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Abstract: Optical fiber based twist sensors usually suffer from high cross sensitivity to strain. 
Here we report a strain independent twist sensor based on an uneven platinum coated hollow 
core fiber (HCF) structure. The sensor is fabricated by splicing a section of ~4.5-mm long 
HCF between two standard single mode fibers, followed by a sputter-coating of a very thin 
layer of platinum on both sides of the HCF surface. Experimental results demonstrate that 
twist angles can be measured by monitoring the strength change of transmission spectral dip. 
The sensor’s cross sensitivity to strain is investigated before and after coating with platinum. 
It is found that by coating a platinum layer of ~9 nm on the HCF surface, sensor’s cross 
sensitivity to strain is significantly decreased with over two orders of magnitude less than that 
of the uncoated sensor sample. The lowest strain sensitivity of ~ 2.32 × 10ିହ dB/ߤઽ has been 
experimentally achieved, which is to the best of our knowledge, the lowest cross sensitivity to 
strain reported to date for optical fiber sensors based on intensity modulation. In addition, the 
proposed sensor is capable of simultaneous measurement of strain and twist angle by 
monitoring the wavelength shift and dip strength variation of a single spectral dip. In the 
experiment, strain and twist angle sensitivities of 0.61 pm/ߤઽ and 0.10 dB/° have been 
achieved. Moreover, the proposed sensor offers advantages of ease of fabrication, miniature 
size and a good repeatability of measurement.  

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Twist/torsion is a key parameter that is frequently encountered for structure health monitoring 
in numerous applications, such as in evaluating the heath conditions of bridges, buildings, 
tunnels, dams and pipelines [1]. Compared to traditional electromagnetic and electronic 
sensors, optical fiber based twist/ torsion sensors have been attracting intensive interest due to 
their inherent advantages such as compact size, light weight, immunity to electromagnetic 
interference and a remote sensing ability. 
    To date, a number of optical fiber based twist sensors utilizing different fiber structures 
have been proposed. In general, those sensors can be mainly categorized into two types 
depending on their operation principles. One type is grating based twist sensors [2-8], while 
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the other type is based on interferometry [9-17]. Fiber grating based twist sensors suffer from 
relatively low twist sensitivity, complex fabrication process and expensive fabrication 
equipment (e.g. Excimer laser and phase masks). Interferometer based twist sensors, on the 
other hand, have advantages of a relatively simple fabrication process and a much higher 
twist sensitivity, hence a variety of fiber structure configurations based on different 
customized and specially designed fibers for monitoring twist have been proposed [9-17]. 
Among them, Mach-Zehnder interferometer (MZI) and Sagnac interferometer (SI) have been 
attracting most of the attention. For example, a square no-core fiber [9], a suspended twin-
core fiber [10] and a tapered single mode-thin core-single mode fiber structure have been 
reported for twist monitoring based on MZI configurations [11]. Polarization maintaining 
fibers (PMFs) and photonic crystal fibers (PCFs) are widely used in SI based twist sensors 
[12-17]. However, most of the optical fiber based twist sensors mentioned above suffer from 
high cross sensitivity to strain, even for the PMFs based twist sensors which have been 
reported with very low cross sensitivities to temperature [14, 16].  
    There have been a few strain insensitive twist sensors reported recently. For example, L. A. 
Fernandes et al. [2] reported a stress independent torsion sensor based on a helical Bragg 
grating waveguide structure, but the sensor itself shows a poor repeatability test of 
measurement. O. Frazao et al. [10] proposed a both temperature and strain independent 
torsion sensor based on a fiber loop mirror structure using a suspended twin-core fiber, but 
the sensor shows a very low twist sensitivity of 0.012 dB/°, which may result in a large 
measurement error even for a small intensity variation. J. Wo et al. [5] and B. Huang et al. 
[13] have experimentally demonstrated strain independent high sensitivity twist/torsion 
sensors based on a dual-polarization distributed Bragg reflector fiber grating laser and an 
optical fiber reflective Lyot filter structure, respectively. However, these two sensors suffer 
from disadvantages of long sensor head (over 30 mm) and complex signal interrogation 
systems. 

In our previous work, we have reported a miniature size hollow core fiber (HCF) based 
fiber structure with high Q transmission dips and large extinction ratios [18]. An ultra-
sensitive twist sensor (up to 0.717 dB/°) has been also demonstrated based on dip strength 
modulation by applying a thin layer of partial silver coating on the HCF surface [19]. 
However, it is found that the twist sensitivity of the HCF structure is dependent on the change 
of strain applied on it. To address the challenge of strain introduced variations in twist 
sensitivity, in this work, we propose a strain independent twist sensor based on an uneven 
platinum coated hollow core fiber structure. In addition, the proposed sensor is demonstrated 
to be able to measure strain and twist angle simultaneously by monitoring a single dip’s 
wavelength shift and dip strength change, respectively. Usually, for optical fiber based 
sensors simultaneous measurement of multi-parameters is realized with multiple sensors by 
monitoring two or more dips’ spectral responses, establishing a characteristic matrix and then 
the measurement result for each parameter is obtained by solving this matrix [20-21]. 
Compared to the complex sensor configurations and data acquisition systems used before, our 
proposed sensor is simpler and easier to use in real applications because only a single sensor 
is required to be monitored, when both strain and twist are applied to the same sensor.. 

2. Theoretical model and analysis 

Figure 1 illustrates a schematic diagram of the proposed HCF based fiber structure with 
uneven platinum coating (double-sided coating as shown in Fig. 1(b)) at the outer cladding 
surface of HCF. Light transmission inside the fiber structure is illustrated in Fig. 1(a) only for 
the top half of the structure for the sake of clarity. A schematic diagram showing the cross-
section of the HCF based structure after double-sided platinum coating is given in Fig. 1(b). 
Due to the multiple beams interferences introduced by the silica cladding, periodic 
transmission dips are obtained [18]. 
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changed; (c) Measured spectral dip strength change when twist is applied to the HCF structure 
at three different strain values of 0, 600 ߤઽ, and 1200 ߤઽ, respectively. 

The effect of strain on the HCF sensor without platinum coating (S1-0) was firstly 
investigated and the experimental results are presented in Fig. 4. Before applying strain to the 
HCF, the transmission spectral dip was adjusted to the largest dip strength using PC. If the PC 
is fixed and hence the input light polarization state is maintained constant before the light 
enters the twist fiber section during the strain test, the spectral dip moves monotonically to a 
shorter wavelength with a significantly decreased dip strength (>7.5 ݀ܤ ) as the strain 
increases from 0 to 1200 ߤઽ as shown in Fig. 4(a). However, a much smaller variation in the 
dip strength (<1.5 ݀ܤ) is observed in Fig. 4(b) when PC is adjusted to achieve the strongest 
dip strength during the strain test. Ideally, a bare HCF based structure has isotropic properties, 
no spectral dip strength variations would be expected under strain and twist. However this 
situation changes due to the existence of residual stress and core ellipticity originating from 
the practical fiber fabrication process, resulting in anisotropic properties and hence 
birefringence in the fiber structure (Birefringence is an optical property of a material in which 
index of refraction depends on the polarization and propagation direction of light). 
Birefringence induces the changes of the polarization state of the input light [22], and 
accordingly leads to the change of the reflection coefficients at the silica/air interface (Eqs. 
(4) and (5)), which eventually resulting the dip variations. It is widely reported in literature 
that both strain and twist produce birefringence in optical materials [22], Bigger strain applied 
on the HCF structure introduces larger birefringence variations and thus bigger changes in 
reflection coefficients at the silica/air interface, and hence a higher twist sensitivity is 
observed in Fig. 4(c). The average twist sensitivity measured at 1200 ߤઽ is over three times 
higher than that measured at 0 ߤઽ when the twist angle is changed from 0° to 100°. The 
maximum twist sensitivity at 1200 ߤઽ is up to ~0.18 ݀ܤ/° between 10° and 40°. 

Next, the effects of strain and twist on the uneven platinum coated HCF sensors were 
investigated. Figs. 5(a) and 5(b) show the dips strength changes and their normalized dips 
strength change with the increase of strain for sensor samples S1-0, S2-30, S3-60, and S4-90 
when the input light polarization is constant. As one can see from the figures, when the 
platinum coating layer thickness increases, the dip strength variation is getting smaller and 
smaller as the strain increases from 0 to 1200 ߤઽ. Sensor’s cross sensitivity to strain is 
decreased by over two orders of magnitude to 2.32 × 10ିହ ݀ߤ/ܤઽ as the coating thickness 
increases from 0 to ~9 nm, which is, to the best of our knowledge, the lowest cross sensitivity 
to strain for twist sensors based on intensity modulation [4, 13]. It is hence concluded that in 
the case of the HCF structure coating with platinum helps to decrease the dependence of light 
polarization on the axial strain. The underlying cause of the observed strain independent 
properties after coating with platinum is not yet fully clear, however the decreased dip 
strength following coating with platinum certainly contributed to the strain independent 
behavior.  In our previous work [19], we have theoretically demonstrated that the dip’s 
strength decreases significantly as ݎଶ  deviates from ݎଵ further (as a result of platinum layer) 
but with a reduced dip strength changing rate. Thus, for an uncoated HCF structure, a small 
variation in the reflection coefficients at the air/silica interfaces introduced by strain will 
produce a large dip strength change since ݎଶ  is very close to  ݎଵ. On the other hand, when the 
HCF is coated with platinum, the difference between ݎଶ  and ݎଵ is increased, which leads to a 
much smaller dip strength change for the same reflection coefficients variations when strain is 
applied. Fig. 5(c) shows an example of the corresponding spectral response under different 
strains for sample S4-90, which gives a spectral shift based strain sensitivity of 0.61 pm/ ߤઽ.  
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