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Artificial neural networks and LEMMO for water systems 

optimisation 

Optimisation algorithms could potentially provide extremely valuable guidance 

towards improved intervention strategies and/or designs for water systems. The 

application of these algorithms in this domain has historically been hindered by 

the extreme computational cost of performing hydraulic modelling of water 

systems. This is because running an optimisation algorithm generally involves 

running a very large number of simulations of the system being optimised. In this 

paper, a novel optimisation approach is described, based upon the “learning 

evolution model for multi-objective optimisation” algorithm. This approach uses 

deep learning artificial neural network meta-models to reduce the number of 

simulations of the water system required, without reducing the accuracy of the 

optimisation results. This is then compared to an industry standard optimisation 

approach, showing results with increased speed of convergence and equivalent or 

improved accuracy. Therefore, demonstrating that this approach is suitable for 

use in highly computationally demanding areas such as water systems 

optimisation. 
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Introduction 

The application of optimisation algorithms to water systems has been hindered by the 

extreme computational cost of hydraulic system modelling, although a large amount of 

research in this area has been undertaken, increasing in quantity in the last 5-10 years 

(Bach et al., 2014; Djordjević et al., 1999; Garcìa et al., 2015; Hammond et al., 2018; 

Sayers, 2015; Sayers et al., 2014; Shirzad, 2017; Shishegar et al., 2018; Wang et al., 

2014; Webber et al., 2018; Woodward, 2012; Woodward et al., 2013a, 2013b; Zheng et 

al., 2019). The run time of hydraulic system models can vary considerably, depending 

on the exact model and the hardware running it. However, runtimes in the order of sixty 

seconds per model run, for a reasonably complex model, would not be unreasonable. 

Assuming this runtime, if one hundred thousand evaluations were required (as is the 



case for the simplest networks we have tested with) the total runtime would be 

approximately 70 days. In reality, due to model complexity this is likely to be 

significantly under-estimating the time necessary. It is because of this computational 

limitation that research such as that by Shirzad (2017) on shortening search times in 

water distribution optimisation, or Webber et al. (2018) on more rapid assessment of 

flood management options are of such importance to the field.Various optimisation 

algorithms have been tested for suitability, accuracy of results, and speed of 

convergence, amongst other performance measures (Behzadian et al., 2009; Shirzad, 

2017; Shishegar et al., 2018; Wang et al., 2014; Wang, 1997; Webber et al., 2018; 

Woodward, 2012; Woodward et al., 2013a, 2013b; Zheng et al., 2017). 

In this paper we present an optimisation algorithm based on the learning 

evolution model for multiple-objective optimisation (LEMMO) (Jourdan et al., 2004, 

2005) combined with feed-forward artificial neural network (ANN) meta-models 

(Behzadian et al., 2009; Mohtar et al., 2018; Sayers, 2015; Sayers et al., 2014). Along 

with this a rigorous examination of the effectiveness of this algorithm when applied to 

selected water distribution systems test-cases described in Wang et al. (2014) and 

compared to reference pareto fronts generated in the same paper is also presented. 

Methodology 

LEMMO-ANN Overview 

The basis of the multi-objective optimisation in the described algorithm is the industry-

standard and well-used NSGA-II algorithm (Bekele and Nicklow, 2007; Deb et al., 

2000, 2002; Kannan et al., 2009). In order to reduce the computational impact of 

objective function evaluation, and therefore increase the speed and accuracy with which 

a reasonable Pareto front can be achieved, NSGA-II can be combined with heuristic 

meta-models (Behzadian et al., 2009; Sayers et al., 2014; Sayers, 2015). 



The technique used in this research paper is based upon the LEMMO algorithm 

(di Pierro et al., 2009; Jourdan et al., 2004, 2005), specifically a modification of 

“LEMMO-fix4”, which is in turn based upon the LEM algorithm (Michalski et al., 

2000; Wojtusiak and Michalski, 2006). LEMMO-fix4 is a multi-objective version of 

LEM, which utilises decision trees to identify rules that characterise promising 

solutions. The LEMMO algorithm works by performing a number of iterations of 

standard NSGA-II (Deb et al., 2000, 2002) and storing data on which of the generated 

solutions are “good”, and which are “poor” in respect to a randomly chosen objective 

from the objectives specified. This stored data is then used to train a decision tree 

algorithm to distinguish between “good” and “poor” solutions, using the best and worst 

30% as “good” and “poor” sets. New solutions are then generated which the decision 

tree categorises as “good”. These generated solutions are then integrated with the main 

population of the optimisation algorithm (allowing them to be culled if existing 

solutions are better) and the algorithm continues. 

The implementation described in this paper uses a similar approach, but with 

artificial neural networks taking the place of decision trees within the algorithm (Sayers, 

2015) in an attempt to improve the performance of the original algorithm when applied 

to computationally intensive problems such as water systems optimisation. This is 

described in detail below. 

This approach is designed to give the incremental improvement behaviour of the 

original optimisation algorithm, but also allows the algorithm to make intuitive bursts 

when it discovers promising new strategies (Jourdan et al., 2004, 2005; Sayers, 2015). 

This is by virtue of the machine learning techniques recognising new high-scoring 

solutions and “seeding” the population with variants of these. 



Optimisation objectives for LEMMO-ANN testing 

In common with other optimisation algorithms, the formulation of the objective 

function is of paramount importance, the problem must be represented in a way that 

captures all essential elements, is differentiable, and is easily modifiable.  

In the case of the algorithm described in this paper, LEMMO with artificial 

neural networks (LEMMO-ANN) two objective functions minimum are required for a 

meaningful test of the algorithm. 

In (Wang et al., 2014) a number of reference Pareto fronts are generated using 

benchmark water distribution system problems. In order to compare with these 

reference Pareto fronts, when applied to water distribution system problems, we are 

using network resilience (Prasad and Park, 2004; Wang et al., 2014) and capital 

expenditure as our objectives. The formulation of these objectives can be seen in the 

following equations: 
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In equation 1 ‘𝐶𝐶’ represents total cost (monetary units are problem dependant); 

‘𝑛𝑛𝑛𝑛’ represents the total number of pipes; ‘𝑎𝑎’ and ‘𝑏𝑏’ represent constants depending on 

specific problems; ‘𝐷𝐷𝑖𝑖’ is the diameter of pipe ‘𝑖𝑖’ and ‘𝐿𝐿𝑖𝑖’ is the length of pipe ‘𝑖𝑖’ 

(Wang et al., 2014). 



In equations 2 and 3, ‘𝐼𝐼𝑛𝑛’ is network resilience; ‘𝑛𝑛𝑛𝑛’ represents number of 

demand nodes; ‘𝐶𝐶𝑗𝑗’, ‘𝑄𝑄𝑗𝑗’, ‘𝐻𝐻𝑗𝑗’ and ‘𝐻𝐻𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟’ represent uniformity, demand, actual head, 

and minimum required head of node ‘𝑛𝑛’; ‘𝑛𝑛𝑛𝑛’ is number of reservoirs; ‘𝑄𝑄𝑘𝑘’ and ‘𝐻𝐻𝑘𝑘’ are 

discharge and actual head of reservoir ‘𝑘𝑘’; ‘𝑛𝑛𝑛𝑛𝑛𝑛’ is the number of pumps; ‘𝑃𝑃𝑖𝑖’ is the 

power of pump ‘𝑖𝑖’; ‘𝛾𝛾’ represents the specific weight of water; ‘𝑛𝑛𝑛𝑛𝑛𝑛’ is the number of 

pipes that are connected to node ‘𝑛𝑛’; ‘𝐷𝐷𝑖𝑖’ is the diameter of pipe ‘𝑖𝑖’ connected to 

demand node ‘𝑛𝑛’ (Wang et al., 2014).  

The LEMMO-ANN algorithm 

The optimisation algorithm implemented is based on the NSGA-II algorithm (Deb et al., 

2000, 2002) and the LEM (Wojtusiak and Michalski, 2006) and LEMMO algorithms (di 

Pierro et al., 2009; Jourdan et al., 2004, 2005), specifically LEMMO-fix4. Rather than 

the decision-tree system used as a machine learning meta-model in the original 

LEMMO implementation, a feed-forward artificial neural network is employed. 

The algorithm performs a number of iterations of standard NSGA-II (Deb et al., 2002), 

storing data on which of the generated solutions are “good” solutions and which are 

“poor”. For this purpose, “good” solutions are those within the top 30% when ordered 

by rank and then crowding distance, “poor” are those within the bottom 30% with the 

same ordering. It then uses this data to train a machine-learning algorithm as a classifier 

to distinguish between good and bad solutions and uses the resulting network from this 

training to generate new solutions which are classified as “good” via a search process. 

These are then integrated with the main population in the same manner as newly 

generated solutions are in the standard algorithm. Execution then continues with further 

iterations based on pure NSGA-II and further iterations of machine learning as 

described in LEMMo-fix4 (Jourdan et al., 2005). 

 



This approach is driven by the knowledge that for certain classifications of 

problem, ANNs have several potential advantages over decision trees. Firstly, ANNs 

are universal approximators (Cybenko, 1989; Hartman et al., 1990; Hornik et al., 1989; 

Hornik, 1991) which cope well with on-line training in a continuous manner. 

Additionally, ANNs classify data into sets based on non-linear boundaries (Masters, 

1993), whereas decision trees are limited to linear boundaries (Quinlan, 1993), which 

depending on maximum tree-depth, could affect classification accuracy. 

Artificial neural network implementation 

The artificial neural network used in this project is and is a feed-forward neural network 

trained by means of a resilient propagation algorithm (RPROP) (Igel and Hüsken, 2000; 

Riedmiller and Braun, 1993). The implementation in this work is a part of the Accord 

library (Souza, 2015). A feed-forward neural network was selected as this type of 

network is robustly proven to be a universal approximator (Cybenko, 1989; Hartman et 

al., 1990; Hornik et al., 1989; Hornik, 1991; Park and Sandberg, 1991). Additionally, 

the function of the network, where a given number of inputs are associated with a 

specified output and the weights are altered to give an input/output mapping for the 

problem fits well into the context of being used within another algorithm. Multilayer 

feed forward artificial neural networks degrade in performance gracefully, as the 

amount of noise in the input increases (Svozil et al., 1997). ANN’s also cope well with 

being trained online, which is important for the applications detailed in this paper. 

RPROP was chosen as it is a fast and effective alternative to standard back 

propagation. Due to the way in which the various approaches integrate with the ANN, a 

large or complex training algorithm is likely to have a significant impact on 

performance. So something relatively simple, but proven and effective (Igel and 

Hüsken, 2000; Riedmiller and Braun, 1993) was selected.  



Artificial neural network structure 

It has been shown that a feed-forward neural network with one hidden layer is a 

universal approximator (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) given the 

correct parameters (i.e. weight values). However, how to find these parameters and how 

many nodes should be present in a hidden layer is not identified. 

Additionally these papers (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) do 

not show that the three-layer approach is the most efficient and effective for a given 

problem, only that it theoretically should be able to achieve an approximation. There is 

no universal rule or system for selection of the correct number of hidden neurons for a 

given problem, but most suggested guidelines are between zero and 'n' with 'n' being the 

number of decision variables. Initially, therefore, a three-layer network was used where 

the number of hidden nodes was equal to the number of decision variables divided by 

two (see Figure 1).  

 

  



Figure 1. Initial neural network structure with six input nodes 

 

 

The training algorithm used was resilient back-propagation (RPROP) 

(Riedmiller and Braun, 1993), as previously mentioned. This network structure seemed 

to produce an improvement in approximating the Pareto front on smaller problems but 



failed to achieve the same for larger problems. Additionally, by analysing the execution 

of the code, it could be seen that the neural network-training algorithm was running 

until it hit a hard limit imposed to prevent endless loops (Sayers, 2015). This was 

interpreted as meaning that the neural network was struggling to classify the inputs, and 

was not producing a meaningful enough answer for the LEMMO algorithm to function 

correctly (Sayers, 2015). 

It has been suggested (Chester, 1990; Masters, 1993) that a network with two 

hidden layers could perform better than one with a single hidden layer when 

approximating complex discontinuous functions.  Based on this, it was decided to 

experiment with adding an extra layer, comprised of half the number of hidden nodes in 

the previously existing hidden layer (number of decision variables divided by two) 

(Chester, 1990; Sayers, 2015). This layer is between the previously existing hidden 

layer and the input layer (see Figure 2). This network structure produced considerably 

improved results in terms of convergence, diversity and dominated hypervolume 

(Sayers, 2015), over the previous arrangement and the results for LEMMO-ANN are 

based on this network structure. 

 

  



Figure 2. Graphical representation of the neural network structure with ten input nodes 

(for illustration only - test-problems and real problems should have more inputs). 

 

 



Integration of ANN meta-models into LEMMO 

The machine learning algorithms used in previous implementations of LEMMO are 

decision tree classifiers. In this case the machine-learning algorithm is an artificial 

neural network, which has necessitated some modification of the algorithm. This 

machine-learning algorithm is then utilised to generate a new population for the next 

evolution phase to use as a starting point. This functionality had to be adapted 

somewhat to make it applicable to multiple-objective optimisation. 

Five variants were examined in Jourdan's (2005) paper, referred to as LEMMO-

1, LEMMO-fix1, LEMMO-fix2, LEMMO-fix3 and LEMMO-fix4.  

An approach based upon LEMMO-Fix4 has been used as this was recommended 

in Jourdan et al.  (2005) and testing in di Pierro et al.  (2009) led to that study also 

following this recommendation.  

In our approach, the LEMMO-ANN algorithm is run as part of the NSGA2 

algorithm, every ten generations. 

The feed-forward artificial neural network is trained using RPROP with the best 

thirty percent of the solutions from the last ten generations as the “good” set and the 

worst thirty percent as the “poor” set. In order to generate solutions that match the 

“good” set and do not match the “poor”, solutions are generated for each of the 

population members in turn.  

These solutions are, in a loop, mutated and evaluated (by the ANN), discarding 

poor mutations and retaining the mutations that improve the solution. At this stage, no 

solution can enter the population if a solution already exists with the same 

characteristics. Once a specified number of iterations are completed, the best solution 

generated so far is retained in that position in the population, and we move onto 

generating the next. 



Finally, this newly generated population is treated as a new child population within the 

NSGA2 algorithm. This means that a conglomerated population of the current solutions, 

plus these newly generated solutions is created, evaluated, ranked, analysed for 

crowding distance, sorted by rank then crowding distance, and the best 50% retained for 

the next iteration of NSGA2. In this way it is ensured that only improved solutions 

generated by LEMMO will persist into the optimisation process, the rest will be 

discarded (see 3). 

 
Figure 3. Implementation of LEMMO-ANN and NSGA2 Algorithm (simplified 

diagram)  

 



Performance metrics utilised 

Three performance metrics will be utilised in evaluation the performance of the 

algorithm presented in this document, when applied to water distribution systems. These 

are a diversity metric, a convergence metric, and a measure of dominated hypervolume. 

Diversity Metric 

The first of the three selected performance metrics is the diversity measure described by 

Deb et al. (2002). This measure involves calculating the Euclidean distance between 

each member of the generated Pareto front and its neighbour. The extreme solutions are 

then calculated in Deb’s implementation by fitting a curve parallel to that of the true 

Pareto-optimal front. The extreme solutions are found by calculating the values of both 

objectives for the problem in question for two cases. The first case being where all pipes 

and storage nodes are the maximum allowed size, and the second case being where all 

pipes and storage nodes are their initial size (i.e. cost will be 0, EAD will be at its 

starting value). 

In equation 4 the process for calculating the diversity metric is described, where 

“df” and “dl” are the Euclidean distances between the extreme solutions and the 

boundary solutions of the non-dominated set. Meanwhile “d” represents the average of 

all distances for the non-dominated set. 

∆=
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With this measure, lower numbers are better, as they indicate a more uniform 

spread of solutions along the estimated Pareto front, covering larger areas of the 

estimated Pareto front. This measure has a benefit in that it can be applied to problems 



where the true Pareto front is unknown provided one can calculate the extreme end-

points of the true Pareto front (Deb et al., 2002). 

 Convergence Metric 

This metric involves measuring how close the various points in a non-dominated set are 

to another set of coordinates (representing either a true Pareto front, or another 

estimated Pareto front which is believed to be a superior approximation). It is based 

upon the measure described in Deb’s (2002) paper on NSGA-II. In Deb’s original 

metric a set of 500 uniformly spaced solutions is selected from the superior front. For 

each calculated solution to be compared, the minimum Euclidean distance of that point 

from the chosen solutions in the superior front is then computed. The average of all 

these distances is used as the metric. Therefore, the lower the average of these distances, 

the better the score. 

The issue encountered with Deb’s metric is that in a situation where there are 

fewer solutions on the estimated Pareto front than the true Pareto front a very low value 

can be obtained. This could give a false impression as to how close to matching the 

Pareto front an estimated front may be.  

A modification has, therefore, been made by the author to overcome this 

problem. The solutions on the best-known front are taken and for each of those 

solutions the minimum Euclidean distance to a member of the set of algorithmically 

generated solutions is identified. The average of those distances is then taken.  

The difference can be seen in Table 1 and Figure 4. These tables and figure 

contain unitless example data, simply to demonstrate the mathematics (units in a real-

world application would depend upon the parameters being measured). Table 1 contains 

the coordinates for data section ‘A’, as well as the minimum Euclidean distance from 

each of these points to the points in the Pareto front. The average of these points is 1.21. 



Table 1 also contains the coordinates for data section ‘B’ from Figure 4 and, 

again, the minimum Euclidean distances for these points to the points in the Pareto 

front. These distances average to 0.35. 

The data in these two sections, combined with a visual check on Figure 4, 

indicates that dataset ‘B’ is a poorer fit than dataset ‘A”. However, because of the 

different numbers of data points in each dataset, dataset ‘B’ achieves a better 

convergence value than dataset ‘A’. 

On the other hand, in the final sectio the figures for the minimum distances from 

each data point in the Pareto front, to the data points in ‘A’ and ‘B’, can be seen. These 

figures average to 1.04 and 2.47 respectively, giving a better estimation of how far from 

matching the true Pareto front these two datasets are. Much like the original measure, if 

there is a perfect match (including identical data-points being found) this measure will 

produce zero. Therefore, the lower the number, the closer the estimated front is to the 

true Pareto front. 

The mathematical expression for this metric can be seen in equation 5 where ‘x’ 

and ‘y’ are the coordinates for the Pareto front and accented ‘x’ and ‘y’ are the 

coordinates for the estimated Pareto front. 

  



Table 1. Convergence metric example data 'A' 

Example Data 'A' Example Data 'B' 
X Y Distances X Y Distances 
7 0 2.00 

4.00 1.00 0.00 6 1 1.41 
5 2 1.41 
3 3 1.00 

5.50 0.50 0.71 3 4 1.41 
1 4 0.00 
Average 
Distance: 1.21 Average 

Distance: 0.35 

Example Pareto Front Data 
X Y 'A' Distances 'B' Distances 
5 0 1.41 0.71 
4 1 1.41 0.00 
3 2 1.00 1.41 
2 3 1.00 2.83 
1 4 0.00 4.24 
0 5 1.41 5.66 

  

Figure 4. Convergence metric example data 
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Dominated Hypervolume Metric 

The dominated hypervolume or “S-Metric” is a measure of the Hypervolume dominated 

by the estimated front (Zitzler and Thiele, 1998). Given a reference point, the volume of 

space dominated by the estimated Pareto front can be calculated, resulting in a measure 

by which to compare different estimated fronts. The larger the volume of dominated 

space (i.e. the higher the numerical value of the metric) the better the estimation of the 

Pareto front. This can be seen in figure 5, where the dominated region is indicated by 

shading. 

The reference has to be in such a position that it will encompass the entire Pareto 

front to be measured. Additionally, the reference point must be the same between 

separate tests, if they are intended to be compared. Differing reference points could 

result in wildly different results. Finally, in the given example (see figure 5) both 

objectives are being minimized – whereas in our test networks, one objective 

(resiliency) is being maximised rather than minimised.  

We are using the DEAP library implementation of the Hypervolume metric, 

written in Python (Fortin et al., 2012; Wessing, 2010), executed in the .NET 

environment alongside C# code using the IronPython python implementation (Foord 

and Muirhead, 2009). This implementation assumes minimisation on both objectives. 

This problem was solved by inverting the scores from the particular objective that is 

being maximised, before applying the hypervolume metric. This results in a “flip” of the 

curve for that particular objective, meaning a reference point based upon this new, but 

equivalent, curve can be provided and the algorithm works without issue or alteration. 

 

  



Figure 5. Dominated Hypervolume example, shaded area represents dominated volume 

 

Discussion and results 

Water distribution system test-cases 

In the original paper describing these benchmark problems (Wang et al., 2014) twelve 

water distribution system design problems were examined. They fit into four categories: 

small, medium, large and very large network problems. This categorisation is based on 

the size of the search space that is defined by each of these problems (see Table 2). 

  



Table 2. Test problem categories (the size of the search space given in the brackets) 

Small Medium Large Very Large 

Two-reservoir network 

(TRN) 

(3.28 × 107) 

New York tunnel network 

(NYT) 

(1.93 × 1025) 

Fossolo network 

(FOS) 

(7.25 × 1077) 

Modena network 

(MOD) 

(1.32 × 10353) 

Two-loop network 

(TLN) 

(1.48 × 109) 

Blacksburg network 

(BLA) 

(2.30 × 1026) 

Pescara network 

(PES) 

(1.91 × 10110) 

Balerma  irrigation 

network 

(BIN) 

(1.00 × 10455) 

BakRyan network 

(BAK) 

(2.36 × 109) 

Hanoi network 

(HAN) 

(2.87 × 1026) 

 Exeter network 

(EXN) 

(2.95 × 10590) 

 GoYang network 

(GOY) 

(1.24 × 1027) 

  

 

It was considered that at least one small problem should be included to allow for 

easy bug testing and modification of software. Additionally, a smaller problem has the 

advantage that the best estimated Pareto front has been found by exhaustive search and 

is therefore known. A medium problem was then included, in order to ensure that 

problems were tested across a reasonable range of the complexities available (see Table 

2). Finally, two ‘very large’ problems were included, as these most accurately represent 

the scale and type of problem that the new approach is designed to solve.  

Taking these considerations into account the selected problems are the two-loop 

network (TLN), the GoYang network (GOY), the Modena network (MOD) and the 

Balerma irrigation network (BIN). The details of these problems can be seen in Table 3. 

  



Table 3. Test problem details 

Problem Water 
Sources 

Decision 
Variables 
(Pipes) 

Pipe 
Diameter 
Options 

Search 
Space 
Size 

TLN 1 8 14 1.48×109 

GOY 1 30 8 1.24×1027 

MOD 4 317 13 1.32×10353 

BIN 4 454 10 1.00×10455 

 

In the benchmark test paper (Wang et al., 2014) a computational budget was 

fixed, in order that the results were repeatable easily by maintaining a similar 

computational budget. The computational budgets used in this paper for the chosen tests 

can be seen in Table 4. They are represented by a cap on the number of model 

evaluations allowed. Additionally, tests were performed with varying populations 

(groups 1, 2, and 3). This is because a smaller population with a hard cap on evaluations 

will cause a deeper search, and a larger population a broader search. 

 
Table 4. Test problem computational budget in original benchmarking 

Problem Number of 
Evaluations 

Group 
1 Pop. 

Group 
2 Pop. 

Group 
3 Pop. 

TLN 100,000 40 80 160 

GOY 600,000 60 120 240 

MOD 2,000,000 200 400 800 

BIN 2,000,000 200 400 800 

 

The best-known Pareto set was identified in Wang et al. (2014) by running a 

large number of different optimisation algorithms, conglomerating the results, and 

identifying the best non-dominated set from those conglomerated results. Because of 

this all the results within the best-known Pareto front were not generated using NSGA-

II, and it was not expected that during our testing the algorithm would identify every 

single result that the Wang et al. (2014) identified. The number and percentage (against 



the overall total) of solutions identified by NSGA-II in the best known-Pareto fronts for 

each problem selected can be seen in Table 5 and Table 6, respectively. 

Table 5. Contribution to best-known Pareto front from NSGA-II (Wang et al., 2014) 

Problem Group 1 
Contribution 

Group 2 
Contribution 

Group 3 
Contribution 

TLN 54 74 77 

GOY 4 23 31 

MOD 71 61 26 

BIN 8 67 179 

 

Table 6. Percentage contribution to the best-known Pareto front from NSGA-II in 

percentages (Wang et al., 2014) 

Problem Total Solutions in Best-Known 
Pareto front 

Percent Discovered by NSGA-II 
(%) 

TLN 77 100 
GOY 67 43.3 
MOD 196 57.7 
BIN 265 72.5 

 

In Table 5 the number of contributions to the best-known Pareto front can be 

seen from each NSGA-II group run within Wang's tests. It can be seen in these results 

that certain problems seem to lend themselves to higher populations, which means a 

broader exploration of the available search space. Meanwhile, other problems lend 

themselves to smaller populations but necessarily higher numbers of iterations (to keep 

to the same computational budget), which means a deeper exploration of the available 

search space. With regard to the very large problems one of each of these variants is 

included (the MOD and BIN problems). 

Additionally in Table 6 it can be seen that during Wang et al. (2014)’s tests, 

NSGA-II performs very well on TLN, more poorly on MOD and GOY, and then better 

again on BIN. This pattern is mirrored by the NSGA-II implementation we have 

developed, as would be expected.  



Test-case approach 

In order for the two different algorithm types to be analysed for each of the four 

problems, twenty tests were run for each, first without and then with LEMMO-ANN. 

For each of these twenty tests, two tests that are a reasonable representation of the 

overall results were selected to be shown in more detail in this chapter. Each of these 

selected tests were separated into evenly spaced iterations, in order to show clear 

progression of the optimisation in the way which would be expected. A visual 

comparison of these tests also holds some value. It may be worth noting that for every 

single iteration, of every single result, a graph was generated and inspected. However, 

for brevity’s sake, not all were included. 

Test-case analyses 

Three metrics have been utilised in the analysis of these results, these are convergence, 

diversity, and dominated hypervolume. For each test WDS problem there are twenty 

runs of the tested algorithm, for which the results for every tenth iteration of that run 

have been recorded. 

All results from all twenty runs are included within this analysis. This is 

achieved by calculating all three metrics for each tenth iteration of every single test. 

These metrics for each iteration are then averaged across common tests. For example, 

the metric results for TLN with NSGA-II and no LEMMO consist of a set of averages 

of the metrics produced for each iteration.  

 TLN 

The analysis for TLN (see figure 6) shows that in terms of convergence towards the best 

known Pareto front, LEMMO tests show distinctly improved results over the NSGA-II 

base algorithm.  



In terms of diversity, both LEMMO-ANN and the NSGA-II base algorithm start 

off at a diversity of approximately point five. This diversity then decreases slightly but 

remains fairly static for the duration of the run algorithm. The NSGA-II base algorithm 

tends towards very slightly lower diversity throughout, probably explained by the lack 

of meta-model generated solutions that would be present in the LEMMO-ANN 

algorithm. 

In terms of dominated hypervolume, LEMMO-ANN out-performs the NSGA-II 

base algorithm fairly decisively. 

 
Figure 6. Averaged metrics for TLN 

 



GOY 
The analysis of the GOY test (see figure 7) shows that in terms of convergence 

and dominated hypervolume, LEMMO-ANN consistently out-performs the NSGA-II 

base algorithm. In terms of diversity, the metric appears to be extremely variable from 

iteration to iteration. However, the overall mean diversity for the NGSA-II base 

algorithm is 0.427, whereas the overall mean diversity for the LEMMO-ANN 

implementation is 0.422. So on average the NSGA-II base algorithm is very slightly 

out-performing the LEMMO implementation in terms of diversity on this particular 

problem.  

 
Figure 7. Averaged metrics for GOY 

 



MOD 
The analysis of MOD (see figure 8) shows that for convergence, the NSGA-II 

base algorithm out-performs LEMMO-ANN. In terms of diversity it appears that 

NSGA-II algorithm has very slightly higher diversity, followed by ANN LEMMO. 

However, in terms of dominated hypervolume LEMMO-ANN demonstrates improved 

results. This suggests that LEMMO-ANN is achieving a better estimation of the Pareto 

front, but with solutions that differ from NSGA-II’s.  

 
Figure 8. Averaged metrics for MOD 

 

  



BIN 

In the analysis of the metrics for the BIN WDS test problem (see figure 9) it is clear to 

see that LEMMO-ANN consistently out-performs NSGA-II in all cases. 

 
Figure 9. Averaged metrics for BIN 

 

It can be seen from the presented results here that the NSGA-II (Deb et al., 2002) 

algorithm converges well on test problems, approaching the best known Pareto fronts 

that are being used for comparison (Wang et al., 2014). . The LEMMO-ANN approach 

can be seen to achieve better convergence towards the same best-known Pareto fronts 

when using the same number of objective function evaluations. Additionally, it can be 



seen that the LEMMO-ANN approach achieves equivalent (to the NSGA-II base 

algorithm) or better convergence to the best-known Pareto fronts in fewer iterations 

(and thus fewer objective function evaluations). It is also entirely possible that further 

tuning the ANN structure, training strategy, and solution generation technique, could 

further improve the algorithms results in terms of how quickly they approach the 

optimal Pareto front, and how closely they match it. 

Logically, no accuracy is lost through this process. The LEMMO-ANN 

algorithm integrates into the NSGA-II algorithm in such a way that if a LEMMO 

iteration produces only very poor solutions to the problem, they will not enter the 

population. The only anticipatable negative effect is that if the neural network cannot 

model the complexities of the problem well, it could bias the algorithm towards 

convergence to a local optimum.  

Additionally, extra time taken to run a LEMMO iteration versus running a full 

iteration is negligible in this application, meaning that it is very cheap in terms of 

computational demand to use this technique to improve the results of the NSGA-II 

algorithm, for applications with a very computationally demanding objective function. 

Conclusion 

Within this article, an optimisation algorithm is suggested for the design of 

water distribution systems. This model is developed based on the LEMMO (Jourdan et 

al., 2005, 2004) algorithm, modified to use artificial neural networks as meta-heuristics. 

The algorithm modifies the existing water distribution system design attempting to 

optimise this with regard to two objectives, network resilience and capital expenditure. 

The results of this optimisation are then compared against the results of the same 

optimisation performed with standard NSGA-II (Deb et al., 2002) in terms of diversity, 

convergence and dominated hypervolume. The results compared overall favourably 



with the pareto fronts generated by NSGA-II, with less computational effort invested. 

Given the same amount of computational effort, the results improved upon the NSGA-II 

results. The conclusion, therefore, is that the LEMMO approach used with NSGA-II 

performs well with ANN meta-models as in the LEMMO-ANN approach. It generally 

improves the results compared to a standard NSGA-II base algorithm and achieves 

comparable results in fewer iterations. The caveat is that the ANN used must be 

structured and trained well enough that it will approximate the testing function well, 

otherwise it could potentially bias the algorithm towards local optima.  
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Table 1. Convergence metric example data 'A' 

Example Data 'A' Example Data 'B' 
X Y Distances X Y Distances 
7 0 2.00 

4.00 1.00 0.00 6 1 1.41 
5 2 1.41 
3 3 1.00 

5.50 0.50 0.71 3 4 1.41 
1 4 0.00 
Average 
Distance: 1.21 Average 

Distance: 0.35 

Example Pareto Front Data 
X Y 'A' Distances 'B' Distances 
5 0 1.41 0.71 
4 1 1.41 0.00 
3 2 1.00 1.41 
2 3 1.00 2.83 
1 4 0.00 4.24 
0 5 1.41 5.66 

 

  



Table 2. Test problem categories (the size of the search space given in the brackets) 

Small Medium Large Very Large 

Two-reservoir network 

(TRN) 

(3.28 × 107) 

New York tunnel network 

(NYT) 

(1.93 × 1025) 

Fossolo network 

(FOS) 

(7.25 × 1077) 

Modena network 

(MOD) 

(1.32 × 10353) 

Two-loop network 

(TLN) 

(1.48 × 109) 

Blacksburg network 

(BLA) 

(2.30 × 1026) 

Pescara network 

(PES) 

(1.91 × 10110) 

Balerma  irrigation 

network 

(BIN) 

(1.00 × 10455) 

BakRyan network 

(BAK) 

(2.36 × 109) 

Hanoi network 

(HAN) 

(2.87 × 1026) 

 Exeter network 

(EXN) 

(2.95 × 10590) 

 GoYang network 

(GOY) 

(1.24 × 1027) 

  

 

  



Table 3. Test problem details 

Problem Water 
Sources 

Decision 
Variables 
(Pipes) 

Pipe 
Diameter 
Options 

Search 
Space 
Size 

TLN 1 8 14 1.48×109 

GOY 1 30 8 1.24×1027 

MOD 4 317 13 1.32×10353 

BIN 4 454 10 1.00×10455 

 

  



Table 4. Test problem computational budget in original benchmarking 

Problem Number of 
Evaluations 

Group 
1 Pop. 

Group 
2 Pop. 

Group 
3 Pop. 

TLN 100,000 40 80 160 

GOY 600,000 60 120 240 

MOD 2,000,000 200 400 800 

BIN 2,000,000 200 400 800 

 

  



Table 5. Contribution to best-known Pareto front from NSGA-II (Wang et al., 2014) 

Problem Group 1 
Contribution 

Group 2 
Contribution 

Group 3 
Contribution 

TLN 54 74 77 

GOY 4 23 31 

MOD 71 61 26 

BIN 8 67 179 

 

  



Table 6. Percentage contribution to the best-known Pareto front from NSGA-II in 

percentages (Wang et al., 2014) 

Problem Total Solutions in Best-Known 
Pareto front 

Percent Discovered by NSGA-II 
(%) 

TLN 77 100 
GOY 67 43.3 
MOD 196 57.7 
BIN 265 72.5 

 

  



Figure 1. Initial neural network structure with six input nodes 

Figure 2. Graphical representation of the neural network structure with ten input nodes 

(for illustration only - test-problems and real problems should have more inputs). 

Figure 3. Implementation of LEMMO-ANN and NSGA2 Algorithm (simplified 

diagram) 

Figure 4. Convergence metric example data 

Figure 5. Dominated Hypervolume example, shaded area represents dominated volume 

from the single red reference point, to the blue line. 

Figure 6. Averaged metrics for TLN 

Figure 7. Averaged metrics for GOY 

Figure 8. Averaged metrics for MOD 

Figure 9. Averaged metrics for BIN 
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