

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/116359

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Human Vaccines & Immunotherapeutics

The burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa: a systematic review and meta-analysis --Manuscript Draft--

Manuscript Number:	KHVI-2018-0490R1
Full Title:	The burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa: a systematic review and meta-analysis
Article Type:	Research Paper
Manuscript Classifications:	Epidemiology; HIV; Infectious Disease; Pediatrics; Tropical Medicine; Vaccinology
Abstract:	There are knowledge gaps regarding evidence-based research on the burden of vaccine-preventable diseases among human immunodeficiency virus (HIV)-infected and HIV-exposed children aged <18years in sub-Saharan Africa. It is therefore essential to determine the trend and burden of vaccine-preventable diseases. We completed a systematic review and meta-analysis to identify the incidence, prevalence and case-fatality rates (CFR) attributed to various vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa. The trends in the prevalence of vaccine-preventable diseases among HIV-infected and HIV-exposed children were also determined. Nine studies on tuberculosis (TB) were pooled to give an overall incidence rate estimate of 60 (95% confidence interval [CI] 30 – 70) per 1,000 child-years. The incidence of pneumococcal infections varied between 109-1509 per 100,000 while pertussis was between 2.9 and 3.7 per 1000 child-year. Twenty-two TB prevalence studies reported an estimated prevalence of 16%. Fifteen prevalence of 5%. The pooled prevalence for pneumococcal infections was 2% while rotavirus diarrhoea reported a prevalence of 13%. Twenty-nine studies on TB were pooled to give an overall CFR estimate of 17% while pneumococcal infections in HIV-infected and exposed children were pooled together with a resultant rate of 15%. Some of the vaccine-preventable diseases still have high incidences, prevalence and CFR among HIV-infected and HIV-exposed children. There is also a dearth of research data on the burden of several vaccine-preventable diseases among HIV-infected and exposed children and a need for more studies in this area.
Author Comments:	
Order of Authors Secondary Information:	
Keywords:	HIV; vaccine-preventable diseases; sub-Saharan Africa; burden

1 2 3		
4 5		
6	1	The burden of vaccine-preventable diseases among HIV-
7 8 9	2	infected and HIV-exposed children in sub-Saharan Africa: a
10 11	3	systematic review and meta-analysis
12	4	
13 14	5	
15 16	6	Olatunji O. Adetokunboh ^{a,b*} , Ajibola Awotiwon ^c , Duduzile Ndwandwe ^a , Olalekan A.
17 18	7	Uthman ^{a,b,d} , Charles S. Wiysonge ^{a,b,e}
19 20	8	
21	9	
22 23		
24 25	10 11 12	 ^a Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa ^b Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
26 27	13	^c Knowledge Translation Unit, University of Cape Town Lung Institute, Cape Town, South Africa
28	14	^d Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, United
29	15	Kingdom
30 31	16 17	^e Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape
32		Town, Cape Town, South Africa
33 34	18	
35 36	19	* Correspondence: <u>adetok_sic@yahoo.com</u>
37	20	
38 39	21	
40	21	
41	22	
42 43	23	
44	25	
45	24	
46	25	
47 48	25	
49	26	
50		
51 52	27	
53	28	
54	20	
55 56	29	
50 57	30	
58	50	
59	31	
60 61		
61 62		
63		
64		
65		

32 Abstract

There are knowledge gaps regarding evidence-based research on the burden of vaccine-preventable diseases among human immunodeficiency virus (HIV)-infected and HIV-exposed children aged <18 years in sub-Saharan Africa. It is therefore essential to determine the trend and burden of vaccine-preventable diseases. We completed a systematic review and meta-analysis to identify the incidence, prevalence and case-fatality rates (CFR) attributed to various vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa. The trends in the prevalence of vaccine-preventable diseases among HIV-infected and HIV-exposed children were also determined. Nine studies on tuberculosis (TB) were pooled to give an overall incidence rate estimate of 60 (95% confidence interval [CI] 30 - 70) per 1,000 child-years. The incidence of pneumococcal infections varied between 109-1509 per 100,000 while pertussis was between 2.9 and 3.7 per 1000 child-year. Twenty-two TB prevalence studies reported an estimated prevalence of 16%. Fifteen prevalence studies on hepatitis B infection were pooled together with an estimated prevalence of 5%. The pooled prevalence for pneumococcal infections was 2% while rotavirus diarrhoea reported a prevalence of 13%. Twenty-nine studies on TB were pooled to give an overall CFR estimate of 17% while pneumococcal infections in HIV-infected and exposed children were pooled together with a resultant rate of 15%. Some of the vaccine-preventable diseases still have high incidences, prevalence and CFR among HIV-infected and HIV-exposed children. There is also a dearth of research data on the burden of several vaccine-preventable diseases among HIV-infected and exposed children and a need for more studies in this area.

Keywords: HIV; vaccine-preventable diseases; sub-Saharan Africa; burden

60 Background

Human immunodeficiency virus (HIV) infection remains a leading public-health challenge and a principal cause of the infectious disease burden in low- and middle-income countries especially in sub-Saharan Africa.¹ This region accounts for the bulk of HIV infection with about 36.7 million people living with the disease an estimated 75% of the global burden.^{2,3} It was also estimated that approximately 2.1 million children aged under 15 years were living with HIV with the majority coming from sub-Saharan Africa and about 31% having access to antiretroviral therapy in 2014.⁴ The incidence of HIV infections among children declined in 2014 but there were still 220,000 new infections that year alone.⁴ HIV-infected children have an increased risk of developing various vaccine-preventable diseases due to their defective immune systems.⁵ This makes it crucial to focus on the vaccination of HIV-infected and exposed children. The majority of these children are also residents of low-and-middle-income countries characterised by limited access to HIV diagnosis, treatment and care.²

Vaccination against various vaccine-preventable diseases has been proven to be a beneficial and cost-effective public-health measure for protecting children, adolescents and adults from these diseases, thereby reducing the morbidity and mortality attributable to them.^{6,7} Coverage of routine vaccinations is still low in some developing countries and not sufficient to meet the Global Vaccine Action Plan (GVAP) targets.⁸⁻¹⁰ Some African countries have low or decreasing immunisation coverage over the years with some not achieving $\geq 90\%$ national coverage for vaccines included in their national immunisation schedule by the World Health Organization (WHO) in 2016.¹¹ Sub-Saharan African countries account for about 34% of the global vaccine-preventable diseases burden, and are also responsible for the highest proportion of under-five mortality from these diseases.12

Recently, most developing countries have included routine childhood vaccines such as hepatitis
B; Bacillus Calmette–Guérin (BCG); diphtheria, tetanus and pertussis (DTP); *Haemophilus influenzae* type b (Hib); polio; pneumococcal conjugate; measles; rotavirus (RV), rubella and
yellow fever vaccines in their national Expanded Programme on Immunisation (EPI).¹³ These
vaccines also protect against diseases such as tuberculosis, poliomyelitis, rotavirus gastroenteritis,
diphtheria, tetanus, pertussis, pneumococcal diseases, hepatitis B infection, rubella, measles and
yellow fever.

The gap in knowledge, especially in terms of evidence-based research, on the burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa, warrants this study.¹⁴ This study completed a systematic review of literature and meta-analysis to identify the incidence, prevalence and mortality due to various vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa since the advent of HIV in the 1980s. This study is essential in determining the trend and current burden of vaccine-preventable disease epidemiology in sub-Saharan Africa.

Objectives

Primary objectives

- 1. To appraise all available published literature on the incidence and prevalence of vaccine-preventable diseases such as tuberculosis, poliomyelitis, hepatitis B virus infection, rotavirus gastroenteritis, diphtheria, tetanus, pertussis, pneumococcal diseases, measles, rubella and yellow fever among HIV-infected and HIV-exposed children in sub-Saharan Africa.
- 2. To determine the trend in the incidence and/or prevalence of vaccine-preventable diseases such as tuberculosis, poliomyelitis, hepatitis B virus infection, rotavirus gastroenteritis, diphtheria, tetanus, pertussis, pneumococcal diseases, measles, rubella and yellow fever among HIV-infected and HIV-exposed children in sub-Saharan Africa from 1980 to 2018.
- Secondary objective
- 1. To describe the case-fatality rate ascribed to vaccine-preventable diseases such as tuberculosis, poliomyelitis, hepatitis B virus infection, rotavirus gastroenteritis, diphtheria, tetanus, pertussis, pneumococcal diseases, measles, rubella and yellow fever among HIVinfected and HIV-exposed children in sub-Saharan Africa.
- Results

56 117 Literature search and result

Figure 1 shows the study selection process reported in line with PRISMA guidelines. We identified 3430 publications through the search of different databases. We also identified 13 additional

articles through the screening of reference lists of various related articles. We screened 188 fulltext articles and selected 76 articles for inclusion in the review and 70 articles were suitable for
the meta-analysis (Figure 1).

123 Study characteristics

Table 1 provides a summary of the included studies and the vaccine-preventable diseases of interest. The table shows that 45 articles reported on tuberculosis, 14 on hepatitis B virus infection, ten studies focused on pneumococcal infections, two on rotavirus gastroenteritis, three on measles and three on pertussis. The included articles consist of 41 cross-sectional studies, 31 cohort studies, four case-control studies and one time-series analysis.

South Africa had the highest number of published articles with 35 articles, Nigeria produced 10 articles, four were from Kenya, four from Ethiopia and two studies were conducted in multiple countries. The other studies were conducted in Rwanda, Tanzania, Cote d' Ivoire, Uganda, Malawi, Botswana, Zimbabwe, Zambia, Mozambique and Swaziland (Table 1). A total of 46,882 children were included in this review. HIV-infected children were included in 71 studies while two studies had both HIV-infected and HIV-exposed uninfected children, and one study with only HIV-exposed children. The included studies were conducted between 1992 and 2016.

Using the Newcastle-Ottawa Quality Scale for the quality assessment of the eligible studies, 11 articles scored eight points; 15 articles scored seven points; 27 articles scored six points; 15 articles scored five points; seven articles scored four points and two articles scored three points. The characteristics of the eligible studies are summarised in Table 1.

T		
2 3		
3		
4	147	
5		
6	4.40	
4 5 6 7	148	Figure 1: Flow diagram of the selection process
, Q		
8 9	149	
	<u> </u>	
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
10		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50 20		
59 60		
60		
61		
62		
63		
64 65		
65		

14 15 16 17	
18	
19	
20	
21	
22	Table 1: Characteristics of the study population
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
48 49	
50	
51	
52	
53	
53	
55	
56	
57	
58	
58	
60	
61	
62	
63	
64	
65	

2 Incidence rates

Tuberculosis: Nine studies^{15,17-20,22,32,35} on TB were pooled to give an overall incidence rate estimate of 60 (95% CI 30 - 70) per 1,000 child-years at risk for tuberculosis based on a random-effects model ($I^2 = 99\%$; Figure 2). Subgroup analysis established change over time in incidence rates when comparing studies conducted before and after 2011. The pooled incidence rates for tuberculosis in those conducted before 2010 was 70 (95% CI -20 - 160) per 1,000 child-years^{32,35} and 40 (95% CI 20 - 50) per 1,000 child-years in studies conducted between 2011 and 2018.^{15,17-20,22} The heterogeneity of the TB incidence could not be explained by the subgroup analysis. Kouakoussui et al. reported TB incidence of 0.71 per 100 child/months before initiation of highly active antiretroviral therapy (HAART) and 0.16 per 100 child/months during HAART treatment among Ivorian HIV-infected children.⁶⁰

Pneumococcal infections: Incidence of invasive pneumococcal disease among HIV-infected children aged <1 and 1-4 years was 1022 (95% CI 923-1123) per 100,000 and 198 (95% CI 178-220) per 100,000 respectively in 2008.89 The incidence of pneumococcus-associated lower respiratory tract infection among HIV-exposed uninfected children was 109 (95% CI 47–214) per 100,000 and 629 (95% CI 130–1838) per 100,000 among HIV-infected children.⁸⁶ Ásbjörnsdóttir et al. reported the incidence of pneumonia among Kenyan HIV-exposed uninfected infants to be 900 (95% CI 800–1000) per 1,000 child-years.⁸¹ Nunes et al. reported the incidence of invasive pneumococcal disease to be 1509 (95% CI 1350 – 1680) per 100,000 during early (HAART) and 742 (95% CI 644 – 851) during established-HAART eras for less than 18-year old South Africans.⁸⁷

<u>Pertussis:</u> The incidence of pertussis among Zambian HIV-exposed infants was reported to be
3.7 (95% CI 0.9–10.1) per 1000 person-months⁷⁵ while Soofie et al. reported the incidence to
be 2.9 (95% CI 1.8 – 4.5) per 1,000 child-years.⁷⁸

31 Figure 2: Forest plot of studies with data on incidence rates of tuberculosis in HIV-exposed children

33 Prevalence

Twenty-one TB prevalence studies were pooled together and reported estimated prevalence of 16% (95% CI 12 - 19, $I^2 = 99\%$). For studies conducted within the period 1991-2000, the prevalence was 13% (95% CI 8 - 18)^{40,43}; lower in 2001-2010 with an estimate of 8% (95% CI 5 - 11, $I^2 = 96\%$)^{22,33,37,38,51} and recorded the highest prevalence in recent years with 15% (95%) CI 8 - 22, $I^2 = 99$)^{15,16,18,19,21,23,27,29,31,41,45,46,52,57} (Figure 3). Fourteen prevalence studies on hepatitis B (HBV) infection in HIV-infected children were pooled together with an estimate prevalence of 5% (95% CI 4 - 7, $I^2 = 90\%$). Studies conducted between 2001 and 2010 had a prevalence of 3% (95% CI 2 - 5) 67,68 and 4% (95% CI 3 - 6) between 2011 and 2018 61,63,64,65-^{72,74} (Figure 4).

The pooled prevalence for pneumococcal infections was 2% (95% CI 1 – 4). There has been a reduction in prevalence from 9% (95% CI 5 - 14)⁸³ in 1996 to 1% (95% CI 0 – 5)⁸⁴ in 2001. Pooled prevalence for pertussis was 3% (95% CI 2 - 4)^{14,78} while measles was 6% (95% CI 2 - 10).^{75,76} Two rotavirus diarrhoea prevalence studies were pooled together and reported an estimated prevalence of 13% (95% CI 8 - 17, $I^2 = 0\%$).^{79,80}

 Figure 3: Forest plot of studies with data on the prevalence of tuberculosis in HIV-infected children

Figure 4: Forest plot of studies with data on the prevalence of hepatitis B virus infection in HIV-infected and HIV-exposed children

56 Trend in incidence and prevalence

We analysed the trend in TB incidence with respect to publication years. The trend was nonlinear with a downtrend from 2000 to 2010 (at -12.5% per year) and a reduced downward trend from 2011 to 2018 (at -1.5 per year) as shown in Figure 5. The trend in HBV prevalence was also analysed. The trend was not linear. There was evidence of a downtrend from 2000 to 2010 (at -4.7% per year) and (at -5.3% per year) from 2011 to 2018 as shown in Figure 6. The TB

prevalence trend was also non-linear. There was evidence of initial downtrend from 2000 to 2010 (at -3.2% per year) and upward trend from 2011 to 2018 (at +32.7 per year).

Figure 5: Trends in the incidence of tuberculosis in HIV-infected and exposed children with respect to publication years

Figure 6: Trends in the prevalence of hepatitis B virus infection in HIV-infected and exposed children with respect to publication years

Case-fatality rates

Twenty-nine studies on TB were pooled to give an overall CFR estimate of 17% (95% CI: 13 - 20, $I^2 = 95\%$) which translates to 17% of all TB cases dying from the disease. Subgroup analysis shows the CFR was 18% (95% CI 6 – 24)⁴⁷ in the 1991-2000 period, 6% (17 – 38, I^2 = 95%)^{33,35-37,48,49,53,54,56,59} in 2001-2010 and 13% (95% CI 9 - 17, $I^2 = 96\%$)^{15,16,18,20,23-} 25,30,34,39,44,46,47,50,55,56 in 2011 – 2018. Four studies were pooled for pneumococcal infections CFRs in HIV-infected and exposed children with a resultant rate of 15% (95% CI 4 – 26, $I^2 =$ 95%).^{81,84,85,90} One study shows that pertussis has CFRs of 13% (95% CI 2 - 38)⁷⁸ and for measles the CFR was 1% (95% CI 0 - 4).⁷⁶

Publication bias assessment

Funnel-plot analyses of studies reporting on the prevalence of TB revealed nil significant publication bias, with the P value for the Begg's test being 0.185 while the studies assessing the prevalence of HBV infection showed significant Begg's test with P value of 0.001 (Figure 7 and 8). Likewise, studies assessing the CFR of TB demonstrated no significant publication bias Begg's test P = 0.385 (Figure 9).

Figure 7: Funnel plot of studies reporting on the prevalence of tuberculosis in HIV-infected children

Figure 8: Funnel plot of studies reporting on the prevalence of hepatitis B virus infection in HIV-infected children

Figure 9: Funnel plot of studies reporting on the case-fatality rate of tuberculosis in HIV-infected children

Discussion

This study provides a comprehensive overview of the incidence rate, prevalence and case fatality rates of different vaccine-preventable diseases in HIV-infected and HIV-exposed children in sub-Saharan African countries. The review shows that TB is the most researched vaccine-preventable disease in HIV-infected children in various African countries and settings. This is not surprising because of the relationship between TB and HIV infection with respect to the high susceptibility of TB in HIV-infected individuals,^{91,92} Other vaccine-preventable diseases like HBV infection, pneumococcal infection, measles, rotavirus gastroenteritis, pertussis and Hib infections were also studied in several African countries. Important vaccine-preventable diseases such as poliomyelitis, diphtheria, tetanus and yellow fever had no eligible studies for inclusion revealing the dearth of incidence and prevalence studies on these diseases. The pooled incidence, prevalence and CFRs reveal there are still high burdens of several vaccine-preventable diseases in sub-Saharan Africa.

According to WHO, the global incidence of TB has been reducing at an average of 2 percent per year.⁹¹ TB incidence has declined in the African region by 4 percent annually since 2013.⁹¹ Southern African countries with the highest prevalence and incidence of HIV such as South Africa, Lesotho, Zimbabwe, Eswatini, Namibia and Zambia had remarkable reductions in TB incidence.⁹¹ Our study shows that TB incidence reduced over time, however, the event per child-year is still high when compared with the End TB strategy goals.⁹³ The World Health Assembly adopted the resolution known as "End TB strategy goals" which is about the global strategy and targets for tuberculosis prevention, care and control after 2015⁹³. In spite of the reduction in TB incidence among children, there are still cases of high incidence in certain countries bearing in mind that many countries in African countries are classified as high-burden.96 A retrospective cohort study in a very high TB/HIV prevalent region in Nigeria showed a high incidence rate of 21.2/100 per year among children within six months of ART

enrollment at a period when others were recording much lower incidence.¹⁸ TB prevalence has
fluctuated over time with about 15% of HIV-infected children having the disease at a given
point in time. As of 2017, it was estimated that the global CFR was 16% with many African
countries recording more than 20%.⁹¹ This rate is also far higher than the End TB Strategy
milestone of 10% by 2020.

The pooled HBV infection prevalence among HIV-infected children was 5%, however, a study done in Rwanda in 2010 revealed a seroprevalence of 16%.⁶⁸ Ott et al. showed that sub-Saharan Africa had the highest HBV burden with West African countries having up to 12% hepatitis B surface antigen prevalence among children and adolescents in the 1990s.⁹⁴ There has been a reduction within the region largely due to immunisation programmes, however, there is high endemicity in some areas. A systematic review of HBV prevalence in Nigeria from studies conducted from 2000 to 2013 shows that HBV infection ranged from 0.5% to 46.8% with the pooled prevalence estimate for Nigeria being 13.6%.⁹⁵

Our finding shows that the seroprevalence of rotavirus gastroenteritis among African HIV-infected children was 14% although with a small number of included studies. The incidence and CFR of diarrhoea and pneumonia are much higher in low-income than in high-income countries and this is reflected in many African and southeast Asian countries having the highest burden of the diseases.⁹⁶ The African region has the highest incidence and total death secondary to diarrhoea and pneumonia with rotavirus and Streptococcus pneumoniae being the commonest culprits.⁹⁶ Studies have shown that there is still a persistently high incidence of some vaccine-preventable diseases in HIV-infected individuals than non-exposed ones even after the introduction of highly active antiretroviral therapy.⁹⁷ The incidence of pertussis is also higher in HIV-exposed and infected children, however, this decreases as the number of vaccine doses uptake increases.98

Many African countries with high burdens of HIV are critically lagging in terms of antiretroviral treatment coverage for HIV-infected children.⁹⁹ Sub-optimal ART coverage in children will lead to viral load increase, immunosuppression, etc. and a subsequent high burden of various vaccine-preventable diseases. Vaccination coverage in many African countries is still below the expected target.¹⁰⁰ As of 2017, the average coverage of third-dose pentavalent vaccine was 80% while the first dose of measles vaccine in the Global Alliance for Vaccines and Immunisation (Gavi)-supported countries was 78%.¹⁰⁰ The average coverage of Gavi funded vaccines in supported countries progressed from 37% in 2016 to 41% in 2017.

. Use of vaccines has been established to be a beneficial healthcare intervention targeted in protecting children and adolescents from various vaccine-preventable diseases. Low uptake of vaccines by African children exposes them to more diseases than children in other regions. It has also been established that HIV-infected children are more susceptible to vaccine-preventable diseases such as TB, pneumonia, viral hepatitis etc.^{101,102} Vaccination is therefore essential in HIV-infected patients because of the increased risk of developing various infectious diseases due to their defective immune systems. Studies have also shown that there are poor immune responses to primary vaccination among HIV-infected children in comparison to HIV-unexposed and HIV-exposed children. The poor immune response among HIV-infected children may require booster doses for optimal immunity against vaccine-preventable diseases.^{103,104}

This review revealed research inequalities across the African region regarding studies on the burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children. South Africa contributed about half of the included articles with Nigeria and Kenya following with fewer studies. This finding is not different from an earlier study looking at the distribution of epidemiological studies across Africa.¹⁰⁵ Some of the Eastern and Southern African countries with high HIV prevalence had at least an article included in this study, however, West African countries only had publications from Nigeria and Cote d'Ivoire.

To the best of our knowledge, this is the first systematic review that addressed the need for knowing the burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa. Knowledge gap concerning the burden of vaccine-preventable diseases will impact negatively on the advocacy endeavours targeted at improving vaccination and vaccine-preventable diseases control efforts in Africa. Healthcare workers and policymakers need to have a good idea of the burden of different diseases to allocate resources and facilitate optimal vaccination coverage.

57 193 Recommendations

This review has shown that TB is one of the most important vaccine-preventable diseases in Africa with the BCG vaccine conferring protection against severe forms of the disease.

However, the same vaccine is contraindicated in immunocompromised children who ironically are susceptible to the disease.¹³ The dilemma of BCG use in HIV-exposed children warrants the call for newer and safer vaccines against TB especially in HIV-infected children. African governments and other supporting agencies should ensure that every child has access to routine childhood vaccines. Issues of under-vaccination and vaccine hesitancy should be adequately tackled to ensure better vaccine uptake and reduction in the burden of vaccine-preventable diseases.

The research capacity of African clinicians, researchers and health administrators should be built up for them to conduct basic epidemiological research such as incidence, prevalence, mortality and CFR among HIV-exposed children in various health facilities and communities. Researchers should be encouraged to disseminate their findings to their immediate communities and Departments of Health and to publish their findings in peer-reviewed journals. Established research groups such as Global Burden of Diseases Network should include the burden of vaccine-preventable diseases in HIV-exposed and non-exposed children as part of their regular or annual publications. Other African countries should emulate South Africa in increasing their research activities and outputs with respect to HIV-exposed children.

There is a need to advocate for an equitable share of healthcare budgeting and finance at every level of governance in African countries. This will help in ensuring that there is a fair share of resources for preventive and treatment services such as vaccination and antiretroviral therapy for HIV-exposed children. African countries should, as a matter of urgency, complete the introduction of newer and important vaccines such as rotavirus vaccine, Hib vaccine and pneumococcal vaccine. These should be included as part of their current national immunisation programme schedule.⁹⁵ According to WHO, the global coverage for both pneumococcal vaccine and rotavirus vaccines were as little as 44 percent and 25 percent respectively.¹⁰⁰ African countries should be supported in developing vaccine procurement budgets, procurement practices, and capacity development for vaccine planning and advocacy.¹⁰⁶

Study limitations

This study was limited by several factors beyond the reviewers' control. We planned to review all the vaccine-preventable diseases associated with vaccines included in the national immunisation programme schedule in sub-Saharan Africa, however, we could not find articles that met the eligibility criteria for some of the diseases. Secondly, there was high heterogeneity **229**

even with sub-group analysis between included studies, which implies the possibility of other
contributory factors associated with the diseases. Some of the studies did not include relevant
information such as antiretroviral coverage, CD4 count, viral load, vaccination status and other
contributory factors. Thirdly, we could not include many studies because the diagnostic criteria
for different vaccine-preventable diseases were not specified and clearly defined.

Furthermore, the presence of various limitations did not stop us from making some meaningful conclusions from this study. This review gives a clearer picture of the burden and trend of TB and able to have insights about the burden of other diseases as well despite having a small number of studies included in this review. African investigators should as a matter of priority have proper diagnostic criteria and documentation for diseases for all HIV-infected and HIVexposed children treated at the health facilities across the region. Key parameters such as CD4 counts, vaccination status etc. should be included in future studies.

244 Conclusions

This systematic review and meta-analysis provide an all-inclusive analysis of the incidence rates, prevalence and CFR of various vaccine-preventable diseases. This study shows that some vaccine-preventable diseases still have high incidence, prevalence and CFRs in HIV-infected and HIV-exposed children. There was also the dearth of research activities on vaccinepreventable disease studies concerning HIV-infected and HIV-exposed uninfected children in many African countries. The findings are useful in advocating for a more equitable share of healthcare financing especially for preventive services such as vaccination of both HIVexposed and non-exposed children to reduce the burden of vaccine-preventable diseases.

255 Methods and design

This systematic review was developed in line with the Preferred Reporting Items for Systematic
 Review and Meta-Analysis (PRISMA) 2015 statement.¹⁰⁷ The review was registered with
 PROSPERO (International prospective register of systematic reviews) (CRD42018095341).

259 Inclusion criteria

Type of participants: The review included sub-Saharan African children who are HIV-infected
 or HIV-exposed and aged <18 years old.

262 <u>Types of outcome:</u>

We included studies that reported the incidence, prevalence and case-fatality rates (CFR) asoutcomes in HIV-infected and HIV-exposed children.

265 Primary outcomes

Prevalence was defined as proportions of all individuals suspected of having specific vaccinepreventable diseases with confirmed laboratory diagnosis or proportions of individuals fulfilling clinical case definition for specific vaccine-preventable diseases. Incidence was defined as the number of new cases of different vaccine-preventable diseases that occur during a given period in the defined population.

We also determined the trend in the incidence and/or prevalence of vaccine-preventable
diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa from 1980 to
2018.

274 Secondary outcomes

We included CFRs associated with vaccine-preventable diseases. Case fatality was describedas mortality among confirmed or probable cases for a specific vaccine-preventable disease.

277 <u>Type of studies:</u> The review included cohort studies, case-control studies, cross-sectional
278 studies and other observational studies. We planned to include studies that involved any of
279 the following vaccine-preventable diseases:

- i. Tuberculosis ii. Poliomyelitis Hepatitis B virus infection iii. Rotavirus gastroenteritis iv. Diphtheria v. vi. Tetanus vii. Pertussis viii. Pneumococcal diseases ix. Measles x. Rubella Yellow fever xi. **290 Exclusion criteria** Intervention studies • Unclear diagnostic criteria

Search strategy methods for the identification of studies 2 296 A comprehensive search strategy was developed to identify relevant studies up to August 2018, regardless of publication status or language. Scopus, Web of Science, MEDLINE via PubMed and CINAHL were searched for relevant publications. The search process was complemented by reviewing citations of all identified eligible studies. We also searched relevant World Health Organization position papers and documents on vaccines. (See Appendix for PubMed search strategy).

303 Selection of eligible studies

Two of the authors, (OOA and AA) screened the search results using the abstract titles. They also independently went through the full text of potential studies to assess whether they met the required inclusion criteria. Non-human studies, reviews, intervention studies, letters, commentaries and editorials were excluded. Studies not written in English, French, German, Spanish, Portuguese or Dutch were excluded. We resolved disagreements by consensus.

Data collection process

The two authors then extracted data from text, tables and figures. The data were recorded on a standardised form. We planned to contact authors of included studies in case of unclear or missing data.

The following data were extracted from selected studies:

- Study characteristics including period and design.
- Vaccine-preventable diseases patient characteristics such as age and HIV status. •
- Prevalence or incidence of vaccine-preventable diseases: confirmed cases and cases meeting the clinical definition.
- Diagnostic methods: laboratory methods and clinical case definitions. •
 - Death attributed to vaccine-preventable diseases. •
- Risk of bias in individual studies

The risk of bias and quality of the included studies were assessed with the Newcastle-Ottawa 50 321 Quality Scale.¹⁰⁸ The criteria assessed included the following (1) selection of participants, (2) comparability, (3) exposure, and (4) outcome.

44 318

46 319

325 Data synthesis

326 OOA summarised the incidence and prevalence of various vaccine-preventable diseases. 327 Where possible, incidence and prevalence data from each of the included studies were 328 combined by random effects meta-analysis in accordance with the Mantel-Haenszel method.

Heterogeneity was evaluated using the Chi-squared test of homogeneity (significant for P < 0.1) and quantified using the I-squared statistic (>50% substantial heterogeneity).¹⁰⁹ Subgroup analyses were conducted in cases with substantial heterogeneity. Subgroup analysis was conducted using the following variables: period of study (1991- 2000, 2001-2010 and 2011 – 2018). We also used funnel plot regression to assess publication bias. STATA software version 14.0 (STATA Corporation, College Station, TX, USA) was used to do all calculations, the meta-analysis and generate forest plots.¹¹⁰

336 Additional analyses: Trend analysis

We examined time trends in the incidence and prevalence of vaccine-preventable diseases estimates using Poisson regression models with the prevalence estimates as the outcome variable and the calendar year of the publication as the predictor. This method allows for estimation of time trends across individual calendar years to obtain average annual percentage change (AAPC), if the rate of change is at a constant rate of the previous year. ¹¹¹ The Poisson regression procedure fits a model of the following form:

$$\log(prevalence_{y}) = b_{0} + b_{1}y + \log(sample size)$$
(1)

where '*cases*' equal prevalence estimates reported per year, log is the natural log, b0 is the intercept, b1 is the trend, y is the year – given as 0, 1, 2, ... 18 (year 0 is 1970, year 1 is 1971, and so on to 2014), and log of 'sample size' was entered as the offset. The AAPC was calculated using the following formula:

$$AAPC = \left(e^{b_1} - 1\right) \times 100\tag{2}$$

350 Abbreviations

351 BCG: Bacillus Calmette–Guérin

352 DTP: Diphtheria, tetanus and pertussis

353 EPI: Expanded Programme on Immunisation

354 GVAP: Global Vaccine Action Plan

- 355 Hib: *Haemophilus influenzae* type b
- 356 HIV: Human immunodeficiency virus
- 357 PCV: Pneumococcal conjugate vaccine
- 358 PRISMA: Preferred Reporting Items for Systematic Review and Meta-Analysis
- 359 RV: Rotavirus
 - WHO: World Health Organization

362 Authors' contributions

OOA developed the protocol, search strategy, the data analysis and manuscript preparation. OOA and AA did the screening, study selection and data extraction. OAU and CSW guided the development of this study. All authors were involved in the results interpretation, revision and approval of the final manuscript.

368 Source of funding

OOA, DN and CSW are supported by the National Research Foundation of South Africa (Grant
numbers: 106035 and 108571) and the South African Medical Research Council. OAU is
supported by the National Institute of Health Research using Official Development Assistance
funding. The views expressed in this publication are those of the authors and not necessarily
those of the National Health Service, National Institute for Health.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

9 References

- Abajobir AA, Abbafati C, Abbas KM, et al. Global, regional, and national age-sex
 specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the
 Global Burden of Disease Study 2016. *The Lancet* 2017; **390**. 1151-210.
- Joint United Nations Programme on HIV/AIDS. How AIDS changed everything. MDG
 6. Geneva: UNAIDS, 2015.

- 3. Joint United Nations Programme on HIV/AIDS. AIDSInfo. 2017; Available from: http://aidsinfo.unaids.org/. Accessed 26 June 2018. Bocquenet G, Chaiban T, Cook S, et al. The state of the world's children 2016: A fair 4. б chance for every child. 2016. Available from: http://www.un-ilibrary.org/children-and-youth/the-state-of-the-world-s-children-2016 4fb40cfa-en. Accessed 26 November 2017. Tejiokem MC, Gouandjika I, Béniguel L, et al. HIV-infected children living in Central 5. Africa have low persistence of antibodies to vaccines used in the expanded program on immunization. PLoS ONE 2007; 2: e1260. 6. Miller MA, Hinman AR. In: Plotkin SA, Orenstein WA, editors. Chapter 57. Economic analyses of vaccine policies. In: Vaccines. Philadelphia, PA: Elsevier Inc.; 2004. 7. Hadler, SC; Cochi, SL; Bilous, J; Cutts F. In: Plotkin SA, Orenstein WA, editors. Chapter 55. Vaccination programs in developing countries. In: Vaccines. Philadelphia, PA.: Elsevier Inc.; 2004. 8. Tao W, Petzold M, Forsberg BC. Routine vaccination coverage in low-and middle-income countries: Further arguments for accelerating support to child vaccination services. Global Health Action 2013; 6:0-8. 9. Tchidjou HK, Vescio MF, Sanou Sobze M, et al. Low vaccine coverage among children born to HIV infected women in Niamey, Niger. Human Vacc Immunoth 2016; 12:540-4. World Health Organization. Global Vaccine Action Plan 2011-2020. Geneva: WHO, 10. 2013. World Health Organization. 2015 assessment report of the Global Vaccine Action Plan. 11. Geneva: WHO, 2016. World Health Organization. Estimates of disease burden and cost effectiveness. 12. Geneva: WHO, 2017. **410** World Health Organization. Summary of WHO Position Papers-Recommendations for 13. Routine Immunization, 2018. Available from: http://www.who.int/immunization/policy/Immunization_routine_table1.pdf?ua=1. Accessed 26 June 2018. 60 414

14. Du Plessis NM, Ntshoe G, Reubenson G, Kularatne R, Blumberg L, Thomas J, Avenant T. Risk factors for pertussis among hospitalized children in a high HIV prevalence setting, South Africa. International Journal of Infectious Diseases 2018; 68:54-60. б Abuogi LL, Mwachari C, Leslie HH, et al. Impact of expanded antiretroviral use on 15. incidence and prevalence of tuberculosis in children with HIV in Kenya. Int J Tuberc Lung Dis 2017; 17:1291–7. Adams L V, Iii TM, Naburi H, Lyatuu G, Ippolito M, Saunders A, Kiravu A, Palumbo 16. P. Diagnosis and treatment of tuberculosis among children at an HIV care program in Dar es Salaam, Tanzania. Pediatr Inf Dis J 2015; 33:1234-6. 17. Alemu YM, Andargie G, Gebeye E. High incidence of tuberculosis in the absence of isoniazid and cotrimoxazole preventive therapy in children living with HIV in Northern Ethiopia: A retrospective follow-up study. *PLoS One* 2016;**11**: e0152941. Anígilájé EA, Aderibigbe SA, Adeoti AO. Tuberculosis before and after antiretroviral 18. therapy among HIV-Infected children in Nigeria: What are the risk factors? PLoS One 2016;**11**: e0156177. Auld AF, Tuho MZ, Ekra KA, Kouakou J, Shiraishi RW. Tuberculosis in human 19. immunodeficiency virus-infected d' Ivoire children starting antiretroviral therapy in Cote D'Ivoire. Int J Tuberc Lung Dis 2014; 18:381-7. Bakeera-kitaka S, Conesa-botella A, Dhabangi A, Maganda A, Kekitiinwa A, 20. Colebunders R. Tuberculosis in HIV-infected Ugandan children starting on antiretroviral therapy. Int J Tuberc Lung Dis 2012; 15:1082-6. 21. Bonnet M, Kyomugasho N, Kiwanuka J, Kumbakumba E. Outcome of children with presumptive tuberculosis in Mbarara, Rural Uganda. Pediatr Infect Dis J. 2018; :147–52. Braitstein P, Wools-kaloustian K, Sidle J, Ayaya S, Carter EJ. The clinical burden of 22. tuberculosis among Human Immunodeficiency Virus-infected children in Western Kenya. Pediatr Infect Dis J.2009; 28:626–32. 23. Buck WC, Olson D, Kabue MM, Ahmed S, Nchama LK, Munthali A, Kazembe PN. Risk factors for mortality in Malawian children with human immunodeficiency virus and tuberculosis co-infection. Int J Tuberc Lung Dis 2017; 17:1389-95.

445 24. Carlucci JG, Peratikos MB, Kipp AM, et al. Tuberculosis treatment outcomes among
¹/₂ 446 HIV/TB-coinfected children in the International Epidemiology Databases to Evaluate
³/₄ 447 AIDS (IeDEA) Network. *J Acquir Immune Defic Syndr* 2017; **75**:156–63.

⁶ 448 25. Cavanaugh J, Genga K, Marigu I, Laserson K, Ackers M, Cain K. Tuberculosis among ⁷ 449 children in Kenya: Epidemiology and impact of HIV in two Provinces. *J Trop Pediatr*. ⁹ 450 2012; 58: 292-6.

45126.Chaya S, Dangor Z, Solomon F, Nzenze SA, Izu A, Madhi SA. Incidence of452tuberculosis meningitis in a high HIV prevalence setting: time-series analysis from54532006 to 2011. Int J Tuberc Lung Dis 2016; 20:1457–62.

- 454 27. Cruz AT, Marape M, Graviss EA, Starke JR. Performance of the QuantiFERON-TB
 455 Gold Interferon Gamma Release Assay among HIV-Infected children in Botswana. J
 456 Int Assoc Provid AIDS Care 2015; 14:4–7.
- 457 28. Dangor Z, Izu A, Hillier K, Solomon F. Impact of the antiretroviral treatment program
 458 on the burden of hospitalization for culture-confirmed tuberculosis in South African
 459 children. *Pediatr Inf Dis J* 2013; **32**:972–7.
- 460 29. Maayer T De, Saloojee H. Clinical outcomes of severe malnutrition in a high 461 tuberculosis and HIV setting. *Arch Dis Child* 2011; **96**:560-4.
- ⁵ 462 30. Ebonyi AO, Oguche S, Agbaji OO, Sagay AS, Okonkwo PI, Idoko JA, Kanki PJ.
 ⁷ 463 Mortality among pulmonary tuberculosis and HIV-1 co-infected Nigerian children
 ⁸ 464 being treated for pulmonary tuberculosis and on antiretroviral therapy: a retrospective
 ⁹ 465 cohort study. *GERMS* 2016; **6**:139–50.
- ³ 466 31. Ebonyi AO, Oguche S, Ejeliogu EU, Agbaji OO, Shehu NY, Abah IO. Prevalence of and risk factors for pulmonary tuberculosis among newly diagnosed HIV-1 infected Nigerian children. *GERMS* 2016; **6**:21-8.
- 49 469 32. Elenga N, Kouakoussui KA, Bonard D, Fassinou P, Wemin M, Dick-amon-tanoh F,
 51 470 Msellati P. Diagnosed tuberculosis during the follow-up of a cohort of Human
 53 471 Immunodeficiency Virus-infected children in Abidjan, Cote d'Ivoire. *Pediatr Infect Dis* 55 472 J 2005; 24:1077–82.

1	473	33.	Ferrand RA, Bandason T, Musvaire P, et al. Causes of acute hospitalization in
1 2	474		adolescence: Burden and spectrum of HIV-related morbidity in a country with an early-
3 4 5	475		onset and severe HIV epidemic: A prospective survey. PLoS Med 2010; 7:e1000178.
б	476	34.	Hall EW, Morris SB, Moore BK, Erasmus L. Treatment outcomes of children with HIV
7 8	477		infection and drug-resistant TB in three Provinces. Pediatr Infect Dis J 2017; 36:2005-
9 10 11	478		8.
12 13	479	35.	Hesseling AC, Johnson LF, Jaspan H, Cotton MF, Whitelaw A, Schaaf HS, Fine PEM,
14	480		Eley BS, Marais BJ. Disseminated bacille Calmette – Guérin disease in HIV-infected
15 16 17	481		South African infants. Bull World Health Organ. 2009; 87:505–11.
18 19	482	36.	Hesseling AC, Westra AE, Werschkull H, Donald PR, Beyers N, Hussey GD, El-Sadr
20 21	483		W, Schaaf HS. Outcome of HIV infected children with culture confirmed tuberculosis.
22 23	484		Arch Dis Child 2005;90: 1171-4.
24 25	485	37.	Hesseling AC, Rabie H, Marais BJ, et al. Bacille Calmette-Guerin vaccine - induced
26 27 28	486		disease in HIV-infected and HIV-uninfected children. Clin Inf Dis 2006; 42:548–58.
29	487	38.	Hesseling AC, Cotton MF, Jennings T, Whitelaw A, Johnson LF, Eley B, Roux P,
30 31	488		Schaaf HS. High incidence of tuberculosis among HIV-infected infants: Evidence from
32 33	489		a South African population- based study highlights the need for improved tuberculosis
34 35 36	490		control strategies. Clin Infect Dis 2009;48:108-14.
37	491	39.	Hicks RM, Padayatchi N, Shah NS, Wolf A, Werner L, Sunkari VB, O'Donnell MR.
38 39	492		Malnutrition associated with unfavorable outcome and death among South African
40 41 42	493		MDR-TB and HIV co-infected children. Int J Tuberc Lung Dis 2014;18:1074-83.
43 44	494	40.	Jeena PM, Coovadia HM, Hadley LG, Wiersma R, Grant H, Chrystal V. Lymph node
45	495		biopsies in HIV-infected and non-infected children with persistent lung disease. Int J
46 47 48	496		<i>Tuberc Lung Dis</i> 2000; 4 :139-46.
49	497	41.	Kasambira TS, Shah M, Adrian P V, Holshouser M, Madhi SA, Chaisson RE,
50 51	498		Martinson NA, Dorman SE. QuantiFERON-TB Gold In-Tube for the detection of
52 53	499		Mycobacterium tuberculosis infection in children with household tuberculosis contact.
54 55 56	500		Int J Tuberc Lung Dis 2011;15:628-34.
57 58			
59			
60 61			
62 63			
64			
65			

- Madhi SA, Huebner RE, Doedens L, Aduc T, Wesley D, Cooper PA. HIV-1 co-42. infection in children hospitalized with tuberculosis in South Africa. Int J Tuberc Lung Dis 2000; 4:448–54.
 - 43. Meyers TM, Pettifor JM, Gray GE, Crewe-Brown H, Galpin JS. Pediatric admissions with human immunodeficiency virus infection at a regional hospital in Soweto, South Africa. J Trop Pediatr 2000; 46:224–30.
- Mwangwa F, Chamie G, Kwarisiima D, et al. Gaps in the child tuberculosis care 44. cascade in 32 rural communities in Uganda and Kenya. J Clin Tuberc Mycobact Dis 2017; 9:24–9. 16 509
 - 45. Obiagwu PN, Hassan-Hanga F, Ibrahim M. Pediatric HIV in Kano, Nigeria. Niger J *Clin Pract* 2013; **16**:521–5.
 - 46. Okechukwu AA. Discharge against medical advice in children at the University of Abuja Teaching Hospital, Gwagwalada, Nigeria. Niger J Clin Pract 2011; 2:949–54.
 - 47. Osman M, Lee K, Du Preez K, Dunbar R, Hesseling AC, Seddon JA. Excellent treatment outcomes in children treated for tuberculosis under routine operational conditions in Cape Town, South Africa. Clin Inf Dis 2017; 65:1444-52.
 - 48. Padayatchi N, Bamber S, Dawood H, Bobat R. Multidrug-resistant tuberculous meningitis in children in Durban, South Africa. Pediatr Inf Dis J 2006; 25:147-50.
 - 49. Palme IB, Gudetta B, Bruchfeld J, Muhe L, Giesecke J. Impact of human immunodeficiency virus 1 infection on clinical presentation, treatment outcome and survival in a cohort of Ethiopian children with tuberculosis. Pediatr Inf Dis J 2002; :1053–61.
- Patel MR, Yotebieng M, Behets F, Vanden Driessche K, Nana M, Van Rie A. 50. Outcomes of integrated treatment for tuberculosis and HIV in children at the primary health care level. Int J Tuberc Lung Dis 2013; 17:1206-11.
- 51. Robinson A, Donald PR, Schaaf HS. Nosocomial infections in HIV-infected and HIV-**526** uninfected children hospitalised for tuberculosis. S Afr Fam Pract 2007; 49:14.
- Rose M V., Kimaro G, Nissen TN, Kroidl I, Hoelscher M, Bygbjerg IC, Mfinanga SG, 52. Ravn P. Quantiferon®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting. PLoS ONE 2012; 7:1-10. **530**

б

- 53. Simon HS, Marais BJ, Whitelaw A, Hesseling AC, Eley B, Hussey GD, Donald PR. Culture-confirmed childhood tuberculosis in Cape Town, South Africa: A review of 596 cases. BMC Inf Dis 2007; 7:2-9.
- 54. Soeters M, de Vries AM, Kimpen JL, Donald PR, Schaaf HS. Clinical features and outcome in children admitted to a TB hospital in the Western Cape - the influence of HIV infection and drug resistance. SAMJ 2005; 95:602-6.
- 55. Walters E, Duvenhage J, Draper HR, Hesseling AC, Van Wyk SS, Cotton MF, Rabie H. Severe manifestations of extrapulmonary tuberculosis in HIV-infected children initiating antiretroviral therapy before 2 years of age. Archives Dis Childhood 2014; :998–1003.
- Walters E, Cotton MF, Rabie H, Schaaf HS, Walters LO, Marais BJ. Clinical 56. presentation and outcome of tuberculosis in Human Immunodeficiency Virus infected children on anti-retroviral therapy. BMC Pediatr 2008; 8:1.
- Westerlund E, Jerene D, Mulissa Z, HallstrĶm I, LindtjÄ, rn B. Pre-ART retention in 57. care and prevalence of tuberculosis among HIV-infected children at a district hospital in southern Ethiopia. BMC Pediatr 2014; 14:1-9.
- 58. Wiseman CA, Schaaf HS, Cotton MF, Gie RP, Jennings T, Whitelaw A, Roux P, Hesseling AC. Bacteriologically confirmed tuberculosis in HIV-infected infants: Disease spectrum and survival. Int J Tuberc Lung Dis 2011; 15:770–5.
- Yotebieng M, Van Rie A, Moultrie H, Cole SR, Adimora A, Behets F, Meyers T. Effect 59. on mortality and virological response of delaying antiretroviral therapy initiation in children receiving tuberculosis treatment. AIDS 2010; 24:1341-9.
- Kouakoussui A, Fassinou P, Anaky MF, Elenga N, Laguide R, Wemin ML, Toure R, 60. Menan H, Rouet F, Msellati P. Respiratory manifestations in HIV-infected children pre-and post-HAART in Abidjan, the Ivory Coast. Paediatr Respir Rev 2004;5:311-5.
- Abera B, Zenebe Y, Mulu W, Kibret M, Kahsu G. Seroprevalence of hepatitis B and C 61. viruses and risk factors in HIV infected children at the Felgehiwot Referral Hospital, Ethiopia. BMC Res Notes 2014; 7:838. **558**
- Ashir GM, Rabasa AI, Gofama MM, Bukbuk D, Abubakar H, Farouk GA. Study of 62. hepatic functions and prevalence of hepatitis B surface antigenaemia in Nigerian

б

- children with human immunodeficiency virus infection. Nigerian J Med 2009;18:260-2. Beghin J-C, Ruelle J, Sokal E, Bachy A, Krishna M, Hall L, Goubau P, Van der Linden 63. б D. Effectiveness of the South African expanded program of immunization against hepatitis B in children infected with human immunodeficiency virus-1 living in a resource-limited setting of Kwazulu-Natal. J Med Virol 2017; 89:182-5. Chotun N, Nel E, Cotton MF, Preiser W, Andersson MI. Hepatitis B virus infection in 64. HIV-exposed infants in the Western Cape, South Africa. Vaccine 2015; 33:4618-22. Davidson UN, Chidiebele NI, Josephine EI, Olakunle E, Nnaemeka IA, Chijioke EJ, 65. Kingsley NI. The prevalence of liver function and immunologic status of children with HIV and hepatitis B virus coinfection in Enugu, Nigeria. Afr J Infect Dis 2016; 10:61-8. Dziuban EJ, Marton SA, Hughey AB, Mbingo TL, Draper HR, Schutze GE. 66. Seroprevalence of hepatitis B in a cohort of HIV-infected children and adults in Swaziland. Int J STDs AIDS 2013; 24:561-5. Ikpeme EE, Etukudo OM. Seroprevalence of HBV and HIV co-infection in children 67. and outcomes following highly active antiretroviral therapy (HAART) in Uyo, South-South Nigeria. Afr Health Sci 2013; 13:955-61. Jooste P, Van Zyl A, Adland E. et al. Screening, characterisation and prevention of 68. hepatitis B virus (HBV) co-infection in HIV-positive children in South Africa. J Clin *Virol* 2016; **85**:71–4. Muro FJ, Fiorillo SP, Sakasaka P, Odhiambo C, Reddy EA, Cunningham CK, 69. Buchanan AM. Seroprevalence of hepatitis B and C viruses among children in Kilimanjaro Region, Tanzania. J Pediatric Inf Dis Soc 2013; 2:320-6.
 - 70. Mutwa PR, Boer KR, Rusine JB, Muganga N, Tuyishimire D, Reiss P, Lange JM, Geelen SPM. Hepatitis B virus prevalence and vaccine response in HIV-infected children and adolescents on combination antiretroviral therapy in Kigali, Rwanda. Pediatr Inf Dis J 2013; 32:246–51.

- 71. Nwolisa E, Mbanefo F, Ezeogu J, Amadi P. Prevalence of hepatitis B co-infection amongst HIV infected children attending a care and treatment centre in Owerri, South-Eastern Nigeria. Pan Afr Med J 2013; 14:2-6. 72. Sadoh AE, Sadoh WE. HIV co-infection with hepatitis B and C viruses among Nigerian children in an antiretroviral treatment programme. S Afr J Child Health 2011; 5:7–10. 73. Telatela SP, Matee MI, Munubhi EK. Seroprevalence of hepatitis B and C viral co-infections among children infected with human immunodeficiency virus attending the paediatric HIV care and treatment center at Muhimbili National Hospital in Dar-es-Salaam, Tanzania. BMC Pub Health 2007; 7:1-6. 74. Varo R, Chris Buck W, Kazembe PN, Phiri S, Andrianarimanana D, Weigel R. Seroprevalence of CMV, HSV-2 and HBV among HIV-infected Malawian children: A cross-sectional survey. J Trop Pediatr 2016; 62:220-6. Moss WJ, Monze M, Ryon JJ, Quinn TC, Griffin DE, Cutts F. Prospective Study of 75. Measles in Hospitalized, Human Immunodeficiency Virus (HIV) - Infected and HIV -Uninfected Children in Zambia. Clin Inf Dis 2002; 35:189-96. Wirth KE, Wolf ER, Goldfarb DM, Ho-Foster A, Tolle M, Jacovides C, Kirk B, Chise 76. M, Steenhoff AP. Risk factors for measles in HIV-infected children and adolescents in Botswana. Pediatr Inf Dis J 2015; 34:1093-5. Gill CJ, Mwananyanda L, Macleod W, Kwenda G, Mwale M, Williams AL, Siazeele 77. K, Yang Z, Mwansa J, Thea DM. Incidence of severe and nonsevere pertussis among HIV-exposed and -unexposed Zambian infants through 14 weeks of age: results from the Southern Africa Mother Infant Pertussis Study (SAMIPS), a longitudinal birth cohort study. Clin Infect Dis 2016;63: S154-S164. 78. Soofie N, Nunes MC, Kgagudi P, Van Niekerk N, Makgobo T, Agosti Y, Hwinya C, Pathirana J, Madhi SA. The burden of pertussis hospitalization in HIV-exposed and HIV-unexposed South African infants. Clin Infect Dis 2016; 63: S165-73. 79. Johnson S, Hendson W, Crewe-Brown H, Dini L, Frean J, Perovic O, Vardas E. Effect of human immunodeficiency virus infection on episodes of diarrhea among children in **616** South Africa. Pediatr Inf Dis J 2000; 19:972-9.

- 80. Moyo SJ, Blomberg B, Hanevik K, Kommedal O, Vainio K, Maselle SY, Langeland N. Genetic diversity of circulating rotavirus Strains in Tanzania Prior to the introduction of vaccination. PLoS ONE 2014; 9:1-10.
 - 81. Ásbjörnsdóttir KH, Slyker JA, Maleche-Obimbo E, Wamalwa D, Otieno P, Gichuhi CM, John-Stewart G. Breastfeeding is associated with decreased Risk of hospitalization among HIV-exposed, uninfected Kenyan infants. J Hum Lact 2016;32: NP61-6.
- Nathoo KJ, Chigonde S, Nhembe M, Ali MH, Mason PR. Community-acquired 82. bacteremia in human immunodeficiency virus-infected children in Harare, Zimbabwe. Pediatr Inf Dis J 1996; 15:1092-7.
- 83. Zar HJ, Hanslo D, Tannenbaum E, Klein M, Argent A, Eley B, Burgess J, Magnus K, Bateman E, Hussey G. The etiology and outcome of pneumonia in human immunodeficiency virus-infected children admitted to intensive care in a developing country. Acta Paediatrica 2001; 90:108-12.
- Jones N, Huebner R, Khoosal M, Crewe-Brown H, Klugman K. The impact of HIV on 84. Streptococcus pneumoniae bacteraemia in a South African population. AIDS 1998; :2177–88.
- 85. Roca A, Sigaúque B, Quintó L, Morais L, et al. Estimating the vaccine-preventable burden of hospitalized pneumonia among young Mozambican children. Vaccine 2010; :4851–7.
- Cohen C, Moyes J, Tempia S, et al. Epidemiology of acute lower respiratory tract 86. infection in HIV-exposed uninfected infants. Pediatrics 2016; 137: e20153272.
- 87. Nunes MC, Von Gottberg A, De Gouveia L, Cohen C, Moore DP, Klugman KP, Madhi SA. The impact of antiretroviral treatment on the burden of invasive pneumococcal disease in South African children: A time series analysis. AIDS 2011; 25:453-62.
- von Mollendorf C, Tempia S, Von Gottberg A, et al. Estimated severe pneumococcal 88. disease cases and deaths before and after pneumococcal conjugate vaccine introduction in children younger than 5 years of age in South Africa. PLoS One 2017; 12: e0179905.
- 89. von Gottberg A, Cohen C, de Gouveia L, Meiring S, Quan V, Whitelaw A, Crowther-Gibson P, Madhi SA, Whitney CG, Klugman KP. Epidemiology of invasive

- 647 pneumococcal disease in the pre-conjugate vaccine era: South Africa, 2003-2008. $\frac{1}{2}$ 648 *Vaccine* 2013; **31**:4200–8.
 - 649 90. Nyasulu P, Cohen C, De Gouveia L, Feldman C, Klugman KP, von Gottberg A.
 650 Increased risk of death in Human Immunodeficiency Virus-infected children with
 651 pneumococcal meningitis in South Africa, 2003–2005. *Pediatr Inf Dis J* 2011;
 652 30:1075–80.
 - 653 91. World Health Organization. *Global tuberculosis report 2016*. Geneva: WHO, 2016.
 - 654 92. Rekha Banu VV, Poorana Ganga Devi NP, Swaminathan S. Childhood TB: Global
 655 epidemiology and impact of HIV. *Paediatr Respir Rev* 2007; 2: 99-106.
 - 656 93. World Health Organization. WHO End TB Strategy. Geneva: WHO, 2015.
 - 657 94. Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus
 658 infection: New estimates of age-specific HBsAg seroprevalence and endemicity.
 659 *Vaccine* 2012; **30**:2212–9.
- 660 95. Musa BM, Bussell S, Borodo MM, Samaila AA, Femi OL. Prevalence of hepatitis B virus infection in Nigeria, 2000-2013: a systematic review and meta-analysis. *Nigerian* J Clin Pract 2015; **18**:163–72.
- ⁴ 663 96. Fischer Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL,
 ⁵ 664 Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. *The* ⁷ 8 665 *Lancet* 2013; **381**:1405–16.
- ⁰ 666 97. Nunes MC, von Gottberg A, de Gouveia L, Cohen C, Kuwanda L, Karstaedt AS,
 ² 667 Klugman KP, Madhi SA. Persistent high burden of invasive pneumococcal disease in
 ³ 668 South African HIV-infected adults in the era of an antiretroviral treatment program.
 ⁵ 669 *PLoS ONE* 2011; **6**:e27929.
- ⁴⁸ 670 98. Muloiwa R, Dube FS, Nicol MP, Zar HJ, Hussey GD. Incidence and diagnosis of
 ⁵⁰ 671 pertussis in South African children hospitalized with lower respiratory tract infection.
 ⁵¹ *Pediatr Inf Dis J* 2016; **35**:611–6.
 - 673 99. UNAIDS. UNAIDS Data 2017. Geneva: UNAIDS, 2017.
 - 674 100. GAVI. Annual progress report 2017. Geneva: GAVI, 2018.

- Gona P, Van Dyke RB, Williams PL, Dankner WM, Chernoff MC, Nachman SA, Seage
 GR. Incidence of opportunistic and other infections in HIV-infected children in the
 HAART era. *JAMA*. 2006;**296**:292-300.
- Marais BJ, Rabie H, Schaaf SH, Cotton M. Common opportunistic infections in HIV
 infected infants and children Part 1—respiratory infections. *S Afr Fam Pract* 2006; 48:
 52-56.
- Mutsaerts EAML, Nunes MC, van Rijswijk MN, Klipstein-Grobusch K, Grobbee DE,
 Madhi SA. Safety and Immunogenicity of Measles Vaccination in HIV-Infected and
 HIV-Exposed Uninfected Children: A Systematic Review and Meta-Analysis. *E Clin Med* 2018; 1:28–42.
- Scott P, Moss WJ, Gilani Z, Low N. Measles vaccination in HIV-infected children:
 Systematic review and meta-analysis of safety and immunogenicity. *J Inf Dis* 2011;
 204:S164-78.
- Nachega JB, Uthman OA, Ho YS, et al. Current status and future prospects of
 epidemiology and public health training and research in the WHO African region. *Int J Epidemiol* 2012; 41:1829-46.
- 691 106. Saxenian H, Hecht R, Kaddar M, Schmitt S, Ryckman T, Cornejo S. Overcoming
 692 challenges to sustainable immunization financing: Early experiences from GAVI
 693 graduating countries. *Health Policy Plan* 2015; **30**:197–205.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour
 V, Barrowman N, Berlin JA, et al. Preferred reporting items for systematic reviews and
 meta-analyses: The PRISMA statement. *Annals of internal medicine* 2009;151:264-9.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The
 Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute, 2013.
- Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions.
 Version 5.1.0 [updated March 2011]. UK: The Cochrane Collaboration, 2011.
- T10. StataCorp. Stata Statistical Software: Release 14. College Station, TX: StataCorpLP;2015.

	704	111.	Clegg LX, Hankey BF, Tiwari R, Feuer EJ, Edwards BK. Estimating average annual
1 2	705		percent change in trend analysis. Stat Med 2009; 28:3670-82.
3 4 5	706		
5 6 7	707		
8	708		
	709		
	710		
11	711		
13 14	712	•	
15 714			endix
17	715 716		Search strategy - PubMed
19	717		
20	718		
21 22	719		
23			
24			
25 26			
27			
28			
29 30			
31			
32			
33 34			
35			
36			
37 38			
30 39			
40			
41 42			
43			
44			
45 46			
47			
48			
49 50			
51			
52			
53 54			
55			
56			
57 58			
58 59			
60			
61 62			
62 63			
64			
65			

		Form
1	The burden of vaccine-preventable diseases among HIV-	
2	infected and HIV-exposed children in sub-Saharan Africa: a	
3 4	systematic review and meta-analysis	
5		
6 7	Olatunji O. Adetokunboh ^{a,b*} , Ajibola Awotiwon ^c , Duduzile Ndwandwe ^a , Olalekan A. Uthman ^{a,b,d} , Charles S. Wiysonge ^{a,b,e}	
8		
9		
10 11 12 13 14 15 16 17	 ^a Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa ^b Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa ^c Knowledge Translation Unit, University of Cape Town Lung Institute, Cape Town, South Africa ^d Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, United Kingdom ^e Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa 	
18		
19	* Correspondence: <u>adetok_sic@yahoo.com</u>	
20		
21		
22		
23		
24		
25		
26 27		
27		
29		
30		
31		

Formatted: Numbering: Continuous

32 Abstract

33 There are knowledge gaps regarding evidence-based research on the burden of vaccine-34 preventable diseases among human immunodeficiency virus (HIV)-infected and HIV-exposed 35 children aged <18years in sub-Saharan Africa. It is therefore essential to determine the trend and burden of vaccine-preventable diseases. We completed a systematic review and meta-analysis to 36 identify the incidence, prevalence and case-fatality rates (CFR) attributed to various vaccine-37 preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa. The 38 trends in the prevalence of vaccine-preventable diseases among HIV-infected and HIV-exposed 39 children were also determined. Nine studies on tuberculosis (TB) were pooled to give an overall 40 incidence rate estimate of 60 (95% confidence interval [CI] 30 - 70) per 1,000 child-years. The 41 incidence of pneumococcal infections varied between 109-1509 per 100,000 while pertussis was 42 between 2.9 and 3.7 per 1000 child-year. Twenty-two TB prevalence studies reported an estimated 43 prevalence of 16%. Fifteen prevalence studies on hepatitis B infection were pooled together with 44 45 an estimated prevalence of 5%. The pooled prevalence for pneumococcal infections was 2% while rotavirus diarrhoea reported a prevalence of 13%. Twenty-nine studies on TB were pooled to give 46 an overall CFR estimate of 17% while pneumococcal infections in HIV-infected and exposed 47 children were pooled together with a resultant rate of 15%. Some of the vaccine-preventable 48 diseases still have high incidences, prevalence and CFR among HIV-infected and HIV-exposed 49 50 children. There is also a dearth of research data on the burden of several vaccine-preventable 51 diseases among HIV-infected and exposed children and a need for more studies in this area.

52 Keywords: HIV; vaccine-preventable diseases; sub-Saharan Africa; burden

- 53
- 54 55

56

57

58

60 Background

Human immunodeficiency virus (HIV) infection remains a leading public-health challenge and a 61 62 principal cause of the infectious disease burden in low- and middle-income countries especially in sub-Saharan Africa.¹ This region accounts for the bulk of HIV infection with about 36.7 million 63 people living with the disease an estimated 75% of the global burden.^{2,3} It was also estimated that 64 approximately 2.1 million children aged under 15 years were living with HIV with the majority 65 coming from sub-Saharan Africa and about 31% having access to antiretroviral therapy in 2014.⁴ 66 The incidence of HIV infections among children declined in 2014 but there were still 220,000 new 67 infections that year alone.⁴ HIV-infected children have an increased risk of developing various 68 vaccine-preventable diseases due to their defective immune systems.⁵ This makes it crucial to 69 focus on the vaccination of HIV-infected and exposed children. The majority of these children are 70 also residents of low-and-middle-income countries characterised by limited access to HIV 71 diagnosis, treatment and care.² 72

Vaccination against various vaccine-preventable diseases has been proven to be a beneficial and 73 cost-effective public-health measure for protecting children, adolescents and adults from these 74 75 diseases, thereby reducing the morbidity and mortality attributable to them.^{6,7} Coverage of routine vaccinations is still low in some developing countries and not sufficient to meet the Global Vaccine 76 Action Plan (GVAP) targets.⁸⁻¹⁰ Some African countries have low or decreasing immunisation 77 coverage over the years with some not achieving $\geq 90\%$ national coverage for vaccines included 78 in their national immunisation schedule by the World Health Organization (WHO) in 2016.¹¹ Sub-79 Saharan African countries account for about 34% of the global vaccine-preventable diseases 80 burden, and are also responsible for the highest proportion of under-five mortality from these 81 diseases.12 82

Recently, most developing countries have included routine childhood vaccines such as hepatitis
B; Bacillus Calmette–Guérin (BCG); diphtheria, tetanus and pertussis (DTP); *Haemophilus influenzae* type b (Hib); polio; pneumococcal conjugate; measles; rotavirus (RV), rubella and
yellow fever vaccines in their national Expanded Programme on Immunisation (EPI).¹³ These
vaccines also protect against diseases such as tuberculosis, poliomyelitis, rotavirus gastroenteritis,
diphtheria, tetanus, pertussis, pneumococcal diseases, hepatitis B infection, rubella, measles and
yellow fever.

The gap in knowledge, especially in terms of evidence-based research, on the burden of vaccinepreventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa, warrants this study.¹⁴ This study completed a systematic review of literature and meta-analysis to identify the incidence, prevalence and mortality due to various vaccine-preventable diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa since the advent of HIV in the 1980s. This study is essential in determining the trend and current burden of vaccinepreventable disease epidemiology in sub-Saharan Africa.

97

98 Objectives

99 Primary objectives

100	1.	To appraise all available published literature on the incidence and prevalence of vaccine-
101		preventable diseases such as tuberculosis, poliomyelitis, hepatitis B virus infection,
102		rotavirus gastroenteritis, diphtheria, tetanus, pertussis, pneumococcal diseases, measles,
103		rubella and yellow fever among HIV-infected and HIV-exposed children in sub-Saharan
104		Africa.

To determine the trend in the incidence and/or prevalence of vaccine-preventable diseases
 such as tuberculosis, poliomyelitis, hepatitis B virus infection, rotavirus gastroenteritis,
 diphtheria, tetanus, pertussis, pneumococcal diseases, measles, rubella and yellow fever
 among HIV-infected and HIV-exposed children in sub-Saharan Africa from 1980 to 2018.

109 Secondary objective

 To describe the case-fatality rate ascribed to vaccine-preventable diseases such as tuberculosis, poliomyelitis, hepatitis B virus infection, rotavirus gastroenteritis, diphtheria, tetanus, pertussis, pneumococcal diseases, measles, rubella and yellow fever among HIVinfected and HIV-exposed children in sub-Saharan Africa.

114

115 Results

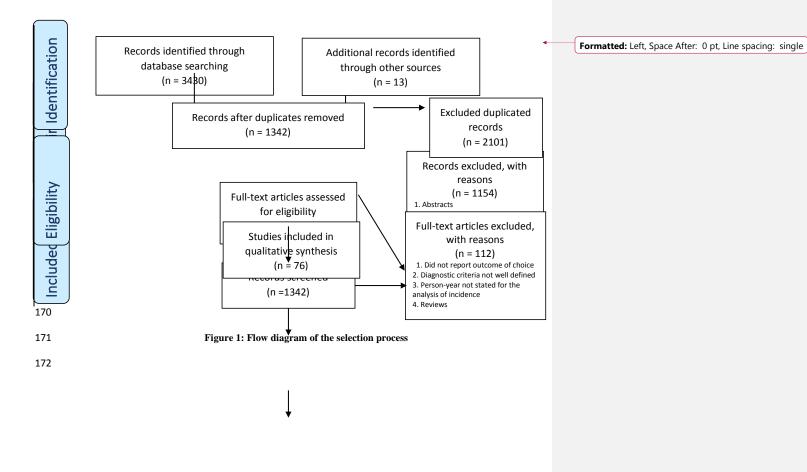
116

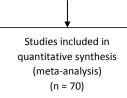
117 Literature search and result

Figure 1 shows the study selection process reported in line with PRISMA guidelines. We identified 3430 publications through the search of different databases. We also identified 13 additional 120 articles through the screening of reference lists of various related articles. We screened 188 full-

121 text articles and selected 76 articles for inclusion in the review and 70 articles were suitable for

the meta-analysis (Figure 1).


123 Study characteristics


Table 1 provides a summary of the included studies and the vaccine-preventable diseases of interest. The table shows that 45 articles reported on tuberculosis, 14 on hepatitis B virus infection, ten studies focused on pneumococcal infections, two on rotavirus gastroenteritis, three on measles and three on pertussis. The included articles consist of 41 cross-sectional studies, 31 cohort studies, four case-control studies and one time-series analysis.

South Africa had the highest number of published articles with 35 articles, Nigeria produced 10 articles, four were from Kenya, four from Ethiopia and two studies were conducted in multiple countries. The other studies were conducted in Rwanda, Tanzania, Cote d' Ivoire, Uganda, Malawi, Botswana, Zimbabwe, Zambia, Mozambique and Swaziland (Table 1). A total of 46,882 children were included in this review. HIV-infected children were included in 71 studies while two studies had both HIV-infected and HIV-exposed uninfected children, and one study with only HIV-exposed children. The included studies were conducted between 1992 and 2016.

Using the Newcastle-Ottawa Quality Scale for the quality assessment of the eligible studies, 11 articles scored eight points; 15 articles scored seven points; 27 articles scored six points; 15 articles scored five points; seven articles scored four points and two articles scored three points. The characteristics of the eligible studies are summarised in Table 1.

- 140
- 141
- 142
- 143
- 144
- 145
- 146

First author and year	Study period	Study design	Country	Sample size	VPD	Outcomes	HIV	Quality
							status	scores
Abuogi 2013 ¹⁵	2009 - 2010	Cohort	Kenya	689	Tuberculosis	C, I, P	Ħ	7
Adams 2014 ¹⁶	2006 - 2012	Cross-sectional	Tanzania	1193	Tuberculosis	С, Р	Ħ	4
Alemu 2016 ¹⁷	2009 - 2014	Cohort	Ethiopia	645	Tuberculosis	4	ŧ	6
Anigilaje 2016 ¹⁸	2010 - 2013	Cohort	Nigeria	368	Tuberculosis	₽	Ħ	8
Auld 2014 ¹⁹	2004 2008	Cohort	Cote d' Ivoire	2110	Tuberculosis	і, Р	Ħ	8
Bakeera 2011 ²⁰	2003 - 2006	Cohort	Uganda	1806	Tuberculosis	l, C	Ħ	8
Bonnet 2018 ²¹	2012 - 2014	Cohort	Uganda	113	Tuberculosis	e	Ħ	7
Braitstein 2009 ²²	2001 2007	Cohort	Kenya	6,535	Tuberculosis	I, P	Ħ	8
Buck 2013 ²³	2010	Cohort	Malawi	4874	Tuberculosis	С, Р	Ħ	8
Carlucci 2017 ²⁴	2012 - 2014	Cohort	Multiple	386	Tuberculosis	e	ŧ	8
Cavanaugh 2012 ²⁵	2006 - 2007	Cross-sectional	Kenya	323	Tuberculosis	e	Ħ	6
Chaya 2016²⁶	2006 2011	Cross sectional	South Africa	47	Tuberculosis	+	ŧ	6
Cruz 2015 ²⁷	NR	Cohort	Botswana	100	Tuberculosis	P	Ħ	6
Dangor 2013 ²⁸	2005 - 2009	Time-series analysis	South Africa	1985	Tuberculosis	+	Ħ	7
De Maayar 2011 ²⁹	NR	Cross-sectional	South Africa	58	Tuberculosis	₽	Ħ	7
Ebonyi 2016 ³⁰	2005 2013	Cohort	Nigeria	260	Tuberculosis	e	Ŧ	8
Ebonyi 2016b ³¹	2005-2012	Cohort	Nigeria	876	Tuberculosis	₽	Ħ	8
Elenga 2005 ³²	2000-2003	Cohort	Cote d' Ivoire	282	Tuberculosis	+	Ħ	8
Ferrand 2010 ³³	2007-2008	Cross sectional	Zimbabwe	139	Tuberculosis	P	Ħ	7
Hall 2017 ³⁴	2005-2008	Cohort	South Africa	224	Tuberculosis	e	Ħ	8
Hesseling 2009a ³⁵	2004-2006	Cross-sectional	South Africa	3321	Tuberculosis	£	Ħ	6
Hesseling 2005 ³⁶	1992-2000	Cohort	South Africa	93	Tuberculosis	e	Ħ	8
Hesseling 2006 ³⁷	2002-2005	Cohort	South Africa	108	Tuberculosis	С, Р	Ħ	7
Hesseling 2009b ³⁸	2004-2006	Cross-sectional	South Africa	3321	Tuberculosis	I, P	Ħ	7
Hicks 2014 ³⁹	2009-2010	Cohort	South Africa	6 4	Tuberculosis	e	Ħ	6
Jeena 2000 ⁴⁰	1995-1998	Cross sectional	South Africa	27	Tuberculosis	P	Ħ	5
Kasambira 2011 ⁴¹	2006-2009	Cross-sectional	South Africa	270	Tuberculosis	₽	Ħ	6
Madhi 2000b ⁴²	1996-1997	Cross-sectional	South Africa	67	Tuberculosis	e	Ħ	5
Meyers 200043	1996	Cross sectional	South Africa	144	Tuberculosis	р	H	5

Table 1: Characteristics of the study population

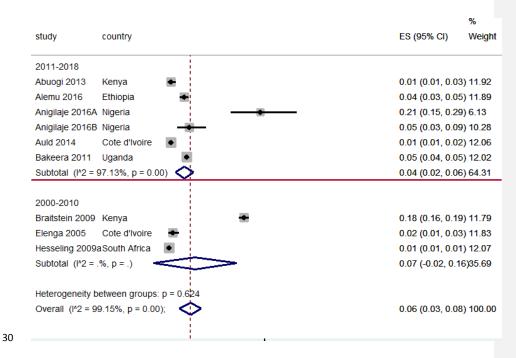
Mwangwa 2017 ⁴⁴	2012 2013	Cohort	Multiple	17	Tuberculosis	e	HI	7
					Tuberculosis,	-	-	6
Obiagwu 2013 ⁴⁵	2010	Cross-sectional	Nigeria	22	Measles	P	Ħ	
Okechukwu 201146	2007-2008	Cross sectional	Nigeria	210	Tuberculosis	С, Р	Ħ	6
Osman 2017 ⁴⁷	2005-2012	Cohort	South Africa	3143	Tuberculosis	e	Ħ	6
Padayatchi 2006 ⁴⁸	1993-2002	Cross-sectional	South Africa	6	Tuberculosis	e	Ħ	5
Palme 2002 ⁴⁹	1995-1997	Cohort	Ethiopia	58	Tuberculosis	e	Ħ	6
Patel 2013 ⁵⁰	2007-2009	Cohort	Congo DRC	31	Tuberculosis	e	Ħ	7
Robinson 2007 ⁵¹	1999-2001	Case-control	South Africa	47	Tuberculosis	₽	Ħ	6
Rose 2012 ⁵²	2008-2010	Cohort	Tanzania	5 4	Tuberculosis	₽	Ħ	6
Schaaf 2007 ⁵³	2003-2005	Cross sectional	South Africa	133	Tuberculosis	e	Ħ	5
Soeters 2005 ⁵⁴	2000-2001	Cross-sectional	South Africa	4 3	Tuberculosis	e	Ħ	4
Walters 2014 ⁵⁵	2003-2010	Cohort	South Africa	494	Tuberculosis	e	ŧ	6
Walters 200856	2003-2005	Cross-sectional	South Africa	137	Tuberculosis	e	Ħ	6
Westerlund 201457	2003-2008	Cohort	Ethiopia	138	Tuberculosis	₽	ŧ	7
Wiseman 201158	2004-2006	Cross-sectional	South Africa	52	Tuberculosis	e	Ħ	5
Votebieng 2010 ⁵⁹	2004-2008	Cohort	South Africa	573	Tuberculosis	e	Ħ	6
Kouakoussui 2004 ⁶⁰	2003	Cohort	Cote d'Ivoire	270	Tuberculosis	4	Ħ	7
Abera 2014 ⁶¹	2014	Cross-sectional	Ethiopia	253	HBV infection	₽	ŧ	6
Ashir 2009 ⁶²	2007	Case-control	Nigeria	284	HBV infection	₽	ŧ	5
Beghin 2017 ⁶³	2014	Cross sectional	South Africa	183	HBV infection	P	Ħ	6
Chotun 2015 ⁶⁴	2011 - 2012	Cross-sectional	South Africa	1000	HBV infection	₽	HE	6
Uleanya 2016⁶⁵	NR	Cross-sectional	Nigeria	140	HBV infection	₽	ŧ	4
Dziuban 2013⁶⁶	2009 2011	Cross sectional	Swaziland	500	HBV infection	P	Ŧ	3
Ikpeme 2013 ⁶⁷	2010-2011	Cross sectional	Nigeria	166	HBV infection	P	Ħ	4
Jooste 2016 ⁶⁸	2015-2016	Cohort	South Africa	625	HBV infection	₽	Ħ	7
Muro 2013 ⁶⁹	2006-2008	Cross-sectional	Tanzania	157	HBV infection	₽	Ħ	5
Mutwa 2013⁷⁰	2010	Cohort	Rwanda	88	HBV infection	₽	Ħ	7
Nwolisa 201371	2010	Cross-sectional	Nigeria	139	HBV infection	₽	ŧ	4
Sadoh 201172	NR	Cross-sectional	Nigeria	155	HBV infection	₽	Ħ	5
Telatela 200773	2006	Cross-sectional	Tanzania	167	HBV infection	₽	Ħ	4
Varo 2016⁷⁴	2008-2010	Cross sectional	Malawi	91	HBV infection	P	H	3
Moss 200275	1998-2000	Cross-sectional	Zambia	93	Measles	₽	Ħ	6
Wirth 2015 ⁷⁶	2009-2010	Case-control	Botswana	189	Measles	e	Ħ	5
du Plessis 2018 ¹⁴	2013 2015	Cross sectional	South Africa	300	Pertussis	. P	H	6

Gill 2016 ⁷⁷	2015	Cohort	Zambia	347	Pertussis	+	HI	7
Soofie 201678	2015	Cross-sectional	South Africa	599	Pertussis	C, I, P	HE	5
					Rotavirus			6
Johnson 2000 ⁷⁹	1996-1997	Cross sectional	South Africa	31	gastroenteritis	P	HI	
					Rotavirus			5
Moyo 2014⁸⁰	2010-2011	Case control	Tanzania	26	gastroenteritis	P	H	
Asbjörnsdóttir 2013 ⁸¹				388	Pneumococcal			6
Asbjoinsubtin 2013	1999-2002	Cohort	Kenya		infection	C,I	HH .	
					Pneumococcal			7
Nathoo 1996 ⁸²	1993-1994	Cohort	Zimbabwe	168	infection	P	HH .	
					Pneumococcal			6
Zar 2001 ⁸³	1998	Cross-sectional	South Africa	151	infection	P	Ħ	
					Pneumococcal			5
Jones 1998 ⁸⁴	1996	Cross-sectional	South Africa	25	infection	e	HH .	
					Pneumococcal			6
Roca 2010⁸⁵	2004-2006	Cross sectional	Mozambique	54	infection	e	H	
					Pneumococcal			4
Cohen 2016 ⁸⁶	2009 2013	Cross sectional	South Africa	211	infection	+	HEU,HI	
					Pneumococcal			6
Nunes 2011 ⁸⁷	2003-2008	Cross sectional	South Africa	938	infection	+	H	
					Pneumococcal			5
von Mollendorf 2017a ⁸⁸	2009–2013	Cross-sectional	South Africa	495	infection	C, I	HI	
					Pneumococcal			5
von Gottberg 2013 ⁸⁹	2003-2008	Cross-sectional	South Africa	1749	infection	4	HI	
					Pneumococcal			6
Nyasulu 2011 ⁹⁰	2003-2005	Cross-sectional	South Africa	1124	infection	e	HI	

NR-Not recorded; C- Case-fatality rate; I – Incidence; P – Prevalence; Hib- Haemophilus influenzae type b; HI- HIV-infected; HE- HIV-exposed; HEU – HIV-exposed uninfected; VPD - vaccine-preventable diseases.

Formatted: Numbering: Continuous

2 Incidence rates


1

Tuberculosis: Nine studies^{15,17-20,22,32,35} on TB were pooled to give an overall incidence rate 3 estimate of 60 (95% CI 30 - 70) per 1,000 child-years at risk for tuberculosis based on a 4 random-effects model ($I^2 = 99\%$; Figure 2). Subgroup analysis established change over time in 5 incidence rates when comparing studies conducted before and after 2011. The pooled incidence 6 rates for tuberculosis in those conducted before 2010 was 70 (95% CI -20 - 160) per 1,000 7 child-years^{32,35} and 40 (95% CI 20 - 50) per 1,000 child-years in studies conducted between 8 2011 and 2018.^{15,17-20,22} The heterogeneity of the TB incidence could not be explained by the 9 subgroup analysis. Kouakoussui et al. reported TB incidence of 0.71 per 100 child/months 10 before initiation of highly active antiretroviral therapy (HAART) and 0.16 per 100 11 child/months during HAART treatment among Ivorian HIV-infected children.60 12

Pneumococcal infections: Incidence of invasive pneumococcal disease among HIV-infected 13 children aged <1 and 1-4 years was 1022 (95% CI 923-1123) per 100,000 and 198 (95% CI 14 178-220) per 100,000 respectively in 2008.89 The incidence of pneumococcus-associated 15 lower respiratory tract infection among HIV-exposed uninfected children was 109 (95% CI 16 47-214) per 100,000 and 629 (95% CI 130-1838) per 100,000 among HIV-infected children.86 17 18 Ásbjörnsdóttir et al. reported the incidence of pneumonia among Kenyan HIV-exposed uninfected infants to be 900 (95% CI 800-1000) per 1,000 child-years.⁸¹ Nunes et al. reported 19 the incidence of invasive pneumococcal disease to be 1509 (95% CI 1350 - 1680) per 100,000 20 during early (HAART) and 742 (95% CI 644 - 851) during established-HAART eras for less 21 22 than 18-year old South Africans.87

23 <u>Pertussis:</u> The incidence of pertussis among Zambian HIV-exposed infants was reported to be

- 3.7 (95% CI 0.9–10.1) per 1000 person-months⁷⁵ while Soofie et al. reported the incidence to
 be 2.9 (95% CI 1.8 4.5) per 1,000 child-years.⁷⁸
- 26
- 27
- 28
- 29

31 Figure 2: Forest plot of studies with data on incidence rates of tuberculosis in HIV-exposed children

32

33 Prevalence

Twenty-one TB prevalence studies were pooled together and reported estimated prevalence of 34 16% (95% CI 12 - 19, $I^2 = 99\%$). For studies conducted within the period 1991-2000, the 35 prevalence was 13% (95% CI 8 - 18)^{40,43}; lower in 2001-2010 with an estimate of 8% (95% CI 36 5 - 11, $I^2 = 96\%$)^{22,33,37,38,51} and recorded the highest prevalence in recent years with 15% (95%) 37 CI 8 - 22, $I^2 = 99$)^{15,16,18,19,21,23,27,29,31,41,45,46,52,57} (Figure 3). Fourteen prevalence studies on 38 hepatitis B (HBV) infection in HIV-infected children were pooled together with an estimate 39 prevalence of 5% (95% CI 4 - 7, $I^2 = 90\%$). Studies conducted between 2001 and 2010 had a 40 prevalence of 3% (95% CI 2 - 5) 67,68 and 4% (95% CI 3 - 6) between 2011 and 2018 61,63,64,65-41 ^{72,74} (Figure 4). 42

The pooled prevalence for pneumococcal infections was 2% (95% CI 1 – 4). There has been a
reduction in prevalence from 9% (95% CI 5 - 14)⁸³ in 1996 to 1% (95% CI 0 – 5)⁸⁴ in 2001.
Pooled prevalence for pertussis was 3% (95% CI 2 - 4)^{14,78} while measles was 6% (95% CI 2
- 10).^{75,76} Two rotavirus diarrhoea prevalence studies were pooled together and reported an
estimated prevalence of 13% (95% CI 8 - 17, *I*² = 0%).^{79,80}

study	country	ES (95% CI)	% Weig
2011-2018			
Abuogi 2013	Kenya	0.07 (0.06, 0.10)	5.40
Adams 2014	Tanzania 🖝	0.05 (0.04, 0.06)	5.44
Anigilaje 2016	Nigeria	0.20 (0.16, 0.24)	5.16
Auld 2014	Cote d' Ivoire	0.07 (0.06, 0.08)	
Bonnet 2018	Uganda -	0.06 (0.03, 0.12)	5.10
Buck 2013	Malawi 🕳	0.32 (0.31, 0.33)	5.44
Cruz 2015	Botswana 🔸	0.01 (0.00, 0.05)	5.40
De Maavar 2011	South Africa	0.09 (0.03, 0.19)	
Ebonyi 2016b	Nigeria	0.33 (0.30, 0.36)	5.28
Kasambira 2011	South Africa	0.29 (0.24, 0.35)	
Obiagwu 2013	Nigeria	0.18 (0.05, 0.40)	
Okechukwu 2011		0.20 (0.14, 0.26)	
Rose 2012	Tanzania	0.11 (0.04, 0.23)	
Westerlund 2014	Ethiopia	0.14 (0.09, 0.21)	
Subtotal (In2 = 99		0.15 (0.08, 0.22)	
Braitstein 2009 Ferrand 2010 Hesseling 2006 Hesseling 2009b Robinson 2007 Subtotal (P2 = 96	Kenya Zimbabwe South Africa South Africa South Africa 98%, p = 0.00)	0.04 (0.03, 0.04) 0.17 (0.11, 0.25) 0.16 (0.09, 0.24) 0.02 (0.01, 0.02) 0.57 (0.42, 0.72) 0.08 (0.05, 0.11)	4.77 4.66 5.47 3.14
1991-2000			
Jeena 2000	South Africa	0.41 (0.22, 0.61)	2.40
Mevers 2000	South Africa	0.11 (0.06, 0.17)	
Subtotal (In2 = .%	(p=.)	0.13 (0.08, 0.18)	
	veen groups: p = 0.079	0.16 (0.12, 0.19)	100
	(106 n = 0.00)		
Heterogeneity bet Overall (P2 = 99.)	11%, p = 0.00);	0.16 (0.12, 0.19)	

50 Figure 3: Forest plot of studies with data on the prevalence of tuberculosis in HIV-infected children

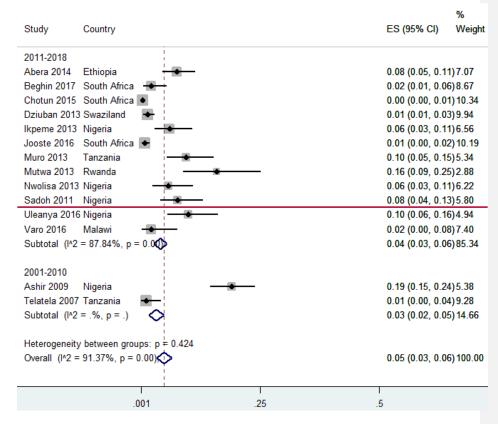


Figure 4: Forest plot of studies with data on the prevalence of hepatitis B virus infection in HIV-infected
 and HIV-exposed children

55

56 Trend in incidence and prevalence

We analysed the trend in TB incidence with respect to publication years. The trend was nonlinear with a downtrend from 2000 to 2010 (at -12.5% per year) and a reduced downward trend from 2011 to 2018 (at -1.5 per year) as shown in Figure 5. The trend in HBV prevalence was also analysed. The trend was not linear. There was evidence of a downtrend from 2000 to 2010 (at -4.7% per year) and (at -5.3% per year) from 2011 to 2018 as shown in Figure 6. The TB prevalence trend was also non-linear. There was evidence of initial downtrend from 2000 to 2010 (at -3.2% per year) and upward trend from 2011 to 2018 (at +32.7 per year).

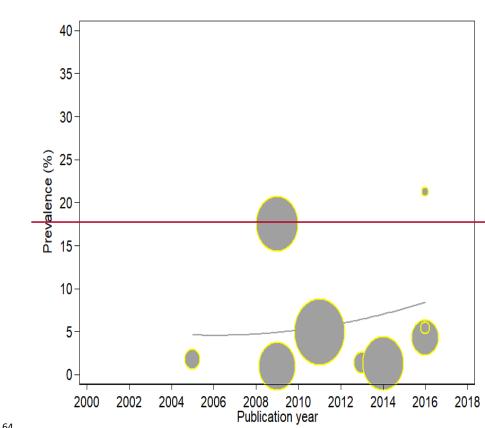


Figure 5: Trends in the incidence of tuberculosis in HIV-infected and exposed children with respect to publication years

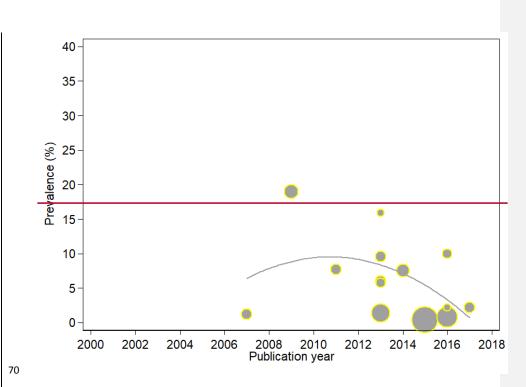


Figure 6: Trends in the prevalence of hepatitis B virus infection in HIV-infected and exposed children with
 respect to publication years

74 Case-fatality rates

Twenty-nine studies on TB were pooled to give an overall CFR estimate of 17% (95% CI: 13 75 - 20, $I^2 = 95\%$) which translates to 17% of all TB cases dying from the disease. Subgroup 76 analysis shows the CFR was 18% (95% CI 6 - 24)⁴⁷ in the 1991-2000 period, 6% (17 - 38, I^2 77 $= 95\%)^{33,35-37,48,49,53,54,56,59}$ in 2001-2010 and 13% (95% CI 9 - 17, $I^2 = 96\%)^{15,16,18,20,23-10}$ 78 25,30,34,39,44,46,47,50,55,56 in 2011 - 2018. Four studies were pooled for pneumococcal infections 79 CFRs in HIV-infected and exposed children with a resultant rate of 15% (95% CI 4 – 26, I^2 = 80 95%).^{81,84,85,90} One study shows that pertussis has CFRs of 13% (95% CI 2 - 38)⁷⁸ and for 81 measles the CFR was 1% (95% CI 0 - 4).76 82

83

85 Publication bias assessment

86 Funnel-plot analyses of studies reporting on the prevalence of TB revealed nil significant

publication bias, with the P value for the Begg's test being 0.185 while the studies assessing

the prevalence of HBV infection showed significant Begg's test with P value of 0.001 (Figure

- 89 7 and 8). Likewise, studies assessing the CFR of TB demonstrated no significant publication
- 90 bias Begg's test P = 0.385 (Figure 9).
- 91

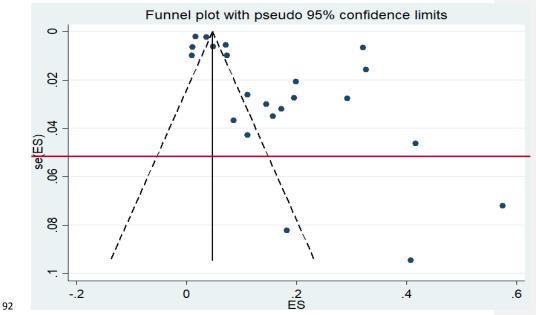


Figure 7: Funnel plot of studies reporting on the prevalence of tuberculosis in HIV-infected children

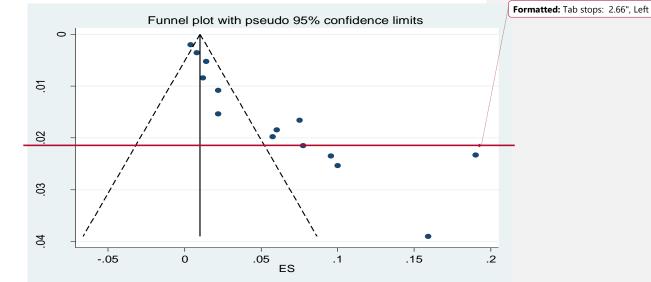


Figure 8: Funnel plot of studies reporting on the prevalence of hepatitis B virus infection in HIV-infected children

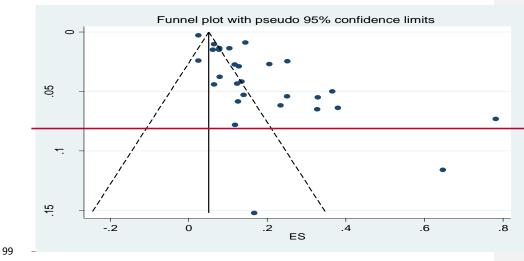


Figure 9: Funnel plot of studies reporting on the case-fatality rate of tuberculosis in HIV-infected children

104 Discussion

105 This study provides a comprehensive overview of the incidence rate, prevalence and case 106 fatality rates of different vaccine-preventable diseases in HIV-infected and HIV-exposed children in sub-Saharan African countries. The review shows that TB is the most researched 107 vaccine-preventable disease in HIV-infected children in various African countries and settings. 108 This is not surprising because of the relationship between TB and HIV infection with respect 109 to the high susceptibility of TB in HIV-infected individuals,^{91,92} Other vaccine-preventable 110 diseases like HBV infection, pneumococcal infection, measles, rotavirus gastroenteritis, 111 112 pertussis and Hib infections were also studied in several African countries. Important vaccinepreventable diseases such as poliomyelitis, diphtheria, tetanus and yellow fever had no eligible 113 114 studies for inclusion revealing the dearth of incidence and prevalence studies on these diseases. The pooled incidence, prevalence and CFRs reveal there are still high burdens of several 115 vaccine-preventable diseases in sub-Saharan Africa. 116

117

118 According to WHO, the global incidence of TB has been reducing at an average of 2 percent per year.⁹¹ TB incidence has declined in the African region by 4 percent annually since 2013.⁹¹ 119 120 Southern African countries with the highest prevalence and incidence of HIV such as South Africa, Lesotho, Zimbabwe, Eswatini, Namibia and Zambia had remarkable reductions in TB 121 incidence.91 Our study shows that TB incidence reduced over time, however, the event per 122 child-year is still high when compared with the End TB strategy goals.93 The World Health 123 Assembly adopted the resolution known as "End TB strategy goals" which is about the global 124 strategy and targets for tuberculosis prevention, care and control after 2015^{93} . In spite of the 125 reduction in TB incidence among children, there are still cases of high incidence in certain 126 countries bearing in mind that many countries in African countries are classified as high-127 burden.⁹⁶ A retrospective cohort study in a very high TB/HIV prevalent region in Nigeria 128 showed a high incidence rate of 21.2/100 per year among children within six months of ART 129 enrollment at a period when others were recording much lower incidence.¹⁸ TB prevalence has 130 131 fluctuated over time with about 15% of HIV-infected children having the disease at a given point in time. As of 2017, it was estimated that the global CFR was 16% with many African 132 countries recording more than 20%.91 This rate is also far higher than the End TB Strategy 133 milestone of 10% by 2020. 134

136	The pooled HBV infection prevalence among HIV-infected children was 5%, however, a study
137	done in Rwanda in 2010 revealed a seroprevalence of 16%. ⁶⁸ Ott et al. showed that sub-Saharan

Africa had the highest HBV burden with West African countries having up to 12% hepatitis B surface antigen prevalence among children and adolescents in the 1990s.⁹⁴ There has been a reduction within the region largely due to immunisation programmes, however, there is high endemicity in some areas. A systematic review of HBV prevalence in Nigeria from studies conducted from 2000 to 2013 shows that HBV infection ranged from 0.5% to 46.8% with the pooled prevalence estimate for Nigeria being 13.6%.⁹⁵

144

Our finding shows that the seroprevalence of rotavirus gastroenteritis among African HIV-145 146 infected children was 14% although with a small number of included studies. The incidence and CFR of diarrhoea and pneumonia are much higher in low-income than in high-income 147 countries and this is reflected in many African and southeast Asian countries having the highest 148 burden of the diseases.⁹⁶ The African region has the highest incidence and total death secondary 149 to diarrhoea and pneumonia with rotavirus and Streptococcus pneumoniae being the 150 commonest culprits.⁹⁶ Studies have shown that there is still a persistently high incidence of 151 152 some vaccine-preventable diseases in HIV-infected individuals than non-exposed ones even after the introduction of highly active antiretroviral therapy.⁹⁷ The incidence of pertussis is also 153 higher in HIV-exposed and infected children, however, this decreases as the number of vaccine 154 doses uptake increases.98 155

156

165

Many African countries with high burdens of HIV are critically lagging in terms of 157 antiretroviral treatment coverage for HIV-infected children.⁹⁹ Sub-optimal ART coverage in 158 159 children will lead to viral load increase, immunosuppression, etc. and a subsequent high burden of various vaccine-preventable diseases. Vaccination coverage in many African countries is 160 still below the expected target.¹⁰⁰ As of 2017, the average coverage of third-dose pentavalent 161 vaccine was 80% while the first dose of measles vaccine in the Global Alliance for Vaccines 162 and Immunisation (Gavi)-supported countries was 78%.¹⁰⁰ The average coverage of Gavi-163 funded vaccines in supported countries progressed from 37% in 2016 to 41% in 2017. 164

- 166 Low uptake of vaccines by African children exposes them to more diseases than children in
- 167 other regions. Use of vaccines has been established to be a beneficial healthcare intervention
- targeted in protecting children and adolescents from various vaccine-preventable diseases. Low
- 169 uptake of vaccines by African children exposes them to more diseases than children in other
- 170 regions. It has also been established that HIV-infected children are more susceptible to
- 171 <u>vaccine-preventable diseases such as TB, pneumonia, viral hepatitis etc.^{101,102} Vaccination is</u>
- Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

172	therefore essential in HIV-infected patients because of the increased risk of developing various
173	infectious diseases due to their defective immune systems. Studies have also shown that there
174	are poor immune responses to primary vaccination among HIV-infected children in comparison
175	to HIV-unexposed and HIV-exposed children. The poor immune response among HIV-
176	infected children may require booster doses for optimal immunity against vaccine-preventable
177	diseases. ^{103,104}
178	
179	This review revealed research inequalities across the African region regarding studies on the

burden of vaccine-preventable diseases among HIV-infected and HIV-exposed children. South Africa contributed about half of the included articles with Nigeria and Kenya following with fewer studies. This finding is not different from an earlier study looking at the distribution of epidemiological studies across Africa.¹⁰⁵⁴ Some of the Eastern and Southern African countries with high HIV prevalence had at least an article included in this study, however, West African countries only had publications from Nigeria and Cote d'Ivoire.

186

187 To the best of our knowledge, this is the first systematic review that addressed the need for 188 knowing the burden of vaccine-preventable diseases among HIV-infected and HIV-exposed 189 children in sub-Saharan Africa. Knowledge gap concerning the burden of vaccine-preventable 190 diseases will impact negatively on the advocacy endeavours targeted at improving vaccination 191 and vaccine-preventable diseases control efforts in Africa. Healthcare workers and 192 policymakers need to have a good idea of the burden of different diseases to allocate resources 193 and facilitate optimal vaccination coverage.

194

195 Recommendations

196 This review has shown that TB is one of the most important vaccine-preventable diseases in Africa with the BCG vaccine conferring protection against severe forms of the disease. 197 198 However, the same vaccine is contraindicated in immunocompromised children who ironically are susceptible to the disease.13 The dilemma of BCG use in HIV-exposed children warrants 199 the call for newer and safer vaccines against TB especially in HIV-infected children. African 200 governments and other supporting agencies should ensure that every child has access to routine 201 childhood vaccines. Issues of under-vaccination and vaccine hesitancy should be adequately 202 tackled to ensure better vaccine uptake and reduction in the burden of vaccine-preventable 203 204 diseases.

205

Formatted: Superscript

The research capacity of African clinicians, researchers and health administrators should be 206 207 built up for them to conduct basic epidemiological research such as incidence, prevalence, 208 mortality and CFR among HIV-exposed children in various health facilities and communities. 209 Researchers should be encouraged to disseminate their findings to their immediate communities and Departments of Health and to publish their findings in peer-reviewed 210 journals. Established research groups such as Global Burden of Diseases Network should 211 212 include the burden of vaccine-preventable diseases in HIV-exposed and non-exposed children as part of their regular or annual publications. Other African countries should emulate South 213 214 Africa in increasing their research activities and outputs with respect to HIV-exposed children. 215

There is a need to advocate for an equitable share of healthcare budgeting and finance at every 216 level of governance in African countries. This will help in ensuring that there is a fair share of 217 resources for preventive and treatment services such as vaccination and antiretroviral therapy 218 219 for HIV-exposed children. African countries should, as a matter of urgency, complete the 220 introduction of newer and important vaccines such as rotavirus vaccine, Hib vaccine and pneumococcal vaccine. These should be included as part of their current national immunisation 221 programme schedule.95 According to WHO, the global coverage for both pneumococcal 222 vaccine and rotavirus vaccines were as little as 44 percent and 25 percent respectively.¹⁰⁰ 223 224 African countries should be supported in developing vaccine procurement budgets, procurement practices, and capacity development for vaccine planning and advocacy.1062 225

226

227 Study limitations

This study was limited by several factors beyond the reviewers' control. We planned to review 228 229 all the vaccine-preventable diseases associated with vaccines included in the national 230 immunisation programme schedule in sub-Saharan Africa, however, we could not find articles that met the eligibility criteria for some of the diseases. Secondly, there was high heterogeneity 231 232 even with sub-group analysis between included studies, which implies the possibility of other contributory factors associated with the diseases. Some of the studies did not include relevant 233 234 information such as antiretroviral coverage, CD4 count, viral load, vaccination status and other 235 contributory factors. Thirdly, we could not include many studies because the diagnostic criteria 236 for different vaccine-preventable diseases were not specified and clearly defined.

237

Furthermore, the presence of various limitations did not stop us from making some meaningful
 conclusions from this study. This review gives a clearer picture of the burden and trend of TB

240 and able to have insights about the burden of other diseases as well despite having a small

241 <u>number of studies included in this review. African investigators should as a matter of priority</u>

242 have proper diagnostic criteria and documentation for diseases for all HIV-infected and HIV-

243 exposed children treated at the health facilities across the region. Key parameters such as CD4

244 <u>counts, vaccination status etc. should be included in future studies.</u>

245

246

247 Conclusions

This systematic review and meta-analysis provide an all-inclusive analysis of the incidence 248 rates, prevalence and CFR of various vaccine-preventable diseases. This study shows that some 249 250 vaccine-preventable diseases still have high incidence, prevalence and CFRs in HIV-infected 251 and HIV-exposed children. There was also the dearth of research activities on vaccine-252 preventable disease studies concerningwith respect to HIV-infected and HIV-exposed 253 uninfected children in many African countries. The findings are useful in advocating for a more 254 equitable share of healthcare financing especially for preventive services such as vaccination 255 of both HIV-exposed and non-exposed children in order toto reduce the burden of vaccinepreventable diseases. 256

257 258

259 Methods and design

This systematic review was developed in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2015 statement.¹⁰⁷³ The review was registered with PROSPERO (International prospective register of systematic reviews) (CRD42018095341).

263 Inclusion criteria

or HIV-exposed and aged <18 years old.

266 <u>Types of outcome:</u>

We included studies that reported the incidence, prevalence and case-fatality rates (CFR) asoutcomes in HIV-infected and HIV-exposed children.

269 Primary outcomes

- 270 Prevalence was defined as proportions of all individuals suspected of having specific vaccine-
- 271 preventable diseases with confirmed laboratory diagnosis or proportions of individuals
- 272 fulfilling clinical case definition for specific vaccine-preventable diseases. Incidence was

²⁶⁴ *Type of participants*: The review included sub-Saharan African children who are HIV-infected

- 273 defined as the number of new cases of different vaccine-preventable diseases that occur during
- a given period in the defined population.
- 275 We also determined the trend in the incidence and/or prevalence of vaccine-preventable
- diseases among HIV-infected and HIV-exposed children in sub-Saharan Africa from 1980 to
- 277 2018.
- 278 Secondary outcomes
- We included CFRs associated with vaccine-preventable diseases. Case fatality was describedas mortality among confirmed or probable cases for a specific vaccine-preventable disease.
- 281 *Type of studies:* The review included cohort studies, case-control studies, cross-sectional
- studies and other observational studies. We planned to include studies that involved any of
- 283 the following vaccine-preventable diseases:
- 284 i. Tuberculosis
- 285 ii. Poliomyelitis
- 286 iii. Hepatitis B virus infection
- 287 iv. Rotavirus gastroenteritis
- 288 v. Diphtheria
- 289 vi. Tetanus
- 290 vii. Pertussis
- 291 viii. Pneumococcal diseases
- 292 ix. Measles
- 293 x. Rubella
- 294 xi. Yellow fever
- 296 Exclusion criteria
 - Intervention studies
- Unclear diagnostic criteria
- 299

297

300 Search strategy methods for the identification of studies

- 301 A comprehensive search strategy was developed to identify relevant studies up to August 2018,
- 302 regardless of publication status or language. Scopus, Web of Science, MEDLINE via PubMed
- 303 and CINAHL were searched for relevant publications. The search process was complemented
- 304 by reviewing citations of all identified eligible studies. We also searched relevant World Health

Organization position papers and documents on vaccines. (See Appendix for PubMed searchstrategy).

307 Selection of eligible studies

Two of the authors, (OOA and AA) screened the search results using the abstract titles. They also independently went through the full text of potential studies to assess whether they met the required inclusion criteria. Non-human studies, reviews, intervention studies, letters, commentaries and editorials were excluded. Studies not written in English, French, German, Spanish, Portuguese or Dutch were excluded. We resolved disagreements by consensus.

313 Data collection process

The two authors then extracted data from text, tables and figures. The data were recorded on a standardised form. We planned to contact authors of included studies in case of unclear or

- 316 missing data.
- 317 The following data were extracted from selected studies:
- Study characteristics including period and design.
- Vaccine-preventable diseases patient characteristics such as age and HIV status.
- Prevalence or incidence of vaccine-preventable diseases: confirmed cases and cases
 meeting the clinical definition.
- Diagnostic methods: laboratory methods and clinical case definitions.
 - Death attributed to vaccine-preventable diseases.

324 Risk of bias in individual studies

- 325 The risk of bias and quality of the included studies were assessed with the Newcastle-Ottawa
- 326 Quality Scale.^{10<u>84</u>} The criteria assessed included the following (1) selection of participants,
- 327 (2) comparability, (3) exposure, and (4) outcome.

328

323

329 Data synthesis

- 330 OOA summarised the incidence and prevalence of various vaccine-preventable diseases.
- 331 Where possible, incidence and prevalence data from each of the included studies were
- 332 combined by random effects meta-analysis in accordance with the Mantel-Haenszel method.
- 333 Heterogeneity was evaluated using the Chi-squared test of homogeneity (significant for P <
- 334 0.1) and quantified using the I-squared statistic (>50% substantial heterogeneity).¹⁰⁹⁵ Subgroup
- analyses were conducted in cases with substantial heterogeneity. Subgroup analysis was

conducted using the following variables: period of study (1991- 2000, 2001-2010 and 2011 –
2018). We also used funnel plot regression to assess publication bias. STATA software version
14.0 (STATA Corporation, College Station, TX, USA) was used to do all calculations, the
meta-analysis and generate forest plots.¹¹⁰⁹⁶

340 Additional analyses: Trend analysis

We examined time trends in the incidence and prevalence of vaccine-preventable diseases estimates using Poisson regression models with the prevalence estimates as the outcome variable and the calendar year of the publication as the predictor. This method allows for estimation of time trends across individual calendar years to obtain average annual percentage change (AAPC), assuming that if the rate of change is at a constant rate of the previous year. ¹¹¹⁰⁷ The Poisson regression procedure fits a model of the following form:

$$\log(prevalence_{y}) = b_0 + b_1 y + \log(sample size)$$
(1)

where '*cases*' equal prevalence estimates reported per year, log is the natural log, b0 is the intercept, b1 is the trend, y is the year – given as 0, 1, 2, ... 18 (year 0 is 1970, year 1 is 1971, and so on to 2014), and log of 'sample size' was entered as the offset. The AAPC was calculated using the following formula:

347

$$AAPC = \left(e^{b_1} - 1\right) \times 100\tag{2}$$

353

354 Abbreviations

- 355 BCG: Bacillus Calmette–Guérin
- 356 DTP: Diphtheria, tetanus and pertussis
- 357 EPI: Expanded Programme on Immunisation
- 358 GVAP: Global Vaccine Action Plan
- 359 Hib: *Haemophilus influenzae* type b
- 360 HIV: Human immunodeficiency virus
- 361 PCV: Pneumococcal conjugate vaccine
- 362 PRISMA: Preferred Reporting Items for Systematic Review and Meta-Analysis
- 363 RV: Rotavirus
- 364 WHO: World Health Organization
- 365

366 Authors' contributions

367 OOA developed the protocol, search strategy, the data analysis and manuscript preparation.

368 OOA and AA did the screening, study selection and data extraction. OAU and CSW guided

the development of this study. All authors were involved in the results interpretation, revision

and approval of the final manuscript.

371

372 Source of funding

OOA, DN and CSW are supported by the National Research Foundation of South Africa (Grant
numbers: 106035 and 108571) and the South African Medical Research Council. OAU is

supported by the National Institute of Health Research using Official Development Assistance

funding. The views expressed in this publication are those of the authors and not necessarily

- 377 those of the National Health Service, National Institute for Health.
- 378

379 Disclosure of potential conflicts of interest

380 No potential conflicts of interest were disclosed.

- 381
- 382

383 References

- Abajobir AA, Abbafati C, Abbas KM, et al. Global, regional, and national age-sex
 specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the
 Global Burden of Disease Study 2016. *The Lancet* 2017; **390**. 1151-210.
- Joint United Nations Programme on HIV/AIDS. How AIDS changed everything. MDG
 6. Geneva: UNAIDS, 2015.
- Joint United Nations Programme on HIV/AIDS. *AIDSInfo*. 2017; Available from:
 <u>http://aidsinfo.unaids.org/</u>. Accessed 26 June 2018.
- Bocquenet G, Chaiban T, Cook S, et al. *The state of the world's children 2016: A fair chance for every child*. 2016. Available from: <u>http://www.un-ilibrary.org/children-and-youth/the-state-of-the-world-s-children-2016 4fb40cfa-en</u>. Accessed 26 November 2017.

395 396 397	5.	Tejiokem MC, Gouandjika I, Béniguel L, et al. HIV-infected children living in Central Africa have low persistence of antibodies to vaccines used in the expanded program on immunization. <i>PLoS ONE</i> 2007; 2: e1260.
398 399	6.	Miller MA, Hinman AR. In: Plotkin SA, Orenstein WA, editors. Chapter 57. <i>Economic analyses of vaccine policies. In: Vaccines.</i> Philadelphia, PA: Elsevier Inc.; 2004.
400 401 402	7.	Hadler, SC; Cochi, SL; Bilous, J; Cutts F. In: Plotkin SA, Orenstein WA, editors. Chapter 55. <i>Vaccination programs in developing countries</i> . In: Vaccines. Philadelphia, PA.: Elsevier Inc.; 2004.
403 404 405	8.	Tao W, Petzold M, Forsberg BC. Routine vaccination coverage in low-and middle- income countries: Further arguments for accelerating support to child vaccination services. <i>Global Health Action</i> 2013; 6 :0–8.
406 407 408	9.	Tchidjou HK, Vescio MF, Sanou Sobze M, et al. Low vaccine coverage among children born to HIV infected women in Niamey, Niger. <i>Human Vacc Immunoth</i> 2016; 12 :540– 4.
409 410	10.	World Health Organization. Global Vaccine Action Plan 2011-2020. Geneva: WHO, 2013.
411 412	11.	World Health Organization. 2015 assessment report of the Global Vaccine Action Plan. Geneva: WHO, 2016.
413 414	12.	World Health Organization. <i>Estimates of disease burden and cost effectiveness</i> . Geneva: WHO, 2017.
415 416 417 418	13.	World Health Organization. Summary of WHO Position Papers-Recommendations for Routine Immunization, 2018. Available from: http://www.who.int/immunization/policy/Immunization routine_table1.pdf?ua=1. Accessed 26 June 2018.
419 420 421	14.	Du Plessis NM, Ntshoe G, Reubenson G, Kularatne R, Blumberg L, Thomas J, Avenant T. Risk factors for pertussis among hospitalized children in a high HIV prevalence setting, South Africa. <i>International Journal of Infectious Diseases</i> 2018; 68 :54–60.
422 423 424	15.	Abuogi LL, Mwachari C, Leslie HH, et al. Impact of expanded antiretroviral use on incidence and prevalence of tuberculosis in children with HIV in Kenya. <i>Int J Tuberc Lung Dis</i> 2017; 17 :1291–7.

425	16.	Adams L V, Iii TM, Naburi H, Lyatuu G, Ippolito M, Saunders A, Kiravu A, Palumbo
426		P. Diagnosis and treatment of tuberculosis among children at an HIV care program in
427		Dar es Salaam. Tanzania. Pediatr Inf Dis J 2015: 33:1234–6.

- Alemu YM, Andargie G, Gebeye E. High incidence of tuberculosis in the absence of
 isoniazid and cotrimoxazole preventive therapy in children living with HIV in Northern
 Ethiopia: A retrospective follow-up study. *PLoS One* 2016;11: e0152941.
- 431 18. Anígilájé EA, Aderibigbe SA, Adeoti AO. Tuberculosis before and after antiretroviral
 432 therapy among HIV-Infected children in Nigeria: What are the risk factors? *PLoS One*433 2016;11: e0156177.
- 434 19. Auld AF, Tuho MZ, Ekra KA, Kouakou J, Shiraishi RW. Tuberculosis in human
 435 immunodeficiency virus-infected d' Ivoire children starting antiretroviral therapy in
 436 Cote D'Ivoire. *Int J Tuberc Lung Dis* 2014; 18:381–7.
- 437 20. Bakeera-kitaka S, Conesa-botella A, Dhabangi A, Maganda A, Kekitiinwa A,
 438 Colebunders R. Tuberculosis in HIV-infected Ugandan children starting on
 439 antiretroviral therapy. *Int J Tuberc Lung Dis* 2012; **15**:1082–6.
- Bonnet M, Kyomugasho N, Kiwanuka J, Kumbakumba E. Outcome of children with
 presumptive tuberculosis in Mbarara, Rural Uganda. *Pediatr Infect Dis J.* 2018;
 37:147–52.
- 22. Braitstein P, Wools-kaloustian K, Sidle J, Ayaya S, Carter EJ. The clinical burden of
 tuberculosis among Human Immunodeficiency Virus-infected children in Western
 Kenya. *Pediatr Infect Dis J.*2009; 28:626–32.
- Buck WC, Olson D, Kabue MM, Ahmed S, Nchama LK, Munthali A, Kazembe PN.
 Risk factors for mortality in Malawian children with human immunodeficiency virus and tuberculosis co-infection. *Int J Tuberc Lung Dis* 2017; **17**:1389–95.
- 24. Carlucci JG, Peratikos MB, Kipp AM, et al. Tuberculosis treatment outcomes among
 HIV/TB-coinfected children in the International Epidemiology Databases to Evaluate
 AIDS (IeDEA) Network. *J Acquir Immune Defic Syndr* 2017; **75**:156–63.
- 452 25. Cavanaugh J, Genga K, Marigu I, Laserson K, Ackers M, Cain K. Tuberculosis among
 453 children in Kenya: Epidemiology and impact of HIV in two Provinces. *J Trop Pediatr.*454 2012; **58**: 292-6.

- 26. Chaya S, Dangor Z, Solomon F, Nzenze SA, Izu A, Madhi SA. Incidence of
 tuberculosis meningitis in a high HIV prevalence setting: time-series analysis from
 2006 to 2011. *Int J Tuberc Lung Dis* 2016; 20:1457–62.
- 458 27. Cruz AT, Marape M, Graviss EA, Starke JR. Performance of the QuantiFERON-TB
 Gold Interferon Gamma Release Assay among HIV-Infected children in Botswana. J
 460 Int Assoc Provid AIDS Care 2015; 14:4–7.
- 28. Dangor Z, Izu A, Hillier K, Solomon F. Impact of the antiretroviral treatment program
 on the burden of hospitalization for culture-confirmed tuberculosis in South African
 children. *Pediatr Inf Dis J* 2013; **32**:972–7.
- 464 29. Maayer T De, Saloojee H. Clinical outcomes of severe malnutrition in a high
 465 tuberculosis and HIV setting. *Arch Dis Child* 2011; 96:560-4.
- 466 30. Ebonyi AO, Oguche S, Agbaji OO, Sagay AS, Okonkwo PI, Idoko JA, Kanki PJ.
 467 Mortality among pulmonary tuberculosis and HIV-1 co-infected Nigerian children
 468 being treated for pulmonary tuberculosis and on antiretroviral therapy: a retrospective
 469 cohort study. *GERMS* 2016; **6**:139–50.
- 470 31. Ebonyi AO, Oguche S, Ejeliogu EU, Agbaji OO, Shehu NY, Abah IO. Prevalence of
 471 and risk factors for pulmonary tuberculosis among newly diagnosed HIV-1 infected
 472 Nigerian children. *GERMS* 2016; 6:21-8.
- 473 32. Elenga N, Kouakoussui KA, Bonard D, Fassinou P, Wemin M, Dick-amon-tanoh F,
 474 Msellati P. Diagnosed tuberculosis during the follow-up of a cohort of Human
 475 Immunodeficiency Virus-infected children in Abidjan, Cote d'Ivoire. *Pediatr Infect Dis*476 J 2005; 24:1077–82.
- Ferrand RA, Bandason T, Musvaire P, et al. Causes of acute hospitalization in
 adolescence: Burden and spectrum of HIV-related morbidity in a country with an earlyonset and severe HIV epidemic: A prospective survey. *PLoS Med* 2010; 7:e1000178.
- 480 34. Hall EW, Morris SB, Moore BK, Erasmus L. Treatment outcomes of children with HIV
 481 infection and drug-resistant TB in three Provinces. *Pediatr Infect Dis J* 2017; 36:2005–
 482 8.

483	35.	Hesseling AC, Johnson LF, Jaspan H, Cotton MF, Whitelaw A, Schaaf HS, Fine PEM,
484		Eley BS, Marais BJ. Disseminated bacille Calmette - Guérin disease in HIV-infected
485		South African infants. Bull World Health Organ. 2009; 87:505-11.

- 486 36. Hesseling AC, Westra AE, Werschkull H, Donald PR, Beyers N, Hussey GD, El-Sadr
 487 W, Schaaf HS. Outcome of HIV infected children with culture confirmed tuberculosis.
 488 *Arch Dis Child* 2005;**90**: 1171-4.
- 489 37. Hesseling AC, Rabie H, Marais BJ, et al. Bacille Calmette-Guerin vaccine induced
 490 disease in HIV-infected and HIV-uninfected children. *Clin Inf Dis* 2006; 42:548–58.
- 491 38. Hesseling AC, Cotton MF, Jennings T, Whitelaw A, Johnson LF, Eley B, Roux P,
 492 Schaaf HS. High incidence of tuberculosis among HIV-infected infants: Evidence from
 493 a South African population- based study highlights the need for improved tuberculosis
 494 control strategies. *Clin Infect Dis* 2009;**48**:108-14.
- 495 39. Hicks RM, Padayatchi N, Shah NS, Wolf A, Werner L, Sunkari VB, O'Donnell MR.
 496 Malnutrition associated with unfavorable outcome and death among South African
 497 MDR-TB and HIV co-infected children. *Int J Tuberc Lung Dis* 2014;**18**:1074-83.
- 498 40. Jeena PM, Coovadia HM, Hadley LG, Wiersma R, Grant H, Chrystal V. Lymph node
 499 biopsies in HIV-infected and non-infected children with persistent lung disease. *Int J*500 *Tuberc Lung Dis* 2000; **4**:139-46.
- Kasambira TS, Shah M, Adrian P V, Holshouser M, Madhi SA, Chaisson RE,
 Martinson NA, Dorman SE. QuantiFERON-TB Gold In-Tube for the detection of
 Mycobacterium tuberculosis infection in children with household tuberculosis contact. *Int J Tuberc Lung Dis* 2011;15:628-34.
- Madhi SA, Huebner RE, Doedens L, Aduc T, Wesley D, Cooper PA. HIV-1 coinfection in children hospitalized with tuberculosis in South Africa. *Int J Tuberc Lung Dis* 2000; 4:448–54.
- 43. Meyers TM, Pettifor JM, Gray GE, Crewe-Brown H, Galpin JS. Pediatric admissions
 with human immunodeficiency virus infection at a regional hospital in Soweto, South
 Africa. *J Trop Pediatr* 2000; 46:224–30.

- 44. Mwangwa F, Chamie G, Kwarisiima D, et al. Gaps in the child tuberculosis care
 cascade in 32 rural communities in Uganda and Kenya. *J Clin Tuberc Mycobact Dis*2017; 9:24–9.
- 514 45. Obiagwu PN, Hassan-Hanga F, Ibrahim M. Pediatric HIV in Kano, Nigeria. *Niger J*515 *Clin Pract* 2013; 16:521–5.
- 516 46. Okechukwu AA. Discharge against medical advice in children at the University of
 517 Abuja Teaching Hospital, Gwagwalada, Nigeria. *Niger J Clin Pract* 2011; 2:949–54.
- 47. Osman M, Lee K, Du Preez K, Dunbar R, Hesseling AC, Seddon JA. Excellent
 treatment outcomes in children treated for tuberculosis under routine operational
 conditions in Cape Town, South Africa. *Clin Inf Dis* 2017; **65**:1444–52.
- 48. Padayatchi N, Bamber S, Dawood H, Bobat R. Multidrug-resistant tuberculous
 meningitis in children in Durban, South Africa. *Pediatr Inf Dis J* 2006; 25:147–50.
- 49. Palme IB, Gudetta B, Bruchfeld J, Muhe L, Giesecke J. Impact of human
 immunodeficiency virus 1 infection on clinical presentation, treatment outcome and
 survival in a cohort of Ethiopian children with tuberculosis. *Pediatr Inf Dis J* 2002;
 21:1053–61.
- 527 50. Patel MR, Yotebieng M, Behets F, Vanden Driessche K, Nana M, Van Rie A.
 528 Outcomes of integrated treatment for tuberculosis and HIV in children at the primary
 529 health care level. *Int J Tuberc Lung Dis* 2013; **17**:1206–11.
- 51. Robinson A, Donald PR, Schaaf HS. Nosocomial infections in HIV-infected and HIVuninfected children hospitalised for tuberculosis. *S Afr Fam Pract* 2007; **49**:14.
- 52. Rose M V., Kimaro G, Nissen TN, Kroidl I, Hoelscher M, Bygbjerg IC, Mfinanga SG,
 Ravn P. Quantiferon®-TB gold in-tube performance for diagnosing active tuberculosis
 in children and adults in a high burden setting. *PLoS ONE* 2012; 7:1–10.
- 53. Simon HS, Marais BJ, Whitelaw A, Hesseling AC, Eley B, Hussey GD, Donald PR.
 536 Culture-confirmed childhood tuberculosis in Cape Town, South Africa: A review of
 537 596 cases. *BMC Inf Dis* 2007; 7:2–9.
- 54. Soeters M, de Vries AM, Kimpen JL, Donald PR, Schaaf HS. Clinical features and
 outcome in children admitted to a TB hospital in the Western Cape the influence of
 HIV infection and drug resistance. *SAMJ* 2005; **95**:602–6.

- 55. Walters E, Duvenhage J, Draper HR, Hesseling AC, Van Wyk SS, Cotton MF, Rabie
 H. Severe manifestations of extrapulmonary tuberculosis in HIV-infected children
 initiating antiretroviral therapy before 2 years of age. *Archives Dis Childhood* 2014;
 99:998–1003.
- 545 56. Walters E, Cotton MF, Rabie H, Schaaf HS, Walters LO, Marais BJ. Clinical
 546 presentation and outcome of tuberculosis in Human Immunodeficiency Virus infected
 547 children on anti-retroviral therapy. *BMC Pediatr* 2008; 8:1.
- 57. Westerlund E, Jerene D, Mulissa Z, HallstrĶm I, LindtjÄ, rn B. Pre-ART retention in
 care and prevalence of tuberculosis among HIV-infected children at a district hospital
 in southern Ethiopia. *BMC Pediatr* 2014; **14**:1–9.
- 55. Wiseman CA, Schaaf HS, Cotton MF, Gie RP, Jennings T, Whitelaw A, Roux P,
 55. Hesseling AC. Bacteriologically confirmed tuberculosis in HIV-infected infants:
 553 Disease spectrum and survival. *Int J Tuberc Lung Dis* 2011; **15**:770–5.
- 554 59. Yotebieng M, Van Rie A, Moultrie H, Cole SR, Adimora A, Behets F, Meyers T. Effect
 555 on mortality and virological response of delaying antiretroviral therapy initiation in
 556 children receiving tuberculosis treatment. *AIDS* 2010; 24:1341-9.
- 60. Kouakoussui A, Fassinou P, Anaky MF, Elenga N, Laguide R, Wemin ML, Toure R,
 Menan H, Rouet F, Msellati P. Respiratory manifestations in HIV-infected children
 pre-and post-HAART in Abidjan, the Ivory Coast. *Paediatr Respir Rev* 2004;5:311-5.
- Abera B, Zenebe Y, Mulu W, Kibret M, Kahsu G. Seroprevalence of hepatitis B and C
 viruses and risk factors in HIV infected children at the Felgehiwot Referral Hospital,
 Ethiopia. *BMC Res Notes* 2014; **7**:838.
- Ashir GM, Rabasa AI, Gofama MM, Bukbuk D, Abubakar H, Farouk GA. Study of
 hepatic functions and prevalence of hepatitis B surface antigenaemia in Nigerian
 children with human immunodeficiency virus infection. *Nigerian J Med* 2009;18:2602.
- 63. Beghin J-C, Ruelle J, Sokal E, Bachy A, Krishna M, Hall L, Goubau P, Van der Linden
 D. Effectiveness of the South African expanded program of immunization against
 hepatitis B in children infected with human immunodeficiency virus-1 living in a
 resource-limited setting of Kwazulu-Natal. *J Med Virol* 2017; **89**:182–5.

- 64. Chotun N, Nel E, Cotton MF, Preiser W, Andersson MI. Hepatitis B virus infection in
 HIV-exposed infants in the Western Cape, South Africa. *Vaccine* 2015; 33:4618–22.
- 573 65. Davidson UN, Chidiebele NI, Josephine EI, Olakunle E, Nnaemeka IA, Chijioke EJ,
 574 Kingsley NI. The prevalence of liver function and immunologic status of children with
 575 HIV and hepatitis B virus coinfection in Enugu, Nigeria. *Afr J Infect Dis* 2016; 10:61–
 576 8.
- 577 66. Dziuban EJ, Marton SA, Hughey AB, Mbingo TL, Draper HR, Schutze GE.
 578 Seroprevalence of hepatitis B in a cohort of HIV-infected children and adults in
 579 Swaziland. *Int J STDs AIDS* 2013; 24:561–5.
- 580 67. Ikpeme EE, Etukudo OM. Seroprevalence of HBV and HIV co-infection in children
 581 and outcomes following highly active antiretroviral therapy (HAART) in Uyo, South582 South Nigeria. *Afr Health Sci* 2013; **13**:955–61.
- 583 68. Jooste P, Van Zyl A, Adland E. et al. Screening, characterisation and prevention of
 584 hepatitis B virus (HBV) co-infection in HIV-positive children in South Africa. *J Clin*585 *Virol* 2016; **85**:71–4.
- Muro FJ, Fiorillo SP, Sakasaka P, Odhiambo C, Reddy EA, Cunningham CK,
 Buchanan AM. Seroprevalence of hepatitis B and C viruses among children in
 Kilimanjaro Region, Tanzania. *J Pediatric Inf Dis Soc* 2013; 2:320–6.
- Mutwa PR, Boer KR, Rusine JB, Muganga N, Tuyishimire D, Reiss P, Lange JM,
 Geelen SPM. Hepatitis B virus prevalence and vaccine response in HIV-infected
 children and adolescents on combination antiretroviral therapy in Kigali, Rwanda. *Pediatr Inf Dis J* 2013; 32:246–51.
- 593 71. Nwolisa E, Mbanefo F, Ezeogu J, Amadi P. Prevalence of hepatitis B co-infection
 594 amongst HIV infected children attending a care and treatment centre in Owerri, South595 Eastern Nigeria. *Pan Afr Med J* 2013; 14:2–6.
- 596 72. Sadoh AE, Sadoh WE. HIV co-infection with hepatitis B and C viruses among Nigerian
 597 children in an antiretroviral treatment programme. *S Afr J Child Health* 2011; 5:7–10.
- Telatela SP, Matee MI, Munubhi EK. Seroprevalence of hepatitis B and C viral co-infections among children infected with human immunodeficiency virus attending the

600	paediatric HIV care and treatment center at Muhimbili National Hospital in Dar-es-
601	Salaam, Tanzania. BMC Pub Health 2007; 7:1–6.

- Varo R, Chris Buck W, Kazembe PN, Phiri S, Andrianarimanana D, Weigel R.
 Seroprevalence of CMV, HSV-2 and HBV among HIV-infected Malawian children: A
 cross-sectional survey. *J Trop Pediatr* 2016; **62**:220–6.
- Moss WJ, Monze M, Ryon JJ, Quinn TC, Griffin DE, Cutts F. Prospective Study of
 Measles in Hospitalized, Human Immunodeficiency Virus (HIV) Infected and HIV –
 Uninfected Children in Zambia. *Clin Inf Dis* 2002; **35**:189–96.
- Wirth KE, Wolf ER, Goldfarb DM, Ho-Foster A, Tolle M, Jacovides C, Kirk B, Chise
 M, Steenhoff AP. Risk factors for measles in HIV-infected children and adolescents in
 Botswana. *Pediatr Inf Dis J* 2015; **34:**1093–5.
- 611 77. Gill CJ, Mwananyanda L, Macleod W, Kwenda G, Mwale M, Williams AL, Siazeele
 612 K, Yang Z, Mwansa J, Thea DM. Incidence of severe and nonsevere pertussis among
 613 HIV-exposed and -unexposed Zambian infants through 14 weeks of age: results from
 614 the Southern Africa Mother Infant Pertussis Study (SAMIPS), a longitudinal birth
 615 cohort study. *Clin Infect Dis* 2016;63: S154-S164.
- Soofie N, Nunes MC, Kgagudi P, Van Niekerk N, Makgobo T, Agosti Y, Hwinya C,
 Pathirana J, Madhi SA. The burden of pertussis hospitalization in HIV-exposed and
 HIV-unexposed South African infants. *Clin Infect Dis* 2016; 63: S165–73.
- 79. Johnson S, Hendson W, Crewe-Brown H, Dini L, Frean J, Perovic O, Vardas E. Effect
 of human immunodeficiency virus infection on episodes of diarrhea among children in
 South Africa. *Pediatr Inf Dis J* 2000; 19:972-9.
- 80. Moyo SJ, Blomberg B, Hanevik K, Kommedal O, Vainio K, Maselle SY, Langeland
 N. Genetic diversity of circulating rotavirus Strains in Tanzania Prior to the introduction
 of vaccination. *PLoS ONE* 2014; 9:1–10.
- Asbjörnsdóttir KH, Slyker JA, Maleche-Obimbo E, Wamalwa D, Otieno P, Gichuhi
 CM, John-Stewart G. Breastfeeding is associated with decreased Risk of hospitalization
 among HIV-exposed, uninfected Kenyan infants. *J Hum Lact* 2016;**32:** NP61-6.

- 82. Nathoo KJ, Chigonde S, Nhembe M, Ali MH, Mason PR. Community-acquired
 bacteremia in human immunodeficiency virus-infected children in Harare, Zimbabwe. *Pediatr Inf Dis J* 1996; 15:1092-7.
- 83. Zar HJ, Hanslo D, Tannenbaum E, Klein M, Argent A, Eley B, Burgess J, Magnus K,
 Bateman E, Hussey G. The etiology and outcome of pneumonia in human
 immunodeficiency virus-infected children admitted to intensive care in a developing
 country. *Acta Paediatrica* 2001; **90**:108–12.
- 84. Jones N, Huebner R, Khoosal M, Crewe-Brown H, Klugman K. The impact of HIV on *Streptococcus pneumoniae bacteraemia* in a South African population. *AIDS* 1998;
 12:2177–88.
- 85. Roca A, Sigaúque B, Quintó L, Morais L, et al. Estimating the vaccine-preventable
 burden of hospitalized pneumonia among young Mozambican children. *Vaccine* 2010;
 28:4851–7.
- 641 86. Cohen C, Moyes J, Tempia S, et al. Epidemiology of acute lower respiratory tract
 642 infection in HIV-exposed uninfected infants. *Pediatrics* 2016; **137**: e20153272.
- 87. Nunes MC, Von Gottberg A, De Gouveia L, Cohen C, Moore DP, Klugman KP, Madhi
 SA. The impact of antiretroviral treatment on the burden of invasive pneumococcal
 disease in South African children: A time series analysis. *AIDS* 2011; 25:453–62.
- 88. von Mollendorf C, Tempia S, Von Gottberg A, et al. Estimated severe pneumococcal
 disease cases and deaths before and after pneumococcal conjugate vaccine introduction
 in children younger than 5 years of age in South Africa. *PLoS One* 2017; 12: e0179905.
- 89. von Gottberg A, Cohen C, de Gouveia L, Meiring S, Quan V, Whitelaw A, CrowtherGibson P, Madhi SA, Whitney CG, Klugman KP. Epidemiology of invasive
 pneumococcal disease in the pre-conjugate vaccine era: South Africa, 2003-2008. *Vaccine* 2013; 31:4200–8.
- 90. Nyasulu P, Cohen C, De Gouveia L, Feldman C, Klugman KP, von Gottberg A.
 Increased risk of death in Human Immunodeficiency Virus-infected children with
 pneumococcal meningitis in South Africa, 2003–2005. *Pediatr Inf Dis J* 2011;
 30:1075–80.
- 657 91. World Health Organization. *Global tuberculosis report 2016*. Geneva: WHO, 2016.

658	92.	Rekha Banu VV, Poorana Ganga Devi NP, Swaminathan S. Childhood TB: Global			
659	02	epidemiology and impact of HIV. <i>Paediatr Respir Rev</i> 2007; 2 : 99-106.			
660	93.	World Health Organization. WHO End TB Strategy. Geneva: WHO, 2015.			
661	94.	Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus			
662		infection: New estimates of age-specific HBsAg seroprevalence and endemicity.			
663		<i>Vaccine</i> 2012; 30 :2212–9.			
664	95.	Musa BM, Bussell S, Borodo MM, Samaila AA, Femi OL. Prevalence of hepatitis B			
665		virus infection in Nigeria, 2000-2013: a systematic review and meta-analysis. Nigerian			
666		J Clin Pract 2015; 18:163–72.			
667	96.	Fischer Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL,			
668		Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. The			
669		Lancet 2013; 381 :1405–16.			
670	97.	Nunes MC, von Gottberg A, de Gouveia L, Cohen C, Kuwanda L, Karstaedt AS,			
671		Klugman KP, Madhi SA. Persistent high burden of invasive pneumococcal disease in			
672		South African HIV-infected adults in the era of an antiretroviral treatment program.			
673		<i>PLoS ONE</i> 2011; 6 :e27929.			
674	98.	Muloiwa R, Dube FS, Nicol MP, Zar HJ, Hussey GD. Incidence and diagnosis of			
675		pertussis in South African children hospitalized with lower respiratory tract infection.			
676		Pediatr Inf Dis J 2016; 35 :611–6.			
677	99.	UNAIDS. UNAIDS Data 2017. Geneva: UNAIDS, 2017.			
678	100.	GAVI. Annual progress report 2017. Geneva: GAVI, 2018.			
679	<u>101.</u>	Gona P, Van Dyke RB, Williams PL, Dankner WM, Chernoff MC, Nachman SA, Seage			
680		GR. Incidence of opportunistic and other infections in HIV-infected children in the			
681		HAART era. JAMA. 2006; 296 :292-300.	<	Formatted: Font: Italic	
682	102.	Marais BJ, Rabie H, Schaaf SH, Cotton M. Common opportunistic infections in HIV		Formatted: Font: Bold	
683		infected infants and children Part 1-respiratory infections. S Afr Fam Pract 2006; 48:		Formatted: Font: Italic	
684		<u>52-56.</u>		Formatted: Font: Bold	
685	<u>103.</u>	Mutsaerts EAML, Nunes MC, van Rijswijk MN, Klipstein-Grobusch K, Grobbee DE,			
686		Madhi SA. Safety and Immunogenicity of Measles Vaccination in HIV-Infected and			
I					

687		HIV-Exposed Uninfected Children: A Systematic Review and Meta-Analysis. <u>E Clin</u>	 Formatted: Font: Italic
688		<u>Med 2018; 1:28–42.</u>	Formatted: Font: Italic
	101		 Formatted: Font: Italic
689	<u>104.</u>	Scott P, Moss WJ, Gilani Z, Low N. Measles vaccination in HIV-infected children:	Formatted: Font: Bold
690		Systematic review and meta-analysis of safety and immunogenicity. J Inf Dis 2011;	Formatted: Font: Italic
691		<u>204:S164-78.</u>	 Formatted: Font: Bold
692	10 <u>5</u> 1.	Nachega JB, Uthman OA, Ho YS, et al. Current status and future prospects of	
693		epidemiology and public health training and research in the WHO African region. Int J	
694		<i>Epidemiol</i> 2012; 41:1829-46.	
695	10 <u>6</u> 2.	Saxenian H, Hecht R, Kaddar M, Schmitt S, Ryckman T, Cornejo S. Overcoming	
696		challenges to sustainable immunization financing: Early experiences from GAVI	
697		graduating countries. Health Policy Plan 2015; 30:197-205.	
698	107 3 .	Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour	
699	<u>-</u>	V, Barrowman N, Berlin JA, et al. Preferred reporting items for systematic reviews and	
700		meta-analyses: The PRISMA statement. <i>Annals of internal medicine</i> 2009; 151 :264-9.	
700		meta-analyses. The TRISMA statement. Annuis of internal metacine 2009,131.204-9.	
701	10 <u>8</u> 4.	Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The	
702		Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomized studies in	
703		meta-analyses. Ottawa: Ottawa Hospital Research Institute, 2013.	
704	1005	Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions.	
	10 <u>7</u> 5.		
705		Version 5.1.0 [updated March 2011]. UK: The Cochrane Collaboration, 2011.	
706	1 <u>1</u> 0 6 .	StataCorp. Stata Statistical Software: Release 14. College Station, TX: StataCorp	
707	LP;20	15.	
708	1 <u>11</u> 07	. Clegg LX, Hankey BF, Tiwari R, Feuer EJ, Edwards BK. Estimating average	
709	1 <u>11</u> 07		
709		annual percent change in trend analysis. <i>Stat Med</i> 2009; 28 :3670-82.	
710			
711			
712			
713 714			
715			
716 717			
718			
719			

Appendix

Search strategy - PubMed

733 734 735 736

Search	Add to builder	Query	lter fou
#6	Add	Search ((((#1) AND #2) AND #3) AND #4) AND #5 Sort by: Best Match	136
<u>#4</u>	Add	S earch (newborn* OR bab* OR infan* OR child* OR adolescen* OR teen*) Sort by: Best Match	384
<u>#2</u>	<u>Add</u>	Search (tuberculosis OR TB OR poliomyelitis OR polio OR rotavirus OR diphtheria OR tetanus OR pertussis OR pneumococcal OR pneumonia OR measles OR "yellow fever" OR "Hepatitis B" OR "Haemophilus influenza" OR "Hemophilus influenza" OR influenza) Sort by: Best Match	707
<u>#5</u>	Add	Search (incidence OR prevalence OR mortality) Sort by: Best Match	<u>317</u>
<u>#3</u>	Add	Search ("HIV infected" OR "HIV exposed" OR "HIV infected" OR "HIV exposed" OR "HIV positive" OR "HIV exposed uninfected") Sort by: Best Match	745
<u>#</u>	Add	Search (Angola OR Benin OR Botswana OR "Burkina Faso" OR Burundi OR Cameroon OR "Cape Verde" OR "Central African Republic" OR Chad OR Congo OR "Democratic Republic of Congo" OR DRC OR Djibouti OR "Equatorial Guinea" OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR "Guinea Bissau" OR Guinea OR "Ivory Coast" OR "Cote d'Ivoire" OR Kenya OR Lesotho OR Liberia OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Mozambique OR Namibia OR Niger OR Nigeria OR "Republic of the Congo" OR Reunion OR Rwanda OR Senegal OR Seychelles OR "Sierra Leone" OR "Sao Tome and Principe" OR Somalia OR "South Africa" OR "South Sudan" OR Sudan OR Swaziland OR "anzania OR Togo OR Tunisia OR Uganda OR Zambia OR Zimbabwe OR Africa OR "sub Saharan Africa") Sort by: Best Match	<u>558</u>

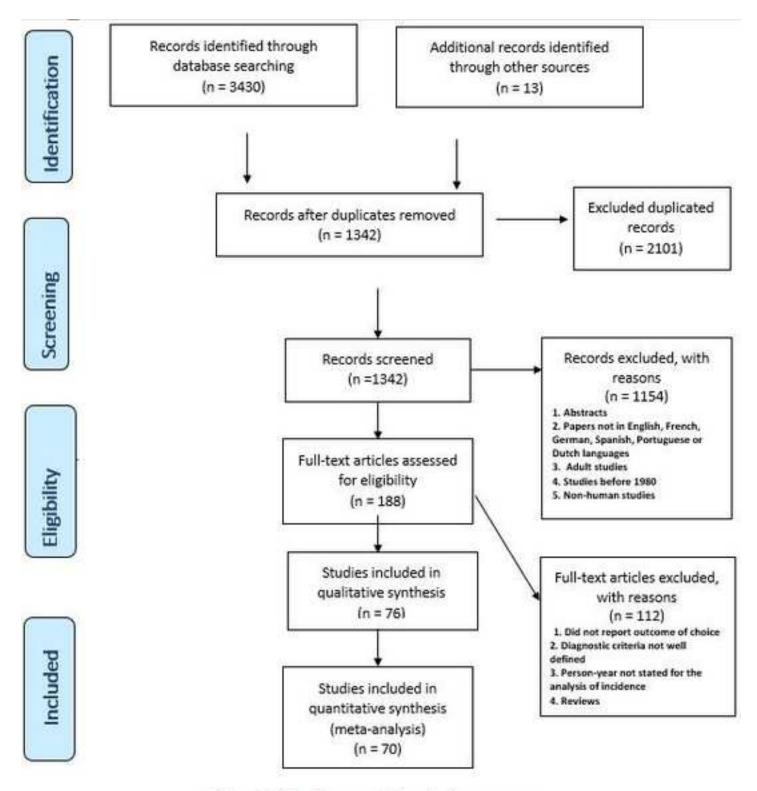


Figure 1: Flow diagram of the selection process

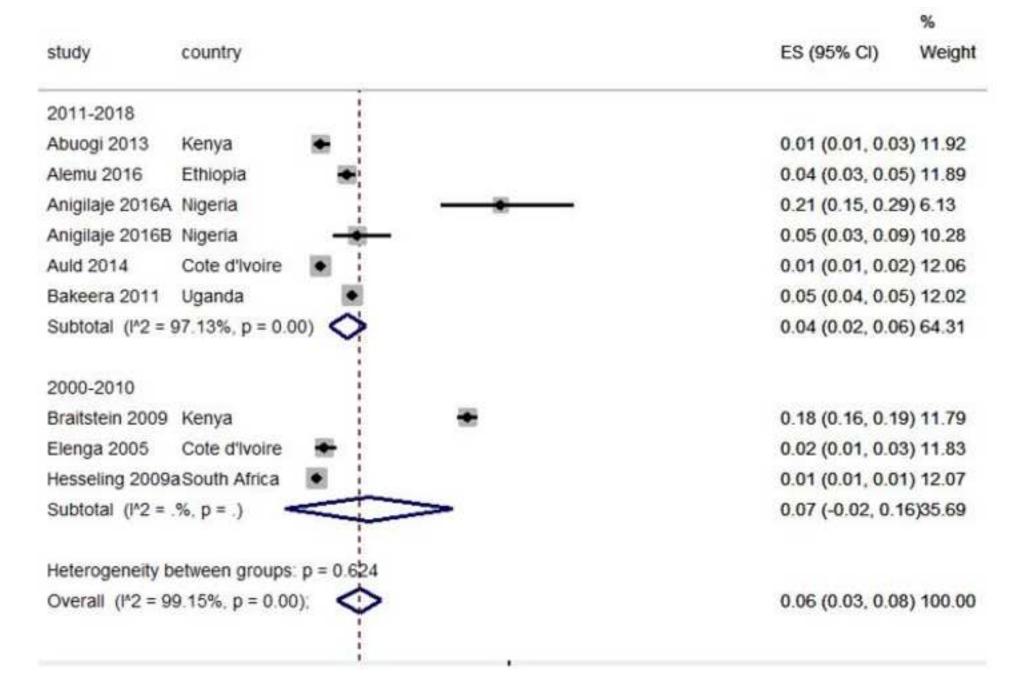


Figure 2: Forest plot of studies with data on incidence rates of tuberculosis in HIV-exposed children

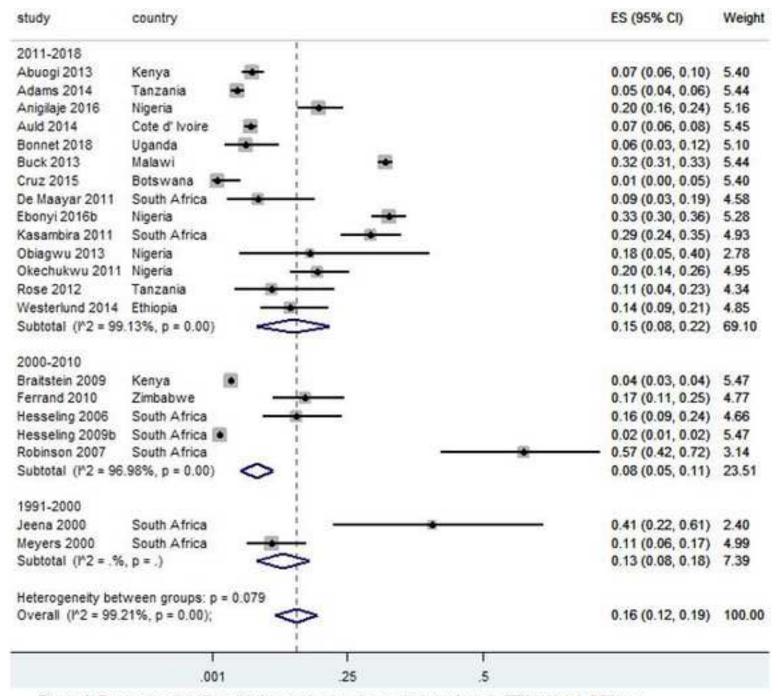
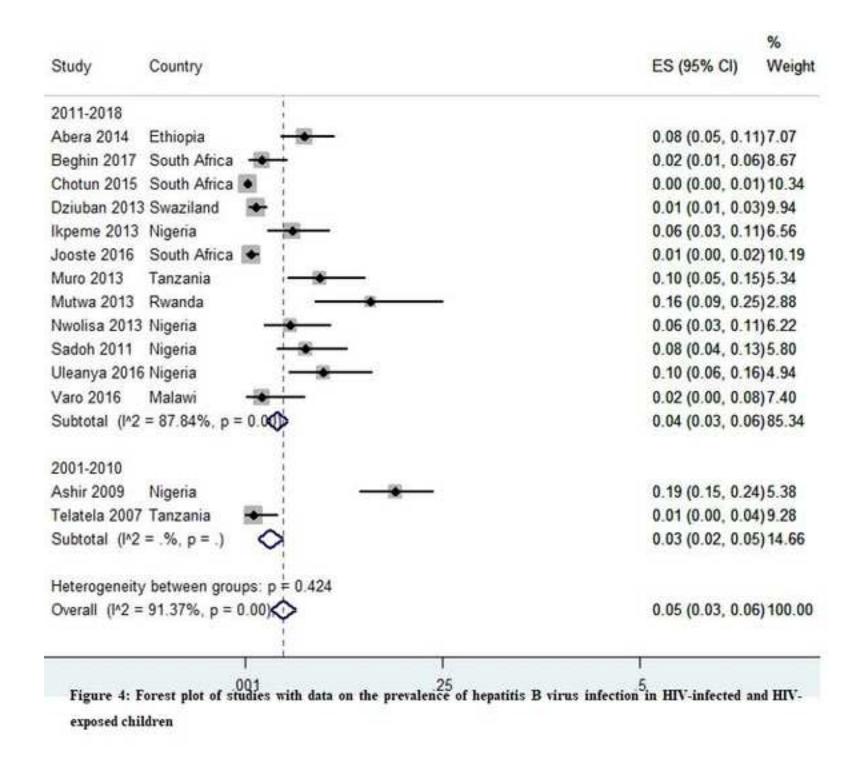



Figure 3: Forest plot of studies with data on the prevalence of tuberculosis in HIV-infected children

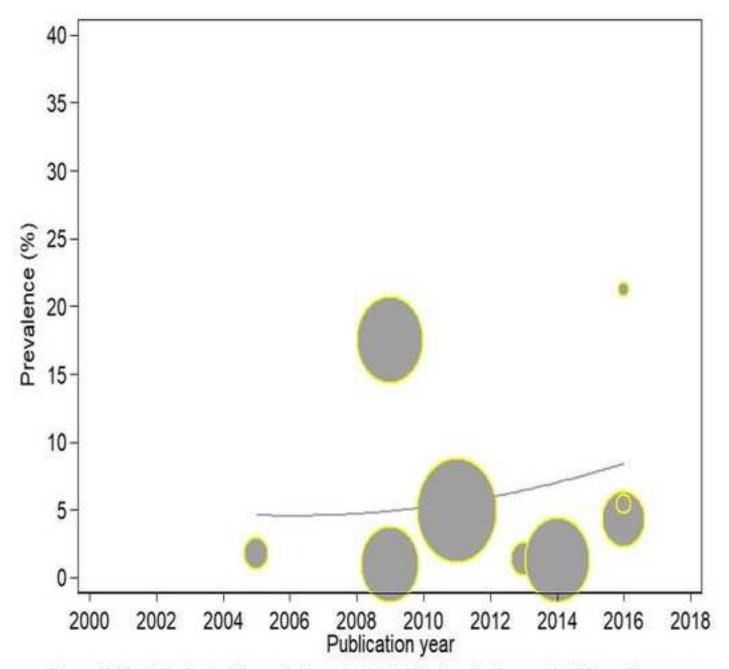


Figure 5: Trends in the incidence of tuberculosis in HIV-infected and exposed children with respect to publication years

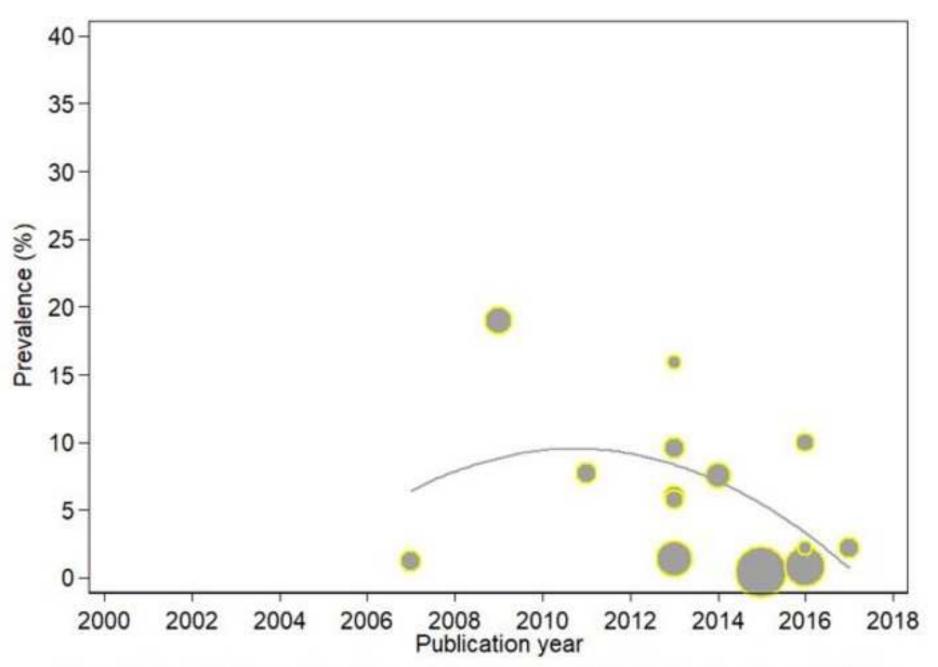


Figure 6: Trends in the prevalence of hepatitis B virus infection in HIV-infected and exposed children with respect to publication years

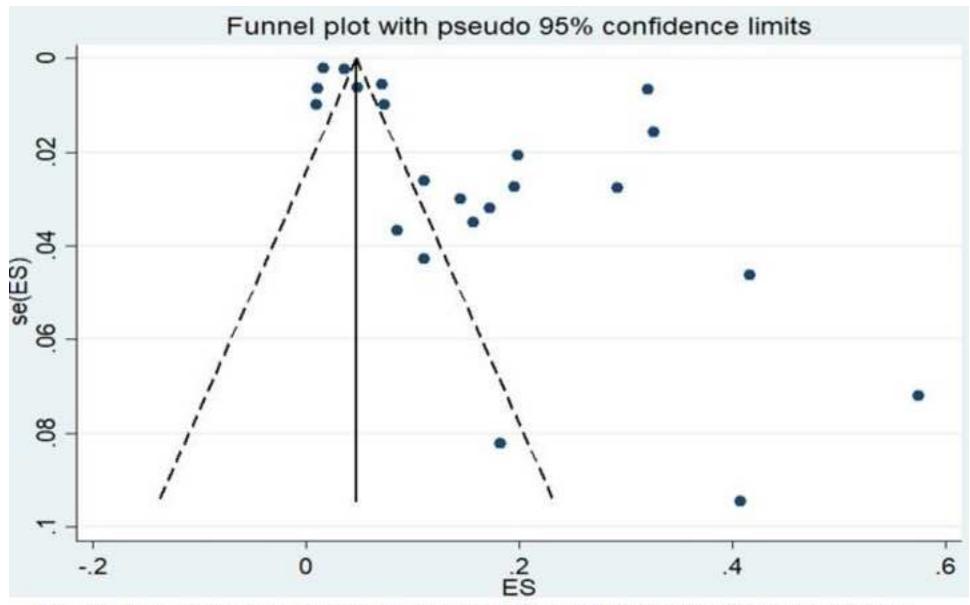
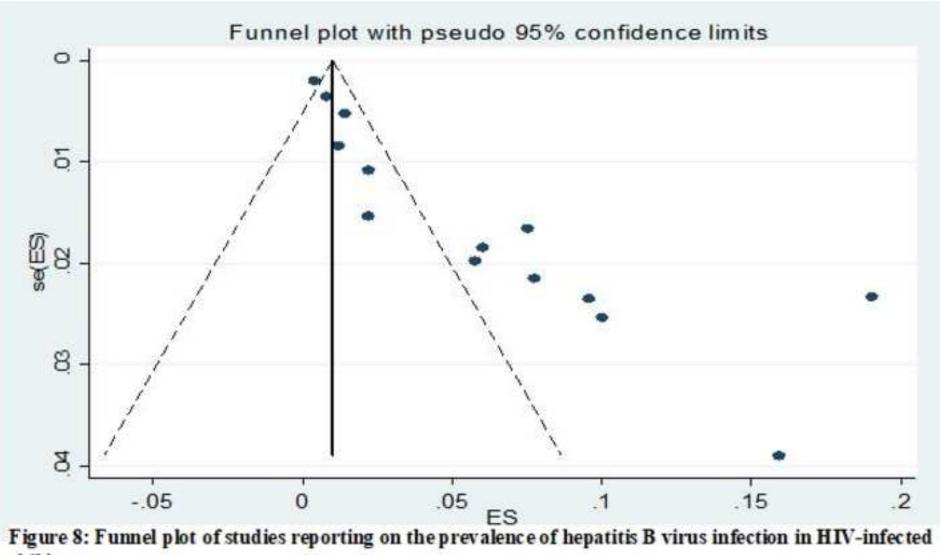



Figure 7: Funnel plot of studies reporting on the prevalence of tuberculosis in HIV-infected children

children

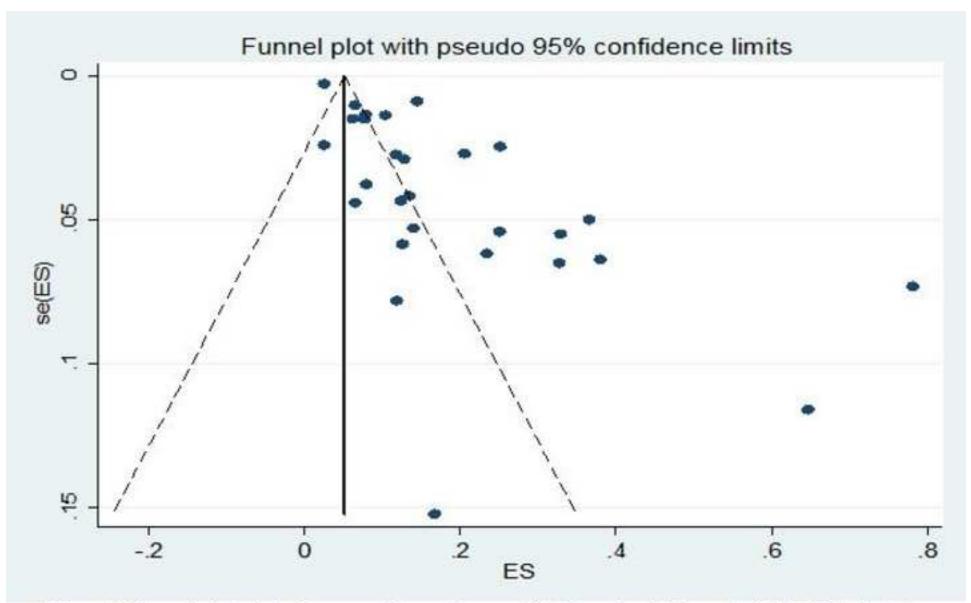


Figure 9: Funnel plot of studies reporting on the case-fatality rate of tuberculosis in HIV-infected children

Table 1: Characteristics of the study population

First author and year	Study period	Study design	Country	Sample size	VPD	Outcomes	HIV	Quality
							status	scores
Abuogi 2013 ¹⁵	2009 - 2010	Cohort	Kenya	689	Tuberculosis	C, I, P	ні	7
Adams 2014 ¹⁶	2006 - 2012	Cross-sectional	Tanzania	1193	Tuberculosis	С, Р	НІ	4
Alemu 2016 ¹⁷	2009 - 2014	Cohort	Ethiopia	645	Tuberculosis	1	ні	6
Anigilaje 2016 ¹⁸	2010 - 2013	Cohort	Nigeria	368	Tuberculosis	Р	HI	8
Auld 2014 ¹⁹	2004 - 2008	Cohort	Cote d' Ivoire	2110	Tuberculosis	I, P	HI	8
Bakeera 2011 ²⁰	2003 - 2006	Cohort	Uganda	1806	Tuberculosis	I, C	HI	8
Bonnet 2018 ²¹	2012 - 2014	Cohort	Uganda	113	Tuberculosis	С	HI	7
Braitstein 2009 ²²	2001 - 2007	Cohort	Kenya	6,535	Tuberculosis	I, P	HI	8
Buck 2013 ²³	2010	Cohort	Malawi	4874	Tuberculosis	С, Р	HI	8
Carlucci 2017 ²⁴	2012 - 2014	Cohort	Multiple	386	Tuberculosis	С	HI	8
Cavanaugh 2012 ²⁵	2006 - 2007	Cross-sectional	Kenya	323	Tuberculosis	С	HI	6
Chaya 2016 ²⁶	2006 - 2011	Cross-sectional	South Africa	47	Tuberculosis	1	н	6
Cruz 2015 ²⁷	NR	Cohort	Botswana	100	Tuberculosis	Р	HI	6
Dangor 2013 ²⁸	2005 - 2009	Time-series analysis	South Africa	1985	Tuberculosis	I	HI	7
De Maayar 2011 ²⁹	NR	Cross-sectional	South Africa	58	Tuberculosis	Р	HI	7
Ebonyi 2016 ³⁰	2005 - 2013	Cohort	Nigeria	260	Tuberculosis	С	HI	8
Ebonyi 2016b ³¹	2005-2012	Cohort	Nigeria	876	Tuberculosis	Р	HI	8
Elenga 2005 ³²	2000-2003	Cohort	Cote d' Ivoire	282	Tuberculosis	I	HI	8
Ferrand 2010 ³³	2007-2008	Cross-sectional	Zimbabwe	139	Tuberculosis	Р	HI	7
Hall 2017 ³⁴	2005-2008	Cohort	South Africa	224	Tuberculosis	С	HI	8
Hesseling 2009a ³⁵	2004-2006	Cross-sectional	South Africa	3321	Tuberculosis	С	HI	6
Hesseling 2005 ³⁶	1992-2000	Cohort	South Africa	93	Tuberculosis	С	HI	8
Hesseling 2006 ³⁷	2002-2005	Cohort	South Africa	108	Tuberculosis	С, Р	HI	7
Hesseling 2009b ³⁸	2004-2006	Cross-sectional	South Africa	3321	Tuberculosis	I, P	HI	7
Hicks 2014 ³⁹	2009-2010	Cohort	South Africa	64	Tuberculosis	С	Н	6
Jeena 2000 ⁴⁰	1995-1998	Cross-sectional	South Africa	27	Tuberculosis	Р	н	5
Kasambira 2011 ⁴¹	2006-2009	Cross-sectional	South Africa	270	Tuberculosis	Р	Н	6
Madhi 2000b ⁴²	1996-1997	Cross-sectional	South Africa	67	Tuberculosis	С	HI	5
Meyers 200043	1996	Cross-sectional	South Africa	144	Tuberculosis	Р	н	5

Mwangwa 201744	2012-2013	Cohort	Multiple	17	Tuberculosis	С	HI	7
					Tuberculosis,			6
Obiagwu 2013 ⁴⁵	2010	Cross-sectional	Nigeria	22	Measles	Р	HI	
Okechukwu 2011 ⁴⁶	2007-2008	Cross-sectional	Nigeria	210	Tuberculosis	С, Р	HI	6
Osman 201747	2005-2012	Cohort	South Africa	3143	Tuberculosis	С	HI	6
Padayatchi 200648	1993-2002	Cross-sectional	South Africa	6	Tuberculosis	С	HI	5
Palme 200249	1995-1997	Cohort	Ethiopia	58	Tuberculosis	С	HI	6
Patel 201350	2007-2009	Cohort	Congo DRC	31	Tuberculosis	С	н	7
Robinson 2007 ⁵¹	1999-2001	Case-control	South Africa	47	Tuberculosis	Р	н	6
Rose 2012 ⁵²	2008-2010	Cohort	Tanzania	54	Tuberculosis	Р	HI	6
Schaaf 200753	2003-2005	Cross-sectional	South Africa	133	Tuberculosis	С	н	5
Soeters 2005 ⁵⁴	2000-2001	Cross-sectional	South Africa	43	Tuberculosis	С	н	4
Walters 201455	2003-2010	Cohort	South Africa	494	Tuberculosis	С	н	6
Walters 2008 ⁵⁶	2003-2005	Cross-sectional	South Africa	137	Tuberculosis	С	н	6
Westerlund 201457	2003-2008	Cohort	Ethiopia	138	Tuberculosis	Р	н	7
Wiseman 201158	2004-2006	Cross-sectional	South Africa	52	Tuberculosis	С	н	5
Yotebieng 2010 ⁵⁹	2004-2008	Cohort	South Africa	573	Tuberculosis	С	н	6
Kouakoussui 200460	2003	Cohort	Cote d'Ivoire	270	Tuberculosis	I	н	7
Abera 2014 ⁶¹	2014	Cross-sectional	Ethiopia	253	HBV infection	Р	н	6
Ashir 200962	2007	Case-control	Nigeria	284	HBV infection	Р	н	5
Beghin 2017 ⁶³	2014	Cross-sectional	South Africa	183	HBV infection	Р	н	6
Chotun 2015 ⁶⁴	2011 - 2012	Cross-sectional	South Africa	1000	HBV infection	Р	HE	6
Uleanya 201665	NR	Cross-sectional	Nigeria	140	HBV infection	Р	н	4
Dziuban 201366	2009 - 2011	Cross-sectional	Swaziland	500	HBV infection	Р	н	3
Ikpeme 201367	2010-2011	Cross-sectional	Nigeria	166	HBV infection	Р	н	4
Jooste 2016 ⁶⁸	2015-2016	Cohort	South Africa	625	HBV infection	Р	н	7
Muro 2013 ⁶⁹	2006-2008	Cross-sectional	Tanzania	157	HBV infection	Р	н	5
Mutwa 2013 ⁷⁰	2010	Cohort	Rwanda	88	HBV infection	Р	н	7
Nwolisa 201371	2010	Cross-sectional	Nigeria	139	HBV infection	Р	н	4
Sadoh 2011 ⁷²	NR	Cross-sectional	Nigeria	155	HBV infection	Р	н	5
Telatela 200773	2006	Cross-sectional	Tanzania	167	HBV infection	Р	н	4
Varo 2016 ⁷⁴	2008-2010	Cross-sectional	Malawi	91	HBV infection	Р	HI	3
Moss 200275	1998-2000	Cross-sectional	Zambia	93	Measles	Р	HI	6

Wirth 201576	2009-2010	Case-control	Botswana	189	Measles	С	ні	5
du Plessis 201814	2013 - 2015	Cross-sectional	South Africa	300	Pertussis	Р	н	6
Gill 201677	2015	Cohort	Zambia	347	Pertussis	I	HI	7
Soofie 2016 ⁷⁸	2015	Cross-sectional	South Africa	599	Pertussis	C, I, P	HE	5
					Rotavirus			6
Johnson 2000 ⁷⁹	1996-1997	Cross-sectional	South Africa	31	gastroenteritis	Р	HI	
					Rotavirus			5
Moyo 2014 ⁸⁰	2010-2011	Case-control	Tanzania	26	gastroenteritis	Р	HI	
Asbjörnsdóttir 2013 ⁸¹				388	Pneumococcal			6
	1999-2002	Cohort	Kenya	500	infection	C,I	HI	
					Pneumococcal			7
Nathoo 199682	1993-1994	Cohort	Zimbabwe	168	infection	Р	HI	
					Pneumococcal			6
Zar 2001 ⁸³	1998	Cross-sectional	South Africa	151	infection	Р	HI	
					Pneumococcal			5
Jones 1998 ⁸⁴	1996	Cross-sectional	South Africa	25	infection	С	HI	
					Pneumococcal			6
Roca 2010 ⁸⁵	2004-2006	Cross-sectional	Mozambique	54	infection	C	HI	
					Pneumococcal			4
Cohen 2016 ⁸⁶	2009 - 2013	Cross-sectional	South Africa	211	infection	1	HEU,HI	
					Pneumococcal			6
Nunes 2011 ⁸⁷	2003-2008	Cross-sectional	South Africa	938	infection	1	HI	
					Pneumococcal			5
von Mollendorf 2017a ⁸⁸	2009–2013	Cross-sectional	South Africa	495	infection	C, I	HI	
					Pneumococcal			5
von Gottberg 201389	2003-2008	Cross-sectional	South Africa	1749	infection		HI	
					Pneumococcal			6
Nyasulu 2011 ⁹⁰	2003-2005	Cross-sectional	South Africa	1124	infection	С	HI	

NR- Not recorded; C- Case-fatality rate; I – Incidence; P – Prevalence; Hib- Haemophilus influenzae type b; HI- HIV-infected; HE- HIV-exposed; HEU – HIV-exposed uninfected; VPD - vaccine–preventable diseases.

Appendix

Search strategy - PubMed

Search	Add to builder	Query	ltems found
<u>#6</u>	<u>Add</u>	Search ((((#1) AND #2) AND #3) AND #4) AND #5 Sort by: Best Match	<u>1364</u>
<u>#4</u>	<u>Add</u>	Search (newborn* OR bab* OR infan* OR child* OR adolescen* OR teen*) Sort by: Best Match	<u>3843580</u>
<u>#2</u>	<u>Add</u>	Search (tuberculosis OR TB OR poliomyelitis OR polio OR rotavirus OR diphtheria OR tetanus OR pertussis OR pneumococcal OR pneumonia OR measles OR "yellow fever" OR "Hepatitis B" OR "Haemophilus influenza" OR "Hemophilus influenza" OR influenza) Sort by: Best Match	<u>707401</u>
<u>#5</u>	<u>Add</u>	Search (incidence OR prevalence OR mortality) Sort by: Best Match	<u>3171459</u>
<u>#3</u>	<u>Add</u>	Search ("HIV infected" OR "HIV exposed" OR "HIV-infected" OR "HIV-exposed" OR "HIV positive" OR "HIV exposed uninfected") Sort by: Best Match	<u>74539</u>
<u>#1</u>	<u>Add</u>	Search (Angola OR Benin OR Botswana OR "Burkina Faso" OR Burundi OR Cameroon OR "Cape Verde" OR "Central African Republic" OR Chad OR Congo OR "Democratic Republic of Congo" OR DRC OR Djibouti OR "Equatorial Guinea" OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR "Guinea Bissau" OR Guinea OR "Ivory Coast" OR "Cote d'Ivoire" OR Kenya OR Lesotho OR Liberia OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Mozambique OR Namibia OR Niger OR Nigeria OR "Republic of the Congo" OR Reunion OR Rwanda OR Senegal OR Seychelles OR "Sierra Leone" OR "Sao Tome and Principe" OR Somalia OR Togo OR Tunisia OR Uganda OR Zambia OR Zimbabwe OR Africa OR "sub Saharan Africa") Sort by: Best Match	<u>558013</u>