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Health Monitoring of Tree-Trunks Using Ground
Penetrating Radar

Iraklis Giannakis, Fabio Tosti, Livia Lantini, and Amir Alani

Abstract—Ground penetrating radar (GPR) is traditionally

applied to smooth surfaces in which the assumption of half-

space is an adequate approximation that does not deviate much

from reality. Nonetheless, using GPR for internal structure

characterization of tree trunks requires measurements on an

irregularly shaped closed curve. Typical hyperbola-fitting has no

physical meaning in this new context since the reflection patterns

are strongly associated to the shape of the tree trunk. Instead of

a clinical hyperbola, the reflections give rise to complex-shaped

patterns that are difficult to be analyzed even in the absence

of clutter. In the current paper, a novel processing scheme is

described that can interpret complex reflection patterns assuming

a circular target subject to any arbitrary shaped surface. The

proposed methodology can be applied using commercial hand-

held antennas in real-time avoiding computationally costly to-

mographic approaches that require the usage of custom-made

bespoke antenna arrays. The validity of the current approach is

illustrated both with numerical and real experiments.

Index Terms—GPR, hyperbola fitting, Tree, Trunk.

I. INTRODUCTION

Monitoring wood materials is of great importance with both
industrial and environmental applications [1], [2]. Preserving
cultural-heritage objects [1], evaluating the structural stability
of wooden-based structures [1] and assessing the health condi-
tions of living trees [3] are amongst the areas in which wood
imaging has been successfully applied. A direct method for
monitoring the internal structure of the wood is core-drilling
[4]. This is a time-consuming intrusive methodology that can
potentially damage the tree. To that extend, non-destructive
testing (NDT) has been suggested in an effort to provide a
reliable and a non-intrusive scheme for estimating the internal
structure of wood.

NDT utilizes received information in an effort to indirectly
map the physical properties of the tree trunk. Amongst the
investigated properties are the water content, the dielectric
properties, the elastic properties and the density [1]. From
the investigated properties it is apparent that a wide range
of NDT and geophysical methods need to be applied, from
estimating the elasticity of the wood by mechanical means [5],
minimum intrusive techniques like drilling resistance [6] and
electrical resistivity tomography (ERT) [7], [8] to ultrasound
tomography [9], thermography [10], [11], [12] and more so-
phisticated techniques like X-ray computed tomography (CT-
scan) [13] and neutron imaging [14], [15]. These techniques
differ with respect to accuracy, limitations and practicality. For
example, CT-scan can provide a very accurate and detailed
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image of the internal structure of the tree, nonetheless, when
field measurements and fast results are required, CT-scan is
neither attainable nor commercially appealing.

A particularly challenging application of wood monitoring
is assessing the health condition of living trees [3]. Moni-
toring living trees has some inherited constrains arising from
the nature of the acquisition. Any methodology proposed to
tackle this problem should have reasonable computational
requirements in order to be applicable in large scale projects
like forestry applications. In addition, detecting tree decays
requires extensive field measurements in non-trivial environ-
ments. Therefore, any equipment necessary for the acquisitions
should be portable and easily deployable to the site of interest.
In that context, ground penetrating radar (GPR) has been
suggested as a potential methodology to assess the health
conditions of trees in a reliable and efficient manner [3], [16].

Due to the cylindrical shape of the trees, tomographic
approaches are particularly appealing from a mathematical
point of view. Microwave imaging of cylindrical bodies has
been widely applied for biomedical applications [17] using
inversion schemes primarily based on linear approximations
[21], [20]. This framework has been extrapolated for assessing
the internal structure of tree trunks with promising results [19].
In the same context, Ray-based tomography using GPR has
also been tested for detecting anomalies inside tree-trunks [18].
To our knowledge, full waveform inversion (FWI) applied on
tree monitoring has not been reported to the literature. FWI is
a powerful tool for interpreting GPR data [22], [23], [24],
nonetheless, its high computational requirements combined
with the need for an accurate antenna model incorporated in
the forward solver [25] make implementation of FWI to GPR
a laborious process with limited commercial applications.

Tomographic approaches, apart from being computationally
demanding, they also require a full set of measurements with
multiple transmitters and receivers often using custom-made
bespoke systems [19]. This deviates from the norm since GPR
surveys traditionally employ commercial antennas using the
common-offset method of measurements [26]. In that context,
in an effort to develop a commercially appealing methodology,
a signal processing approach is presented in the current paper
that estimates the size and the coordinates of tree decays using
common-offset commercial systems.

Circular targets subject to a homogeneous half-space give
rise to hyperbolic features in the measured B-Scans. Hyper-
bola fitting is a mainstream processing approach in the GPR
community [26] due to its simplicity and effectiveness when
the assumptions are met. Hyperbola-fitting can be interpreted
as a typical minimization of distance between given points
and a hyperbola [27]. Nonetheless, due to the noise and the
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clutter inherently present in B-Scans, an automatic hyperbola
fitting is a challenging task that often requires pre-processing
prior to any fitting scheme [28], [29]. In addition, similar
hyperbolic patterns can emerge for different sets of target’s
radii and permittivity values, introducing non-uniqueness to
the problem [28]. Knowing the velocity of the medium, or
assuming a point-target, Hough transform for hyperbolas can
be utilized in an effort to map the distribution of the hyperbolas
on a given B-Scan [26], [30], [31]. Hough transform can
be seen as a brute force optimization that maps the given
feature space and subsequently detects local miminal which
are identified as hyperbolas. The brute-force nature of Hough
transform makes this approach computationally demanding
with a computational burden that expands geometrically when
the resolution of the feature space is increased [29]. One of the
most effective methods to reduce the feature space is to apply
machine learning prior to Hough transform in order to detect
sub-spaces that contain hyperbolas [32]. In [33], a Viola-Jones
[34] detection scheme is applied in order to automatically
detect areas in which hyperbolas are present. As it is stated in
[29], the training process requires an extensive library of both
positive and negative B-Scans in order for the classifier to be
sufficiently trained.

All the methods mentioned above focus on circular targets
buried in a homogeneous half-space. Evaluating the internal
structure of cylindrical targets –like tree trunks– requires a
more generic approach, since the assumption of half-space is
no longer valid. Tree trunks are complicated structures and
their shape differs based on age, species and environmental
conditions [35]. The proposed scheme expands the traditional
hyperbola fitting method [28], [29] from half-spaces to ar-
bitrary complex shapes. Prior to that, a practical positioning
approach should be established. Commercial GPR systems use
a wheel-based system in order to associate each A-Scan with
a specific distance from a given reference point. A wheel-
based system of positioning is very practical when applied
to line measurements. Nonetheless, plane measurements on
irregular surfaces require a transformation of distance to 2D
coordinates. To that extend, an arc length approach is presented
which can be applied in any plane measurements using wheel-
based positioning system.

Subsequently, image processing is applied in an effort to
remove the ringing noise present in the B-Scans due to the
layers of the tree. In this paper two approaches have been
chosen based on their performance and computational simplic-
ity. The first one is the singular value decomposition (SVD)
filter [36], [37] and the second one is the linear combination
filter [38]. The image is then manually thresholded [45],
[29] and a particle-swarm optimization (PSO) is used to fit
the resulting anomaly, which can no longer be approximated
with a hyperbola. Global optimizers like PSO [39] overcome
local minimal and make any initialization scheme unnecessary.
Global optimizers can be seen as an intermediate step between
convex non-linear least squares fitting [27] and brute force
approaches like Hough transform [30], [31]. Hence, PSO
balances between efficiency and accuracy.

The suggested scheme has been successfully tested using
commercial antennas in both synthetic and real data. This

supports the premise that the proposed methodology is a re-
liable approach with minimum computational and operational
requirements that can be applied in a straightforward manner
to large scale forestry applications.

II. REFLECTION PATTERNS USING COMMON OFFSET
CONFIGURATION

Typical GPR surveys take place in flat surfaces along a
straight line. Each A-Scan is associated with a given position
on that line based on the distance measured from a reference
point. This distance is measured using a wheel-measuring
device which is often incorporated in commercial GPR trans-
ducers. It is apparent that when the survey takes place in a
straight line, distance can be trivially associated with a unique
ordinate. This is not the case when the measurements are
taken on irregular surfaces such as tree trunks. This problem
is known as arc length parametrization and has a wide range
of applications to computer graphics [40], [41].

A. Transforming Distance to Coordinates

In this section an inclusive scheme based on [41] is de-
scribed that can be applied in any arbitrary shaped host
medium. Initially, the shape of interest is defined in x, y coor-
dinates {x, y 2 R | x, y > 0} discretized with an arbitrary non-
uniform discretization step. The coordinates x, y are stored
into the vectors x 2 Rn and y 2 Rn respectively, where n is
the number of points used to discretise the shape of the host
medium. The vector t = ht1, t2..., tni {t 2 Rn | 0  ti  1}
is then defined which is going to be used as the arbitrary
variable for the parametric representation of the shape of the
host medium. The components of t increase linearly from zero
to one with a constant step 1

n , i.e. t = h0, 1
n ,

2
n ....1i. Using

spline interpolation for the vectors (y, t), a set of polynomial
functions are obtained. The latter, map y to t in a continuous
manner.

Pi : [ti, ti+1] ! R (1)

Similarly, spline interpolation is used to map x with respect
to t

Qi : [ti, ti+1] ! R (2)

Each of the functions Pi, Qi are polynomials of the third order

Pi(t) = Ap,it
3 +Bp,it

2 + Cp,it+Dp,i, 8t 2 [ti, ti+1] (3)

Qi(t) = Aq,it
3 +Bq,it

2 + Cq,it+Dq,i, 8t 2 [ti, ti+1] (4)

Therefore, an arbitrary complex shape defined through dis-
cretized measurements can now be expressed in a vector form
as F = hP (t), Q(t)i. The shape can now be mapped with an
arbitrary step since both x and y are expressed in a continuous
manner.

The arc length of a planar curve in R2 written in a vector
form F {F 2 R2} is evaluated by [42]

s(⌧) =

Z ⌧

0

���
���
dF

dt

���
���dt =

Z ⌧

0

s✓
dP (t)

dt

◆2

+

✓
dQ(t)

dt

◆2

dt

(5)
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where
dPi(t)

dt
= 3Ap,it

2 + 2Bp,it+ Cp,i, 8t 2 [ti, ti+1] (6)

dQi(t)

dt
= 3Aq,it

2 + 2Bq,it+ Cq,i, 8t 2 [ti, ti+1] (7)

Arc length (5) has analytical solutions for limited number of
curves (circle, catenary function etc.). For complicated shapes
such as tree-trunks, the integral in (5) can be approximated
numerically by

s(N�t) ⇡
NX

k=0

���
���
dhP (k�t), Q(k�t)i

dt

���
����t (8)

where �t = ⌧
N . From (8) it is evident that

s(N�t) ⇡ s((N�1)�t)+
���
���
dhP (N�t), Q(N�t)i

dt

���
����t (9)

Equation (9) is an efficient way to compute s(⌧) from its
previous values without having to evaluate the summation in
(8) for every time step. Using a spline interpolation, the values
of ⌧ can be mapped with respect to s in a continuous manner

Ti : [si, si+1] ! R (10)

The function T (s) approximates the value of the parameter
⌧ with respect to the length s. Thus, for a given distance
s the parametric variable ⌧ associated with this distance
can be estimated. Consequently, the positional vector F =
hP (T (s)), Q(T (s))i can now be connected to a given distance
s. In that way, the distance measured by the wheel-measuring
devices in commercial GPR antennas can be transformed to
x, y coordinates using a limited amount of points to discretise
the curve of interest.

B. Reflection-Arrival Travel-Time
The reflection-arrival travel-time is related to the distance

–relative to a reference point– of each measurement via a
hyperbolic equation [28]. The interpretation of the resulting
hyperbola gives us an insight on the burial-depth of the target,
the velocity of the host medium and the size of the target
[28]. The above holds true when the assumptions are met i.e.
when the host medium has a flat surface, when the target is
circular and when the host medium is homogeneous. When the
investigated surface is not flat, the resulting reflection patterns
can no longer be approximated with a hyperbola [43], [44]. In
[43] and [44] the reflection patterns that occur when the host
medium is a cylinder are investigated and analyzed in detail.
The scheme presented by [43] and [44] can be expanded to
any arbitrary shape via

t(s) =
⇣���
���F(s)� hxg, ygi

���
����R

⌘ p
✏

c0
(11)

where t is time (seconds), F(s) = hxs, ysi is the positional
vector (meters) along the surface of the tree with respect to
the distance from a reference point (see II.A), R is the radius
of the cylindrical target (meters), ✏ is the relative permittivity
of the host medium, c0 is the speed of light (c0 ⇡ 3 ·108, m/s)
and hxg, ygi are the coordinates of the center of the target
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Fig. 1. Left: With black line is the shape of the host medium. The gray
circles indicate the starting points of the measurements. The direction of the
measurements is counter-clockwise. Red circles indicate the targets of interest.
Right: The arrival travel-time from the target is plotted with respect to the
distance relative to the starting point (11).

(meters). As it is shown in Fig. 1, the relationship between s
and t (11) for realistic tree trunks is complicated and highly
related to the shape of the tree.

III. PROCESSING FRAMEWORK

The processing framework proposed in this paper consists
of two parts. Initially an SVD [36] and a linear filter [38] are
used in order to reduce the ringing noise that is present to the
measured B-Scans due to the layered nature of the tree-trunk
[35]. The post-processed data are then manually thresholded
and a PSO is used in order to estimate the origins and the size
of the targets based on their reflection patterns.

A. Ringing noise removal
A generic tree-trunk consists of five distinct layers, namely,

bark, phloem, cambium, heartwood and sapwood [35]. The
aforementioned layers differ with respect to water content as
well as chemical composition and texture [35]. This results
to dielectric contrasts that give rive to repetitive reflections
contributing to the overall ringing noise. Due to that, two
different methodologies are employed in an effort to reduce
ringing noise and increase the overall signal to clutter ratio.

The data are collected along a given curve and each A-
Scan As 2 Rw is a vector with size w which is measured at
distance s from the starting point. The B-Scan B 2 Rw⇥S is
a 2D matrix with w ⇥ S dimensions where S is the number
of measurements and B = hAT

s1 ,A

T
s2 ...A

T
swi (T denotes the

transpose sign). Ringing noise shows similar behavior between
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A-Scans [45], [46]. This is the reason why a simple average
removal [26] can often efficiently decrease ringing noise.
Nonetheless, as it is stated in [36], other approaches like SVD
provide a more accurate and systematic way to reduce ringing
noise in challenging scenarios with low signal to clutter ratio.

In SVD, the matrix B is decomposed into three matrices
[36]

B = UMV

T (12)

where U 2 Rw⇥w and V 2 RS⇥S are orthogonal matrices and
M 2 Rw⇥S is a diagonal matrix that contains the eigenvalues
of B arranged in a decreasing order. The large eigenvalues
are associated with dominant repetitive features most often
associated with ringing noise while small eigenvalues repre-
sent uncorrelated features like clutter and noise [47]. A typical
SVD filter keeps the intermediate eigenvalues while setting the
rest to zero

B = UMV

T (13)

where M 2 Rw⇥S , {Mi,i = 0| 8i [m1,m2]} and m1 and m2

are the lower and upper eigenvalue-boundaries for the SVD
filter.

SVD is a powerful tool for removing ringing noise, nonethe-
less as it is stated in [37], the performance of processing
frameworks are case dependent and there is no conclusive
approach that over-performs the rest. To that extend, a linear
approximation of the signal is also considered as an alternative
to SVD [47], [38]. The linear approximation uses a matrix
J 2 Rw⇥q that contains q number of randomly selected traces
without the present of any target. Subsequently, it is assumed,
that any A-Scan consists of the target’s response (Es) plus
clutter (Ec)

Ai = Ei,c + Ei,s (14)

The term clutter here is used to describe ringing noise, noise
and the cross-coupling between the transmitter and the re-
ceiver. Approximating Ai as a linear combination of the traces
in J, will result to a sufficient approximation of Ec and a poor
approximation of Es. This is due to the fact that the clutter
is correlated between the traces and it is easier to be modeled
based on previous A-Scans. Using least squares, the linear
coefficients of the matrix J are evaluated and subsequently
the predicted clutter is subtracted from each A-Scan

A

T

i = A

T
i � J

�
J

T
J

��1
J

T
A

T
s (15)

B. Model Fitting
The current subsection presents the equivalent of

”hyperbola-fitting” to the more inclusive and generic
reflection patterns that are expected in tree-trunks. Through
a manual threshold, the anomaly of interest can be gathered
in a set of points M = {(si, ti) 2 R, |i = 1, 2....z}, where
z is the number of observations. Based on M and (11), the
center hxg, ygi of the target, its radius R and the relative
permittivity of the host medium ✏ are fine tuned in order to
minimize

argmin
xg,yg,✏,R

zX

i=1

✓
ti � (||F(si)� hxg, ygi||�R)

p
✏

c0

◆2

(16)

It is easy to show that (16) can be re-written as

argmin
xg,yg,✏,R

zX

i=1

✓
ti � ||F(si)� hxg, ygi||

p
✏

c0
+R

p
✏

c0

◆2

(17)

From (17), it is apparent that the radius R and the relative
permittivity ✏ form a non-unique product. That means that
different sets of (R, ✏) might result to similar outputs. Thus,
in the presence of noise, the minimization in (17) is sensitive
due to non-uniqueness. This phenomenon was derived exper-
imentally in [28] for flat surface surveys.

To overcome this, the bulk relative permittivity of the tree
trunk can be approximated using the two-way travel-time from
the reflection of the opposite side of the tree. Knowing the
time needed for the electromagnetic wave to travel a known
distance, the mean relative permittivity can be evaluated in a
straightforward manner. If the relative permittivity is not read-
ily available, then the minimization in (17) can be executed
subject to a idealized point target i.e. for R = 0.

The function to be minimized in (17) is subject to multiple
local miminal due to the nature of the problem as well as the
inherited noise in the measured M . To avoid initialization and
overcome local minimal, a global optimizer is used for execut-
ing (17). For the current paper, PSO [39] is chosen due to its
popularity in electromagnetics [48], [49] and geophysics [50].
Using a different global optimizer (i.e. genetic algorithms,
ant colony optimization etc.) will have minor differences on
the overall performance and computational requirements of
the detection scheme. PSO initially generates a number of
particles u that are placed randomly in the optimization space.
For the case that permittivity is known, each particle k is a
vector qk = hxk, yk, Rki{qk 2 R3}. The cost function is then
evaluated for every particle and their positions are updated in
an iterative manner

v

⌧
k = b0v

⌧�1
k + b1V1(q

⌧�1
k � qk,b) + b2V2(q

⌧�1
k � qg) (18)

q

⌧
k = q

⌧�1
k + v

⌧
k

where b0, b1 and b2 are constants associated with the con-
vergence rate and the ability of PSO to converge to global
solutions. In general, large values of b0 and small values of
b2 decrease the convergence rate and the probability of the
algorithm to be trapped in local minimal. The parameters
V1, V2 2 [0, 1] are random numbers with a uniform distribution
and ⌧ 2 Z is the integer iteration number. The vector vk 2 R3

is the velocity in the three dimensions of qk. The vector qk,b

is the position hxk, yk, Rki of the particle k in which the cost
function got its minimum value until the iteration ⌧ . Lastly the
vector qg is the position hx, y,Ri in which the cost function
from all the particles got its minimum value until the iteration
⌧ . For the current case –through trial and error– it is derived
that u = 50 and b0 = b1 = b2 = 1 balances between efficiency
and accuracy.

IV. NUMERICAL EXPERIMENTS

In the current section, the proposed methodology is tested
on synthetic data. A second order in both space and time
finite-differences time-domain (FDTD) [51] method is used
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TABLE I
THE EXTENDED DEBYE PROPERTIES OF THE TREE LAYERS

Name WC ✏1 �✏ � (⌦�1m�1) t0 (sec)

Cabdium layer 40 % 6 18 1 9.23e-12
Outer Sapwood 30 % 6.1 12.36 0.033 9.23e-12
Inner Sapwood 25 % 5.9 9.66 0.02 9.23e-12

Rings 10 % 5.4 3.1 0.0083 9.23e-12
Heartwood 5 % 5.22 1.43 0.005 9.23e-12

Bark 0 % 5 0 0 9.23e-12

in order to numerically evaluate Maxwell’s equations for a
given dielectric distribution. In an effort to accelerate the com-
putations, gprMax [53], an open-source CUDA-based GPU
engine [52] is employed. The spatial discretization step is
assumed to be uniform throughout the grid and equal with
�x = �y = �z = 0.001 m. The time step �t follows the
Courant limit [51].

The dielectric properties of wood vary seasonally as well
as with respect to the type of the tree [54]. In general, soft-
woods contain more water content compared to hardwoods.
Consequently, the permittivity of softwoods is substantially
higher than the one of hardwoods [54]. The permittivity is also
related to the orientation of measurement, i.e. the tree-trunk
is an anisotropic material, with the lowest permittivity values
observed perpendicular to the layering of the tree [54]. A
typical tree-trunk consists of five layers, namely, the bark, the
phlem, the cabdium cell layer, the outer and inner sapwood and
the heartwood [35]. In addition to these layers, thinner rings of
dense material occur in a periodic manner and almost parallel
to each other [35]. The water content of the aforementioned
structures greatly varies between different types of trees. For
example, hardwoods consist of a dry heartwood and a saturated
sapwood in contrast to softwoods for which both sapwood and
hardwood are equally saturated [54]. Numerous attempts have
been made to generate semi-empirical models for the dielectric
properties of trees similar to the semi-empirical models that
exist for soils [55]. Nonetheless, a conclusive formula is not
yet to be derived due to the complexity of the tree structure
and its multi-phase composition.

Experimental evidences support the premise that the per-
mittivity of trees increases linearly with the increase of water
content [56]. Electrolytes and cellulose seems to have a
secondary effect [54]. Due to its water content and the bipolar
nature of the latter, the relative permittivity of the tree trunk
can be expressed as an extended Debye model [54], [57], [58]

✏(!) = ✏1 +
�✏

1 + j!t0
� �

j!✏0
(19)

where j =
p
�1, ✏ is the relative permittivity of the material

with respect to !, ! is the angular frequency, ✏1 is the relative
permittiviy at infinity frequency, �✏ is the difference between
the static relative permittivity and the relative permittivity
at infinity frequency, t0 is the relaxation time and � is the
conductive term. In order to map the underlying relationship
between the dielectric parameters in (19) and the water content
of the trunk, the complex refractive index model (CRIM) [59]
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Fig. 2. Dielectric properties for the outer sapwood using CRIM model and
its Debye equivalent. It is apparent that up to 10 GHz, one Debye pole is
adequate for the approximation in (21).
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Fig. 3. One saturated hardwood (left) and one semi-saturated softwood (right)
are numerically simulated. The green lines indicate the recovered tree decays
using the suggested scheme. Red circles indicate the starting point. The
measurements are taken clockwise.

is used. The latter, assumes that the tree-trunk is a two-phase
material and its relative bulk permittivity equals with

p
✏ = ft

p
✏t + fw

p
✏w (20)

where ✏ is the relative bulk permittivity of the material, ✏t =
5 is the relative permittivity of the solid phase of the tree,
✏w = 4.9+78/ (1 + j!(9.23e� 12)) is the dispersive relative
permittivity of the water [55] and ft and fw are the volumetric
fractions for the solid and the water phase respectively (ft +
fw = 1).

The CRIM model provides a simple and elegant way to
express the bulk permittivity of a multi-phase medium with
respect to its phases. Nonetheless, CRIM can not be imple-
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mented directly to FDTD. To overcome this, equation (20)
should be replaced with a function compatible with FDTD
[60]. Given a specified volumetric water fraction, equation (20)
can be approximated for a given frequency range [!l,!u] by
a multi-Debye pole

ft
p
✏t+fw

p
✏w ⇡ ✏1+

HX

h=1

�✏h
1 + j!t0,h

, 8! 2 [!l,!u] (21)

The approximation above can be seen as a minimization
problem

argmin
�✏h,t0,h,✏1

uX

i=l

 
ft
p
✏t + fw

p
✏w � ✏1 �

HX

h=1

�✏h
1 + j!it0,h

!2

(22)
The minimization in (22) is executed using the hybrid scheme
proposed in [49] for approximating Havriliak-Negami media
with multi-Debye expansions. From Fig 2 it is clear that one
Debye pole (H = 1) is sufficient for approximating (21) for
the frequency range of 0.01�10 GHz. In the current numerical
study, the water content of the tree layers are chosen such as
to simulate saturated hardwoods like oaks or relatively dry
softwoods like cedars. The Debye properties –derived from
(22)– of the tree layers used in this numerical study are shown
in Table I. The conductivities are chosen based on typical
values measured using electrical resistivity tomography [61],
[62].

A. Numerical Case Study

Hollow cavities throughout the tree trunk is a typical sign
of tree decay and a robust indicator of the health status of the
tree [63], [64]. Detecting cavities in a non-destructive manner
is of high importance since extended cavities can compromise
the stability and the structural integrity of the trunk leading to
tree falls [63]. In the current numerical study, the ability of
the current scheme on detecting hollow cavities is investigated
in two different numerical experiments.

The first case study is shown in Fig. 3. One saturated hard-
wood and one semi-saturated softwood are investigated. For
the saturated hardwood, the trunk consists of bark, cabdium
layer, outer sapwwod and heartwood. In the second case, the
trunk consists of bark, cabdium layer and outer sapwood.
For the excitation of the FDTD a numerical equivalent of
the commercial antenna GSSI 1.5 GHz is used [25], [65].
The excitation of the antenna is constrained to be parallel to
one the Cartesian axes due to the arrangement of the fields
in FDTD. Therefore, the models described in [25], [65] do
not support tilted measurements. To overcome this, instead
of rotating the antenna around the trunk, the trunk is rotated
while the position of the antenna is fixed. The resulting B-Scan
is processed using an SVD filter removing the six dominant
eigenvalues. From Fig. 3 it is evident that the proposed scheme
can accurately recover both the size as well as the location
of the decay when the permittivity is known. For the current
example, a mean relative permittivity ✏ = 18 is assumed. If the
permittivity is treated as an unknown in (17), the center of the
target can be accurately estimated, nonetheless, its radius must
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Fig. 4. A complex-shaped hardwood is numerically simulated. Green color
illustrates the recovered position and radius of the tree decay. The starting
measuring point is highlighted with red circle. The measurements are taken
clockwise.

Fig. 5. Left: The tree sample used in the current case study. Right: Sawdust
mixed with water used to fill the holes in order to simulate the liquid-filled
chambers in early stages of AOD. Red circle illustrates the starting point of
the measurements. The measurements are taken counterclockwise.

be constrained to be zero in order to avoid non-uniqueness
[28].

The second case study examines how the proposed scheme
performs in complex-shaped tree trunks like the one shown in
Fig. 4. A complex-shaped hardwood is examined with bark,
cabdium layer, outer sapwwod, inner sapwood and heartwood.
Notice that the complex shape of the trunk does not allow the
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Fig. 6. Left: The raw data collected using Aladdin with perpendicular
polarization on the tree sample shown in Fig. 5. Right: The post-processed
B-Scan.

tree to be rotated subject to a fixed antenna position. Due to
that, the excitation source chosen for this case study is an
ideal Hertzian dipole using a modulated Gaussian pulse with
1.5 GHz central frequency. Similar to the previous example,
an SVD filter is applied to remove the ringing noise. The
bulk relative permittivity is constrained to be equal to ✏ = 14.
The reflection patterns in the post-processed B-Scan are highly
complicated and deviate from the typical hyperbolic features
expected in GPR surveys. Patterns like these are difficult to
be interpreted and can give the false impression of apparent
layers or complex-shaped targets. The proposed methodology
manages to accurate recover both the position as well as the
size of the decay by fitting the anomaly subject to the shape
of the tree trunk.

V. CASE STUDY

The suggested scheme is now applied to real data collected
at the Faringdon center at the University of West London. The
investigated tree is the Quercus (oak), which is one of the most
common tree species in Europe [66], [67]. Tree diseases are
usually slow-progressing agents that gradually compromise the
structure and the overall health of trees [68], [69]. Nonetheless,
acute oak decline (AOD), a bacterial infection that affects
oaks, leads to tree-mortality within few years [68], [69].
Incidents of AOD are increasing globally and AOD is now
considered as a serious threat for the oak forests in Europe
[68], [69], [70]. The early symptoms of AOD are small liquid-
filled chambers within the tree trunk. The latter often reach the
outer bark which leads to a characteristic ”bleeding” of the tree
[68], [69].

In the current case study, the ability of the proposed scheme
to detect AOD is tested under laboratory conditions. The host
material is a dead oak with three drilled holes with different
sizes. One hole with 2 cm radius and two holes with 4 cm
radius. The gaps were subsequently filled with sawdust mixed
with water in an effort to simulate the liquid-filled cavities that
occur in AOD infected oaks (see Fig. 5). The antenna system
used is the Aladdin hand-held dual-polarized antenna from
IDS Georadar. Aladdin has been successfully applied in many
high-frequency GPR applications [71], [72] and its size is

Fig. 7. The estimated coordinates and radii of the decays using the proposed
detection scheme are illustrated with green circles. The holes in the tree were
filled with saturated sawdust during the measurements (see Fig. 5). The holes
are plotted empty in the current figure for comparison purposes.

suitable for measuring curved surfaces such as tree-trunks. The
measurements are taken counterclockwise every 1 cm using
a measuring wheel. Using the approach described in II.A,
the distance is transformed to coordinates. Zero-time removal,
time-varying gain and DC-removal are initially applied to the
raw data. Subsequently, an SVD and linear filter are used in
an effort to reduce the ringing noise present in the B-Scan.
In particular, two dominant eigenvalues are filtered out prior
to linear filtering. The latter, uses three randomly selected A-
Scans to form the J matrix in (15).

Figure 6 shows both the raw and the processed B-Scans
using a perpendicular polarization. Three hyperbolic-features
are clearly visible from the post-processed B-Scans. In order
to estimate the position/size of the decay that best fits these
features, the relative permittivity of the host material should
be evaluated first. The bulk relative permittivity of the tree
trunk was estimated ✏ ⇡ 3 by measuring the two-way travel
time from the opposite side of the trunk. A PEC sheet was
used in order to further enhance the reflection.

Figure 7 shows the recovered coordinates and radii using
the proposed fitting scheme. Three distinct and clearly visible
patterns in the B-Scans were manually picked. Based on
the shape of the tree and its mean relative permittivity, the
minimization in (17) converged to three targets that best fit
the data (see Fig. 8). It is evident from Fig. 7, that using the
suggested methodology, the positions as well as the radii of the
decays can be successfully recovered in an efficient manner.

VI. CONCLUSIONS

A novel processing framework is described that can be ap-
plied to GPR surveys for assessing the internal structure of tree
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Fig. 8. Three different anomalies used to recover the coordinates and radii
of the decays shown in Fig. 7.

trunks. The proposed method can be coupled with commer-
cial antennas with minimum computational and operational
requirements. Numerical examples are provided to support the
premise that tree decays can be successfully located using typ-
ical GPR surveys and thus avoiding tomographic approaches
that require custom-made bespoke systems to be deployed
on the site of interest. In addition, an experimental case
study is presented in which the current scheme is successfully
used to locate liquid-filled chambers associated with acute
oat decline (AOD). The accuracy and the efficiency of the
current methodology on detecting early signs of AOD, makes
it commercially appealing for applications such as assessing
the health status of trees on forestry applications.
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