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Abstract

We offer a new explanation as to why international trade is so volatile in
response to economic shocks. Our approach combines the idea of uncertainty
shocks with international trade. In an open economy framework, firms order
inputs from home and foreign suppliers, but with higher costs in the latter
case. Due to fixed costs of ordering firms hold an inventory of inputs. In
response to an uncertainty shock firms optimally adjust their inventory by
cutting orders of foreign inputs disproportionately strongly. In the aggregate,
this leads to a bigger contraction in international trade flows than in domestic
activity, a magnification effect. We confront the model with newly-compiled
U.S. import data and industrial production data going back to 1962, and also
with disaggregated data at the industry level back to 1989. Our results suggest
a tight link between uncertainty and fluctuations in international trade.
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1. Introduction

The recent global economic crisis saw an unusually large and rapid decline in output

across the world. Yet, even more striking, the accompanying decline in international trade

volumes was sharper still, and almost twice as big. Globally, industrial production fell

12% and trade volumes fell 20% in the 12 months from April 2008, shocks of a magnitude

not witnessed since the Great Depression (Eichengreen and O’Rourke 2010). Just as

the causes of the trade collapse in the 1930s are hotly disputed to this day, so too, we

think, the recent reprise will be an object of debate by economists for years to come.

Why? Already one clear reason stands out, which is that standard, extant models of

international trade and macroeconomics fail to account for the severity of the events in

2008–09 now known as the Great Trade Collapse.

As we shall explain in the next section of the paper, it is quite easy for these models—

based on standard first-moment shocks, which we do not deny are clearly in operation—to

explain why trade falls in proportion to output, or demand. But, without the addition

of auxiliary arguments based on the composition of trade—plus a theory as to why

some components fall disproportionately—such models cannot easily explain why trade

typically falls roughly twice as much as GDP in massive downturn episodes like the

post-2008 years or the early 1930s.

In this paper, we attempt to explain why, international trade is so much more volatile

in response to economic shocks. And rather than assuming composition effects, we

provide a theory as to why some components of trade are more volatile than others. On

the theoretical side, we combine the uncertainty shock concept due to Bloom (2009) with

a model of international trade. This real options approach is motivated by high-profile

events that trigger an increase in uncertainty about the future path of the economy, for

example the 9/11 terrorist attacks or the collapse of Lehman Brothers. In the wake

of such events, firms adopt a ‘wait-and-see’ approach, slowing down their hiring and
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investment activities. Bloom shows that bouts of heightened uncertainty can be modeled

as second-moment shocks to demand or productivity and that these events typically lead

to sharp recessions. Once the degree of uncertainty subsides, firms revert to their normal

hiring and investment patterns, and the economy recovers.

We bring the uncertainty shock approach into an open economy. Unlike the previous

closed-economy set-up, ours is a theoretical framework in which firms import nondurable

(‘material’) and durable (‘capital’) inputs from foreign and domestic suppliers. This

structure is motivated by the observation that a large fraction of international trade now

consists of goods such as industrial machinery or capital goods, a feature of the global

production system which has taken on increasing importance in recent decades.1

In the model we develop, due to fixed costs of ordering associated with transportation,

firms hold an inventory of inputs but the ordering costs are larger for foreign inputs.

Following the inventory model with time-varying uncertainty by Hassler (1996), we

show that in response to a large uncertainty shock in business conditions, whether to

productivity or the demand for final products, firms will optimally execute their inventory

policy by cutting orders of foreign inputs much more than for domestic inputs. Hence, in

the aggregate, this differential response leads to a bigger contraction and subsequently a

stronger recovery in international trade than in domestic trade—that is, trade exhibits

more volatility. In a nutshell, uncertainty shocks magnify the response of international

trade, given the differential cost structure.

1See, e.g., Campa and Goldberg (1997); Feenstra and Hanson (1999); Eaton and Kortum

(2001); Engel and Wang (2011). The World Bank WITS database reports that in 2014,

capital goods made up 31% of global trade, compared to 33% for consumer goods, 21%

for intermediate goods and 11% for raw materials. Levchenko, Lewis, and Tesar (2010)

stress that sectors with goods used as intermediate inputs experienced substantially

bigger drops in international trade during the Great Recession. Likewise, Bems, Johnson,

and Yi (2011) confirm the important role of trade in intermediate goods.
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This is a new prediction which has never been tested before, or even proposed, but we

show that it is matched by the data. On the empirical side, we confront the model with

high-frequency monthly U.S. import and industrial production data, some of it new and

hand-collected, going back to 1962. Our results suggest a tight link between uncertainty

shocks and the cyclical behavior of international trade when we employ an identical VAR

empirical framework to the one pioneered by Bloom (2009) but applied here to trade

as well as output data. Specifically, we find that imports respond negatively, and in a

statistically significant way, and more than output, when there is a shock to a standard

uncertainty measure, the VXO stock market option-implied volatility index.

We can further show that our proposed model generates a wider array of additional

and original testable predictions, which we also take to the data and test in this paper. The

magnification effect should be muted for industries characterized by high depreciation

rates. Nondurable goods are a case in point. The fact that such goods have to be ordered

frequently means that importers have little choice but to keep ordering them even if

uncertainty rises. Conversely, durable goods can be seen as representing the opposite

case of very low depreciation rates. Our model predicts that for those goods we should

expect the largest degree of magnification in response to uncertainty shocks. Intuitively,

the option value of waiting is most easily realized by delaying orders for durable goods.

We find strong evidence of this pattern in the data when we examine the cross-industry

response of imports to uncertainty shocks using U.S. disaggregated monthly trade data,

also a first result of its kind.

We stress that the magnification effect is in operation within industries, by varying

extent as predicted by the model. Using disaggregated data we find that the effect is

strongest in the durable and capital goods sectors, and weak to nonexistent in other

sectors. Our results are therefore not driven by composition effects—that is, they arise

not merely from the fact that international trade is more heavy in durable goods.

To wrap up, we show how our proposed mechanism helps to quantitatively explain
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a part of the Great Trade Collapse of 2008–09. We use the VAR model in a simulation

exercise and impose shocks that reproduce the exceptional rise in uncertainty in 2008

(from the subprime crisis to the collapse of Lehman Brothers). Using standard Cholesky

ordering to ensure identification of the response in the trade equation to an uncertainty

shock, whilst simultaneously controlling for first-moment shocks to business conditions

proxied by employment, we show empirically that second-moment shocks have a sizeable

and independent effect on trade. The result holds also for just the exogenous shocks

(terror/war/oil) identified by Bloom (2009). Crucially, using disaggregated data, we can

show that these uncertainty effects are concentrated in exactly the traded sectors needed

to match the compositional variation seen in the trade collapse. The results suggest that

if we place a lot of emphasis on uncertainty shocks, up to one-half of the unusually large

decline in trade in 2008–09 was in response to this spike in uncertainty.2

Thus, although it stands out quantitatively, the recent downturn is qualitatively quite

comparable to previous postwar contractions in international trade and can be modeled

similarly. In fact, we think that our approach may advance our understanding of trade

contractions and volatility over the long run, not only during the Great Trade Collapse.

The paper is organized as follows. In section 2 we review the literature. In sections 3,

4 and 5 we outline our theoretical model, do comparative statics, and present simulation

results. Section 6 presents our empirical evidence. In section 7 we ask to what extent

uncertainty shocks can empirically account for the recent Great Trade Collapse. Section 8

concludes. We also provide a detailed online appendix.

2Similarly, Bloom, Bond and Van Reenen (2007) provide empirical evidence that fluctu-

ations in uncertainty can lead to quantitatively large adjustments of firms’ investment

behavior.
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2. The Literature on the Great Trade Collapse

Departing from conventional static trade models, such as those based on the gravity

equation, our paper focuses on the dynamic response of international trade. The novelty

is that shocks to the volatility of idiosyncratic disturbances, i.e., second-moment shocks,

can be the driver of very different changes in imported and domestic inputs. Previous

theoretical and empirical work has almost exclusively focused on first-moment shocks, e.g.,

to productivity, exchange rates, or trade costs. Our approach is relevant for researchers

and policymakers alike who seek to understand the crash and recovery process in

response to the Great Recession, and may also be relevant for understanding historical

events like the 1930s Great Depression. It could also help account for the response of

international trade in future economic crises.

We are not the first authors to consider uncertainty and real option values in the

context of international trade, but so far the literature has not focused on uncertainty shocks.

For example, Baldwin and Krugman (1989) adopt a real options approach to explain the

hysteresis of trade in the face of large exchange rate swings but their model only features

standard first-moment shocks. More recently, the role of uncertainty has attracted new

interest in the context of trade policy and trade agreements (Handley 2014; Handley

and Limão 2015; Limão and Maggi 2015). Closer to our approach, in independent

and contemporaneous work Taglioni and Zavacka (2012) empirically investigate the

relationship between uncertainty and trade for a panel of countries using quarterly as

opposed to monthly data. But they do not provide a theoretical mechanism, and do not

speak to variation across industries.3

3Whilst Bloom (2009) considers U.S. domestic data, Carrière-Swallow and Céspedes

(2013) consider domestic data on investment and consumption across 40 countries and

their response to uncertainty shocks. Gourio, Siemer and Verdelhan (2013) examine the

performance of G7 countries in response to heightened volatility. None of these papers
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The Great Trade Collapse of 2008–09 has been documented by many authors (see

Baldwin 2009 for a collection of approaches, and Bems, Johnson, and Yi 2013 for a survey).

Eaton, Kortum, Neiman, and Romalis (2016) develop a structural model of international

trade where the decline in trade is attributed to various combined first-moment shocks,

in particular a decline in the efficiency of investment in durable manufactures, a collapse

in the demand for tradable goods, and an increase in trade frictions.4 They find that

the first explains the majority of declining trade. Our approach is different in that the

collapse in demand is generated by a second-moment uncertainty shock, and we can

endogenize the differential response across sectors. Firms react to the uncertainty by

adopting a ‘wait-and-see’ approach, and we do not require first-moment shocks or an

increase in trade frictions to account for the excess volatility of trade.

Our approach is consistent with the view that trade frictions did not materially

change in the recent crisis. Evenett (2010) and Bown (2011) find that protectionism was

contained during the Great Recession. This view is underlined by Bems, Johnson, and Yi

(2013). More specifically, Kee, Neagu, and Nicita (2013) find that less than two percent of

the Great Trade Collapse can be explained by a rise in tariffs and antidumping duties.

Bown and Crowley (2013) find that, compared to previous downturns, during the Great

Recession governments notably refrained from imposing temporary trade barriers against

partners who experienced economic difficulties.

Works by Amiti and Weinstein (2011) and Chor and Manova (2012) highlight the role

of financial frictions and the drying up of trade credit. However, based on evidence

from Italian manufacturing firms Guiso and Parigi (1999) show that the negative effect

consider international trade flows.
4Leibovici and Waugh (2019) show that the increase in implied trade frictions can be

rationalized by a model with time-to-ship frictions such that agents need to finance future

imports upfront (similar to a cash-in-advance technology) and become less willing to

import in the face of a negative income shock.
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of uncertainty on investment cannot be explained by liquidity constraints. We do not

incorporate credit frictions here, but such mechanisms may be complementary to our

approach and we do not rule out a role for other mechanisms.

As Engel and Wang (2011) point out, the composition of international trade is tilted

towards durable goods. Building a two-sector model in which only durable goods are

traded, they can replicate the higher volatility of trade relative to general economic activity.

In contrast, we relate the excess volatility of trade to inventory adjustment in response to

uncertainty shocks. As this mechanism applies within an industry, compositional effects

do not drive the volatility of international trade in our model.

Our paper is also related to works by Alessandria, Kaboski, and Midrigan (2010a;

2011) who rationalize the decline in international trade by changes in firms’ inventory

behavior driven by a first-moment supply shock and procyclical inventory investment

(Ramey and West 1999). In contrast, we focus on the role of increased uncertainty when

second-moment shocks are the driver of firms’ inventory adjustments. In our U.S. data,

heightened uncertainty stands out as a defining feature of the Great Recession, and

we employ an observable measure of it. On the other hand, as we show, there is little

evidence in the U.S. data of a major first-moment TFP shock coincident with the onset of

the crisis.

Last but not least, Alessandria, Choi, Kaboski and Midrigan (2015) model second-

moment shocks but their framework does not have inventory. As far as we are aware,

ours is the first paper to jointly model inventory holdings and uncertainty shocks in one

framework. Unlike in our paper, a second-moment shock in Alessandria et al. (2015) is

a shock to the variance of the heterogeneous productivity distribution. They find that

trade rises in response to a second-moment shock. This result is driven by the differential

impact of the rising productivity dispersion on exporters vs. non-exporters. Intuitively,

exporters tend to be in the upper tail of the productivity distribution. Increases in the

dispersion of productivity shocks thus confer an even greater advantage to exporters
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compared to non-exporters.5 This is different from our setting where the probability of

getting hit by a shock changes symmetrically for all firms, and trade falls in response to a

second-moment shock.

3. A Model of Trade with Uncertainty Shocks

We adopt Hassler’s (1996) setting of investment under uncertainty and embed it into a

model of trade in capital inputs. We then introduce second-moment uncertainty shocks.

Hassler’s (1996) model starts from the well-established premise that uncertainty has

an adverse effect on investment. In our setup, we model ‘investment’ as firms’ investing

in inventory of capital inputs required for production. Due to fixed costs of ordering firms

build up an inventory that they run down over time and replenish at regular intervals.

Some inputs are ordered domestically, and others are imported from abroad. Thus, we

turn the model into an open economy.

In addition, firms will face uncertainty over ‘business conditions’ (using Bloom’s ter-

minology), which means they experience unexpected fluctuations in productivity and/or

demand. What’s more, the degree of uncertainty varies over time. Firms might therefore

enjoy periods of calm when business conditions are relatively stable, or they might have

to weather ‘uncertainty shocks’ that lead to a volatile business environment characterized

by large fluctuations. Overall, this formulation allows us to model the link between

production, international trade, and shifting degrees of uncertainty. Hassler’s (1996) key

innovation is to formally model how changes in uncertainty influence investment. His

model therefore serves as a natural starting point for our analysis of uncertainty shocks.

5As Alessandria et al. (2015) recognize, they uncover “a puzzle for the standard

business cycle model used to understand micro-level trade dynamics: Increases in firm-

level dispersion lead to large increases in trade rather than the steep declines typically

observed during recessions.”
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3.1. Production and Demand

Each firm has a Cobb-Douglas production function

F(A, KD, KF) = AKα
DK1−α

F , (1)

where A is productivity, KD is a capital input sourced domestically and KF is a capital

input sourced from foreign suppliers. We assume that KD and KF are differentiated

through the Armington assumption so that firms need to import both types. These capital

inputs depreciate at rate δ (so ‘durable’ would map to low δ, ‘nondurable’ to high δ).

Each firm faces isoelastic demand Q for its output, with elasticity σ, so that

Q = BP−σ, (2)

where B is a demand shifter. As we focus on the firm’s short-run behavior, we assume

that the firm takes the prices of the production factors as given and serves the demand for

its product.6 We thus adopt a partial equilibrium approach to keep the model tractable.

6We do not model monetary effects and prices. This modeling strategy is supported by

the empirical regularity documented by Gopinath, Itskhoki, and Neiman (2012) showing

that prices of differentiated manufactured goods (both durables and nondurables) hardly

changed during the Great Trade Collapse of 2008–09. They conclude that the sharp

decline in the value of international trade in differentiated goods was “almost entirely a

quantity phenomenon.” In contrast, prices of non-differentiated manufactures decreased

considerably. In the empirical part of the paper, however, we most heavily rely on

differentiated products. For a sample that also includes non-US countries, Haddad,

Harrison and Hausman (2010) find some evidence of rising manufacturing import prices,

consistent with the hypothesis of supply side frictions such as credit constraints.
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3.2. Inventory and Trade

The factors KD and KF are capital inputs, say, specialized machinery from domestic and

foreign suppliers. Later on, in our empirical trade and production data at the 4-digit

industry level, examples include ‘electrical equipment’, ‘engines, turbines, and power

transmission equipment’, ‘communications equipment,’ and ‘railroad rolling stock.’ We

can consider the firm described in our model as ordering a mix of such products.7

Since the inputs depreciate, the firm has to reorder them once in a while. As the firm

has to pay a fixed cost of ordering per shipment, it stores the inputs as inventory and

follows an s, S inventory policy. Scarf (1959) shows that in the presence of such fixed

costs of ordering, an s, S policy is an optimal solution to the dynamic inventory problem.

Ordering inputs leads to domestic trade flows and imports, respectively. We assume that

ordering foreign inputs is associated with higher fixed costs compared to domestic inputs,

0 < fD < fF. This assumption is consistent with evidence by Kropf and Sauré (2014) who

show that fixed costs per shipment are strongly correlated with shipping distance, and

they are substantially higher between countries speaking different languages and not

sharing a free trade agreement. Otherwise, we treat the two types of fixed costs in the

same way.8

Given the input prices, the Cobb-Douglas production function (1) implies that the

firm’s use of KD and KF is proportional to output Q regardless of productivity and

demand fluctuations. Similar to Hassler (1996) we assume that the firm has target levels

7This setup is related to a situation where inventories are seen as a factor of production

(Ramey 1989).
8Guided by the empirical evidence on the importance of adjustment through the

intensive margin (Behrens, Corcos, and Mion 2013; Bricongne, Fontagné, Gaulier, Taglioni,

and Vicard 2012), we do not model firms’ switching from a foreign to a domestic supplier,

or vice versa. As we discuss in section 5, this would arguably reinforce the negative

impact of uncertainty shocks on imports.
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of inputs to be held as inventory, denoted by M∗D and M∗F, which are proportional to both

Q as well as KD and KF, respectively. Thus, we can write

m∗D = cD + q, (3)

where cD is a constant, m∗D ≡ ln(M∗D) denotes the log inventory target, and q ≡ ln(Q)

denotes log output. Grossman and Laroque (1990) show that such a target level can

be rationalized as the optimal solution to a consumption problem in the presence of

adjustment costs.9 In our context the target level can be similarly motivated if it is costly

for the firm to adjust its level of production up or down. An analogous equation holds

for m∗F but, for simpler notation, we drop the D and F subscripts from now on.

We follow Hassler (1996) in modeling the dynamic inventory problem. In particular,

we assume a quadratic loss function that penalizes deviations z from the target m∗ as 1
2 z2

with z ≡ m−m∗. Note that the loss function is specified in logarithms such that when

expressed in levels, negative deviations from the target are relatively more costly. Losses

associated with negative deviations could be seen as the firm’s desire to avoid a stockout.

Losses associated with positive deviations could be seen as a desire to avoid excessive

storage costs. We refer to the theory appendix where we discuss stockout avoidance in

more detail and introduce an asymmetric loss function based on Elliott, Komunjer and

Timmermann (2005).

Clearly, in the absence of ordering costs, the firm would choose to continuously set m

equal to the target m∗, with zero deviation. However, since we assume positive ordering

9In their model consumers have to decide how much of a durable good they should

hold given that they face fluctuations in their wealth. Adjustment is costly due to

transaction costs. Under the assumption of the consumers’ utility exhibiting constant

relative risk aversion, the optimal amount of the durable good turns out to be proportional

to their wealth.
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costs ( f > 0), the firm faces a trade-off: balancing the fixed costs on the one hand and the

costs of deviating from the target on the other. Changes in inventory are brought about

whenever the firm pays the fixed costs f to adjust m.10

We solve for the optimal solution to this inventory problem subject to a stochastic

process for output q. The optimal control solution can be characterized in the following

way: when the deviation of inventory z reaches a lower trigger point s, the firm orders the

amount φ so that the inventory rises to a return point of deviation S = s + φ.11 Formally,

we can state the problem as follows:

min
{It,zt}∞

0

{
E0

∫ ∞

0
e−rt

(
1
2

z2
t + It f

)
dt
}

(4)

subject to

z0 = z;

zt+dt =

 free if mt is adjusted,

zt − δdt− dq otherwise;

Itdt =

 1 if mt is adjusted,

0 otherwise.

It is a dummy variable that takes on the value 1 whenever the firm adjusts mt by paying

f , r > 0 is a constant discount rate, and δ > 0 is the depreciation rate for the input so

that dKt/K = δdt. Note that the input only depreciates if used in production, not if it is

10As an alternative interpretation, we could also regard the firm’s problem as a capital

investment problem. The firm faces a fixed adjustment cost due to the ordering costs and

a quadratic penalty for deviating in investment from the target. This interpretation is

more closely in line with Engel and Wang (2011).
11That is, in full notation, we have sD, SD, φD for domestic inputs and sF, SF, φF for

foreign inputs.
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merely in storage as inventory.

3.3. Business Conditions with Time-Varying Uncertainty

Due to market clearing, output can move due to shifts in productivity A in equation (1)

or demand B in equation (2). We refer to the combination of supply and demand shifters

as business conditions. Specifically, we assume that output q follows a stochastic marked

point process that is known to the firm. With an instantaneous probability λ/2 per unit

of time and λ > 0, q shifts up or down by the amount ε:

qt+dt =


qt + ε with probability (λ/2)dt,

qt with probability 1− λdt,

qt − ε with probability (λ/2)dt.

(5)

The shock ε can be interpreted as a sudden change in business conditions. Through the

proportionality between output and the target level of inventory embedded in equation

(3), a shift in q leads to an updated target inventory level m∗. Following Hassler (1996)

we assume that ε is sufficiently large such that it becomes optimal for the firm to adjust

m.12 That is, a positive shock to output increases m∗ sufficiently to lead to a negative

deviation z that reaches below the lower trigger point s. As a result the firm restocks m.

Vice versa, a negative shock reduces m∗ sufficiently such that z reaches above the upper

12Hassler (1996, section 4) reports that relaxing the large shock assumption, while

rendering the model more difficult to solve, appears to yield no qualitatively different

results. Choosing different values for ε does not affect our simulation results in section 5

as long as ε is sufficiently large to trigger adjustment. The reason is that in the aggregate

across many firms, the idiosyncratic shocks wash out to zero. We note that the shock is

permanent, but the frequency with which the firm gets hit by the shock is subject to a

stochastic transition process as given in expression (6). We are not aware of evidence in

this context as to whether firms get predominantly hit by transitory or permanent shocks.
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trigger point and the firm destocks m.13 Thus, to keep our model tractable we allow the

firm to both restock and destock depending on the direction of the shock.

The process (5) has a first moment equal to zero and constant, independent of ε. In

what follows, we hold ε fixed. Thus, the arrival rate of shocks λ is the main measure of

uncertainty and will be our key parameter of interest. It determines the second moment of

shocks. We interpret changes in λ as changes in the degree of uncertainty. Note that λ

determines the frequency of shocks, not the size of shocks. Higher uncertainty here does

not mean an increased probability of larger shocks.

Specifically, as the simplest possible set-up, we follow Hassler (1996) by allowing an

indexed level of uncertainty λω to switch stochastically between two states ω ∈ {0, 1}: a

state of low uncertainty λ0 and a state of high uncertainty λ1 with λ0 < λ1. The transition

of the uncertainty states follows a Markov process

ωt+dt =

 ωt with probability 1− γωdt,

ωt with probability γωdt,
(6)

where ωt = 1 if ωt = 0, and vice versa. The probability of switching the uncertainty state

in the next instant dt is therefore γωdt, with the expected duration until the next switch

given by γ−1
ω .

Below, when we calibrate the model, we will choose parameter values for λ0, λ1, γ0

and γ1 that are consistent with uncertainty fluctuations as observed over the past few

decades.14 We assume the firm knows the parameters of the stochastic process described

13To keep the exposition concise we do not explicitly describe the upper trigger point,

and focus on the lower trigger point s and the return point S. But it is straightforward to

characterize the upper trigger point.
14Overall, the stochastic process for uncertainty is consistent with Bloom’s (2009). In

his setting uncertainty also switches between two states (low and high uncertainty) with

given transition probabilities. But he models uncertainty as the time variation of the
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by (5) and (6) and takes them into account when solving its optimization problem (4).

The theory appendix shows how the Bellman equation for the inventory problem can

be set up and how the system can be solved. We have to use numerical methods to obtain

values for the four main endogenous variables of interest: the bounds s0 and S0 for the

state of low uncertainty λ0, and the bounds s1 and S1 for the state of high uncertainty λ1.

4. Time-Varying Uncertainty and Firm Inventory Behavior

The main purpose of this section is to explore how the firm endogenously changes its s, S

bounds in response to increased uncertainty. Our key result is that the firm lowers the

bounds in response to increased uncertainty. In addition, we are interested in comparative

statics for the depreciation rate δ and the fixed cost of ordering f . As just explained, the

model cannot be solved analytically, so we use numerical methods.

4.1. Parameterizing the Model

We choose the same parameter values for the interest rate and rate of depreciation as

Bloom (2009), i.e., r = 0.065 and δ = 0.1 per year. The interest rate value corresponds

to the long-run average for the U.S. firm-level discount rate. Based on data for the U.S.

manufacturing sector from 1960 to 1988, Nadiri and Prucha (1996) estimate depreciation

rates of 0.059 for physical capital and 0.12 for R&D capital. As reported in their paper,

those are somewhat lower than estimates by other authors. We therefore take δ = 0.1 as a

reasonable baseline, although NIPA-based estimates are usually lower.

For the stochastic uncertainty process described by equations (5) and (6) we choose

parameter values that are consistent with Bloom’s (2009) data on stock market volatility.

In his Table II he reports that an uncertainty shock has an average half-life of 2 months.

This information can be expressed in terms of the transition probabilities in equation (6)

volatility of a geometric random walk.
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with the help of a standard process of exponential decay for a quantity Dt:

Dt = D0 exp(−gt).

Setting t equal to 2/12 years yields a rate of decay g = 4.1588 for Dt to halve. The decaying

quantity Dt in that process can be thought of as the number of discrete elements in a

certain set. We can then compute the average length of time that an element remains in

the set. This is the mean lifetime of the decaying quantity, and it is simply given by g−1.

It corresponds to the expected duration of the high-uncertainty state, γ−1
1 , which is then

given by 4.1588−1 = 0.2404 years (88 days) with γ1 = g = 4.1588.

Bloom (2009) furthermore reports a frequency of 17 uncertainty shocks in 46 years.

Hence, an uncertainty shock arrives on average every 46/17 = 2.7059 years. Given the

duration of high-uncertainty periods from above, in our model this would imply an

average duration of low-uncertainty periods of 2.7059− 0.2404 = 2.4655 years. It follows

from this that γ0 = 2.4655−1 = 0.4056.

The uncertainty term λdt in the marked point process (5) indicates the probability

that output is hit in the next instant by a supply or demand shock that is sufficiently

large to shift the target level of inventory. Thus, the expected length of time until the next

shock is λ−1. It is difficult to come up with an empirical counterpart of the frequency

of such shocks since they are unobserved. For the baseline level of uncertainty we set

λ0 = 1, which implies that the target level of inventory is adjusted on average once a year.

This value can therefore be interpreted as an annual review of inventory policy.

However, we point out here that our results are not particularly sensitive to the λ0

value. In our baseline specification we follow Bloom (2009, Table II) by doubling the

standard deviation of business conditions in the high-uncertainty state. This corresponds

to λ1 = 4.15 In the comparative statics below we also experiment with other values for λ1.

An uncertainty shock is defined as a sudden shift from λ0 to λ1, with the persistence of

15For a given λ, the conditional variance of process (5) is proportional to λ so that the
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the high-uncertainty state implied by γ1.

Finally, we need to find an appropriate value for the fixed costs of ordering, fF and

fD. Based on data for a U.S. steel manufacturer, Alessandria, Kaboski, and Midrigan

(2010b) report that “domestic goods are purchased every 85 days, while foreign goods

are purchased every 150 days.” To match the behavior of foreign import flows we set fF

to ensure that the interval between orders is on average 150 days in the low-uncertainty

state.16 This implies fF = 0.00005846 as our baseline value. Matching the interval of

85 days for domestic flows would imply fD = 0.00001057. These fixed costs differ by a

large amount (by a factor of about 5.5), and that difference might seem implausibly large.

However, in the theory appendix we show that quantitatively we can still obtain large

declines in trade flows in response to uncertainty shocks even with values for fF that are

not so high as in this baseline specification. That is, we are able to obtain a large decline

in trade flows for a ratio of fF/ fD that is lower than implied by the above values, and

which might be considered more realistic.

standard deviation is proportional to the square root of λ. Thus, we have to quadruple

λ0 to double the standard deviation. This parameterization is also consistent with Bloom,

Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018, Table V). They roughly double the

standard deviation in the high-uncertainty state at the aggregate level. They more than

triple it based on an idiosyncratic shock process and micro-level data. But since there are

no idiosyncratic shocks in our model, we prefer to side with the more conservative rise.
16In the model the interval between orders corresponds to the normalized bandwidth,

(S0 − s0)/δ. In the case of fF we set it equal to 150 days, or 150/365 years. Hornok and

Koren (2015) report that the average time for importing across 179 countries, excluding

the actual shipping time, is around one month. Longer shipping times are associated

with less frequent shipments. Also see Kropf and Sauré (2014) for estimates of substantial

fixed shipment costs based on transaction-level data.
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Figure 1: Change in s, S bounds (trigger point, return point) due to higher uncertainty. The

low-uncertainty state is in grey, the high-uncertainty state is in black.

4.2. A Rise in Uncertainty

Given the above parameter values we solve the model numerically. Figure 1 illustrates

the change in s, S bounds in response to rising uncertainty. The vertical scale indicates

the percentage deviation from the target m∗. Note that there are two sets of s, S bounds:

one set for the low-uncertainty state 0, and the other for the high-uncertainty state 1.

The level of low uncertainty is fixed at λ0 = 1 but the level of high uncertainty λ1 varies

on the horizontal axis (as our baseline value we will use λ1 = 4 in later sections). At

λ0 = λ1 = 1 the bounds for the two states coincide, by construction. As the s, S bounds

are endogenous, all of them in principle shift in response to an increase λ1. But clearly,

the bounds for the low-uncertainty state are essentially not affected by a rising λ1.

Two observations stand out. First, the lower trigger point always deviates further from

the target than the return point. This is true for both states of uncertainty (i.e., |s0| > S0

and |s1| > S1). As we show in the theory appendix, in the presence of uncertainty a

symmetric band around the target (i.e., |sω| = S0) would not be optimal. The reason is
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Figure 2: Summary: How uncertainty pushes down the s, S bounds and increases the bandwidth.
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that with uncertainty, there is a positive probability of the firm’s output getting hit by a

shock, leading the firm to adjust its inventory to the return point. Thus, the higher the

shock probability, the more frequently the firm would adjust its inventory above target.

To counteract this tendency it is optimal for the firm to set the return point relatively

closer to the target.

Second, the bounds for the high-uncertainty state decrease with the extent of uncer-

tainty, i.e., ∂S1/∂λ1 < 0 and ∂s1/∂λ1 < 0. The intuition for the drop in the return point

S1 is the same as above—increasing uncertainty means more frequent adjustment so that

S1 needs to be lowered to avoid excessive inventory holdings. The intuition for the drop

in the lower trigger point s1 reflects the rising option value of waiting. Suppose the firm

is facing a low level of inventory and decides to pay the fixed costs of ordering f to stock

up. If the firm gets hit by a shock in the next instant, it would have to pay f again. The

firm could have saved one round of fixed costs by waiting. Waiting longer corresponds to

a lower value of s1. This logic follows immediately from the literature on uncertainty and

the option value of waiting (McDonald and Siegel 1986; Dixit 1989; Pindyck 1991).

Figure 2 summarizes the main qualitative results in a compact way. Case 1 depicts the

(hypothetical) situation where both fixed costs f and uncertainty λ are negligible. Due to
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the very low fixed costs the bandwidth (i.e., the height of the box) is tiny, and due to the

lack of uncertainty the s1 and S1 bounds are essentially symmetric around the target level

m∗. In case 2 the fixed costs become larger, which pushes both s1 and S1 further away

from the target but in a symmetric way. Cases 3a and 3b correspond to the situation we

consider in this paper with non-negligible degrees of uncertainty. The uncertainty in case

3a induces two effects compared to case 2. First, both s1 and S1 shift down so that they

are no longer symmetric around the target. Second, the bandwidth increases further. A

shift to even more uncertainty (case 3b) reinforces these two effects.

4.3. Comparative Statics

We have assumed fixed costs of ordering to be lower when the input is ordered domes-

tically, i.e., fD < fF. The left panel of Figure 3 shows the effect of using the value fD

from above that corresponds to an average interval of 85 days between domestic orders

compared to the baseline value fF that corresponds to 150 days. Lower fixed costs imply

more frequent ordering and therefore allow the firm to keep its inventory closer to the

target level. This means that for any given level of uncertainty, the optimal lower trigger

point with low fixed costs does not deviate as far from the target compared to the high

fixed cost scenario.

Some types of imports observed in the data are inherently difficult to store as

inventory—for instance, nondurable goods. We model such a difference in storabil-

ity with a higher rate of depreciation of δ = 0.2 compared to the baseline value of δ = 0.1.

In general, the larger the depreciation rate, the smaller the decreases in the lower trigger

point and the return point in response to heightened uncertainty. Intuitively, with a

larger depreciation rate the firm orders more frequently. The value of waiting is therefore

diminished. The right panel of Figure 3 graphs the percentage decline in the lower trigger

point s1 relative to s0 for both the baseline depreciation rate and the higher value. We

provide more comparative statics results for changes in f and δ in the theory appendix.
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Figure 3: The effect of a lower fixed costs (left) and a higher depreciation rate (right) of ordering

on the decrease in the lower trigger point.

5. Simulating Uncertainty Shocks

So far we have described the behavior of a single firm. We now simulate an economy of

50,000 firms in partial equilibrium where each individual firm receives shocks according to

the stochastic uncertainty process in equations (5) and (6). These shocks are idiosyncratic

for each firm but drawn from the same distribution. The firms are identical in all other

respects. We use the same parameter values as in section 4.1, and we focus on the

foreign-sourced input KF and the associated fixed costs fF.

We simulate an uncertainty shock by permanently shifting the economy from low

uncertainty λ0 to high uncertainty λ1. A key result from section 4.2 is that firms lower their

s, S bounds in response to increased uncertainty. This shift leads to a strong downward

adjustment of input inventories and thus a strong decline in imports.

In Figure 4 we plot simulated imports, normalized to 1 for the average value, in

continuous time (focus on the solid line; we will explain the dashed and dotted lines

below). Given our parameterization imports decrease by up to 25% at an instant in

response to the shock. The decrease happens quickly within one month, followed by
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Figure 4: Simulating and decomposing the response of aggregate imports to an uncertainty shock:

The total effect (baseline), the ‘pure’ uncertainty effect and the volatility effect.
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a quick recovery and in fact an overshoot (we comment on the overshoot below). This

pattern of sharp contraction and recovery is typical for uncertainty shocks. In the theory

appendix, as a comparison we express the same simulated data in discrete time at monthly

frequency. There, we also allow for a temporary shock where uncertainty shifts back to

its low level.

In our model the reaction of aggregate imports can be more clearly thought of in

terms of two effects, depicted in Figure 4. The dashed line (at the bottom) represents a

‘pure’ uncertainty effect, and the dotted line (at the top) is a volatility effect. The volatility

effect is responsible for the overshoot, and we comment on it in more detail in the theory

appendix.

While the trade collapse and recovery happen quickly in the simulation, this process

takes longer in the data. For instance, during the Great Recession German imports

peaked in the second quarter of 2008, rapidly declined by 32% and only returned

to their previous level by the third quarter of 2011.17 Greater persistence could be

17Most high-income countries experienced similar patterns. U.S. and Japanese imports
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introduced into our simulation by staggering firms’ responses. Currently, all firms

perceive uncertainty in exactly the same way and thus synchronize their reactions. It

might be more realistic to introduce some degree of heterogeneity by allowing firms to

react at slightly different times. In particular, firms might have different assessments as

to the time when uncertainty has faded and business conditions have normalized (see

Bernanke 1983). This would stretch out the recovery of trade, and it would also diminish

the amplitude of the impact. Moreover, delivery lags could be introduced that vary across

industries. We abstracted from such extensions here in order to keep the model tractable.

Apart from being heterogeneous in terms of when they react to a shock, firms could

also differ in more fundamental ways. Consistent with the literature on heterogeneous

firms and trade, aggregate imports tend to be dominated by the most productive firms

in an economy. Only those firms are able to cover the higher fixed costs of sourcing

inputs from abroad. In the current model, we do not model an extensive margin response,

i.e., firms do not switch from a foreign to a domestic supplier over the simulation

period, or vice versa.18 Allowing for extensive margin responses would be an important

avenue for future research. We conjecture that the extensive margin would amplify

uncertainty shocks. Firms would likely switch to domestic suppliers in the face of higher

uncertainty, thus reinforcing the effects of higher uncertainty. But since changing suppliers

declined by 38% and 40% over that period, respectively (source: IMF, Direction of Trade

Statistics).
18This approach is motivated by empirical evidence based on micro data. Examining

Belgian firm-level data during the 2008–09 recession, Behrens, Corcos, and Mion (2013)

find that most of the changes in international trade across trading partners and products

occurred at the intensive margin, while trade fell most for consumer durables and capital

goods. Bricongne et al. (2012) confirm the overarching importance of the intensive margin

for French firm-level export data. Haddad, Harrison, and Hausman (2010) present similar

evidence for U.S. imports, which we consider in our empirical analysis.
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entails switching costs, an extensive margin response might also make the effect of an

uncertainty shock more persistent in the aggregate. Firms will not switch to domestic

suppliers immediately but rather wait a while such that the overall effect on international

trade flows is more drawn out. Moreover, once the uncertainty shock has subsided, firms

might be slow in switching back to foreign suppliers, delaying the recovery. Of course,

to trace this mechanism we would need firm-level data on foreign and domestic input

orders, both at a reasonably high frequency. Alternatively, and trivially, persistence might

arise by having multiple persistent uncertainty shocks arrive one after the other. This

may well match the reality of 2008 and is an approach we explore later in section 7.

In the theory appendix we provide further simulation results involving comparative

statics (changes in fixed costs and the depreciation rate). We also explore the role of

first-moment shocks.

6. Empirical Evidence

We now turn to the task of providing more formal empirical evidence for the new

theoretical channels linking uncertainty shocks to domestic activity and foreign trade that

we have proposed. Specifically, we set out to explore the dynamic relationship between

uncertainty, production and international trade by estimating vector autoregressions

(VARs) with U.S. data. Here, for comparability, we deliberately follow current state of

the art, and we follow the canonical framework established by Bloom (2009) in running a

VAR to generate an impulse response function (IRF) relating the reactions of key model

quantities, in this case not only industrial production but also imports, to the underlying

impulses which take the form of shocks to uncertainty.

We contend that, as with the application to production, the payoffs to an uncertainty-

based approach can be substantial in the new setting we propose for modeling trade

volatility. Why? Recall that in the view of Bloom (2009, p. 627):
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More generally, the framework in this paper also provides one response to

the “where are the negative productivity shocks?” critique of real business

cycle theories. In particular, since second-moment shocks generate large falls

in output, employment, and productivity growth, it provides an alternative

mechanism to first-moment shocks for generating recessions.

The same might then be said of theories of the trade collapse that rely on negative

productivity shocks.19 So by the same token, the framework in our paper provides one

response to the “where are the increases in trade frictions?” objection that is often cited

when standard static models are unable to otherwise explain the amplified nature of

trade collapses in recessions, relative to declines in output.

The model above, and evidence below, can thus be seamlessly integrated with the

closed-economy view of uncertainty-driven recessions, whilst matching a separate and

distinct aggregate phenomenon that has long vexed international economists. Our new

approach tackles an enduring puzzle, a crucial and recurrent feature of international

economic experience: the highly magnified volatility of trade, which has been a focus

of inquiry since at least the 1930s, and which since the onset of the Great Recession has

flared again as an object of curiosity and worry to scholars and policymakers alike.

6.1. Testable Hypotheses

To sum up the bottom line, our empirical results expose new and important stylized facts

that are consistent with our theoretical framework.

First, trade volumes do respond to uncertainty shocks, and the impacts are quanti-

tatively and statistically significant. In addition, trade volume responds much more to

uncertainty shocks than does the volume of industrial production; this magnification

shows that there is something fundamentally different about the dynamics of traded

19Of course, first-moment demand shocks are less controversial in the context of the

Great Trade Collapse.
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goods supplied via the import channel, as compared to supply originating from domestic

industrial production.

Second, we will confirm that these findings are true not just at the aggregate level,

but also at the disaggregated level, indicating that the amplified dynamic response of

traded goods is not just a sectoral composition effect. In addition, we find that the impact

and magnification are greatest in durable goods sectors as compared to nondurable

goods sectors, consistent with the theoretical model where a decrease in the depreciation

parameter (interpreted as a decrease in perishability) leads to a larger response.

The subsequent parts of this section are structured as follows. The first part briefly

spells out the empirical VAR methods we employ. The second part spells out the data we

have at our disposal, some of it newly collected, to examine the differences between trade

and industrial production in this framework. The subsequent parts discuss our findings.

6.2. Computing the Responses to an Uncertainty Shock

In typical business cycle empirical work, researchers are often interested in the response

of key variables, most of all output, to various shocks, most often a shock to the level of

technology or productivity. The analysis of such first-moment shocks has long been a

centerpiece of the macroeconomic VAR literature. The innovation of Bloom (2009) was

to construct, simulate, and empirically estimate a model where the key shock of interest

is a second-moment shock, which is conceived of as an ‘uncertainty shock’ of a specific

form. In his setup, this shock amounts to an increase in the variance, but not the mean,

of a composite ‘business conditions’ disturbance in the model, which can be flexibly

interpreted as a demand or supply shock.

For empirical purposes, when the model is estimated using data on the postwar

U.S., changes in the VXO U.S. stock-market volatility index are used as a proxy for the

uncertainty shock. The VXO, and its newer cousin VIX, provided by the Chicago Board

Options Exchange, have formed the basis of the most-widely traded options-implied
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volatility contracts and they reference the daily standard deviation of the S&P 500 index

over a 30-day forward horizon. With an implicit nod to rational expectations, realized

volatility was used to backfill a proxy for VXO in historical periods before 1986 back to

1962 when the VXO is not available. A plot of this series, scaled to an annualized form,

and extended to 2012 for use here, is shown in Figure 5.20

We evaluate the impact of uncertainty shocks using VARs on monthly data from 1962

(the same as in Bloom) to February 2012 (going beyond Bloom’s end date of June 2008).

The full set of variables, in VAR estimation Cholesky ordering are as follows: log(S&P500

stock market index), stock-market volatility indicator, Federal Funds Rate, log(average

hourly earnings), log(consumer price index), hours, log(employment), and log(industrial

production). We do not find our results are sensitive to the Cholesky ordering.21 For

simplicity, the baseline results we present are estimated using a more basic quadvariate

20As Bloom (2009, Figure 1) notes: “Pre-1986 the VXO index is unavailable, so actual

monthly returns volatilities are calculated as the monthly standard deviation of the daily

S&P500 index normalized to the same mean and variance as the VXO index when they

overlap from 1986 onward. Actual and VXO are correlated at 0.874 over this period.

The asterisks indicate that for scaling purposes the monthly VXO was capped at 50.

Uncapped values for the Black Monday peak are 58.2 and for the credit crunch peak are

64.4. LTCM is Long Term Capital Management.” For comparability, we follow exactly the

same definitions here and we thank Nicholas Bloom for providing us with an updated

series extended to 2012.
21We follow Bloom (2009) exactly for comparability. As he notes: “This ordering is

based on the assumptions that shocks instantaneously influence the stock market (levels

and volatility), then prices (wages, the consumer price index (CPI), and interest rates),

and finally quantities (hours, employment, and output). Including the stock-market

levels as the first variable in the VAR ensures the impact of stock-market levels is already

controlled for when looking at the impact of volatility shocks.”
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Figure 5: The uncertainty index: Monthly U.S. stock market volatility, 1962–2012.
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VAR (log stock-market levels, the volatility indicator, log employment, and lastly the

industrial production or trade indicator).

6.3. Data

Many of our key variables are exactly as in Bloom (2009): log industrial production in

manufacturing (Federal Reserve Board of Governors, seasonally adjusted), employment

in manufacturing (BLS, seasonally adjusted), a monthly stock-market volatility indicator

as above, and the log of the S&P500 stock-market index. All variables are HP detrended,

with parameter λ = 129, 600. Full details are provided in the data appendix. Collection

of these data was updated to February 2012.

However, in some key respects, our data requirements are much larger. For starters,

we are interested in assessing the response of trade, so we needed to collect monthly

import volume data. In addition, we are interested in computing disaggregated responses
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of trade and industrial production (IP) in different sectors, in the aftermath of uncertainty

shocks, to gauge whether some of the key predictions of our theory are sustained. Thus,

we needed to assemble new monthly trade data (aggregate and disaggregate) as well as

new disaggregated monthly IP data.

We briefly explain the provenance of these newly collected data, all of which are also

HP filtered for use in the VARs, as above. More details of sources and construction are

given in the data appendix.

• U.S. aggregated monthly real import volume. These data run from 1962:1 to 2012:2.

After 1989, total imports for general consumption were obtained from the USITC

dataweb. From 1968 to 1988 data were collected by hand from FT900 reports, where

imports are only available from 1968 as F.A.S. (free alongside ship) at foreign port

of export, general imports, seasonally unadjusted; the series change to C.I.F. (cost,

insurance, and freight) in 1974, and the definition changes to customs value in 1982.

Prior to 1968 we use NBER series 07028, a series that is called “total imports, free

and dutiable” or else “imports for consumption and other”; for the 1962 to 1967

window this NBER series is a good match, as it is sourced from the same FT900

reports as our hand-compiled series. The entire series was then deflated by the

monthly CPI.

• U.S. disaggregated monthly real imports. These data only run from 1989:1 to 2012:2.

In each month total imports for general consumption disaggregated at the 4-digit

NAICS level were obtained from the USITC dataweb. All series were then deflated

by the monthly CPI. In this way 108 sector-level monthly real import series were

compiled.

• U.S. disaggregated monthly industrial production. These data only run from 1972:1

to 2012:2 at a useful level of granularity. Although aggregate IP data are provided by

the Fed going back to 1919, the sectorally disaggregated IP data only start in 1939 for
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7 large sectors, with ever finer data becoming available in 1947 (24 sectors), 1954 (39

sectors) and 1967 (58 sectors). However, it is in 1972 that IP data are available using

the 4-digit NAICS classification which permits sector-by-sector compatibility with

the import data above. From 1972 we used Fed G.17 reports to compile sector-level

IP indices, yielding data on 98 sectors at the start, expanding to 99 in 1986.

6.4. IRFs at Aggregate Level for Trade and IP

The world witnessed an unusually steep decline in international trade in 2008–09, the

most dramatic since the Great Depression. International trade plummeted by 30% or

more in many cases. Some countries suffered particularly badly. For example, Japanese

imports declined by about 40% from September 2008 to February 2009. In addition,

the decline was remarkably synchronized across countries. Baldwin (2009, introductory

chapter) notes that “all 104 nations on which the WTO reports data experienced a drop in

both imports and exports during the second half of 2008 and the first half of 2009.” This

synchronization hints at a common cause (Imbs 2010).

The first evidence we present on the importance of uncertainty shocks for trade uses

aggregate data on U.S. real imports and industrial production (IP). We estimate a vector

autoregression (VAR) with monthly data from 1962 through 2012, following the main

specification in Bloom (2009) exactly, as explained above and more fully in the appendix.

Figure 6 presents our baseline quadvariate VAR results for the aggregate U.S. data,

for both log real imports and log IP, as well as their ratio, all in a row. The impulse

response functions (IRFs) from the VAR are based on a one-period uncertainty shock

where the uncertainty measure increases by one unit (the measure is an equity market

option implied-volatility index, VXO, all data are HP filtered, and more details will follow

later in the main empirical part of the paper). In Figure 6a, the upper panel, we employ

Bloom’s standard uncertainty shock series. In Figure 6b, the lower panel, to support the

idea of causality, we rely on his ‘exogenous’ uncertainty shock series that only uses events
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associated with terrorist attacks, war and oil shocks.

The bottom line is very clear from this figure. Look first at Figure 6a. The uncertainty

shock is associated with a decline in both industrial production and imports. However,

the response of imports is clearly many times stronger, about 5 to 10 times as strong

on average in the period of peak impact during year one. The response of imports is

also highly statistically significant. At its peak the IRF is 3 or 4 standard errors below

zero, whereas the IRF for IP is only just about 2 standard errors below zero, and only

just surmounts the 95% confidence threshold. To confirm that the response of imports is

more negative than the response of IP, the third chart in row 1 shows the IRF computed

when using the log ratio of real imports to IP: clearly this ratio falls after an uncertainty

shock, and the 95% confidence interval lies below zero.

To provide further evidence and a robustness check, Figure 6b, where now only the

exogenous ‘clean’ uncertainty shocks indicator from Bloom (2009) is used, scaled by

observed volatility, to purge endogenous uncertainty dynamics from the estimations.22

As this figure shows, even if we restrict attention to these events, which arguably provide

a stricter approach to identification at the cost a smaller sample of candidate shocks, we

get the same basic finding: a sharp negative shock to trade after an uncertainty shock,

and a response that is much larger than that seen for industrial production. We also

refer to the appendix where we provide additional IRF results based on the uncertainty

measures by Baker, Bloom and Davis (2016) and Berger, Dew-Becker and Giglio (2019).

22Virtually identical results, available upon request, are produced when the unscaled

shock is used. Specifically, Bloom (2009) identifies 17 high-volatility episodes since the

1960s such as the assassination of JFK, the 1970s oil shocks, the Black Monday market

crash of October 1987, the 1998 bailout of Long-Term Capital Management, 9/11, and

the collapse of Lehman Brothers in September 2008. These high-volatility episodes are

strongly correlated with alternative indicators of uncertainty.
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Figure 6: IRFs at aggregate level for uncertainty shocks, proxied by VXO shocks.

(a) Basic VAR: Response to actual VXO uncertainty shocks.
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(b) Exogenous shock VAR: Response to Bloom’s ‘exogenous’ VXO-scaled shocks.
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Notes: Sample is 1962:1–2012:2. The quadvariate VAR Cholesky ordering as in Bloom

(2009) is: stock market, the volatility measure, log employment, followed lastly by either

log real imports or log IP. In the first panel the volatility measure we use is actual VXO

shocks, in the second panel we use Bloom’s ‘exogenous’ VXO-scaled shocks. No rescaling

of shocks. 95% confidence intervals shown. See text and appendix.
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6.5. IRFs Disaggregated by Durables and Nondurables for Trade and IP

Having established empirically that trade reacts more negatively than IP to an uncertainty

shock, we next look at the same responses at a disaggregated level. Specifically, we look

at a key prediction of our model that these differences should be magnified in the case of

more durable goods, as captured in the theoretical model by the depreciation parameter.

For this we move to the 3- or 4-digit NAICS level, sourcing data from USITC dataweb

and the Fed G.17 releases at a monthly frequency starting in 1989. The overlap between

these two sources allows us to work with 51 individual sectors. A list of NAICS codes at

this level of disaggregation, with accompanying descriptors, is provided in the appendix.

We re-estimate every IRF at this disaggregated level, using the exact same specification as

before and repeating the exercise for each NAICS sector with imports and IP.

To offer a presentation of the results in a way that corresponds to the durable-

nondurable distinction, we then aggregate up the IRFs into two bins, corresponding to

durable and nondurable manufacturing sectors, according the NAICS classification of

sectors by the BLS.23 The resulting weighted average IRFs for months 1–12 are presented

as summary statistics in Figure 7. The correspondence between the theoretical model’s

predictions and the estimated cumulative responses over the one-year horizon is notable.

In nondurable goods sectors, the response to uncertainty shocks is small. In durable

goods sectors, the response to uncertainty shocks is larger (2 times). In both cases the

responses in real imports are larger than in IP (2 times), and that is confirmed when we

look at the response of the ratio of real imports to IP: the durable response is large and

statistically significant; the nondurable response is neither. Thus, on a key dimension, the

disaggregated responses for durable and nondurable manufacturing sectors also accord

with the theoretical mechanism we propose.24 However, since the confidence intervals of

23See https://www.bls.gov/jlt/jltnaics.htm.
24In the appendix we offer further results by classifying industries according to End Use

categories.
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Figure 7: Average real import and IP IRFs compared in months 1–12 for manufacturing industries,

by BLS durable-nondurable bins, with underlying IRF estimation at the 3- or 4-digit

NAICS level.
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Notes: Cumulative IRF for months 1–12. Flow data at the 3- or 4-digit NAICS level,

aggregated up to BLS durable-nondurable bins for manufacturing industries using output

weights from the Fed’s U.S. 2002 makeuse table. Sample is 1989:1–2012:2. Imports from

USITC dataweb, deflated by CPI; IP from Fed G.17; all other data as in Bloom (2009),

updated. Uncertainty shocks for quadvariate VARs. Ordering is stock market, volatility,

log employment, followed lastly by either log real imports or log IP. Data updated through

February 2012. No rescaling of shocks. See text and appendix.

the IRFs largely overlap for the durable-nondurable bins, our preferred interpretation is

to emphasize the qualitative result of a significant response for durables. We urge more

caution about the precise point estimates.

Finally, we refer to the appendix where we provide additional robustness checks

exploiting the granting of Permanent Normal Trade Relations (PNTR) status to China

(see Pierce and Schott 2016; Handley and Limão 2017). There we employ U.S. import data
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from China and the European Union at the four-digit level.

6.6. IRFs Disaggregated by Source Country Fixed Costs

Next, we look at another key prediction of our model: that differences in responses to

uncertainty shocks should be magnified when fixed costs of importing are higher, as

captured in the theoretical model by the fF parameter.

To test this we divide monthly U.S. imports into two bins, for source countries that are

in the lowest and highest quartiles of the World Bank’s “Ease of Doing Business” (EODB)

index.25 We think this is a reasonable proxy for variations in country-specific fixed (rather

than variable) costs of doing business which would affect firms trying to export from that

source to the U.S.

Figure 8 contains the results of this exercise, conducted on the sample period 1989:1–

2012:12. The left panel shows that U.S. imports from countries with high fixed costs (low

EODB) have large amplitude responses to our measure of uncertainty shocks, but the

right panel shows that countries with low fixed costs (high EODB) have relatively small

amplitude responses in comparison. Thus, our results seem consistent with the model’s

prediction although quantitatively, the confidence intervals in the two panels overlap.

7. Can the Great Trade Collapse of 2008–09 be Explained?

We have shown that empirical evidence over recent decades suggests a tight link between

uncertainty shocks and trade contractions, especially for durable goods, in a way that

is qualitatively consistent with our theoretical framework. Now we wrap up by asking a

rather more demanding question: to what extent can this approach, which takes second-

moment uncertainty shocks seriously as a main driver, provide a quantitatively plausible

account of the Great Trade Collapse of 2008–09?

25See http://www.doingbusiness.org/rankings.
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Figure 8: IRFs at aggregate level for high- and low-fixed cost source countries (low and high

EODB, respectively).
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Notes: Sample is 1989:1–2012:12. The quadvariate VAR Cholesky ordering as in Bloom

(2009) is: stock market, the volatility measure, log employment, followed lastly by either

log real imports or log IP. As the volatility measure we use is actual VXO shocks. No

rescaling of shocks. 95% confidence intervals shown. See text and appendix.

We thus conclude by presenting a simulation exercise, using our baseline aggregate

VAR from section 6, to argue that this mechanism could indeed have been an important

contributing factor, even if others forces were in play. To do this we need to construct

a set of plausible exogenous shocks to the uncertainty variable that match its observed

outcomes in the crisis, and then feed them into the VAR model to obtain predicted paths

for imports and IP which can be compared to actual post-2008 outcomes.

As is well known, the four months following the collapse of Lehman Brothers were

characterized by strong increases in uncertainty as measured by the volatility index VXO

in the period September to December 2008, with elevated volatility persisting into the

first quarter of 2009. To simulate this shock we choose to feed into the model a series of

exogenous volatility shocks which generate a path of volatility similar to that observed.
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Figure 9: Actual and simulated VXO, real imports and IP during and after the the 2008 “Lehman”

uncertainty shock.
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That is, we assume that the dynamics are driven primarily by an exogenous shock to

the system from the volatility index and the subsequent endogenous responses of the

variables in the system.

We found in the baseline VAR that the own-response of volatility to itself in the

orthogonalized impulse response (not shown here) is about 3, with significant short-

term persistence. In mid-2008 the real-world data showed a VXO level of 20, which we

take as a starting value for our simulation, and which in the VAR we then subject to

a series monthly shocks of +20,+5,+5,+5,+5,+5,+5 starting in September 2008. Through

endogenous VAR dynamics, these shocks take simulated VXO up to just over 80 at peak

(via cumulation/persistence), and the additional shocks keep the simulated VXO very

elevated for several months before the decay commences. In actuality, the real-world
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VXO rose from its pre-crisis mean of about 20 to almost 90 in the last quarter of 2008,

a shift of +70, and thus the simulated impulses we impose create a close match to the

actual path of VXO quite well, as shown in Figure 9, in the left panel. Could such shocks

generate a large trade collapse with a magnification effect present?

Yes, to some extent. Given these “Lehman shocks” imposed to the VXO process

starting from its starting level of 20, the model-implied and the actual observed responses

of IP and real imports are shown in Figure 9, in the right panel, relative to a September

2008 reference level. As can be seen, the model is capable of explaining a large fraction

of the actual observed IP response, especially up to 6 months out. It is also capable of

explaining a decent fraction of the real import response over a similar horizon. Overall,

these simulations show that, if we push hard on these very specific shocks, our model

can explain perhaps around half of the import collapse out to the 12-month horizon.

All that said, we want to be cautious and not claim too much: we can see that,

especially in early to mid-2009, some additional factors must have been at work that are

not captured by the uncertainty shock. This suggests our approach should be viewed as

a partial attempt and complementary to other explanations put forward in the literature

on the Great Trade Collapse such as trade credit shocks, especially in the acute phase of

the crisis (see section 2).

In their survey of that literature, Bems, Johnson, and Yi (2013) note that no study

has so far integrated the various competing explanations into a unified framework.

Nevertheless, based on estimates from various independent papers but excluding the role

of second-moment shocks, they loosely suggest that 65-80 percent of the trade collapse

could be attributed to compositional effects associated with changes in final expenditure

and trade-intensive durable goods in particular. A further 15-20 percent are due to credit

supply shocks. Inventory adjustments as an amplification mechanism may account for

around 20 percent.26 Our work suggests that the latter share may be larger because of

26These estimates do not necessarily sum up to 100 percent since they are obtained from
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second-moment shocks, not least since inventories are relevant both for intermediate

and final goods. But a precise decomposition is yet to be carried out and remains as an

important topic for future work. Last but not least, we believe that uncertainty shocks may

also provide a better handle on the recovery dynamics as shown in Figure 9, capturing

both the decline and the resurgence of trade.

8. Conclusion

We argue that trade can be modeled as reacting to uncertainty shocks in theory and in

practice. We introduce second-moment uncertainty shocks into a dynamic, open-economy

model. Firms import inputs and due to fixed costs of ordering follow an optimal s, S

inventory policy. We show that elevated uncertainty leads firms to shift down their

s, S bounds. This induces a sharp contraction of international trade flows followed by

a swift recovery. In contrast, output remains unaffected, assuming other shocks are

absent. Uncertainty shocks can therefore explain why trade is more volatile than domestic

economic activity.

Qualitatively, our empirical evidence suggests a tight link between uncertainty shocks

and trade contractions, and we can also show that there is substantial heterogeneity

in responses at the sectoral level, both for imports and industrial production, in a way

consistent with our proposed model.

Quantitatively, our simulation results offer a partial explanation for the Great Trade

Collapse of 2008–09, and potentially for previous trade slowdowns, in a way that differs

from the conventional static trade models or dynamic inventory models seen before. The

introduction of second-moment shocks may be useful as a driver since the required first-

moment shocks are either absent on the impulse side or insufficient on the propagation

side (for plausible parameters) to fully explain the events witnessed.

independent papers.
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Appendix A: Theory Appendix

Appendix A.1: Solving the Inventory Problem This appendix shows how the inventory problem

can be solved. We closely follow Hassler (1996) and refer to his appendix for further details.

The Bellman equation for the inventory problem is

V(zt, ωt) =
1
2

z2
t dt + (1− rdt)EtV(zt+dt, ωt+dt). (A1)

The cost function V(zt, ωt) at time t in state ωt thus depends on the instantaneous loss element

from the minimand (4), z2
t dt/2, as well as the discounted expected cost at time t + dt. The second

term can be further broken down as follows:

EtV(zt+dt, ωt+dt) = Vz(zt, ωt)− δdtVz(zt, ωt)

+λωdt {V(Sω, ωt) + f −V(zt, ωt)}

+γωdt {V(zt, ωt)−V(zt, ωt)} ,

(A2)

where Vz denotes the derivative of V with respect to z. The expected cost at time t + dt thus takes

into account the cost of depreciation over time through the term involving δ. It also captures the

probability λωdt of a shock hitting the firm’s business conditions (in which case the firm would

pay the ordering costs f to return to point Sω), as well as the probability γωdt that the uncertainty

state switches from ωt to ωt.

Equations (A1) and (A2) form a system of two differential equations for the two possible states

ωt and ωt. Standard stochastic calculus techniques lead to a solution for the system. We have

to use numerical methods to obtain values for the four main endogenous variables of interest:

the bounds s0 and S0 for the state of low uncertainty λ0, and the bounds s1 and S1 for the state

of high uncertainty λ1. It turns out that in either state ω, the cost function V reaches its lowest

level at the respective return point Sω. This point represents the level of inventory the firm ideally

wants to hold given the expected outlook for business conditions and given it has just paid the

fixed costs f for adjusting its inventory. It is not optimal for a firm to return to a point at which

the cost function is above its minimum. The intuition is that if it were so, the firm on average
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would spend less time in the lowest range of possible cost values.

We plug the expression for EtV(zt+dt, ωt+dt) from equation (A2) into equation (A1). We then

set dt2 = 0 and divide by dt to arrive at the following system of differential equations:

rV(zt, ωt) =
1
2

z2
t − δVz(zt, ωt) + λω {V(Sω, ωt) + f −V(zt, ωt)}+ γω {V(zt, ωt)−V(zt, ωt)} .

The set of solutions to this system is given by

V(zt, 0) =
α0

2
z2

t + β0zt + c1eρ1zt + c2eρ2zt + φ0 +
1
∆
{λ1γ0V(S1, 1) + λ0ψ1V(S0, 0)} (A3)

for the state of low uncertainty, and

V(zt, 1) = α1
2 z2

t + β1zt + v1c1eρ1zt + v2c2eρ2zt + φ1 +
1
∆ {λ1ψ0V(S1, 1) + λ0γ1V(S0, 0)} (A4)

for the state of high uncertainty, where c1 and c2 are the integration constants. The parameters ψ0,

ψ1, ∆, α0, α1, β0, β1, φ0 and φ1 are given by

ψω = r + λω + γω,

∆ = ψ0ψ1 − γ0γ1,

αω =
1
∆
(r + λω + γω + γω) ,

βω = − δ

∆
(ψωαω + γωαω) ,

φω =
1
∆
(ψω (λω f − δβω) + γω (λω f − δβω)) ,

where ω = 1 if ω = 0, and vice versa. [vi, 1]′ is the eigenvector that corresponds to the eigenvalue

ρi of the matrix

1
δ

 − (r + λ1 + γ1) γ1

γ0 − (r + λ0 + γ0)


for i = 1, 2. Expressions for V(S0, 0) and V(S1, 1) can be obtained by setting V(zt, 0) = V(S0, 0)
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and V(zt, 0) = V(S1, 1) in equations (A3) and (A4), respectively, and then solving the two resulting

equations.

Six key equations describe the solution. They are two value-matching conditions positing for

each state of uncertainty that the value of the cost function at the return point must be equal to

the value at the lower trigger point less the fixed ordering costs f :

V(S0, 0) = V(s0, 0)− f ,

V(S1, 1) = V(s1, 1)− f .

The remaining four equations are smooth-pasting conditions:

Vz(S0, 0) = 0,

Vz(s0, 0) = 0,

Vz(S1, 1) = 0,

Vz(s1, 1) = 0.

These six conditions determine the six key parameters: the return points S0 and S1, the lower

trigger points s0 and s1 as well as the two integration constants c1 and c2. Numerical methods

have to be used to find them.

The following condition can be derived from the Bellman equation (A1):

1
2
(
s2

ω − S2
ω

)
= (r + λω) f + γω { f − (V(sω, ωt)−V(Sω, ωt))} > 0. (A5)

This expression can be shown to be strictly positive since each term is positive: (r + λω) f > 0

and, moreover, γω { f − (V(sω, ωt)−V(Sω, ωt))} ≥ 0. This last non-negativity result holds

because the smallest value of V can always be reached by paying the fixed costs f and stocking

up to Sω That is, for any zt the cost value V(zt, ωt) can never exceed the minimum value

V(Sω, ωt) plus f . It therefore also follows that V(sω, ωt) can never exceed V(Sω, ωt) + f , i.e.,

V(sω, ωt) ≤ V(Sω, ωt) + f .
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Recall that the lower trigger point sω is expressed as a deviation from the target level m∗.

We therefore have sω < 0. Conversely, the return point Sω is always positive, Sω > 0. The fact

that expression (A5) is positive implies |sω| > Sω, i.e., the lower trigger point is further from

the target than the return point. Why does this asymmetry arise? Intuitively, in the absence of

uncertainty the firm would stock as much inventory as to be at the target value on average. That is,

its inventory would be below and above the target exactly half of the time, with the lower trigger

point and return point equally distant from the target. However, in the presence of uncertainty

this symmetry is no longer optimal. There is now a positive probability that output q gets hit by

a shock according to equation (5). Whenever a shock hits, the firm adjusts its inventory to the

return point Sω. If the return point were the same distance from the target as the lower trigger

point, the firm’s inventory would on average be above target. To avoid this imbalance the firm

chooses a return point that is relatively close to the target.
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Appendix A.2: More Simulation Results We present more results on the simulation of an

uncertainty shock as in section 5.

We first comment on decomposing the short-run dynamics. As depicted in Figure 4, the

reaction of aggregate imports can be thought of in terms of two effects, an uncertainty effect and a

volatility effect. The volatility effect is responsible for the overshoot.

The decomposition is computed as follows. The uncertainty effect only captures the shifting

down of the s, S bounds (i.e., we use the lower bounds whilst holding the degree of volatility

fixed at λ0). Once the uncertainty shock hits, firms decrease their lower trigger point such that

they initially take longer to run down their inventory. This leads to a drop in orders of imported

inputs. Once firms approach the new lower trigger point, they start restocking. This leads to the

recovery in orders.

The volatility effect is an opposing effect caused by the increased probability of firms receiving

a shock (i.e., we switch to λ1 from λ0 whilst holding the s, S bounds fixed). This effect is analogous

to the ‘volatility overshoot’ (see Bloom 2009, section 4.4). Recall that a shock ε moves output

symmetrically in either direction with equal probability and always leads to adjustment. Suppose

that all firms were exactly at the return point (z = S). Then the size of negative orders (induced

by z being pushed above the upper trigger point) and the size of positive orders (induced by z

being pushed below the lower trigger point) would be the same. Switching to λ1 would increase

the frequency of orders, but given that negative and positive orders would be of the same size

and of equal probability, there would be no net effect on aggregate orders. However, most firms

are in fact below the return point (z < S), which means that they have not stocked up in a while.

Positive orders are therefore larger than negative orders, and increasing the frequency leads to a

rise in aggregate orders temporarily.

Note that the total (baseline) effect surpasses the volatility effect in Figure 4 about one-and-

a-half months into the period of heightened uncertainty. This happens due to the interaction of

the volatility and uncertainty effects. While the volatility effect implies more frequent ordering

and thus larger aggregate orders, it is reinforced by the increase in the bandwidth (S− s), which

entails larger restocking orders all else being equal.

As Figure 4 shows, the drop in imports driven by the uncertainty effect is not instantaneous.
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Instead, it is a smooth process. The reason is a combination of two countervailing effects. On

the one hand, the lower trigger point s drops. This means that fewer firms adjust upon impact

because they have more room to run down their inventories. On the other hand, the return point

S also drops (see Figure 2). This means that firms adjust by less when they get hit by idiosyncratic

ε shocks. These two effects balance each other evenly upon impact. But over time, as more and

more firms run down their inventories further than previously, the first effect gradually starts to

dominate, and average orders and imports begin to slide. In that context, below we graphically

illustrate the inventory position of the average firm.

In the aggregate, imports eventually bounce back and even overshoot. The intuition for the

overshoot is that aggregate output is flat because positive and negative shocks in equation (5)

wash out. The initial drop in input orders therefore needs to be offset by a subsequent surge such

that aggregate production can be held constant in the long run.

To simulate the model in discrete time, in the left panel of Figure A1 we express the same

simulated data as in Figure 4 but at monthly frequency. The decrease is now around 15% in the

first month after the shock. In the right panel of Figure A1 we allow for a temporary shock where

uncertainty shifts back to its low level λ0 after two months as opposed to staying permanently

high at λ1. The removal of elevated uncertainty boosts the recovery but the initial decline remains.

We stress that the short-run dynamics in Figures 4 and A1 are purely driven by second-moment

shocks.

In Figure A2 we illustrate the inventory position of the average firm. Specifically, we plot

the average deviation of imported inputs from the target level. In the steady state before the

uncertainty shock hits, this deviation is close to zero. Upon impact, firms’ average inventories

start to decline as the uncertainty effect sinks in. At the same time, the higher volatility means

that firms are more likely to restock, implying a rising average deviation over time. This volatility

effect is initially dominated by the uncertainty effect, but firms’ inventories eventually start rising

after about a month into the period of heightened uncertainty.

We now turn to further simulations as in section 5. In the left panel of Figure A3 we plot the

total effect of an uncertainty shock for two different values of fixed costs. The solid line is based

on our baseline value for foreign fixed costs fF that corresponds to an order interval of 150 days.
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Figure A1: Simulating aggregate imports in response to a permanent (left) and a temporary (right) shock,
in discrete time.
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Figure A2: Simulating the inventory position of the average firm.
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Figure A3: Simulating aggregate imports with different values of fixed costs of ordering (left) and different
values of the depreciation rate (right).
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The dashed line represents domestic fixed costs fD that correspond to an interval of 85 days. The

ratio of foreign to domestic fixed costs, fF/ fD, is 5.5 in this case (see the values in section 4.1).

As predicted by the theory, imports do not decline as much in the case of domestic orders.

Their decline is roughly half in comparison to foreign orders. Moreover, they bottom out earlier.

The reason is that the uncertainty effect from Figure 4 is weaker so that it gets offset more quickly

by the volatility effect.

Another insight is that quantitatively, the trade collapse is not very sensitive to fixed costs

above a certain threshold. For example, given an intermediate value of foreign fixed costs that

corresponds to an order interval of 131 days corresponding to fF = 0.00003846, imports still drop

by over 20% (compared to 25% in the baseline scenario). The foreign to domestic fixed cost ratio

is only 3.6 in this case instead of 5.5 above. In contrast, Alessandria, Kaboski, and Midrigan

(2010a) use a ratio of fF/ fD = 6.5, a much larger disparity in frictions. In their benchmark case

(their Table 4), they choose values for fixed costs of ordering that correspond to 23.88 percent of

mean revenues (a very large cost share) for foreign orders and 3.65 percent of mean revenues for

domestic orders. The reason that smaller and arguably more plausible ratios suffice is as follows.

The decline of the lower trigger point in response to an uncertainty shock (as depicted in Figure

3) is increasing but concave in fF. Thus, increases in fF have a strong marginal impact when fF

is low. Once fF is high, increases have a weak impact on the lower trigger point. For instance,

the impact on the lower trigger point associated with the baseline value of fF makes up more
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Figure A4: Simulating aggregate imports with different values of the depreciation rate (10% for the solid
line and an extreme value of 90% for the dashed line).
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than two-thirds (72%) of the impact associated with doubling fF. (Given the parameterization in

section 4.1, the baseline value of fF is associated with a decline in the lower trigger point by 27.7%

in response to an uncertainty shock. Doubling the baseline value of fF is associated with a 38.4%

decline. It follows 27.7/38.4 = 0.72.)

In the right panel of Figure A3 we plot the effect of an uncertainty shock for two different

values of the depreciation rate δ. The solid line is for our baseline value of δ = 0.1. The dashed

line corresponds to δ = 0.2. As the theory predicts, higher rates of depreciation imply a smaller

adjustment of s, S bounds so that the decline in imports is not as pronounced. Intuitively, high

depreciation rates limit storage possibilities and therefore, the inventory mechanism in our model

becomes less important quantitatively.

If the depreciation rate goes towards 100%, the s, S bounds no longer move in response to an

uncertainty shock. Figure A4 illustrates this effect based on a 90% depreciation rate (represented

by the dashed line). It can be directly compared to the right panel of Figure A3. Thus, with a

very high depreciation rate imports are hardly affected. The inventory mechanism effectively

disappears.

9



A depreciation rate close to 100% could be considered similar to the setting in Alessandria et

al. (2010a) in the sense that they model an intermediate retail good that needs to be fully replaced

once sold. However, in the latter case the inventory mechanism (driven by first-moment shocks) is

still in operation because it works through a desired inventory-to-sales ratio above 1.
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Appendix A.3: The Role of First-Moment Shocks The dynamics of imports and inventories

in Figures 4 and A3 are driven by changes in the degree of uncertainty. That is, the economy is hit

by second-moment shocks only.

We now consider first-moment shocks. These are shocks to ‘business conditions’ that shift

output for either supply-side or demand-side reasons. In our model, the stochastic process (5)

describes such shocks. Positive and negative first-moment output shocks at the firm level are

normally of equal probability and exactly offset each other so that aggregate output is flat.

To simulate an aggregate first-moment shock, we exogenously change the probabilities of

positive and negative shocks. To be precise, we are interested in a 10% negative aggregate output

shock. For that purpose we decrease the probability of positive shocks in process (5) by 10% for a

period of one month (the probability of receiving no shocks increases commensurately by 10%).

After that temporary decrease, the shock probabilities become even again. We leave the degree of

uncertainty and the s, S bounds unchanged at their baseline levels (i.e., as in the low-uncertainty

state).

We find that imports slide by about 10% and then slowly recover. Most importantly, the first-

moment shock does not generate a disproportionate magnification effect. Imports decline in line

with the magnitude of the shock (10%). The intuition is that due to the Cobb-Douglas production

function (1) and the assumption of fixed input prices, the optimal input-output ratios, KD/Q and

KF/Q, do not vary over time. Thus, a 10% decline in output translates into an equiproportionate

decline in inputs used for production, and through equation (3) into an equiproportionate decline

in the target inventory level.

In contrast, in case of a second-moment shock the s, S inventory bounds shift down such

that firms run down their inventories longer than usual, leading to more than a proportionate

decline in imports. Our framework with second-moment shocks such as in Figure 4 can therefore

best be interpreted as explaining the excess volatility of trade flows that arises in addition to

any first-moment movements, or as explaining the magnified response of trade flows relative

to output. Thus, just as with the static gravity model of trade, any such tight linkage between

trade and output changes makes trade collapses (relative to output) difficult to explain in terms of

first-moment shocks.
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Figure A5: U.S. real imports, IP, total factor productivity, and real GDP from 2006:Q1 to 2011:Q4.
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Arguably, in light of the Great Recession a first-moment demand shock is much more realistic

than a supply shock. In the context of our sample, we find no evidence of a large, negative

U.S. productivity shock which might account for the observed trade collapse. As the dotted

line in Figure A5 shows, during the Great Trade Collapse of 2008 U.S. total factor productivity

(TFP) in fact increased. Thus, a TFP-based explanation seems unlikely to account for the direction

of the Great Trade Collapse, and this in part motivates our decision to focus in this paper on

second-moment shocks. Of course, we acknowledge the role of increasing trade barriers, for

instance financial frictions, in explaining the trade collapse.

Finally, we note that Alessandria et al. (2010a) also develop an s, S inventory model of trade

collapses, with a band of inaction as in our model. However, they only consider first-moment

shocks (in particular a negative supply shock) and no second-moment shocks. Yet, in contrast to

first-moment shocks in our model, their setting nevertheless generates a decline in imports that

exceeds the decline in sales. How? The reason is that their imported input is an intermediate

retail good that as a flow variable needs to be fully replaced once sold. When sales of the good

take a hit, a multiplier effect kicks in because the firm sells less and at the same time starts running

down its inventory. As a result, imports are reduced more than one-for-one. (See their example
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on p. 273 for an illustration where the firm has a desired inventory-to-sales ratio above 1, leading

to a particularly strong degree of magnification.) That is, imports are more volatile than sales due

to procyclical inventory investment (Ramey and West 1999).

Unlike in Alessandria et al. (2010a), we generate a disproportionate decline in imports through

an endogenous adjustment of s, S inventory bounds caused by second-moment shocks. In our

model the imported input is not fully absorbed in the production process. It depreciates by rate δ.

(The intermediate retail good in Alessandria et al. (2010a) is storable subject to a depreciation rate,

but it is gone once sold.) Our model therefore operates through an entirely different mechanism,

via durable capital good inputs, and driven by changes in uncertainty. As we show above, if we let

the depreciation rate go towards 100%, the inventory mechanism in our model ceases to operate.

Hence, we would no longer be able to explain a trade collapse and subsequent recovery.

It is crucial to note, of course, that we do not dismiss other mechanisms; rather we seek to

isolate our new channel for clarity, and to emphasize the original theoretical contribution of this

paper. Moreover, in the empirical part of the paper we also provide the first empirical evidence

of this channel at work using both aggregate and disaggregated data. In addition, evidence for

the model’s prediction that the effect of uncertainty shocks is modulated by the durability of the

types of goods imported, based on data disaggregated at the industry level.
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Appendix A.4: Stockout Avoidance and Asymmetric Loss Function We first explain how

stockout avoidance relates to uncertainty, and why our setting gives a different result on inventory

holdings compared to Alessandria et al. (2010b). We then comment in more detail on the

functional form of our loss function.

Alessandria et al. (2010b) provide micro-foundations for stockout avoidance. They assume

that the marginal cost of an additional unit of inventory from the firm’s point of view is not the

replacement cost it would have to pay in the open market. This would be the relevant marginal

cost if delivery were instantaneous. But with a delivery lag, the relevant marginal cost is instead

the firm’s marginal valuation of an additional unit. This valuation depends on the level of demand.

In case of a strong positive demand shock, there would potentially be the risk of a stockout,

and the marginal valuation shoots up. The firm deals with this problem by charging customers

a sufficiently high price (which is a constant markup over the marginal valuation) such that

customers want to buy up just about the entire available stock but no more. Put differently,

stockout will never arise because the firm curtails demand accordingly.

It is not clear how inventory holdings would react in that setting in the case of an uncertainty

shock with a stochastic process for the second moment. The reason is that the model of Alessandria

et al. (2010b) features a first-moment demand shock with a fixed variance and no second-moment

shock. Table 5 of Alessandria et al. (2010b) fixes the standard deviation of the demand shock at a

constant value (equal to 1.15).

Consistent with Khan and Thomas (2007 Macroeconomic Dynamics 11(5), pp. 638–664), it seems

plausible that in such models higher uncertainty increases inventory holdings. The reason is that

a higher variance of demand shocks increases the likelihood of inventory being depleted.

The nature of uncertainty is different in our setting, however. Higher uncertainty does not

mean a higher probability of larger shocks. Higher uncertainty means a higher probability of

getting hit by a shock of a given size (as opposed to not being hit at all, see expression 5). Thus,

uncertainty in our setting relates to the frequency of shocks, where a shock is a sudden change in

business conditions (not being hit by a shock means that business conditions are stable).

Therefore, to explain why all else being equal higher uncertainty initially decreases inventory

holdings, the intuition from the literature on uncertainty and the option value of waiting kicks in
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(McDonald and Siegel 1986; Dixit 1989; Pindyck 1991). Given the increased probability of getting

hit by a shock and thus being forced to adjust, firms have an increased tolerance of running down

their inventory (see section 4.2).

How could a stockout avoidance set-up as in Alessandria et al. (2010b) be distinguished from

our approach? Suppose we had detailed inventory data at the firm level. In response to a pure

second-moment uncertainty shock, a framework such as the one by Alessandria et al. would

predict more inventory holdings (which is driven by the stockout avoidance motive). In contrast,

our framework would predict fewer inventory holdings (which is driven by the downward shift

s, S bounds).

Alessandria et al. (2011) provide evidence from the auto industry showing that in the Great

Recession of 2008/09, firms ran down their inventories. Of course, this is in principle consistent

with a negative first-moment shock. It would also be consistent with a second-moment shock as

in our framework.

The loss function in the context of equation (4) in our model is quadratic and thus symmetric.

However, as it is specified in logarithms, when expressed in levels negative deviations from the

target are relatively more costly. Losses associated with negative deviations could loosely be seen

as the firm’s desire to avoid a stockout although this setting is not entirely satisfactory.

To better capture the notion of costly negative deviations as in the stockout avoidance motive,

we adopt an asymmetric loss function based on Elliott et al. (2005). That is, we adopt the

“generalized loss function” in quadratic terms

Lt = [µ + (1− 2µ) · 1 (zt < 0)] z2
t ,

where 1 is the indicator function and µ is a parameter that governs asymmetry such that we have

a quad-quad loss function. Loss aversion corresponds to 0 < µ < 1
2 when negative deviations

incur a disproportionate loss. The special case of µ = 1
2 is our baseline symmetric loss function of

1
2 z2

t .

The asymmetric loss function renders the optimization problem more complicated. We

therefore opt to apply it to a simpler version of the model with constant uncertainty (see Hassler
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1996, section 2). That is, unlike in expression (6) where the uncertainty process is stochastic and

firms anticipate switches from low to high uncertainty and vice versa, we work with a given level

of uncertainty λ. We then carry out comparative statics exercises where we vary the degree of

asymmetry in the loss function. This provides us with solutions for the s, S bounds as in section 4.

As in that section, we solve the model numerically. (It turns out that numerically based on the

symmetric loss function, the models with constant and stochastic uncertainty yield quantitatively

very similar s, S bounds.)

The Bellman equation for the inventory problem in the constant uncertainty case is

V(zt) = Ltdt + (1− rdt)EtV(zt+dt).

Setting dt2 = 0 and dividing by dt we arrive at

(r + λ)V(zt) + δVz(zt) = Lt + λ (V(S) + f ) .

This is a first-order differential equation. For the indicator function in Lt it is important to note

that the return point S and the upper trigger point are positive while the lower trigger point s is

negative.

The solution to the differential equation follows as

V(zt) =

(
2µ

r + λ

z2
t

2
− 2µδ

(r + λ)2 zt +
2µδ2

(r + λ)3 +
λ f

r + λ
+ c1e−

r+λ
δ zt

)

+
λ

r

(
2µ

r + λ

S2

2
− 2µδ

(r + λ)2 S +
2µδ2

(r + λ)3 +
λ f

r + λ
+ c2e−

r+λ
δ S

)

where c1 is an integration constant with

c2 = c1 −
2 (1− 2µ) δ2

(r + λ)3 · 1 (zt < 0) .

The derivative of the value function is then given by

Vz(zt) =
2µ

r + λ
zt −

2µδ

(r + λ)2 −
r + λ

δ
c1e−

r+λ
δ zt .
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Then four conditions describe the solution. The first two are value-matching conditions that

link the value at the return point to the values at the lower and upper trigger points:

V(S) = V(s)− f ,

V(S) = V(s)− f ,

where s denotes the upper trigger point. The final two are smooth-pasting conditions:

Vz(S) = 0,

Vz(s) = 0.

These four conditions pin down the return point, the lower and upper trigger points as well as

the integration constant.

We solve the system numerically. For comparability, we retain the same baseline parameteriza-

tion as in section 4.1, in particular r = 0.065, δ = 0.1, fF = 0.00005846 and λ = 1. Our main aim is

to understand how the asymmetry in the loss function affects the s, S bounds. We therefore vary

the asymmetry parameter µ and illustrate the bounds graphically in similar fashion to Figure 1.

The result can be seen in Figure A6.

The symmetric benchmark corresponds to the value µ = 0.5. When we reduce µ, we introduce

an asymmetry in the loss function. It is clear from Figure A6 that the lower the value of µ (i.e., the

stronger the loss aversion), the higher the lower trigger point s and the return point S comes down.

The intuition is as follows. The rise in the lower trigger point is a straightforward implication

of the asymmetric loss function. Negative deviations are less acceptable, and therefore an order

is triggered more quickly when inventory runs low. The fall in the return point is linked to the

rise in the lower trigger point. As we explain in section 4.2 and as we show in the earlier part of

this appendix, in absolute value the lower trigger point deviates further from the target than the

return point (a symmetric band around the target would not be optimal). Therefore, as the lower

trigger point keeps on rising, the return point must eventually go down. Overall, the bandwidth

between the return point and the lower trigger point thus shrinks with rising asymmetry in the
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Figure A6: Change in s, S bounds (trigger point, return point) due to a higher degree of asymmetry in the
loss function. A smaller value of µ means stronger loss aversion.
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loss function.

We also carry out comparative statics with respect to the fixed costs of ordering and the

depreciation rate (similar to Figure 3 although not illustrated graphically here). For a lower value

of fixed costs, qualitatively this yields the same response to more asymmetry in the loss function

as above. That is, the bandwidth between the return point and the lower trigger point shrinks.

For a higher depreciation rate, the bandwidth also shrinks. But the shrinking of the bandwidth

occurs faster. The intuition is that with a higher depreciation rate, inventory drops more rapidly

ceteris paribus. The risk of negative deviations from the target is therefore elevated, and the lower

trigger point rises in response. Loss aversion reinforces this process.
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Appendix B: Sources for Data Used in Empirical Analysis

We follow Bloom (2009, p. 630) and estimate the empirical responses of model quantities to

uncertainty shocks using a VAR approach.

Bloom estimates a range of VARs on monthly data from June 1962 to June 2008. In his

basic 4-variable system the variables in Cholesky estimation order are log(S&P500 stock market

index), the stock-market volatility indicator, log(employment), and log(industrial production).

This ordering is based on the assumption that shocks instantaneously influence the stock market

(levels and volatility), and only later quantities (hours, employment, and output). Including

the stock-market levels as the first variable in the VAR ensures that the impact of stock-market

levels is already controlled for when looking at the impact of volatility shocks. All variables are

Hodrick-Prescott (HP) detrended (λ = 129,600) in the VAR estimations, and the same procedure is

followed here.

To this empirical framework we make three additions: we extend all data into 2012, we add

data for real imports at the aggregate level, and we add data for real imports and industrial

production at the disaggregated 4-digit NAICS level, with sources as follows.

S&P500 stock market index: June 1962 to June 2008 from Bloom (2009). Extended through

December 2012 with data scraped from http://finance.yahoo.com.

Stock-market volatility indicator: June 1962 to June 2008 from Bloom (2009). “Pre-1986 the VXO

index is unavailable, so actual monthly returns volatilities are calculated as the monthly standard

deviation of the daily S&P500 index normalized to the same mean and variance as the VXO index

when they overlap from 1986 onward. Actual and VXO are correlated at 0.874 over this period. [...

M]onthly VXO was capped at 50. Uncapped values for the Black Monday peak are 58.2 and for

the credit crunch peak are 64.4. LTCM is Long Term Capital Management.” For comparability, we

follow exactly the same definitions here and we thank Nicholas Bloom for providing us with an

updated series extended to 2012. For the purely exogenous uncertainty shock events, we also use

the same definition as in his paper.

Employment, All Manufacturing: June 1962 to June 2008 from Bloom (2009). Extended through

December 2012 using the series for All Employees/ Manufacturing (MANEMP) from FRED

19



http://research.stlouisfed.org/fred2/.

Industrial Production, Aggregated: June 1962 to June 2008 from Bloom (2009). Extended from

1919 through December 2012 using the series from G.17 Industrial Production and Capacity

Utilization, Board of Governors of the Federal Reserve System.

Real Imports, Aggregated: These data run from January 1962 to February 2012. After 1989,

total imports for general consumption were obtained from the USITC dataweb, where the data

can be downloaded online. From 1968 to 1988 data were collected by hand from FT900 reports,

where the imports series are only available from 1968 as F.A.S. at foreign port of export, general

imports, seasonally unadjusted; the series then change to C.I.F. value available beginning in 1974,

and the definition changes to customs value in 1982. Prior to 1968 we use NBER series 07028,

a series that is called “total imports, free and dutiable” or else “imports for consumption and

other”; for the 1962 to 1967 window this NBER series is a good match, as it is sourced from the

same FT900 reports as our hand-compiled series. To obtain real values we deflate by the U.S.

series for Consumer Price Index for All Urban Consumers: All Items, Not Seasonally Adjusted

(CPIAUCNS), constructed by the U.S. Department of Labor, Bureau of Labor Statistics, and taken

from FRED http://research.stlouisfed.org/fred2/.

Industrial Production, Disaggregated: These data only run from January 1972 to February 2012 at

a useful level of granularity. Although aggregate IP data are provided by the Fed going back to

February 1919, the sectorally disaggregated IP data only start in 1939 for 7 large sectors, with ever

finer data becoming available in 1947 (24 sectors), 1954 (39 sectors) and 1967 (58 sectors). However,

it is in 1972 that IP data are available using the 4-digit NAICS classification which will permit

sector-by-sector compatibility with the import data above. Starting in 1972 we use the Fed G.17

reports to compile sector-level IP indices, which affords data on 98 sectors at the start, expanding

to 99 in 1986. Monthly values with data by NAICS 4-digit group and by Fed Market Group.

Mapped into End Use categories using a concordance with 2010 gross value added weights also

from the G.17 report.

Real Imports, Disaggregated: These data only run from January 1989 to February 2012. In each

month total imports for general consumption disaggregated at the 4-digit NAICS level were

obtained from the USITC dataweb, where the data can be downloaded online. All series were
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then deflated by the monthly CPI. In this way 108 sector-level monthly real import series were

compiled. Mapped into Fed Market Group categories using a concordance. To obtain real values

we deflate by the U.S. CPI as above.
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Appendix C: List of NAICS 4-Digit Codes and Descriptors

1111 Oilseeds and Grains
1112 Vegetables and Melons
1113 Fruits and Tree Nuts
1114 Mushrooms, Nursery and Related Products
1119 Other Agricultural Products
1121 Cattle
1122 Swine
1123 Poultry and Eggs
1124 Sheep, Goats and Fine Animal Hair
1125 Farmed Fish and Related Products
1129 Other Animals
1132 Forestry Products
1133 Timber and Logs
1141 Fish, Fresh, Chilled or Frozen and Other Marine Products
2111 Oil and Gas
2121 Coal and Petroleum Gases
2122 Metal Ores
2123 Nonmetallic Minerals
3111 Animal Foods
3112 Grain and Oilseed Milling Products
3113 Sugar and Confectionery Products
3114 Fruit and Vegetable Preserves and Specialty Foods
3115 Dairy Products
3116 Meat Products and Meat Packaging Products
3117 Seafood Products Prepared, Canned and Packaged
3118 Bakery and Tortilla Products
3119 Foods, NESOI
3121 Beverages
3122 Tobacco Products
3131 Fibers, Yarns, and Threads
3132 Fabrics
3133 Finished and Coated Textile Fabrics
3141 Textile Furnishings
3149 Other Textile Products
3151 Knit Apparel
3152 Apparel
3159 Apparel Accessories
3161 Leather and Hide Tanning
3162 Footwear
3169 Other Leather Products
3211 Sawmill and Wood Products
3212 Veneer, Plywood, and Engineered Wood Products
3219 Other Wood Products
3221 Pulp, Paper, and Paperboard Mill Products
3222 Converted Paper Products
3231 Printed Matter and Related Product, NESOI
3241 Petroleum and Coal Products
3251 Basic Chemicals
3252 Resin, Synthetic Rubber, & Artificial & Synthetic Fibers & Filiment
3253 Pesticides, Fertilizers and Other Agricultural Chemicals
3254 Pharmaceuticals and Medicines
3255 Paints, Coatings, and Adhesives
3256 Soaps, Cleaning Compounds, and Toilet Preparations
3259 Other Chemical Products and Preparations
3261 Plastics Products
3262 Rubber Products

3271 Clay and Refractory Products
3272 Glass and Glass Products
3273 Cement and Concrete Products
3274 Lime and Gypsum Products
3279 Other Nonmetallic Mineral Products
3311 Iron and Steel and Ferroalloy
3312 Steel Products From Purchased Steel
3313 Alumina and Aluminum and Processing
3314 Nonferrous Metal (Except Aluminum) and Processing
3315 Foundries
3321 Crowns, Closures, Seals and Other Packing Accessories
3322 Cutlery and Handtools
3323 Architectural and Structural Metals
3324 Boilers, Tanks, and Shipping Containers
3325 Hardware
3326 Springs and Wire Products
3327 Bolts, Nuts, Screws, Rivets, Washers and Other Turned Products
3329 Other Fabricated Metal Products
3331 Agriculture and Construction Machinery
3332 Industrial Machinery
3333 Commercial and Service Industry Machinery
3334 Ventilation, Heating, Air-Conditioning, and Commercial Refrigeration Equip-

ment
3335 Metalworking Machinery
3336 Engines, Turbines, and Power Transmission Equipment
3339 Other General Purpose Machinery
3341 Computer Equipment
3342 Communications Equipment
3343 Audio and Video Equipment
3344 Semiconductors and Other Electronic Components
3345 Navigational, Measuring, Electromedical, and Control Instruments
3346 Magnetic and Optical Media
3351 Electric Lighting Equipment
3352 Household Appliances and Miscellaneous Machines, NESOI
3353 Electrical Equipment
3359 Electrical Equipment and Components, NESOI
3361 Motor Vehicles
3362 Motor Vehicle Bodies and Trailers
3363 Motor Vehicle Parts
3364 Aerospace Products and Parts
3365 Railroad Rolling Stock
3366 Ships and Boats
3369 Transportation Equipment, NESOI
3371 Household and Institutional Furniture and Kitchen Cabinets
3372 Office Furniture (Including Fixtures)
3379 Furniture Related Products, NESOI
3391 Medical Equipment and Supplies
3399 Miscellaneous Manufactured Commodities
5111 Newspapers, Books & Other Published Matter, NESOI
5112 Software, NESOI
5122 Published Printed Music and Music Manuscripts
9100 Waste and Scrap
9200 Used or Second-Hand Merchandise
9800 Goods Returned to Canada (Exports Only); U.S. Goods Returned and Reim-

ported Items (Imports Only)
9900 Special Classification Provisions, NESOI
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Appendix D: IRFs with Coarse Disaggregation

At a coarse level of disaggregation we investigate IRFs for uncertainty shocks when trade and IP

data are divided into either End Use categories (a Bureau of Economic Analysis classification) or

into Market Groups (a Fed classification). The purpose is to see whether the aggregate result holds

up at the sectoral level, and, if there is any departure, to see if there is any systematic variation

that is yet consistent with our model’s more detailed predictions for heterogeneous goods.

Returning henceforth to the OLS estimation based on the full VXO shock series, Figure D1

shows (non-rescaled) IRFs for real imports disaggregated into 6 BEA 1-digit End Use categories.

The response to an uncertainty shock varies considerably across these sectors, but in a manner

consistent with predictions from theory. There is essentially no response for the most perishable,

or least durable, types of goods captured by End Use category 0 (foods, feeds and beverages). This

response matches up with cases in our model when the depreciation parameter is set very high.

In this case the response to uncertainty shocks diminishes towards zero. Responses are also weak

for category 4 (nonfood consumer goods, except automotive), which encompasses nondurable

consumer goods, as well as for the residual category 5 (imports not elsewhere specified). In

contrast, some sectors show a large response to uncertainty shocks, notably End Use category 1

(industrial supplies and materials), category 2 (capital goods except automotive), and category 3

(automotive vehicles, parts and engines). Category 2, being capital goods, clearly fits with the

mechanism we propose, but categories 1 and 3 also include significant durable goods components.

Our theory predicts that it is precisely these sectors that will experience the largest amplitude

response to an uncertainty shock.

It is not possible to compare these IRFs to the corresponding response of domestic IP using the

same End Use classification since we cannot obtain IP disaggregated by End Use code. However,

we can obtain both imports and IP disaggregated in a matched way at a coarse level by using the

Fed’s Market Group categories. IP is available directly in this format on a monthly basis and we

were able to allocate imports to this classification by constructing a concordance mapping from

4-digit NAICS imports to Fed Market Groups (with some weighting using 2002 data on weights).

Figure D2 shows (non-rescaled) IRFs for real imports (upper panel) and IP (lower panel)
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Figure D1: Import IRFs by End Use category for uncertainty shocks.
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Source: Sample is 1989:1–2012:2. Imports by End Use 1-digit from USITC dataweb, deflated by CPI; all other
data as in Bloom (2009), updated. Uncertainty shocks for quadvariate VARs. Ordering is stock market,
volatility, log employment, followed lastly by log real imports. Data updated through February 2012. No
rescaling of shocks. 95% confidence intervals shown. See text.

disaggregated into Fed Market Group categories. Again, the response to an uncertainty shock

varies considerably across these sectors, and we can compare the import and IP responses directly.

To facilitate this, all responses are shown on the same scale.

In panel (a) the results for imports are compatible with those above based on End Use

categories. Here, in the Fed Market Groups, the largest amplitude responses to an uncertainty

shock are seen for materials, business equipment, and consumer durables. The responses show a

1–2 percent drop at peak. The weakest response is for consumer nondurables, which shows about

a 0.5 percent drop at peak, although it is barely statistically significant at the 95% level.

By contrast, in panel (b) the results for IP are very muted indeed. Confidence intervals are

tighter, so these responses do breach the 95% confidence interval within a range of steps. However,
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the magnitude of the response is qualitatively different from imports. The consumer durables

response is around 0.8 percent at peak for IP, whereas it was almost twice as large, near 1.5

percent, for imports. Materials and business equipment fall at peak by about 0.25 percent for IP,

but fell about four times as much in the case of imports. Consumer nondurables in IP are barely

perturbed at all.
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Figure D2: Import and IP IRFs by Fed Market Group for uncertainty shocks.
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Notes: Sample is 1989:1–2012:2. Imports via concordance from USITC dataweb, deflated by CPI; IP from
Fed G.17; all other data as in Bloom (2009), updated. Uncertainty shocks for quadvariate VARs. Ordering is
stock market, volatility, log employment, followed lastly by either log real imports or log IP. Data updated
through February 2012. No rescaling of shocks. 95% confidence intervals shown. See text.
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Appendix E: IRFs with Finer Disaggregation

In another robustness check we aim to study dynamic responses to uncertainty shocks at an even

finer level of disaggregation, whilst still allowing for an even-handed comparison between import

and IP responses in such a way that we can confront the testable predictions of our model.

For this exercise we move to the 3- or 4-digit NAICS level of classification, again sourcing

the data from USITC dataweb and the Fed G.17 releases at a monthly frequency starting in 1989.

The overlap between these two sources allows us to work with 51 individual sectors. A list of

NAICS codes at this level of disaggregation, with accompanying descriptors, is provided in the

corresponding appendix above. We then aggregate up the quantities to the level of the End Use

categories using the Census Bureau concordance.

We estimate every IRF at the End Use level, using the exact same specification as before and

repeating the exercise for each NAICS sector with imports and IP.

The End Use categories are:

0 = FOODS, FEEDS, AND BEVERAGES

1 = INDUSTRIAL SUPPLIES AND MATERIALS

2 = CAPITAL GOODS, EXCEPT AUTOMOTIVE

3 = AUTOMOTIVE VEHICLES, PARTS AND ENGINES

4 = CONSUMER GOODS (NONFOOD), EXCEPT AUTOMOTIVE

The resulting cumulative IRFs for months 1–12 are presented in Figure E1.

Overall, a similar pattern of results emerges here, consistent with our previous discussion,

whereby the responsiveness to uncertainty shocks tends to be higher for real imports (CPI

deflated) than for IP, but we can also see that the effects vary across End Use categories in a

manner consistent with our model.

Recall that in our model, three forces operate to make the response to uncertainty shocks high:

(a) goods are bought as inputs (inventory), not for final use; (b) goods exhibit more durability; (c)

the fixed costs of trade are larger.

The obvious End Use categories which include a lot of durable inputs are End Use 1, 2 and 3,

and this is matched by the larger IRFs. We see that with food in End Use category 0, the goods are
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more perishable so the effects are smaller here, and this is also matched by the IRFs. Conversely,

in End Use categories 1, 2, and 3, the goods are more durable and the effects are bigger.

In particular, our model predicts the largest amplification of import versus IP responses in

the cases of goods which are durable and used as inputs, and End Use categories 1 to 3 fit this

description: 1 includes potentially storable materials (metals, fuels, plastics, etc.) and the latter is

essentially machinery and equipment and some auto parts. By contrast, End Use category 4 is

more populated by consumer goods, not inputs.
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Figure E1: Average real import and IP IRFs compared in months 1–12 by End Use category
-.0

6
-.0

4
-.0

2
0

.0
2

C
um

ul
at

iv
e 

IR
F 

1-
12

 m
on

th
s

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Enduse

Imports IP Imports/IP
95% CI

Notes: Cumulative IRF for months 1–12. Flow data at 3- or 4-digit NAICS level, aggregated up to End Use
categories using the Census Bureau concordance. Sample is 1989:1–2012:2. Imports from USITC dataweb,
deflated by CPI; IP from Fed G.17; all other data as in Bloom (2009), updated. Uncertainty shocks for
quadvariate VARs. Ordering is stock market, volatility, log employment, followed lastly by either log real
imports or log IP. Data updated through February 2012. No rescaling of shocks. See text.
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Appendix F: Alternative Measures of Uncertainty Shocks

As a further robustness check, we consider two alternative indices of uncertainty shocks and

replicate our baseline result.

The first index we use is the Baker/Bloom/Davis (BBD) text-based measure of “economic

policy uncertainty” (see Baker, Bloom and Davis 2016). Their main economic policy uncertainty

(EPU) index for the U.S. is available from 1985 monthly. Their Figure VI compares the EPU

index to a VIX-based uncertainty measure since 1990. The correlation is 58 percent. Thus,

the variation required for our VARs is similar but not the same. The data are available at

http://www.policyuncertainty.com/.

The second index we use is the Berger/Dew-Becker/Giglio (BDBG) measure of second-

moment news shocks (see Berger, Dew-Becker and Giglio 2019). They measure second-moment

expectations through the conditional variance of future stock prices (stock returns of the S&P 500

index), aggregated to monthly frequency (see their section 3.1). They construct their uncertainty

measure as a residual through VARs (see their section 3.2), and we use their “news” residual (we

thank Ian Dew-Becker for sending us this time series).

The three IRF charts in Figures F1-F3 show: 1. the baseline IRFs from the main part of our

paper using the Bloom uncertainty index (as a benchmark); 2. the baseline when we replace the

Bloom index with BBD; and 3. the same baseline when we replace the Bloom index with BDBG.

The overall message is clear. Though the definitions of the uncertainty shock change, and

the sample periods also change somewhat, in quantitative terms the key baseline result stands

unchanged. It is always the case that real imports respond much more to uncertainty shocks, as

compared to industrial production, by a factor of 4-5 or more.
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Figure F1: Baseline IRFs using Bloom VIX shocks (as reported in Figure 6).
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Figure F2: IRFs using Baker/Bloom/Davis “economic policy uncertainty” shocks.
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Figure F3: IRFs using Berger/Dew-Becker/Giglio “second-moment news” shocks.
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Appendix G: China Trade Relations as a Second-Moment Shock

To exploit an additional source of variation in the data and to provide a cross-check of our results,

we examine the uncertainty associated with annual renewals of China’s Permanent Normal Trade

Relations (PNTR) status (cf. Pierce and Schott 2016). We also refer to Handley and Limão (2017)

who provide theoretical background and look at trade growth around this episode between 2000

and 2005.

We use a data subset, the monthly U.S. import data from 1989 to 2007 from the U.S. Census

Bureau. These data are reported by partner country at the HS10 level (allowing us to isolate China

imports). (We thank Robert Feenstra for sharing the relevant data with us.) We then aggregated

up to the NAICS3 level. We found similar results, not shown here, can be seen even at the HS4

and HS8 levels.

We then conduct an event analysis experiment using diff-in-diff where we compare U.S.

imports from China and the European Union (EU) before and after the 2001 PNTR event. The

control group is the EU, the treated group is China, and pre- and post-2001 are the relevant

periods. Note that our analysis is with monthly data whereas Pierce and Schott (2016) use annual

data. We found similar results, not shown here, can be seen using quarterly aggregation.

Our model can be applied here in the sense that we think of the decrease in uncertainty on

China trade after the PNTR event as being like a permanent decrease in demand uncertainty

for Chinese goods (e.g., due to the de facto equivalent import-tariff wedge uncertainty falling).

Note that the PNTR event did not affect the first moment of tariffs (mean levels), only the second

moment.

The regression estimated is

log y(i, s, t) = a(i, s) + b1(i, s, t)∗EU∗t + b2(i, s, t)∗CHINA∗t

+b3(i, s, t)∗EU∗POST∗t + b4(i, s, t)∗CHINA∗POST∗t

+b5(i, s, t)∗CHINA∗POST∗t2 + b6(i, s, t)∗CHINA∗POST∗t3

+ξ(i, s, t),
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where y is imports to the U.S. in dollars from each region, with monthly seasonality removed for

each region (which is especially needed in the case of China for the New Year). The variable a is

the fixed effect for region i, NAICS3 sector s, and ξ is an error term. The coefficients b1 to b4 allow

for regional time trends (they differ substantially) pre and post.

The coefficients b5 and b6 are the coefficients of interest which capture the post-PNTR differen-

tial effect for China which is nonlinear in time, using a cubic trend. Here POST is a dummy for

post-PNTR periods and time is scaled so that the month is coded t = 0 when PNTR comes into

effect. Thus, the import path is restricted to be piecewise continuous at t = 0.

Our model predicts that in response to such a permanent second-moment shock, U.S. imports

from China relative to the EU should quickly surge to a high level, but then settle down in the

longer term at a somewhat lower level (i.e., we should observe some overshooting relative to the

benchmark of a linear trend).

When we plot the fitted values predicted by these b5 and b6 coefficients for each bin, holding

all other terms at zero, the results shown in the first panel of Figure G1 confirm that we find a

pattern of this kind. The acceleration in China-vs-EU imports ramps up but slows down after

about 2004, and it peaks at 130 log points in 2006–07. (We would hesitate to draw inferences for

post-2008 data, however, given that the onset of the global financial crisis would likely add a lot of

noise and possibly potential bias to this outcome variable for reasons outside our model.)

In addition, to examine a further prediction of our model, we can examine whether the

patterns differ for durable and nondurable goods by defining a bin indicator variable for durable

goods sectors based on Levchenko, Lewis, and Tesar (2010) and then running an augmented

specification where we interact that indicator variable with the non-constant terms in the above

regression, resulting in separate coefficient estimates b1 through b6 for the durable and nondurable

bins. (Note that this durable coding is only available at the NAICS3 level, hence our decision to

focus our analysis in this appendix on the NAICS3 level so that the aggregated and disaggregated

results can be compared.)

When we plot the fitted values predicted by the b5 and b6 coefficients for each bin (see Table

G1), holding all other terms at zero, the results are as shown in the two right panels of Figure G1,

where we see that the response of durables is larger than the response of nondurables, consistent
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Figure G1: Fitted values and standard errors for the estimated nonlinear trend component of the log U.S.
imports from China relative to EU linear trend post-PNTR based on a cubic trend for each
region at the NAICS 3-digit level. See the text for details.
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with our model. (The difference is about 33%, 160 log points log points in 2006–07 versus 120.)
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Table G1: Coefficients for the estimated nonlinear trend component of the log U.S. imports from China
relative to EU linear trend post-PNTR based on a cubic trend for each region at the NAICS
3-digit level. See the text for details.

(1) (2)
All goods Nondurable goods Durable goods

CHINA∗POST∗t2
0.0640

∗∗∗
0.0584

∗∗∗
0.0753

∗∗∗

(6.43) (4.77) (4.47)

CHINA∗POST∗t3 -0.000535
∗∗∗ -0.000492

∗∗∗ -0.000622
∗∗∗

(-5.61) (-4.20) (-3.87)
N 7526 7526

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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