L1. Alternatively, if x < �β((k1, M)∞) then one can replicate the
argument used in Case 2 to deduce that x can be mapped using only a bounded
number of maps into the interval

[k1 − 1

β − 1
+ εk1−1,k1 ,�β((k1, M)∞)

]

for some εk1−1,k1 > 0. Consequently, without loss of generality we may assume that

x ∈
[k1 − 1

β − 1
+ εk1−1,k1 ,�β((k1, M)∞)

]
.

At this point we make a simple observation. For any β ∈ (1, 2) and 0 < k1 < M we
have

Tk1−1

( k1
β − 1

)
<

M

β − 1
.
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Therefore, by continuity there exists parameters γ > 0 and κ > 0 such that if

x ∈
[ k1
β − 1

,
k1

β − 1
+ γ

]
then

Tk1−1(x) ∈
[ k1
β − 1

+ β
( k1
β − 1

− k1 − 1

β − 1

)
,

M

β − 1
− κ

]
. (2.11)

For x ∈ [ k1−1
β−1 + εk1−1,k1 ,�β((k1, M)∞)] it follows from Lemma 2.2 that there exists

L2 ∈ N, such that the unique minimal l2 ≥ 0 such that T l2
k1−1(x) ∈ [ k1

β−1 ,
M

β−1 ] is
bounded above by L2.

If l2 = 0 and x ∈ [ k1
β−1 + γ,�β((k1, M)∞)], then x is a uniformly bounded

distance away from the fixed point k1
β−1 . Therefore, by Lemma 2.2 our point x can

be mapped into [�β((k1, M)∞),�β((M, k1 − 1)∞)] by a bounded number of maps.
If x ∈ [ k1

β−1 ,
k1

β−1 + γ ] then we apply Tk1−1 to x . By (2.11) the point Tk1−1(x)
is a uniformly bounded distance away from the endpoints of Iβ,k1,M . Therefore
by Lemma 2.2 we can bound the number of maps required to map Tk1−1(x) into
[�β((k1, M)∞),�β((M, k1)∞)].

If l2 ≥ 1 then either

T l2
k1−1(x) ∈

[ k1
β − 1

,
k1

β − 1
+ γ

]
or

T l2
k1−1(x) ∈

( k1
β − 1

+ γ,
k1

β − 1
+ β

( k1
β − 1

− k1 − 1

β − 1

))
.

In the first case we proceed as in the case where l2 = 0 and apply Tk1−1 once
more to ensure T l2+1

k1−1(x) is a bounded distance from the endpoints of Iβ,k1,M . In
the second case we are already a uniformly bounded distance away from the end-
points of Iβ,k1,M . It follows from Lemma 2.2 that T l2

k1−1(x) can be mapped into
[�β((k1, M)∞),�β((M, k1)∞)] using a bounded number of maps.

Case 4 (k1 = 0, k2 < M). The proof of Case 4 is analogous to the the proof of Case 3.
��

The following lemma tells us that if x is in the interior of an Iβ,k1,k2 and a
bounded distance from its endpoints, then we can map x into the intervals appear-
ing in Lemma 2.3 using a bounded number of maps.

Lemma 2.5 Let M ∈ N, β ∈ (1, βn) and ε > 0. There exists L ∈ N, such that for any
k1 < k2 and x ∈ [ k1

β−1 + ε, k2
β−1 − ε], there exists η1 ∈ ∪L

j=0{Tk1, Tk2} j satisfying

η1 (x) ∈
[
�β

((
k1, k

n
2

)∞)
,�β

((
k2, k1, k

n−1
2

)∞)]
. (2.12)

Similarly, there exists η2 ∈ ∪L
j=0{Tk1, Tk2} j satisfying

η2(x) ∈
[
�β((k1, k2, k

n−1
1 )∞),�β((k2, k

n
1 )

∞)
]
. (2.13)
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Proof Let us start by fixing k1 < k2 and x ∈ [ k1
β−1 + ε, k2

β−1 − ε]. We will only show

that there exists Lk1,k2 ∈ N and η1 ∈ ∪Lk1,k2
j=0 {Tk1, Tk2} j such that (2.12) holds. The

existence of an Lk1,k2 and an η2 ∈ ∪L
j=0{Tk1, Tk2}L such that (2.13) holds follows by

a similar argument. To finish the proof of the lemma we take L = maxk1,k2 Lk1,k2 .

If

x ∈
[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)

]

there is nothing to prove. Suppose x > �β((k2, k1, k
n−1
2 )∞), then repeated iteration

of Tk2 eventually maps x into [�β((k1, kn2 )
∞),�β((k2, k1, k

n−1
2 )∞)] by Lemma 2.2.

The fact the number of iterations of Tk2 required to do this is bounded also follows
from Lemma 2.2 and the fact x < k2

β−1 − ε. If x < �β((k1, kn2 )
∞) then repeated

iteration of Tk1 maps x into [�β((k1, kn2 )
∞), Tk1(�β((k1, kn2 )

∞))]. Lemma 2.2 and
the fact x > k1

β−1 + ε implies that the number of maps required to map x into
[�β((k1, kn2 )

∞), Tk1(�β((k1, kn2 )
∞))] can be bounded above. If x has been mapped

into [�β((k1, kn2 )
∞),�β((k2, k1, k

n−1
2 )∞)] then we are done. If not then x has been

mapped into (�β((k2, k1, k
n−1
2 )∞), Tk1(�β((k1, kn2 )

∞))].Sinceβ ∈ (1, βn)we know
by Lemma 2.3 that

�β((k1, k
n
2 )

∞) ∈
(
k2
β

+ k1
β(β − 1)

,
k1
β

+ k2
β(β − 1)

)
.

Therefore Tk1(�β((k1, kn2 )
∞)) is some uniformly bounded distance away from k2

β−1 .

Consequently, the image of x within (�β((k2, k1, k
n−1
2 )∞), Tk1(�β((k1, kn2 )

∞))] is
some uniformly bounded distance away from k2

β−1 .We now repeat our initial argument

in the case where x > �β((k2, k1, k
n−1
2 )∞) to complete our proof. ��

The following lemma follows from the proof of Lemma2.5. It poses greater restrictions
on the orbit of x under η.

Lemma 2.6 Let M ∈ N and β ∈ (1, βn). Then there exists L ∈ N, such that for any
k1 < k2 and x ∈ Dβ,k1,k2,n, there exists η1 ∈ ∪L

j=0{Tk1 , Tk2} satisfying

η1(x) ∈ [�β((k1, k
n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)]

and

(η1j ◦ · · · ◦ η11)(x) ∈ Dβ,k1,k2,n for all 1 ≤ j ≤ |η1|.

Similarly, there exists η2 ∈ ∪L
j=0{Tk1, Tk2} j satisfying

η2(x) ∈ [�β((k1, k2, k
n−1
1 )∞),�β((k2, k

n
1 )

∞)]
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and

(η2j ◦ · · · ◦η21)(x) ∈ Dβ,k1,k2,n for all 1 ≤ j ≤ |η2|.

Lemma 2.6 gives conditions ensuring that the orbit of x under η stays within the
interval Dβ,k1,k2,n . This property will be useful when we want our orbit to be mapped
into yet another Dβ,k′

1,k
′
2,n

.

The following lemma shows that if x is contained in Dβ,M,n, then x can be mapped
into the intervals appearing in Lemma 2.3 using a bounded number of maps.

Lemma 2.7 Let M ∈ N and β ∈ (1, βn). Then there exists L ∈ N, such that for
any x ∈ Dβ,M,n and k1, k2 ∈ {0, . . . , M} satisfying k1 < k2, there exists η1 ∈
∪L

j=0{T0, . . . , TM } j satisfying

η1(x) ∈ [�β((k1, k
n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)].

Similarly, there exists η2 ∈ ∪L
j=0{T0, . . . , TM } j satisfying

η2(x) ∈ [�β((k1, k2, k
n−1
1 )∞),�β((k2, k

n
1 )

∞)].

Proof Lemma 2.7 follows almost immediately from Lemmas 2.4 and 2.5. We include
the proof for completion. Let us start by emphasising Dβ,M,n ⊆ (0, M

β−1 ) for β ∈
(1, βn) and so is contained in [δ, M

β−1 − δ] for some δ depending on M and β. Now
fix x ∈ Dβ,M,n . By Lemma 2.4 there exists a bounded number of transformations that
map x into [ k1

β−1 + ε, k2
β−1 − ε] for some ε > 0. Applying Lemma 2.5 to the image of

x within [ k1
β−1 + ε, k2

β−1 − ε] allows us to assert that there exists a bounded number

of maps that map this image of x into [�β((k1, kn2 )
∞),�β((k2, k1, k

n−1
2 )∞)]. Hence

our η1 exists. The existence of η2 follows from an analogous argument. ��

3 Proofs of Theorems 1.2 and 1.4

We now proceed with our proof of Theorem 1.2. Our proof relies on the following two
propositions.

Proposition 3.1 Let M ∈ N and β ∈ (1, βn). There exists C > 0 such that, for any
k1 < k2, x ∈ Dβ,k1,k2,n, and p = (pk1 , pk2) ∈ �1, 1

n+1
, there exists τ ∈ {Tk1, Tk2}∞

satisfying

1. (τN ◦ · · · ◦τ1)(x) ∈ Dβ,k1,k2,n for all N ∈ N,

2.
∣∣∣|(τi )Ni=1|k1 − pk1N

∣∣∣ ≤ C for all N ∈ N,

3.
∣∣∣|(τi )Ni=1|k2 − pk2N

∣∣∣ ≤ C for all N ∈ N.

Proof The proof of Proposition 3.1 relies on devising an algorithm that yields the
desired τ . At each step in the algorithm we should check rigorously that properties
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(1), (2), and (3) hold. However, for the sake of brevity we simply state here that
property (1) will hold since τ will be constructed by concatenating maps of the form
guaranteed by Lemma 2.6, maps from [�β((k1, kn2 )

∞),�β((k2, k1, k
n−1
2 )∞)] to itself

of the form T l
k2

◦ Tk1 , and maps from [�β((k1, k2, k
n−1
1 )∞),�β((k2, kn1 )

∞)] to itself
of the form T l

k1
◦Tk2 . Also, note that since τ will be an element of {Tk1, Tk2}N, property

(2) is equivalent to property (3). So it suffices to prove property (2).
By Lemma 2.6 we can assume without loss of generality that

x ∈
[
�β((k1, k2, k

n−1
1 )∞),�β((k2, k

n
1 )

∞)
]
.

Step 1 For x ∈ [�β((k1, k2, k
n−1
1 )∞),�β((k2, kn1 )

∞)] we have

(T l1
k1

◦ Tk2)(x) ∈
[
�β((k1, k2, k

n−1
1 )∞),�β((k2, k

n
1 )

∞)
]

for some n ≤ l1 ≤ n′ by Lemmas 2.2 and 2.3. Importantly n′ depends solely upon M
and β. Let τ 1 = (Tk2 , T

l1
k1

). Note that

∣∣∣|(τ 1i )Ni=1|k1 − pk1N
∣∣∣ ≤ n′ + 1 for all 1 ≤ N ≤ |τ 1|.

Step 2 At this point we remark that

|τ 1|k1 − pk1 |τ 1| = l1 − pk1(l1 + 1) ≥ 0. (3.1)

This is because pk1 ≤ n
n+1 and l1 ≥ n. We now apply Lemma 2.6 to τ 1(x). There

exists L ∈ N and η1 ∈ ∪L
j=0{Tk1, Tk2} j , such that

η1(τ 1(x)) ∈
[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞),

]
. (3.2)

We let κ1 = (τ 1, η1) and observe

∣∣∣|(κ1
i )Ni=1|k1 − pk1N

∣∣∣ ≤ n′ + L + 1 for all 1 ≤ N ≤ |κ1|. (3.3)

At this point we examine the sign of

|κ1|k1 − pk1 |κ1|. (3.4)

If (3.4) is negative we stop and let τ 2 = κ1. Note that if this is the case then by (3.1)
we have

−L ≤ |τ 2|k1 − pk1 |τ 2| ≤ 0.
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Suppose (3.4) is positive, we then use (3.2) to assert that there exists n ≤ l2 ≤ n′ such
that

(
T l2
k2

◦ Tk1
)

(κ1(x)) ∈
[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)

]

where n′ is as above and depends only upon M and β. Letting κ2 = (κ1, Tk1 , T
l2
k2

) we
see that (3.3) implies

∣∣∣|(κ2
i )Ni=1|k1 − pk1N

∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |κ2|. (3.5)

We trivially have

|κ2|k1 − pk1 |κ2| = |κ1|k1 − pk1 |κ1| + (1 − pk1(l2 + 1)).

Since pk1 ≥ 1
n+1 and l2 ≥ n we have

|κ2|k1 − pk1 |κ2| ≤ |κ1|k1 − pk1 |κ1|. (3.6)

Equation (3.6) when combined with (3.3) and the assumption (3.4) is positive implies

− n′ ≤ |κ2|k1 − pk1 |κ2| ≤ n′ + L + 1. (3.7)

At this point we examine the sign of

|κ2|k1 − pk1 |κ2|. (3.8)

If (3.8) is negative we stop and let τ 2 = κ2. In which case

−n′ ≤ |τ 2|k1 − pk1 |τ 2| ≤ 0.

If (3.8) is positive then we repeat our previous step with κ1(x) replaced with κ2(x).
So there exists n ≤ l3 ≤ n′ such that

(
T l3
k2

◦ Tk1
)

(κ2(x)) ∈
[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)

]
.

Let κ3 = (κ2, Tk1 , T
l3
k2

). Then by (3.5) and (3.7) we have

∣∣∣|(κ3
i )Ni=1|k1 − pk1N

∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |κ3|. (3.9)

Moreover, we also have

− n′ ≤ |κ3|k1 − pk1 |κ3| ≤ n′ + L + 1. (3.10)
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If |κ3|k1 − pk1 |κ3| ≤ 0 we stop and let τ 2 = κ3. If |κ3|k1 − pk1 |κ3| is positive we can
repeat this process. We iteratively define κ4, κ5, . . . , etc. We stop if

|κ j |k1 − pk1 |κ j | ≤ 0 (3.11)

for some j . Assume j∗ is the smallest such j such that (3.11) occurs. We then let
τ 2 = κ j∗ . Importantly, analogues of (3.9) and (3.10) hold for each intermediate κ

term. Consequently

∣∣∣|(τ 2i )Ni=1|k1 − pk1N
∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |τ 2|

and

−n′ ≤ |τ 2|k1 − pk1 |τ 2| ≤ 0.

We also remark that at this point

τ 2(x) ∈
[
�β((k1, k

n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)

]
.

If there does not exist a j such that (3.11) occurs, then we let τ ∈ {Tk1 , Tk2}N be
the infinite sequence we attain as the limit of the κ j . Since each κ j is a prefix of κ j ′

for any j ′ > j the infinite sequence τ is well defined. In this case the following holds
for each j ∈ N

∣∣∣|(κ j
i )Ni=1|k1 − pk1N

∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |κ j |.
Consequently,

∣∣∣|(τi )Ni=1|k1 − pk1N
∣∣∣ ≤ 2n′ + L + 2 for all N ∈ N.

So in this case τ would satisfy property (2).

Step j + 1 Suppose we have constructed τ j such that

∣∣∣|(τ j
i )Ni=1|k1 − pk1N

∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |τ j |.

Moreover, assume τ j satisfies

τ j (x) ∈ [�β((k1, k2, k
n−1
1 )∞),�β((k2, k

n
1 )

∞)] and

0 ≤ |τ j |k1 − pk1 |τ i | ≤ max{L, n′} (3.12)

or

τ j (x) ∈ [�β((k1, k
n
2 )

∞),�β((k2, k1, k
n−1
2 )∞)] and

−max{L, n′} ≤ |τ j |k1 − pk1 |τ i | ≤ 0. (3.13)

123



Exceptional digit frequencies and expansions…

Note that at the end of Step 2 the sequence τ 2 we’ve constructed satisfies the first
condition and (3.13).

Assume (3.13) holds, the case where (3.12) holds is handled similarly. We now
essentially repeat the argument given in Step 2. By Lemma 2.6 we can map τ j (x) into
[�β((k1, k2, k

n−1
1 )∞),�β((k2, kn1 )

∞)] using atmost L maps.We then repeatedlymap
this image of τ j (x) back into [�β((k1, k2, k

n−1
1 )∞),�β((k2, kn1 )

∞)] using maps of
the form T l

k1
◦ Tk2 where n ≤ l ≤ n′. We stop if we observe a change of sign. If we

observe a change of sign the sequence we will have constructed is our τ j+1. It can be
shown that this τ j+1 will then satisfy

∣∣∣|(τ j+1
i )Ni=1|k1 − pk1N

∣∣∣ ≤ 2n′ + L + 2 for all 1 ≤ N ≤ |τ j+1|,
τ j+1(x) ∈ [�β((k1, k2, k

n−1
1 )∞),�β((k2, k

n
1 )

∞)], (3.14)

and

0 ≤ |τ j |k1 − pk1 |τ j+1| ≤ max{L, n′}

as required. If we never observe a sign change, then the infinite sequence we attain is
our desired τ . It satisfies

∣∣∣|(τi )Ni=1|k1 − pk1N
∣∣∣ ≤ 2n′ + L + 2 for all N ∈ N.

Clearly we can either repeat step j + 1 indefinitely, in which case the infinite limit of
the τ j ’s will satisfy property (2) by (3.14), or at some point τ j does not give rise to an
τ j+1. This is the case where we do not observe a sign change. In this case, the infinite
sequence we would obtain by repeatedly applying either T l

k2
◦ Tk1 or T l

k1
◦ Tk2 satisfies

property (2). In either case the desired τ exists and we can take C = 2n′ + L + 2. ��
Proposition 3.1 has the useful consequence that for any N ∈ N, the sequence
(τ1, . . . , τN ) has k1 frequency approximately pk1 and k2 frequency approximately
pk2 . We will use this fact in the proof of Theorem 1.2.

Given ε > 0 recall that

�M,ε =
{
(pk)

M
k=0 ∈ R

M+1 : 0 ≤ pk ≤ 1 − ε,

M∑

k=0

pk = 1
}
.

Clearly �M,ε is a compact, convex subset of RM+1. It is a simple exercise to check
that it’s extremal points are all the vectors of the form qε,k1,k2 = (qε,0, . . . , qε,M )

where all entries are zero apart from qε,k1 = 1 − ε, qε,k2 = ε.

Given k1, k2 ∈ {0, . . . , M} such that k1 �= k2, not necessarily k1 < k2, let vn,k1,k2 =
(v0, . . . , vM ) where all entries are zero apart from vk1 = n

n+1 and vk2 = 1
n+1 . In the

following we denote the convex hull of a finite set of vectors by Conv(·).
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Proposition 3.2 For any n ∈ N such that 1
n+1 ≤ ε we have

�M,ε ⊆ Conv({vn,k1,k2}k1,k2).

Proof By the Krein–Milman theorem (see [11]) it suffices to check that the extremal
points of �M,ε are in the convex hull of {vn,k1,k2}k1,k2 . However, for any 1

n+1 ≤ ε we
clearly have that qε,k1,k2 is a convex combination of vn,k1,k2 and vn,k2,k1 . ��

Equipped with Propositions 3.1 and 3.2 we are now in a position to prove The-
orem 1.2. Before giving our proof we give an outline of our argument. Suppose
β ∈ (1, βn) and p ∈ �M, 1

n+1
. By Proposition 3.1 we know that for each k1 �= k2

we can construct finite sequences of maps τk1,k2 of an arbitrary length with frequen-
cies equal to n

n+1 and 1
n+1 up to a bounded error term. By Proposition 3.2 we know

that p ∈ Conv({vn,k1,k2}k1,k2). This proposition guarantees the existence of weights
that may be used to construct p from the frequencies of the different τk1,k2 . The prob-
lem is that we cannot freely concatenate the τk1,k2 . We have to travel between the
Dβ,k1,k2,n which introduces an error. However, by Lemma 2.7 this error can always
be bounded. Consequently by taking repeatedly larger τk1,k2 this error becomes pro-
gressively more negligible, meaning the limiting sequence we construct will achieve
the desired frequency p.

Proof of Theorem 1.2 Fix n ∈ N and p = (p0, . . . , pM ) ∈ �M, 1
n+1

. To prove

Theorem 1.2 it suffices to show that for any β ∈ (1, βn) and x ∈ (0, M
β−1 ) we have

p ∈ �M,β(x).
By Proposition 3.2 there exists rk1,k2 for all k1 �= k2 such that rk1,k2 ≥ 0,

∑

(k1,k2)
k1 �=k2

rk1,k2 = 1

and

p =
∑

(k1,k2)
k1 �=k2

rk1,k2vn,k1,k2 . (3.15)

Evaluating (3.15) and using the definition of vn,k1,k2 we have the following compo-
nentwise formula,

pk =
M∑

k2=0
k2 �=k

n · rk,k2
n + 1

+
M∑

k1=0
k1 �=k

rk1,k
n + 1

(3.16)

for any k ∈ {0, . . . , M}. Labelling terms we can write {(k1, k2) : k1 �= k2} =
{(k p1 , k p2 )}M(M+1)

p=1 . Let us now fix a sequence of natural numbers (Ni ) such that
Ni → ∞,
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lim
j→∞

∑ j+1
i=1 Ni

∑ j
i=1 Ni

= 1 (3.17)

and

lim
j→∞

j
∑ j

i=1 Ni

= 0. (3.18)

For example one could take Ni = i2. To each (k p1 , k p2 ) and i ∈ N we associate

Ni,k p1 ,k p2
:= �Ni · rk p1 ,k p2

� (3.19)

where �·� denotes the integer part.We now devise an algorithm to construct the desired
α.
Step 1 Without loss of generality we may assume that x ∈ Dβ,k11 ,k

1
2 ,n

. By Proposi-

tion 3.1 we can construct τ 1,1 such that τ 1,1(x) ∈ Dβ,k11 ,k
1
2 ,n

, τ 1,1 ∈ {Tk11 , Tk12 }
N
1,k11 ,k12 ,

∣∣∣|(τ 1,1)|k11 −
n · N1,k11 ,k

1
2

n + 1

∣∣∣ ≤ C

and

∣∣∣|(τ 1,1)|k12 −
N1,k11 ,k

1
2

n + 1

∣∣∣ ≤ C .

Since τ 1,1(x) ∈ Dβ,k11 ,k
1
2 ,n

we can apply Lemma 2.7 to τ 1,1(x) to obtain η1,1 such

that |η1,1| ≤ L and

(η1,1 ◦ τ 1,1)(x) ∈ Dβ,k21 ,k
2
2 ,n

.

Let ψ1,1 := (τ 1,1, η1,1).

Since ψ1,1(x) ∈ Dβ,k21 ,k
2
2 ,n

, we know by Proposition 3.1 that there exists τ 1,2 such

that (τ 1,2 ◦ ψ1,1)(x) ∈ Dβ,k21 ,k
2
2 ,n

, τ 1,2 ∈ {Tk21 , Tk22 }
N
1,k21 ,k22 ,

∣∣∣|(τ 1,2)|k21 −
n · N1,k21 ,k

2
2

n + 1

∣∣∣ ≤ C

and

∣∣∣|(τ 1,2)|k22 −
N1,k21 ,k

2
2

n + 1

∣∣∣ ≤ C .
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Since (τ 1,2 ◦ ψ1,1)(x) ∈ Dβ,k21 ,k
2
2 ,n

we can apply Lemma 2.7 to (τ 1,2 ◦ ψ1,1)(x)

to obtain η1,2 such that |η1,2| ≤ L and (η1,2 ◦ τ 1,2 ◦ ψ1,1)(x) ∈ Dβ,k31 ,k
3
2 ,n

. Let

ψ1,2 := (ψ1,1, τ 1,2, η1,2).

We repeat this argument until eventually we obtain a sequence ψ1 of the form

ψ1 =
(
τ 1,1, η1,1, . . . , τ 1,M(M+1), η1,M(M+1)

)
,

such that |η1,p| ≤ L for all 1 ≤ p ≤ M(M + 1), τ 1,p ∈ {Tk p1 , Tk p2
}N1,k

p
1 ,k

p
2 for all

1 ≤ p ≤ M(M + 1), ψ1(x) ∈ Dβ,k11 ,k
1
2 ,n

,

∣∣∣|(τ 1,p)|k p1 −
n · N1,k p1 ,k p2

n + 1

∣∣∣ ≤ C

and

∣∣∣|(τ 1,p)|k p2 −
N1,k p1 ,k p2

n + 1

∣∣∣ ≤ C

for all 1 ≤ p ≤ M(M + 1). Let α1 = ψ1.

Step j + 1 Suppose we have constructed (ψ i )
j
i=1 and (αi )

j
i=1 which satisfy

1. For each 1 ≤ i ≤ j

αi = (ψ1, . . . , ψ i )

and αi (x) ∈ Dβ,k11 ,k
1
2 ,n

.

2. For each 1 ≤ i ≤ j

ψ i =
(
τ i,1, ηi,1, . . . , τ i,M(M+1), ηi,M(M+1)

)
.

3. For each 1 ≤ i ≤ j and 1 ≤ p ≤ M(M + 1) we have |ηi,p| ≤ L.

4. For each 1 ≤ i ≤ j and 1 ≤ p ≤ M(M + 1) we have τ i,p ∈ {Tk p1 , Tk p2
}Ni,k

p
1 ,k

p
2 .

5. For each 1 ≤ i ≤ j and 1 ≤ p ≤ M(M + 1) we have

∣∣∣|(τ i,p)|k p1 −
n · Ni,k p1 ,k p2

n + 1

∣∣∣ ≤ C (3.20)

and

∣∣∣|(τ i,p)|k p2 −
Ni,k p1 ,k p2

n + 1

∣∣∣ ≤ C . (3.21)
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Repeating the argument given in Step 1with x replaced byα j (x)we obtain a sequence

ψ j+1 :=
(
τ j+1,1, η j+1,1, . . . , τ j+1,M(M+1), η j+1,M(M+1)

)

such that ψ j+1,N (α j (x)) ∈ Dβ,k11 ,k
1
2 ,n

, |η j+1,p| ≤ L for all 1 ≤ p ≤ M(M + 1),

τ j+1,p ∈ {Tk p1 , Tk p2
}N j+1,k

p
1 ,k

p
2 for all 1 ≤ p ≤ M(M + 1),

∣∣∣|(τ j+1,p)|k p1 −
n · N j+1,k p1 ,k p2

n + 1

∣∣∣ ≤ C

and

∣∣∣|(τ 1,p)|k p2 −
N j+1,k p1 ,k p2

n + 1

∣∣∣ ≤ C

for all 1 ≤ p ≤ M(M + 1). We then let

α j+1 := (α j , ψ j+1).

Clearlyψ j+1 and α j+1 satisfy properties (1)−(5). This completes our inductive step.
By property (1) above it follows that α j is prefix of α j ′ for any j ′ > j , so the

limiting infinite sequence α is well defined. Clearly α ∈ �β,M (x) by property (1). By
Lemma 2.1 to prove our theorem it remains to show that α satisfies the required digit
frequency properties.

Observe that for any i ∈ N we have

∣∣∣|ψ i | −
M(M+1)∑

p=1

Ni,k p1 ,k p2

∣∣∣ ≤ LM(M + 1). (3.22)

Equation (3.22) follows fromproperties (2), (3), and (4). It follows from (3.19), (3.22),
and the fact

∑M(M+1)
p=1 rk p1 ,k p2

= 1 that

∣∣∣|ψ i | − Ni

∣∣∣ ≤ (L + 1)M(M + 1) (3.23)

for all i ∈ N. What is more, for any i ∈ N and k ∈ {0, . . . , M}, it follows from
properties (2) and (4), and equations (3.20) and (3.21) that

∣∣∣∣∣∣∣∣
|ψ i |k −

M∑

k2=0
k2 �=k

n · Ni,k,k2

n + 1
−

M∑

k1=0
k1 �=k

Ni,k1,k

n + 1

∣∣∣∣∣∣∣∣
≤ (L + C)M(M + 1).
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Using (3.19) we obtain

∣∣∣∣∣∣∣∣
|ψ i |k −

M∑

k2=0
k1 �=k

n · Ni · rk,k2
n + 1

−
M∑

k1=0
k1 �=k

Ni · rk1,k
n + 1

∣∣∣∣∣∣∣∣
≤ (L + C + 1)M(M + 1).

Applying (3.16) we see that

∣∣∣|ψ i |k − Ni · pk
∣∣∣ ≤ (L + C + 1)M(M + 1). (3.24)

For any n ∈ N there exists j ∈ N such that |α j | ≤ n < |α j+1|. Therefore for any
k ∈ {0, . . . , M} we have

|(αl)nl=1|k
n

≤ |α j+1|k
|α j |

≤ |α j+1|k
∑ j

i=1 Ni − j(L + 1)M(M + 1)
By (3.23)

≤ pk
∑ j+1

i=1 Ni + ( j + 1)(L + C + 1)M(M + 1)
∑ j

i=1 Ni − j(L + 1)M(M + 1)
By (3.24).

It follows from the above, (3.17), and (3.18) that

lim sup
n→∞

|(αl)nl=1|k
n

≤ pk .

Similarly, one can show that

lim inf
n→∞

|(αl)nl=1|k
n

≥ pk .

Consequently

lim
n→∞

|(αl)nl=1|k
n

= pk .

Since k was arbitrary this completes our proof. ��
Proof of Theorem 1.4 The proof of Theorem 1.4 is an adaptation of the proof of The-
orem 1.2. As such we just provide an outline and leave the details to the interested
reader. Let D and (pk)k∈Dc be as in the statement of Theorem 1.4. Under the assump-
tions of this theorem there exists q ∈ �M, 1

n+1
and q′ ∈ �M, 1

n+1
such that qk �= q ′

k for

all k ∈ D, and qk = q ′
k = pk for all k ∈ Dc.

Given an x ∈ (0, M
β−1 )we can carefully go through the argument given in the proof

of Theorem 1.2 to construct an α ∈ �β,M (x) satisfying the following three properties:
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1. There exists a sequence (Np) such that

lim
p→∞

|(αl)Np
l=1|k

Np
= qk

for all k ∈ D.

2. There exists a sequence (N ′
j ) such that

lim
j→∞

|(αl)N
′
j

l=1|k
N ′

j
= q ′

k

for all k ∈ D.

3. For all k ∈ Dc we have

lim
n→∞

|(αl)nl=1|k
n

= pk .

Since qk �= q ′
k for all k ∈ D it follows that α satisfies the required digit frequency

properties.
To construct the α ∈ �β,M (x) described above one proceeds initially as in the

proof of Theorem 1.2 as if we were trying to build an expansion with digit frequencies
described by the vector q. Once we have a sufficiently good approximation to q we
change our algorithm to construct an expansion with digit frequencies described by
q′, then once we have a sufficiently good approximation to q′ we switch back to q and
so on. ��

4 Proof of Theorem 1.6

In this section we prove Theorem 1.6. We split the proof into the following two
propositions.

Proposition 4.1 For all n ∈ N we have

1 + log n − log log n

n
< βn .

Proof Recall that βn is the unique solution in (1, 2) of the polynomial

fn(x) = xn+1 − xn − 1.
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Evaluating fn at 1 + log n−log log n
n we obtain

fn
(
1 + log n − log log n

n

)
=

(
1 + log n − log log n

n

)n+1

−
(
1 + log n − log log n

n

)n − 1

=
(
1 + log n − log log n

n

)n

(
1 + log n − log log n

n
− 1

)
− 1

≤ elog n−log log n · log n − log log n

n
− 1

= n

log n
· log n − log log n

n
− 1

= 1 − log log n

log n
− 1

< 0.

To obtain the third line above we used the fact that (1+ x
n )n ≤ ex for all x ≥ 0. Since

fn(1) < 0 and f ′
n(x) > 1 for all x ≥ 1 it follows from the above that 1+ log n−log log n

n <

βn . ��
Proposition 4.2 For any M ∈ N we have

β∗
M,n ≤ 1 + log(n + 1)

n + 1
+ O

(
1 + logM

n + 1

)
.

Proof Fix n ∈ N and M ∈ N. For any ε ∈ (0, n
n+1 ), N ∈ N and k ∈ {0, . . . , M}, let

Sε,N ,k :=
{
(ai )

N
i=1 ∈ {0, . . . , M}N : #{1 ≤ i ≤ N : ai = k}

N
≥ n

n + 1
− ε

}
.

Using a large deviation result of Hoeffding, in particular by Theorem 1 from [17]
applied with respect to the uniform measure, one can show that

#Sε,N ,k ≤ exp

(
N

((
1

n + 1
+ ε

)
logM −

(
n

n + 1
− ε

)
log

(
n

n + 1
− ε

)

−
(

1

n + 1
+ ε

)
log

(
1

n + 1
+ ε

)))
. (4.1)

Suppose now that

exp

((
1

n + 1
+ ε

)
logM −

(
n

n + 1
− ε

)
log

(
n

n + 1
− ε

)

−
(

1

n + 1
+ ε

)
log

(
1

n + 1
+ ε

))
< β. (4.2)
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We will show that

{
x ∈

[
0,

M

β − 1

]
: �M, 1

n+1
⊆ �M,β(x)

}

has Lebesgue measure zero for all β satisfying (4.2). We start by remarking that

{
x ∈

[
0,

M

β − 1

]
: �M, 1

n+1
⊆ �M,β(x)

}
⊆

∞⋂

L=1

∞⋃

N=L

⋃

(ai )∈Sε,N ,k

[
N∑

i=1

ai
β i

,

N∑

i=1

ai
β i

+ M

βN (β − 1)

]
(4.3)

for any k ∈ {0, . . . , M} and ε > 0. We show that the right hand side of (4.3) has zero
Lebesgue measure. Denoting by L the Lebesgue measure, it suffices to show by the
Borel–Cantelli lemma that

∞∑

N=1

∑

(ai )∈Sε,N ,K

L
([

N∑

i=1

ai
β i

,

N∑

i=1

ai
β i

+ M

βN (β − 1)

])
< ∞.

Which at once follows from

∞∑

N=1

∑

(ai )∈Sε,N ,K

L
([

N∑

i=1

ai
β i

,

N∑

i=1

ai
β i

+ M

βN (β − 1)

])
=

∞∑

N=1

M · #Sε,N ,k

βN (β − 1)
< ∞

where the final inequality holds by (4.1) and (4.2). It follows that

{
x ∈

[
0,

M

β − 1

]
: �M, 1

n+1
⊆ �M,β(x)

}

has Lebesgue measure zero. So we may conclude that

β∗
M,n ≤ exp

((
1

n + 1
+ ε

)
logM −

(
n

n + 1
− ε

)
log

(
n

n + 1
− ε

)

−
(

1

n + 1
+ ε

)
log

(
1

n + 1
+ ε

))
.

Since ε is arbitrary it follows that

β∗
M,n ≤ exp

( logM
n + 1

− n

n + 1
log

n

n + 1
− 1

n + 1
log

1

n + 1

)
. (4.4)

Observe that

− n

n + 1
log

n

n + 1
≤ 1

n + 1
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for all n ∈ N. Substituting this bound into (4.4) we obtain

β∗
M,n ≤ exp

( log(n + 1)

n + 1
+ 1 + logM

n + 1

)
.

Using the expansion of ex = 1 + x + O(x2) we obtain

β∗
M,n ≤ 1 + log(n + 1)

n + 1
+ 1 + logM

n + 1
+ O

(( log(n + 1)

n + 1
+ 1 + logM

n + 1

)2)

= 1 + log(n + 1)

n + 1
+ O

(1 + logM

n + 1

)
.

��

Combining Propositions 4.1 and 4.2 we deduce Theorem 1.6.

5 Applications to biased Bernoulli convolutions

Given M ∈ N and q = (q0, . . . , qM ) ∈ �M , one can define a product measure Pq :=∏∞
1 {q0, . . . , qM } on {0, . . . , M}N. Given a β > 1, one then defines the Bernoulli

convolution associated to q via the equation

μq(E) = Pq

({
(ai ) ∈ {0, . . . , M}N :

∞∑

i=1

ai
β i

∈ E
})

,

where E is an arbitrary Borel subset of R. Bernoulli convolutions have been studied
since the 1930’s. They’ve connections with algebraic numbers, dynamical systems,
and fractal geometry. The fundamental question surrounding Bernoulli convolutions is
to determine those β ∈ (1, M + 1] and q ∈ �M such that μq is absolutely continuous
with respect to the Lebesgue measure. For more on this class of measures we refer the
reader to the surveys of Peres et al. [24], and Varju [25].

Given x ∈ Iβ,M one defines the lower and upper local dimensions of μq at x to be

dμq
(x) = lim inf

r→0

logμq([x − r , x + r ])
log r

and

dμq(x) = lim sup
r→0

logμq([x − r , x + r ])
log r

respectively. These quantities describe how the measure μq scales locally around a
point x .We remark that when it comes to calculating dμq

and dμq it suffices to consider

sequences of the form rN := M
βN (β−1)

.
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Proposition 5.1 Let x ∈ Iβ,M and p ∈ �M. Suppose there exists (ai ) ∈ �β,M (x)
satisfying freqk(ai ) = pk for all 0 ≤ k ≤ M . Then

dμq(x) ≤ −
M∑

k=0

pk log qk
logβ

.

Proof For any x ∈ Iβ,M and (ai ) ∈ �β,M (x) we have

μq

([ N∑

i=1

ai
β i

,

N∑

i=1

ai
β i

+ M

βN (β − 1)

])
≤ μq

([
x − M

βN (β − 1)
, x + M

βN (β − 1)

])
.

In which case it follows from the definition of μq that

M∏

k=0

q#{1≤i≤N :ai=k}
k ≤ μq

([
x − M

βN (β − 1)
, x + M

βN (β − 1)

])
.

Consequently,

lim sup
r→0

logμq([x − r , x + r ])
log r

= lim sup
N→∞

logμq([x − M
βN (β−1)

, x + M
βN (β−1)

])
log M

βN (β−1)

≤ lim sup
N→∞

M∑

k=0

#{1 ≤ i ≤ N : ai = k} log qk
log M

βN (β−1)

= −
M∑

k=0

pk log qk
logβ

.

��
Given q as above we let

q∗ = max
k

qk and q∗∗ = max
k:qk �=q∗ qk .

The following result follows immediately from Theorem 1.2 and Proposition 5.1.

Corollary 5.2 Let M ∈ N and β ∈ (1, βn). Then for any q as above and x ∈ (0, M
β−1 )

we have

dμq(x) ≤ − (n log q∗ + log q∗∗)
(n + 1) logβ

.

As an example, choosing M = 2, β = 1.28, and q = (0.8, 0.15, 0.05), Corollary 5.2
can be applied with n = 5 to show that

dμq(x) ≤ 2.034 . . .
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for all x ∈ (0, M
β−1 ).

Similarly, combining Theorem 1.1 and Proposition 5.1 we conclude the following
statement.

Corollary 5.3 Let M = 1 andβ ∈ (1, βT ].Then for any q = (q1, q2) and x ∈ (0, 1
β−1 )

we have

dμq(x) ≤ − (log q1 + log q2)

2 logβ
.
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