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Abstract 

 

 
The field of 3D culture models of disease has started to move towards systems 

that aim to recapitulate the complexity of human tissues. However, despite 

recent improvements, current 3D systems remain overly simplistic, lacking the 

biophysical characteristics and diverse structures found in most organs. 

In this project, the cellular behaviour of breast cancer and their responsiveness 

to chemotherapeutic agents were evaluated under different 3D cell culture 

conditions. MDA-MB231 and SKBR3 cells were prepared as spheroids using 

ultra-low attachment plates and as 'artificial cancer masses' (ACM) by 

embedding cells in a dense collagen type-I. The ACMs were maintained under 

flow (150 µL/min) and flow/pressure (550 μL/min, ~19 mmHg) conditions. A 

significant reduction in cell viability was observed when cancer cells were 

grown as ACM compared to 2D culture. Cell viability also declined significantly 

when ACMs were maintained in flow/pressure condition compared to static 

condition. Similarly, an increase in the expression levels of markers of EMT 

was observed when cells were cultured as ACM. However, compared to static 

3D incorporation of flow and pressure was associated with decreased 

expression levels of vimentin, HIF1-α, whilst MMP14 expression increased 

and snail remained unchanged. HER2 levels were increased in SKBR3 when 

the cells were cultured under flow/pressure (1.5 fold) compared to static 

condition. Overall, cells cultured as ACMs exhibited reduced responsiveness 

to doxorubicin compared to those grown in the conventional 2D culture. A 

decrease sensitivity was also observed in 3D/flow/pressure and 3D/flow 

compared to 3D/static condition.   
The results obtained in this study show that cancer cell behaviour and their 

response to therapeutic agents are affected by different microenvironments. 

Therefore, a new generation of 3D in vitro models need to be developed as 

pre-clinical drug testing platforms.  
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 Breast Cancer Epidemiology 

 

Breast cancer is amongst the most common cancers in women and the 

incidence is increasing globally.  There were an estimated 1.4 million new 

cases diagnosed worldwide in 2008 and nearly 459,000 breast cancer related 

deaths worldwide (DeSantis et al., 2014). In 2012, the GLOBOCAN project 

released statistics showing that 1.7 million women were diagnosed and 

522,000 succumbed to breast cancer. According to the American Cancer 

Society, one in eight women in the United States will be diagnosed with breast 

cancer in her lifetime (Hortobagyi et al., 2005). Furthermore, it has been 

estimated that the annual worldwide incidence of female breast cancer will rise 

to approximately 3.2 million new cases by 2050 (Ma and Jemal, 2013). Even 

though breast cancer incidence is rising worldwide, the figures for developed 

countries are higher than those for less developed countries. Conversely, the 

mortality rate is higher in less developed countries partly due to the lack of 

screening tests and consequential late stage at diagnosis. These trends 

demonstrate that breast cancer incidence and its effect on society is a 

worldwide health problem and new diagnostic and therapeutic measures are 

needed. 

 

  Breast cancer subtypes 

 

In any tumour stratification system, important considerations include the origin 

and histology of the tumour, in breast cancer this includes ductal or lobular 

cancer and whether the primary tumour is in situ or invasive and the extent of 

any local-regional or distant metastases. In the clinical setting, breast tumours 

are initially classed into three main subtypes: tumours expressing oestrogen 

receptor (ER α/β) and/or progesterone receptor (PR), generally referred to as 

hormone receptor–positive [HR-positive] tumours, Erb-B2 amplified also 

known as human epidermal growth factor receptor 2–amplified [human 

epidermal growth factor-2; HER2-amplified] breast cancer, and a group which 
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lack expression of the ERs, PR and HER2 called triple-negative breast cancer 

(TNBC). Recently, based on the gene expression profile of breast cancer 

tissues, new molecular classifications have been established: luminal A, 

luminal B, basal-like, HER2-enriched and unclassified or normal breast 

(Sotiriou et al., 2003, Prat and Perou, 2011).  It has been shown that these 

different subtypes are associated with different prognostic features such as 

the frequency of ER/PR/HER2 expression, histological grade, p53 mutation 

status and varying levels of genes of proliferation (Eroles et al., 2012). In 

addition, stratification of breast cancer to different subtypes has provided a 

predictive tool for the response to different therapies (Siow et al., 2018). A 

number of new prognostic approaches using gene profiling platforms have 

been developed recently. Among these analyses, Oncotype DX and 

Mammaprint are the most extensively cited and are tools that are being trialled 

for determining which subgroups of breast cancer patients will respond to 

hormonal and/or chemotherapy (Van De Vijver et al., 2002, Kittaneh et al., 

2013) with the aim of better targeting the treatments. For example, a recent 

report of the Oncotype DX system with 10,273 early-stage hormone receptor-

positive, HER2-negative and axillary node-negative breast cancer patients, 

with 7.5 years follow-up, showed that an Oncotype DX recurrence score of 11-

25 indicated patients for whom the addition of chemotherapy did not improve 

disease-free survival; in the presence of hormone therapy. The study also 

revealed a subgroup of patients who did not benefit from post-operative 

chemotherapy (Oncology, 2018) illustrating the potential for gene-expression 

profiling for identifying patients likely to benefit from particular treatment 

regimens. 
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1.2.1 Luminal tumours                  

 

Luminal-like tumours, the most prevalent breast cancer subtype, are positive 

for hormone receptors in immunohistochemistry (IHC) assessments. The gene 

expression patterns of these tumours include expression of luminal breast 

epithelial cell cytokeratins 8/18, ER and genes associated with ER activation 

such as LIV1 and CCND1 and similar to the luminal epithelial cells of normal 

healthy breast tissue.  Luminal tumours are themselves divided into two 

subtypes: luminal A and luminal B, both subtypes represent ER+, PR+, HER2- 

breast cancer in the basic clinical assessment. However, some luminal B 

tumours have also been reported to be HER2+ (Cheang et al., 2009). A key 

feature of luminal B tumours is increased expression levels of genes 

associated with cell proliferation (including MKI67) and lower expression levels 

of ER-related genes compared to luminal A. In general, the luminal breast 

cancer subtype has a good prognosis compared to the other subtypes. 

Comparing the two subtypes, luminal B carries significantly worse prognosis 

than the luminal A (Sorlie et al., 2003). Endocrine therapy has been the 

approved therapeutic strategy for the treatment of both luminal A and B 

tumours. However, for the luminal B subtype which has higher cell proliferative 

activity, a combination of hormone therapy and chemotherapy has been 

shown to be more beneficial (Dai et al., 2015).  

1.2.2 HER2 over-expressing breast tumours 

 

HER2 amplification occurs in approximately 20% of invasive breast cancers 

and is associated with a poorer prognosis and a reduced overall survival. 

HER2 has been a target for breast cancer therapy (Sjögren et al., 1998) with 

Trastuzumab (Herceptin), a humanised recombinant antibody which binds to 

extracellular domain of HER2, having been shown to benefit HER2+ breast 

cancer patients in combination with chemotherapy (Vogel et al., 2002). Despite 

all the benefits of Trastuzumab, many HER2 overexpressing breast tumours 

do not respond to this therapy (clinical benefit rate: 48%) when used as a 
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single agent, and both acquired and de novo resistance has been identified 

(Vogel et al., 2002). Lapatinib is a dual tyrosine kinase inhibitor that targets 

both HER2 and HER1 (EGFR) in breast cancer (Xia and Powell, 2002) and 

Pertuzumab is a monoclonal antibody that blocks dimerisation of HER2 with 

other HER family members via binding to the dimerisation domain (domain II) 

of the HER2 extracellular domain which is different to the binding site of 

Trastuzumab in domain IV (Franklin et al., 2004). Several clinical studies have 

suggested that a combination of Trastuzumab with either Pertuzumab and/or 

Lapatinib might be a valuable choice to avoid insufficient sensitivity or 

resistance to Trastuzumab (MacFarlane and Gelmon, 2011). In addition to 

these therapeutic strategies, the combination of Trastuzumab with 

chemotherapeutic agents enhances overall survival and reduces the risk of 

recurrence and this is considered the gold standard of care for patients with 

HER2 amplified breast carcinomas (Hudis, 2007). 

 

1.2.3 Triple negative breast cancer subtype 

 

Triple negative breast cancer (TNBC) refers to breast cancers exhibiting low 

levels of ER, PR and HER2. Epidemiological studies have shown that 

approximately 20 percent of all breast cancer patients are diagnosed with 

TNBC worldwide, accounting for approximately 200,000 new cases diagnosed 

each year (Swain, 2008). The TNBC subtype is more common in women of 

African descent compared to Caucasians and is also more common in 

premenopausal women under 40 years of age (Trivers et al., 2009). Based on 

gene-expression profile studies, TNBC maybe stratified to six subtypes: basal-

like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), 

mesenchymal stem cell-like (MSCL) and luminal androgen receptor (LAR) 

(Lehmann et al., 2011). In most of the literature, the basal-like subtype is 

identical to TNBC. Basal-like breast tumours express markers for basal-type 

cells and are defined as ER/PR/HER2 negative, CK5/6 positive, and/or 

positive for EGFR. Breast cancers that are positive for basal cell markers have 
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been shown to be associated with a poorer prognosis compared to the other 

TNBC subtypes. However, when treated with adjuvant chemotherapy, patients 

with basal like breast cancers had improved disease free survival compared 

to TNBC as a whole (Choi et al., 2010). 

To date no targeted therapy for patients with TNBC has been any approved 

and chemotherapy remains the main treatment for this type of breast cancer. 

However recent clinical trials have shown promising results using 

immunotherapeutic methods to target tumour cells that evade the immune 

system (García-Teijido et al., 2016). For instance, in a phase I clinical trial with 

metastatic TNBC tumours with positive programmed cell death protein 1 ligand 

(PD-L1), Pembrolizumab, a monoclonal anti PD-1 antibody was used as a 

check-point inhibitor to inhibit lymphocyte deactivation. The initial overall 

responses of 18.5% have been reported in heavily pre-treated TNBC (Nanda, 

2014). 

 

 Breast cancer hallmarks, biomarkers and subtypes 

 

Breast cancer has been described as the uncontrollable growth of epithelial 

cells of the breast tissue (Russo et al., 2000). Over the last three decades, 

scientists have focussed on the classification of breast cancer based on 

different traits and, accordingly, breast cancer is no longer considered a single 

disease in terms of diagnosis and treatment. Indeed, breast cancer is now 

recognised to be a highly heterogeneous disease. To understand this 

heterogeneity, scientists have applied many theories to describe breast cancer 

development; including the cancer stem cell and the clonal evolution 

hypotheses. Different breast tumour subtypes are associated with different risk 

factors, histopathological traits, outcome and response to systemic therapies 

(Dai et al., 2016). 

In 2000 Hanahan and Weinberg described six hallmarks of cancer and in 2011 

expanded these to include ‘genome instability and mutations’ and ‘tumour-
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promoting inflammation’ (Hanahan and Weinberg, 2011). These hallmarks of 

cancer, specifically those related to the aims of this project, will be explained 

in the following sections.  

 

1.3.1 Genome instability and gene mutation 

 

The preservation of the genome and ensuring genomic stability is vital for 

cellular integrity, to avoid mistakes arising from endogenous sources of DNA 

damage. These damages occur through DNA replication, recombination and 

through reactive oxygen species (ROS) produced during cellular metabolism. 

Exogenous genotoxic agents including ultraviolet light, ionizing radiation or 

DNA damaging chemicals can also generate genome instability. Cells activate 

pathways in response to these potentially deleterious events. For example, 

they undergo cell cycle arrest to repair acquired damage and stimulate DNA 

repair pathways, or if the damage is not repairable, mechanisms are activated 

to induce programmed cell death (apoptosis). Damage/failure of these 

mechanisms results in both the initiation and the progression of cancer 

(Nowell, 1976). Genome instability refers to either small structural changes 

including increased incidences of point mutation, microsatellite instability or 

substantial structural changes resulting from chromosome instability 

(Charames and Bapat, 2003). Various guardian genes and molecular 

pathways are involved in the maintenance of genomic instability including 

proteins involved in DNA damage check points (e.g. p53 and ataxia 

telangiectasia-mutated, ATM, protein), as well as several DNA repair 

pathways including nucleotide excision repair (NER), base excision repair 

(BER), mismatch repair (MMR) and DNA double strand break repair (DSBR) 

(Charames and Bapat, 2003). Errors that occur during cell division are also 

known sources of chromosome instability and a number of mechanisms, 

known as mitotic checkpoints, serve to monitor the correctness of each stage 

of the cell cycle before the instigation of nuclear division (Charames and 

Bapat, 2003).  
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Amongst all proteins involved in maintaining gene integrity, TP53 has been 

most studied (El-Deiry, 1998).  A multitude of functions have been attributed 

to p53 and these have led to the term 'gatekeeper of the genome' in response 

to the intracellular role of the TP53 protein during cellular stress such as 

hypoxia, oncogene activation and DNA damage. Dysfunction in p53/TP53 

leads to changes in gene stability and integrity and has been reported to result 

in uncontrolled proliferative activity of cancer cells. Mutated p53 has been 

reported in approximately 25 to 30% of breast tumours and has emerged as 

an important independent prognostic marker (Børresen‐Dale, 2003). It has 

also been observed that mutations in p53 may confer drug resistance, for 

example, to the hormone therapy Tamoxifen.  Various studies have also 

shown that sensitivity of ER-TP53- tumours to chemotherapy is decreased 

compared to ER-TP53+ tumours (Børresen‐Dale, 2003, Lønning et al., 2007). 

Taken together, the evidence suggests that ‘genome instability and mutations’ 

in breast tumour is associated with resistance to conventional treatment 

strategies. 

1.3.2 Supporting proliferative signalling 

 

Oncogenes and tumour suppressor genes are the main regulators of cell 

growth, proliferation, differentiation and cell death. Mutated oncogenes or 

tumour suppressor genes play a crucial role in both the initiation and the 

development of tumours (Ghourab, 1992). The most well-described hormonal 

and growth receptors that operate cell growth signalling in breast cancer 

include ER, PR and HER2. These receptors are used as differential markers 

for the routine subtyping of breast cancer tumours using established IHC 

staining protocols in pathology laboratories worldwide (Spitale et al., 2008). 

ERs are nuclear hormone receptors (NHRs) belonging to a large nuclear 

receptor family and primarily act as transcription factors. ERα is the major ER 

subtype in the mammary epithelium and is the isoform detected by antibodies 

used during diagnostic procedures. Approximately 75% of all breast cancer 

patients are diagnosed with ERα positive breast cancer (Anderson et al., 

2002). In comparison with ER- tumours, ER+ tumours show greater 
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differentiation, are less aggressive, and are associated with better post-

surgical outcomes (Dunnwald et al., 2007). Endocrine therapy using 

Tamoxifen, a selective ER modulator, and aromatase inhibitors, which ablate 

peripheral estrogen synthesis, has been shown to substantially improve 

disease-free survival after breast cancer. Although the role of PR in the 

classification of breast tumours is still questioned, assessment of PR status in 

such tumours has shown to be helpful for predicting patient benefit from 

endocrine therapy (Rakha et al., 2007). Endocrine treatment, particularly for 

metastatic tumours, has shown to be less effective for ER+PR- tumours than 

ER+PR+ tumours.   

Another important family of receptors, upregulated in breast and also other 

cancers, is the HER family of receptor tyrosine kinases. These receptors span 

the cell membrane and on binding to extracellular growth factor ligands 

activate intracellular signal transduction pathways, enabling cells to respond 

to their environment correctly. This family of protein receptors comprises four 

members: Erb-B1/EGFR/HER1, Erb-B2/HER2/Neu, Erb-B3/HER3 and Erb-

B4/HER4 (Nuciforo et al., 2015). 

In addition to ER, PR and HER2, androgen receptor (AR) has also been 

assessed as a means of classification of different breast cancer subtypes. AR 

is another member of the family of nuclear steroid hormone receptors and is a 

transcription factor playing crucial roles in various signalling pathways. 

Following binding of androgens, including testosterone and 

dihydrotestosterone, AR translocates to the nucleus where it binds to promoter 

regions of target genes and activates transcription (Zhu et al., 1999). AR is 

expressed in 90% of ER positive and 55% of ER negative breast tumours 

(Ogawa et al., 2008, Hu et al., 2011) and is a potential marker for breast cancer 

prognostication and also a prospective therapeutic target.  

In combination with hormonal receptors, proliferation markers especially Ki67 

have been used to predict the outcome of breast cancer treatment. Ki67, 

encoded by the MKI67 gene, is present mainly in dividing cells and functions 

to stabilise the mitotic spindle by recruiting Hklp2 (kinesin-12) to mitotic 

chromosomes (Vanneste et al., 2009). In another classification of 



10 

 

ER+PR+HER-, Ki67 positivity was shown to relate to poorer outcome 

regardless of the choice of systemic therapy (Cheang et al., 2009). Expression 

levels of topoisomerase II alpha (TOP2A) which plays a crucial role in the 

relaxation of supercoiled DNA is also associated with Ki67 levels (Mueller et 

al., 2004). HER2-amplified breast tumours with aberrations in the TOP2A 

biomarker have been reported to be more responsive to anthracycline-based 

chemotherapy (Ejlertsen et al., 2009). Overexpression of other proliferation 

markers including cell cycle genes has been reported as an indicator of poor 

clinical outcome in ER+PR+ tumours (Loi et al., 2007). 

1.3.3 Invasion and metastasis 

 

Metastasis occurs when primary tumour cells migrate and invade into 

surrounding blood or lymphatic vessels through the process termed 

intravasation. Through this process some of tumour cells circulate via the 

vasculature, evading immune recognition, and colonise distant organs through 

the process known as extravasation (Hunter et al., 2008). Many of the cellular 

and molecular traits that are key to this process have been documented. 

Amongst all steps of the molecular and cellular cascade involved in 

metastasis, depicted in Figure 1, two initial steps are the focus of this project 

and will be described in further detail below. 

1.3.4 Detachment of cancer cells from the primary tumour 

 

Primary epithelial cancer cells are attached to each other and also to 

extracellular matrix (ECM) components through cell adhesion molecules 

(CAMs). Cadherins, integrins and carcinoembryonic antigen-related cell 

adhesion molecules (CEACAM) constitute the main groups of CAMs of breast 

tumours. Integrins are heterodimeric transmembrane receptors with a role in 

cell-cell and cell-matrix interactions, they also regulate signalling pathways 

involved in proliferation, migration and survival (Giancotti and Ruoslahti, 

1999). Cell-cell interactions and integrin-mediated attachment to the ECM are 
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crucial factors for proliferation and growth of mammary epithelial cells without 

which cells would succumb to a form of apoptosis known as anoikis. Integrin 

receptors are heterodimers, consisting of two subunits: α and β which 

assemble noncovalently. In mammals, 24 types of integrin have been reported 

as a result of assembly of 18 α subunits and 8 β subunits (Campbell and 

Humphries, 2011). Integrins of the breast epithelia act as sensors linking ECM 

ligands with the intracellular actin cytoskeleton and triggering kinases in the 

cell.   

At least eight integrin receptors have been described as receptors for different 

molecules of ECM of the mammary gland. α1β1, and α2β1 are collagen 

receptors, α3β1, α6β1, and α6β4 are laminin receptors and α5β1, αvβ1, and 

αvβ3 recognise RGD domains of, for example, fibronectin and vitronectin. 

Integrin receptors can transduce mechanical signals from the ECM to 

intracellular cytoskeletal proteins for example actin, or in the case of β4 

integrin, intermediate filament (Lambert et al., 2012). These receptors also 

transmit biochemical signals through tyrosine kinases such as the focal 

adhesion kinase (FAK) and/or Src. Integrin receptors and growth factor 

receptors such as HER2 interact physically and cooperate with each other to 

activate tyrosine kinase and MAP kinase pathways. In breast cancer, integrins 

are the key modulator of tumour initiation (Lambert et al., 2012). Deletion of 

β1 integrin in a transgenic mouse model of breast cancer was shown to 

impede tumourigenesis (White et al., 2004). In a similar study, loss of the 

cytoplasmic domain of β4 integrin in an HER2 overexpressing mouse model 

increased latency and decreased aggressiveness of ErbB2-induced tumours 

(Guo et al., 2006).   

At the onset of the metastatic process, cancer cells lose their adherence to 

neighbouring cells in focussed areas of the cells known as adherens junctions, 

this process is predominantly mediated by alterations in the expression levels 

of the cadherin family of proteins. A molecular signature of cadherins, notably: 

E-cadherin (-), N-cadherin (+), cadherin-11 (+), has been shown to be 

associated with epithelial mesenchymal transition (EMT, section 1.3.5) a 

phenomenon through which cancer cells gain a mesenchymal phenotype and 

the ability to move into surrounding tissues (Farahani et al., 2014).  
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1.3.5 Epithelial mesenchymal transition (EMT) 

 

EMT is a phenomenon through which epithelial cells lose their adherent traits 

and tight junctions and gain a mesenchymal phenotype, this process results 

in cells that are able to migrate over distances; Figure 2. Three main types of 

EMT have been described; type 1: biological events that occur during embryo 

formation, gastrulation and neural crest migration; type 2: wound healing, 

tissue regeneration and organ fibrosis, and, type 3: cancer metastasis (Kalluri 

and Weinberg, 2009).The role of EMT in breast cancer has been investigated 

via in vitro and in vivo studies and, taken together, the data suggest that breast 

cancer cells that undergo EMT exhibit a basal-like phenotype (Sarrió et al., 

2008). Several molecular changes have been observed for each type of EMT, 

some of the changes are common to all types of EMT whilst some are specific 

to only one type, and these provide a variety of biomarkers enabling studies 

of EMT. In the following section biomarkers associated with EMT are 

described in particular those relevant to breast cancer.  

 

1.3.5.1 Cell-membrane markers of EMT 

 

The cadherin superfamily consists of a group of eight transmembrane proteins 

contributing to calcium-dependent homophilic and heterophilic cell-to-cell 

adhesion; cadherins have important roles in the maintainance of cell polarity 

and are involved in cell motility. Cadherins have been reported to be present 

in a range of tissues and are classified into three types according to their 

structural characteristics. Type-I includes epithelial (E-cadherin), neural (N-

cadherin), placental (P-cadherin), and retinal (R-cadherin). Type-II include 

cadherin-11 (OB-cadherin) and vascular-endothelial cadherin (VE-cadherin); 

they share the same intracellular domain as type-I cadherins but differ in terms 

of a motif in the extracellular domain. Type-III or ‘atypical cadherins’ include 

cadherin-13 and cadherin-15; they lack the transmembrane domain identified 

in type-I and II cadherins. So far, evidence suggests that cadherin-13 and 
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cadherin-15 may be defined/considered as tumour suppressor genes. In vivo 

studies with murine tumour models have shown cadherin-13 to be 

downregulated in all cell types except endothelial cells (Hebbard et al., 2008). 

Moreover, cadherin-13 expression is repressed in breast cancer cell lines as 

well as primary breast cancers due to methylation of the promotor (Toyooka 

et al., 2001). In contrast, cadherin-13 expression is increased in the endothelial 

cells in breast cancer (Takeuchi et al., 1999). Loss of expression of E-cadherin 

occurs during all three types of EMT and is considered a hallmark of EMT. In 

addition to reduced gene expression levels, the loss of function at the protein 

level has also been associated with promotion of EMT (Okazaki et al., 1994, 

Huber et al., 2005). Expression levels of E-cadherin are decreased in breast, 

ovarian, gastric, thyroid and colorectal cancers (Sommers et al., 1989).  

Upregulation of N-cadherin normally occurs in cells with a mesenchymal 

phenotype including kidney and brain during development, and in fibroblasts 

and cancer cells. The upregulation of N-cadherin is accompanied by 

downregulation of epithelial related cadherins including E-cadherin. In recent 

studies ‘cadherin switching’ has been used as a marker to monitor EMT.  In 

addition, a switch from E-cadherin to cadherin-11 has been observed in type 

2 EMT accompanying tissue fibrosis. Cadherin-11, is mainly expressed in 

osteoblasts and to a very low extent in brain, lung and testicular tissue 

(Okazaki et al., 1994). Pohlodek et al have reported that cadherin-11 gene is 

overexpressed in the samples of invasive breast cancer. In another study led 

by Huang, cadherin-11 expression in prostate cancer cells was associated 

with increased invasion and migration as well as interaction with osteoblasts 

(Huang et al., 2010). Intracardial injection of cadherin-11 expressing prostate 

cancer cells in a murine model resulted in an increased rate of bone 

colonisation compared to injection of cadherin-11-knockdown prostate cancer 

cells (Chu et al., 2008).  Similarly, when renal  carcinoma cells were implanted 

into SCID mice, cadherin-11 levels on the surface of cells derived from bone 

metastases was increased compared to the cells derived from other sites of 

metastasis (Satcher et al., 2014). Highly metastatic prostate cancer PC3-mm2 

cells showed a significant reduction in bone metastasis following the 

downregulation of cadherin-11 using specific short hairpin RNA (Chu et al., 
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2008). These findings have led researchers to develop an antibody against the 

extracellular domain of cadherin 11, with the aim of reducing cancer 

metastasis to bone (Lee et al., 2013). In a study, Lee et al. produced a panel 

of 21 antibodies against extracellular domain of cadherin-11 among which two 

showed promising results for the recognition of an adhesion motif in the 

extracellular domain of cadherin-11. Their further investigations in which 

animals were treated with one of those antibodies resulted in a decrease in 

the metastasis of prostate cancer cells to bone (Lee et al., 2013). In another 

study by Pishvaian et al (1999), cadherin-11 mRNA and protein levels were 

reported to be elevated in several invasive breast cancer cell lines including 

MDA-MB-231, BT549 and HS578T cells. However, there are contradictory 

data with regards to cadherin-11 expression levels in various cancer studies.  

In 2012, Li et al. reported cadherin-11 status showing that the cadherin-11 

promoter is methylated and inactivated in cancer cell lines including 

nasopharyngeal, esophageal, gastric, hepatocellular, colorectal, breast and 

cervix. A tumour suppressor function was suggested for cadherin-11 via 

induction of apoptosis and inhibition of cell migration and invasion through 

Wnt/ β-catenin and AKT/ Rho A signalling.  

 

1.3.5.2 Cytoskeletal markers of EMT 

 

The cytoskeletal proteins most studied in relation to EMT are fibroblast-specific 

protein 1 (FSP1), α-smooth muscle actin (α-SMA), vimentin and β-catenin.  

FSP1 is a member of the Ca+2-binding S100 protein family and is a fibroblast 

protein detecting both type 2 and type 3 EMT. Increased expression-levels of 

FSP1 have been observed as part of the type 3 EMT process of metastatic 

cells in different cancer models (Xue et al., 2003). α-SMA is a member of the 

actin family of cytoskeletal proteins. Myofibroblast cells express α-SMA during 

type 2 EMT, this contributes to tissue fibrosis. In breast cancer, α-SMA has 

been associated with type 3 EMT and α-SMA has mostly been detected in 

tumours of the basal phenotype (Sarrió et al., 2008). β-catenin is located on 

the intracellular side of the cytoplasmic membrane in normal epithelial cells 
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and in non-invasive cancer cells. Here it plays a role in cell-to-cell adhesion 

linking cadherin molecules to the actin cytoskeleton; it also has a central role 

as a transcriptional co-activator in the Wnt signalling pathway (Hatsell et al., 

2003). Following activation of Wnt signalling, β-catenin translocates from the 

cytoplasm to the nucleus, where it regulates several genes promoting 

invasion, growth and cell transformation including c-MYC and cyclin D1 (Guo 

et al., 2006). Vimentin, a type-III intermediate filament (IF) is a highly 

conserved 57-kDa protein. Vimentin IFs are markers of EMT that are 

constitutively expressed in mesenchymal cells, in endothelial cells lining blood 

vessels, renal tubular cells, macrophages, neutrophils, fibroblasts, and 

leukocytes (Kidd et al., 2014). A frequent alteration observed in a range of 

solid tissue malignancies is a switch in the levels of different types of IFs, for 

example cytokeratin, to the mesenchymal IF marker vimentin (Palmieri et al., 

2003). Vimentin and keratins function to direct different membrane-associated 

proteins to the membrane (Toivola et al., 2010). Vimentin expression has been 

shown to be associated with the cellular formation of invadopodia during 

migratory and invasive processes. For example, when vimentin expression 

levels were reduced by interfering RNA (siRNA) a significant fall in the 

generation of invadopodia was observed in MDA-MB231 cells (Schoumacher 

et al., 2010). It is clear that a multitude of microenvironmental signalling events 

lead to the induction of EMT; these include TGF-β/smad, Notch, Wnt, TNF-

α/NF-κB and RTK signalling (Wu and Zhou, 2010). These signals activate 

several transcription factors such as the snail/slug family, twist, δEF1/ZEB1, 

SIP1/ZEB2 and E12/E47. These transcription factors then recruit cofactors 

and histone deacetylases to E-Box DNA sequences located near the 

transcription initiation site of E-cadherin. snail was the first transcription factor 

identified shown to result in repression of transcription of E-cadherin and 

subsequently a fundamental role has been ascribed to snail in terms of EMT 

processes (Barrallo-Gimeno and Nieto, 2005). In addition to E-cadherin, snail 

may down-regulate the expression of epithelial markers including claudins, 

occludins, and mucin-1, and induce expression of genes activated in 

mesenchymal and invasive phenotypes (Wu and Zhou, 2010).  
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Another important class of molecules implicated in physiological and 

pathological EMT pathways are the matrix metalloproteases (MMP). Over the 

last three decades, elevated MMP levels have been shown to occur in diverse 

tissue pathologies, as well as in cancer (Deryugina and Quigley, 2006). 

Studies of tumour tissue samples from patients have shown a positive relation 

between tumour metastasis and expression levels of MMP1, -2, -3, -7, -9 and 

-13, MMPs have also emerged as valuable prognostic factors for solid tumours 

(Deryugina and Quigley, 2006). Hotary et al demonstrated that MT1-MMP, 

MT2-MMP and MT3-MMP but surprisingly not MMP2 and MMP9 (which are 

secreted type-IV collagenases) are associated with the breast cancer cell line 

MDA-MB231 ability to breach the basement membrane. In addition, it has 

been shown that MT1-MMP is able to degrade the collagen of the interstitial 

collagen network of the ECM whereas secreted MMPs do not (Hotary et al., 

2006). MT1-MMP may utilise fibronectin, vitronectin, laminin-1, fibrin, collagen 

type-I, collagen type-II, collagen type-III, CD44 and tissue transglutaminase as 

a substrate. MT1-MMP also contributes to cellular invasion through the 

activation and reassembly of MMP2. Reduced invasiveness and migratory 

ability have been observed in genetically modified MDA-MB231 cells whose 

expression of MT1-MMP was eliminated.  Higher expression levels of MT1-

MMP has also been correlated with a poorer outcome and shorter disease-

free survival of breast cancer patients (Jiang et al., 2006).  
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1.3.6 Hypoxia and EMT 

 

Recent studies have shown that a hypoxic microenvironment triggers EMT by 

regulating expression levels of transcription factors including snail, twist, slug 

and ZEB, and inducing EMT-related signalling pathways including TGF-β1 and 

NF-κB (Matsuoka et al., 2013, Renaud et al., 2014). HIFs are heterodimeric 

transcription factors which consist of an α subunit and a β subunit. Three α 

subunits including HIF-1α, HIF2α, HIF3α and two β subunits have been iden-

tified. HIF-1α is a subunit with a 200-amino acid oxygen-dependent degrada-

tion domain (ODD) which allows HIF-1α to be ubiquitylated and degraded by 

the 26S proteasome in normoxic conditions. Under hypoxic conditions, HIF-

1α gains stability through dimerisation with the HIF-1β subunit and the com-

plex induces transcription of many genes involved in EMT. However, it has 

been known that HIF-1α stabilisation is induced by HER2 overexpression and 

its downstream signalling pathways in non-hypoxic conditions (Laughner et 

al., 2001, Li et al., 2005). It has been shown that HER2 overexpressing breast 

cancer cells stabilise HIF-1α protein through PI3K and AKT pathway in non-

hypoxic conditions (Laughner et al., 2001). 

1.3.7 Tumour cell invasion into the surrounding tissue 

 

Following the liberation of cells from adherent and tight junctions, they invade 

and migrate through the surrounding stroma (connective tissue). There are 

different modes of cellular invasion these include individual, multicellular and 

collective cellular movement. The migration type and dynamic depends upon 

characteristics of the tumour microenvironment and the molecular alterations 

within the tumour (Friedl and Wolf, 2009). According to the type of migration, 

the cancer cells may display mesenchymal or/and amoeboid-like phenotypes. 

However, these phenotypes are highly plastic, and transition between them 

have been observed and reported in previous studies.  

In the case of ‘single cell invasion’ tumour cells with weak cell-cell interactions 

migrate in a random pattern independently of each other. Individual migrating 

cells may display an amoeboid-cell-like phenotype characterised by a higher 
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migratory velocity and a round cell-body phenotype, or a mesenchymal 

phenotype characterised by an elongated cell-body and relatively slow 

movement (Clark and Vignjevic, 2015). Transition between mesenchymal and 

amoeboid phenotypes has been reported. 

‘Multicellular streaming’ is another type of cancer cell migration, this is 

characterised by two or more tumour cells with either a mesenchymal or an 

amoeboid phenotype, with loose or non-adhesive properties, migrating along 

a ‘track’ in an organised manner. In vivo cellular migration of human breast 

cancer cells was investigated by Patsialou et al using intravital multiphoton 

microscopy.  Xenograft tumours of MDA-MB231 and TN1 cells (isolated from 

a patient with triple negative breast cancer) showed both individual and 

multicellular movements in both tumour types with a higher overall motility 

observed for the MDA-MB231 cells. Quantitative analysis revealed that higher 

movement velocity and longer protrusion distances in ‘multicellular streaming’ 

migration compared to random single cell patterns of migration in both tumour 

types (Patsialou et al., 2013). 

In ‘collective migration’, a group of connected cancer cells detached from the 

tumour mass, migrate into the surrounding tissues and form chord, stripe and 

sheet-like structures. This type of invasion has been observed in the 

progression of several cancers including breast, prostate, colorectal, lung and 

skin cancers as well as squamous cell carcinoma. Two groups of cells have 

been distinguished in the collective movement of cancer cells: (1) ‘leader’ cells, 

constituting the frontal edge of the invasive mass, often associated with a 

mesenchymal phenotype and (2) ‘follower’ cells; located behind the ‘leader’ 

cells the ‘follower’ cells exhibit more intercellular contacts and retain an 

epithelial phenotype. Cells at the leading edge of the invasion body degrade 

the extracellular matrix and their intracellular actin-myosin contractile 

machinery facilitates the migratory process. TGFβ has been demonstrated to 

play a role in the switch from collective to single cell invasion modes (Giampieri 

et al., 2009). 
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1.3.8 Resistance to cell death  

 

Programmed cell death (apoptosis) is an intrinsic mechanism for the 

maintenance of tissue homeostasis (Kerr et al., 1972). Two pathways are 

activated during apoptosis: (1) the extrinsic pathway, functioning through 

death receptors and (2) the intrinsic, mitochondrial, pathway. Initiation of 

apoptosis through either of the two pathways leads to the activation of cysteine 

aspartic acid-specific proteases (caspases), a family of conserved cysteine 

proteases that cleave cytoplasmic and nuclear protein substrates in a tightly 

regulated proteolytic cascade (McIlwain et al., 2013). Caspases have been 

classified based on their role in apoptosis and in inflammatory processes. 

Since the former is the focus of this project, the role of caspase -3, -6, -7, -8 

and -9 in apoptotic processes will be explained further in this section. 

Procaspases are inactive monomeric forms of caspases, activated by 

dimerisation: caspase -8 and –9; or cleavage: caspase -3, -6 and -7. Caspase 

–8 and –9 are classified as ‘initiator’ caspases in recognition of their 

involvement in cleavage and activation of ‘executioner’ caspases i. e., 

caspase-3, -6 and -7. On activation, an ‘executioner’ caspase activates other 

‘executioner’ enzymes, this gives rise to a feedback loop of caspase activation 

and rapid cell death. The extrinsic apoptotic pathway is triggered by interaction 

between death receptors and their ligands, these include tumour necrosis 

factor (TNF), CD95-ligand (CD95-L; also called Fas-L), TRAIL (also called 

Apo2-L), and TNF-like ligand 1A (TL1A). The intrinsic pathway is activated by 

non-receptor-mediated stimuli including cellular stresses, including growth 

factor deprivation (or lack of apoptotic inhibition), toxins, radiation, DNA 

damage, hypoxia. Activators of this pathway may include developmental 

signals that lead the cells to enter apoptosis, and, for example hormones such 

as corticosteroids and oestrogen (Elmore, 2007, Lewis-Wambi and Jordan, 

2009). On exposure to appropriate stimuli, the inner mitochondrial membrane 

of the cell loses its transmembrane potential and releases pro-apoptotic 

proteins from the intermembrane space to the cytosol, examples of such pro-

apoptotic proteins cytochrome C, Smac/DIABLO, and the serine protease 

HtrA2/Omi (Saelens et al., 2004). Cytochrome C, apoptotic protease activating 
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factor (Apaf-1), procaspase 9 and ATP combine to form the apoptosome and 

this activates caspase 9. Both intrinsic and extrinsic pathways merge at the 

execution pathway and cleavage of caspase 3 leads to the activation of 

endonucleases and proteases eventually resulting in cell death. Apoptotic 

cells are finally engulfed by phagocytic cells, identified by characteristics 

including DNA fragmentation, hydrolysis of peptide bonds in essential 

structural and nuclear proteins, cross-linked proteins, formation of apoptotic 

bodies and expression of ligands for phagocytic cell receptors (Elmore, 2007). 

A variety of pro-apoptotic and anti-apoptotic/inhibitory factors have been 

identified that regulate apoptosis. For example, the release of cytochrome C 

from mitochondria is inhibited by Bcl-2 and Bcl-XI, members of Bcl-2 family of 

proteins whose expression is regulated by p53. Other regulatory proteins 

include the inhibitor of apoptosis proteins (IAPs) a family of eight proteins 

sharing a common domain required for interaction with caspases (Hunter et 

al., 2007). A member of the IAP family, XIAP has a strong inhibitory effect on 

apoptosis by binding to activated caspase-3 and -7 and by inhibiting caspase-

9 activation (Eckelman et al., 2006). Survivin is another IAP family member 

shown to have an inhibitory role in regulating apoptosis (Altieri, 2008). The 

extrinsic pathway triggered through death receptors leads to caspase-8 

activation. This pathway is modulated by cellular FLICE-inhibitory protein 

(cFLIP) which functions by interfering with the recruitment of caspase -8 upon 

ligand binding to death receptors, thereby preventing caspase-8 activation 

(Micheau, 2003). A decrease in the levels - or other disfunctions of these 

inhibitor molecules - may result in faulty cellular apoptotic processes. Different 

mechanisms that modulate apoptosis and in human cancers have been 

revealed (Fulda, 2009) and are important as targets for development of novel 

treatments for cancer (Hassan et al., 2014). 

 Tumour microenvironment 

 

The contribution of components of the tumour microenvironment (TME) to the 

formation, growth, invasion and drug resistance of cancer cells have been 
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identified and discussed in many cancer studies and is summarised 

schematically in Figure 3. The focus of this section will be on TME constituents 

surrounding breast tumours, their possible use as prognostic and predictive 

markers and their contribution to the therapeutic treatment of the disease     

1.4.1 Biochemical phase of the tumour microenvironment 

 

Cancer cells interact with different components of the tumour 

microenvironment including cancer-associated fibroblasts (CAFs), cancer-

associated adipocytes (CAAs), endothelial cells, ECM, tumour-infiltrating 

lymphocytes (TILs) and tumour-associated macrophages (TAMs), (Yu and Di, 

2017). The ECM is the non-cellular component of the TME and is composed 

of a complex mixture of macromolecules with different biophysical and 

biochemical properties (Friedl and Wolf, 2009). These macromolecules 

include proteins, glycoproteins, proteoglycans and polysaccharides and 

constitute both parts of ECM; the basement membrane and the interstitial 

matrix. The former is more compact and porous than the latter and separates 

the epithelia and endothelia from the stroma and is composed of type-IV 

collagen, laminins, fibronectin and cross-linker proteins such as nidogen and 

entactin. In contrast, the interstitial matrix which contributes to the tensile 

strength of tissues, comprises fibrillar collagens such as type-I, type-II and 

type-III, proteoglycans and glycoproteins such as tenascin C and fibronectin 

(Egeblad et al., 2010b). Tissue architecture and integrity are influenced by the 

physical properties of the ECM including the rigidity, porosity, insolubility and 

topography. In addition, the ECM functions as a barrier, anchorage site and 

movement route, impacting cell migration and motility. The TIL population 

principally includes CD8+ cytotoxic T cells, CD4+ helper T cells and CD4+ 

regulatory T cells (Tregs). Amongst all of these, the CD8+ T cells have a major 

influence on the anti-tumour immune response particularly on TNBC tumours 

(Stanton et al., 2016). The infiltration of TILs at the invasive margin of a tumour  

Besides infiltrating lymphocytes, tumour-associated macrophages (TAMs) 

originating from monocytes are recruited by the presence of chemokines such 

as CCL2 secreted by tumour or stromal cells to the tumour area. The observed 
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polarised distribution of macrophages within tumours has led to the generation 

of two specific phenotypes, termed M1 and M2. TAMs exhibit greater 

differentiation towards the M2 phenotype. Breast cancer cells, for example 

MDA-MB231 cells, secrete factors that have been shown to promote M2 

activation and differentiation. Unlike M1-type macrophages with pro-

inflammatory impact and anti-tumour responses, TAMs may also promote an 

anti-inflammatory phenotype by releasing cytokines, for example IL-8, IL-6 and 

IL-10 and growth factors and proteases (Solinas et al., 2009). TAMs also 

facilitate metastasis through their role in inducing angiogenesis, contributing 

to matrix remodelling, augmenting tumour cell migration and invasion, and 

promoting an immunosuppressive phenotype (Qian and Pollard, 2010). 

Cancer-associated fibroblasts (CAFs) are also a significant component of the 

tumour microenvironment, and this is particularly relevant in breast cancer with 

intra- and inter- lobular CAFs described (Buchsbaum and Oh, 2016). CAFs 

have been found to promote cancer initiation, progression, invasion, 

metastasis, angiogenesis, ECM remodelling, the deposition of basement 

membrane components, cancer-associated inflammation and the regulation of 

differentiation events in associated epithelial cells (Luo et al., 2015). 
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The interaction between CAFs and different breast cancer subtypes has been 

studied in several co-culture experiments. Takai et al reported that CAFs may 

increase TNBC progression by activating TGF-β (Takai et al., 2016). 

Upregulation of podoplanin, a lymph vessel marker, was observed in stromal 

CAFs and was associated with higher grade and TNBC (Niemiec et al., 2014). 

Increasingly the data suggests that tumour growth and development may 

occur through proliferation of breast epithelial cells producing fibroblast growth 

factor-7 (FGF-7) a potent growth factor for mammary cells (Palmieri et al., 

2003). A study of a murine model reported that cancer cell growth enhanced 

the levels of stromal cell-derived factor 1 (SDF1), a mediator of angiogenesis 

secreted by CAFs (Orimo et al., 2005). Furthermore, several studies using 

conditioned media from CAFs as well as direct and indirect co-culture with 

CAFs, indicated that CAFs induce EMT in breast cancer cells (Dumont et al., 

2013, Soon et al., 2013). Contrary to the normal fibroblasts which grow in a 

mesh-like pattern, breast CAFs deposit ECM in a parallel pattern (Dumont et 

al., 2013). A shift from epithelial to a mesenchymal phenotype was observed 

in premalignant breast cancer cells cultured in CAF-deposited ECM. Further 

analysis of this ECM demonstrated the existence of higher amounts of 

fibronectin, biglycan (a proteoglycan) and lysyl oxidase (an enzyme involved 

in ECM remodelling). 

1.4.2 Interstitial fluid flow and pressure  

 

As described above, cells found within the tumour microenvironment have 

been shown to influence tumour growth and metastasis, however, to paint a 

complete picture, one also needs to consider alongside the biological phases 

the biomechanical features of the microenvironment that has been shown to 

be altered in cancer. The interstitium is composed of two main compartments: 

interstitial fluid and ECM. Interstitial fluid transports nutrients and waste 

products between cells and the capillaries and also contains signalling 

molecules originating in distant organs or, alternatively, locally produced 

(paracrine and autocrine). In healthy tissue, postcapillary venules reabsorb the 
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major part of this fluid, and the downstream lymphatic vasculature drains the 

remaining fraction of the fluid which is ultimately emptied out into the venous 

bloodstream. However, in solid cancers, increased cell proliferation, alteration 

in ECM stiffness and architecture, and irregularities in the vasculature arising 

from the growth of new blood vessels (angiogenesis) results in a malfunction 

of this well organised system leading to an increased flow rate in tumour 

tissue. In addition to angiogenesis, lymphangiogenesis occurs in most of solid 

tumours (Swartz and Lund, 2012). Furthermore, the lymphatic vessels 

enlarge, and drainage capacity and permeability increase during progression 

of cancer. However, these alterations cannot effectively balance the increase 

in fluid exerting from the irregular blood vessels. The impaired clearance of 

extracellular fluid, a consequence of lack of functional intra-tumoural lymphatic 

vessels can result in elevated IFP within tumours with a sharp reduction in 

pressure at the tumour periphery (Farnsworth et al., 2006). 

Elevated interstitial fluid flow (IFF) in mammary tumours was first reported by 

Butler et al. in 1975, with enhanced hydrostatic pressure and lymphatic 

drainage from the interstitial space noted as well as remarkable differences in 

afferent and efferent tumour blood haematocrit levels (Butler et al., 1975). 

Since then, various techniques have been used to measure increased IFF 

including fluorescence recovery after photo bleaching (FRAP) and magnetic 

resonance imaging (MRI) (Dafni et al., 2005a). Interstitial fluid velocity in 

normal tissues and tumours has been quantified using these techniques and 

is reported in the range 0.1 to 2 µm s-1 (Dafni et al., 2005b). In a study 

conducted in 1989, the interstitial fluid velocity was measured using FRAP and 

found to be 0.2 to 0.8 µm/s. However, in tumours, shielding of the cells by the 

ECM lowers the shear stress generated by this fluid velocity (Kamiya et al., 

1988, Pedersen et al., 2010).  

Other techniques have been used to measure IFP in normal and tumour 

tissues. These have been subdivided into ‘acute’ (few hours) and ‘chronic’ 

studies of IFP.  The approaches used include invasive techniques - for 

example surgical procedures including: wick catheter (Scholander et al., 1968, 

Hargens, 1981), wick-in-needle technique (Fadnes et al., 1977, Wiig et al., 
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1987), servo-micropipette (Wiederhielm et al., 1964) polyurethane transducer-

tipped catheter (Millar) (Ozerdem and Hargens, 2005), for acute 

measurement, and subcutaneous capsule implantation for 4 to 6 weeks 

(Guyton et al., 1963) for chronic assessment of IFP. Recently, a non-invasive 

method introduced for estimating IFP in solid tumours using MRI technology, 

converting theoretical variables into measurable variables (Liu et al., 2016). 

Researchers have been studying the elevation of interstitial pressure in human 

clinical samples and mouse models for over 30 years (Baxter and Jain, 1989, 

Boucher et al., 1990, Boucher et al., 1997). In 2011, Goel et al. gathered data 

from various published studies of IFP in normal tissues and human tumours 

and reported a significant increase in IFP level in tumours, figure 4 (Goel et 

al., 2011). In 1993, Curti et al reported interstitial pressure of ≤110 mmHg in 

subcutaneous nodules in melanoma and lymphoma patients (Curti et al., 

1993). In another study using A-07 human melanoma xenografts as the 

primary tumour, increased IFP was shown to be associated with pulmonary 

and lymph node metastasis (Rofstad et al., 2002). Measurements of the IFP 

in 118 patients with oral squamous cell carcinoma suggested the IFP value as 

a significant prognostic factor for 5-year survival (Yu et al., 2014a). Elevated 

IFP in cervical cancer was significantly associated with poorer patient survival 

following radiotherapy (Milosevic et al., 2001).  Elevated IFP has also been 

associated with lymph node metastasis in patients with cervical carcinoma 

(Hompland et al., 2012), mouse models of breast carcinoma (Pathak et al., 

2006), and xenograft models of cervical carcinoma and melanoma (Hompland 

et al., 2012). These observations suggest that IFP measurement may be a 

potential prognostic tool for clinical examinations and treatment options of 

cancer patients.  
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Recently, using Boyden chambers and other engineered models, scientists 

have studied the effect of IFP on breast cancer cell behaviour including cellular 

invasion, migration and proliferation; assessing either the expression of EMT 

markers and MMPs or the migratory dynamics of tumour cells. Hence, 

elucidating molecular mechanisms through which cancer cells and stromal 

cells can sense and react to elevated IFP will provide knowledge that may help 

to guide targeted therapy. 

Responding to reports of differences in the biomechanical properties of tumour 

and normal tissues, researchers have developed various tools designed to 

recapitulate interstitial flow and pressure in the tumour microenvironment. 

Microfluidic systems are the most commonly used devices used to generate 

controlled amounts of flow and pressure in 2D and 3D cell culture systems. 

Although these systems are being produced by different manufacturers, they 

are similar in their fundamental aspects (Huh et al., 2011). In general, a 

microfluidic system is composed of a set of micro-channels engraved or 

moulded into a material (glass, silicone or PDMS) constructed on a microfluidic 

chip which is connected to a reservoir of growth media through inlet and outlet 

tubes pierced into the chip. Media and gases may be injected and removed 

from the microfluidic chip either actively via peristatic pump and pressure 

controllers or passively through hydrostatic pressure. (Boucher et al., 1990) 

The recent availability of a bioreactor system (Quasi Vivo®, Kirkstall, U.K.) 

provided a small, inexpensive but reliable method of culturing cells under flow. 

The Quasi Vivo culture unit generates pulsatile-laminar-unidirectional flow 

which is typical for arterial blood flow. The layout of this system enables 

scientists to culture two or more different cell types in the connected chambers, 

mimicking the interactions between cells which occur in a tissue. The system 

has been mainly used for quick and cost-efficient cytotoxicity testing and 

studies on cellular metabolism. It also has a potential application in the 

biotechnology, pharmaceutical, chemical, cosmetics and research industries. 

For the novel application of this bioreactor in this study, the supplier was asked 

to redesign the system to be able to generate a higher pressure in the 

chambers. According to optimisation experiments they performed, by using 4 
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flow restrictors and applying the flow of 550 µL/min in a two chambers system, 

we can increase the pressure inside the chamber to ~19 mm Hg, while the 

pressure without using the flow restrictors is ~1 mm Hg. Since 550 µL/min is 

a high flow rate, to evaluate the effect of lower flow rate (alone), a flow rate of 

150 µL/min was also applied.  

1.4.3  Interstitial flow and progression of cancer 

 

The movement of fluid passing through intercellular spaces in the ECM has 

been shown to be a factor leading to alterations in the tumour 

microenvironment. The effect of IF on cancer cells may be categorised into 

direct; the effects on the cancer cells themselves, or indirect; the impact on 

other components of the tumour such as the stromal cells and extracellular 

matrix. The direct effects of IF on cancer cells have been studied in multiple 

2-dimensional (2D) and 3-dimensional (3D) cancer models (Shieh et al., 

2011). Exposing breast cancer cells to IF in a 3D collagen model led to 

increased migration both in 3D culture inserts and in 3D flow chambers 

(Shields et al., 2007, Haessler et al., 2012).  Applying IFP was shown to alter 

expression of genes associated with EMT and promote collective invasion in 

breast cancer cells (Piotrowski-Daspit et al., 2016). These findings suggest 

fluid flow within the tumour might be a prognostic indicator of invasion and 

metastasis.    

During progression of cancer, fibroblasts are recruited and transformed to 

become cancer-associated fibroblasts (CAFs). Alterations in fluid flow and 

pressure have been reported to affect this transformation. Myofibroblasts are 

also transformed from fibroblasts and their phenotype resemble CAFs. 

Myofibroblasts are identified by elevated alpha smooth muscle actin (α-SMA) 

expression, increased contractility, and elevated secretion of MMPs, cytokines 

and growth factors involved in tumour migration and angiogenesis. TGF-β1 

secreted by cancer cells and fibroblasts, is an inducer of fibroblast to 

myofibroblast or CAF differentiation (De Wever et al., 2004, Orimo et al., 

2005). Exposure of fibroblasts to increased IFF has been shown to result in 
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the induction of TGF-β1 and consequently myofibroblast differentiation even 

in the absence of a tumour (Ng et al., 2005). Implementing IF (0.5 µm/s) in a 

coculture of dermal fibroblasts and MDA-MB-435S melanoma cells using a 

collagen matrix and modified 3D Boyden chambers, resulted in increased 

tumour cell invasion and fibroblast activation mediated by TGF-β1 (Shieh et 

al., 2011).  

 In vivo models of breast cancer  

 

It would be of great value to be able to test drug efficacy and the resistance of 

cancers to certain drugs by assessing the drug responsiveness of primary 

tumour cells (from patients), this could be evaluated either in vivo or in vitro 

ultimately at the outset, when clinical treatment commences. Several in vitro 

and in vivo strategies are being developed in an attempt to tackle this issue. 

Amongst all kinds of in vivo strategies, ‘Mouse Avatar’ and ‘Co-clinical Trials’ 

are the most advanced projects so far. The main focus of the co-clinical trial 

project is to use either genetically engineered mouse models (GEMMs) or 

patient-derived tumour xenografts (PDTX) to guide patient therapy in on-going 

human clinical trials. In this paradigm, mouse trials and human trials are 

developed in parallel to provide fast and real-time transfer of outcomes from 

mouse treatment to human clinical trials, Figure 5 (Nardella et al., 2011). On 

the other hand, ‘Mouse Avatars’ use patient-derived tumour xenografts 

(PDTX) with the aim of helping clinicians choose optimal chemotherapeutic 

agents (Marangoni and Poupon, 2014). Although the concept of tailoring 

therapy with this approach is appealing, studies have indicated technical 

drawbacks both in terms of scientific and non-scientific limitations (Mueller and 

Reisfeld, 1991). For example, the maintenance of these in vivo models is very 

expensive, leading to claims that the systems are ultimately unaffordable, 

moreover, because the xenograft models encompass several steps including 

implantation, propagation and drug-screening, the time required before 

determining the optimum treatment protocol remains a problem and patient 

mortality has been reported before the start of therapy (Malaney et al., 2014). 
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 In vitro tissue culture models of breast cancer 

 

In addition to in vivo models, several in vitro systems have been developed 

with the aim of stratifying breast cancer patients to different treatment 

regimens. Although conventional monolayer (2D) cell culture models are 

convenient to set up and have been used in different areas of biological 

research for decades, they have limitations in terms of the physiological 

relevance of these methods for detailed tumour studies. Despite the increased 

complexity that may be developed in a 2D cell culture environment, for 

example using stromal cell co-culture, the limitation of 2D cell culture for 

capturing tumour heterogeneity is well accepted (Debnath and Brugge, 2005). 

The microenvironment that surrounds cancer cells within a solid tumour 

consists of cellular components including stromal cells, infiltrating immune 

cells, lymphatics, vasculature and acellular components including the ECM, 

growth factors and cytokines. Several methods have been developed that aim 

to provide a complex cell culture system that includes the interplay between 

these components and cancer cells, a phenomenon that occurs in the in vivo 

condition.  

Recently, a range of 3D models have been developed to better reflect the 

complexity of tumours. As a general concept, 3D cancer models can be 

divided into two main categories: ECM inclusive and ECM exclusive 

(spheroids). Tumour cells have been maintained in cell culture as spheroids 

since the 1970s and have been used in a range of studies including those 

aimed at the formation of the breast acinar structure and breast tumour models 

(Debnath and Brugge, 2005). The techniques and devices that have been 

mainly used to make spheroids are summarised in table 1. 
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Technique Device Reference(s) 

Hanging drop 

method 

Hanging drop plate(s) (Fennema et al., 

2013) 

Spontaneous 

spheroid formation 

Ultra-Low attachment 

plates 

(Vinci et al., 

2012) 

Suspension culture 
Spinner flasks, 

bioreactors 

(Hoarau-Véchot 

et al., 2018, 

Kwok et al., 

2018) 

Magnetic levitation magnetic nanoparticles (Souza et al., 

2010) 

Table 1. The key methods developed for the preparation of cancer cell spheroids.  

 

A feature of each of these techniques is that the cancer cells are prevented 

from adhering to the surface of the wells/vessels and forced to aggregate and 

form spheroids (Hoarau-Véchot et al., 2018). Adding stromal cells such as 

fibroblasts and endothelial cells and applying magnetic levitation has improved 

the physiology and reproducibility of the spheroid-based experiments 

(Gottfried et al., 2006, Kunz-Schughart et al., 2006). Several morphological 

characteristics for example epithelial-myoepithelial interactions and drug 

response have been studied using spheroids. The preparation of cancer cell 

spheroids has allowed investigations aimed at understanding the resistance 

of cancer cells to cytotoxic agents such as doxorubicin and cisplatin (Kerr et 

al., 1986, Kobayashi et al., 1993, Frankel et al., 1997). 

A drawback of this approach, however, is that the ECM, a key component of 

the tumour microenvironment, is generally omitted when spheroids are 

prepared suspended in culture medium. To address this shortcoming, 

scientists have created 3D scaffolds with the aim of recapitulating the ECM as 

an essential natural environment.  This approach recognises the role of the 

ECM in both intra- and extra-cellular signalling, cell proliferation, 
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differentiation, migration, invasion and drug uptake. Biodegradable and 

biocompatible scaffold materials used in cancer biology applications are 

usually classified into two main groups: (1) naturally derived matrix materials 

including collagen, fibronectin, laminin and hyaluronic acid; and (2) synthetic 

polymer-based materials such as poly (lactic-co-glycolic) acid (PLGA) and 

poly-ε-caprolactone (PCL)(Rijal and Li, 2016) Engelbreth-Holm-Swarm ECM 

extract (Matrigel) material, collagen and decellularised ECM are the most 

commonly used biomaterials for modelling breast tumours as they offer 

support for cell growth, differentiation and migration compared to synthetic 

materials. The trend toward the use of different synthetic and natural 

extracellular matrix has been reviewed by Rijal et al (Rijal and Li, 2016). 

  Naturally derived matrix materials 

 

The main constituents of the ECM in mammalian tissues are collagen, elastin, 

laminin and proteoglycans (Frantz et al., 2010). The design of a 3D tissue 

culture to mimic the natural structure of the ECM in human tissues as closely 

as possible would, therefore, include collagen, MatrigelTM and fibronectin. To 

this end gelatin, alginate, chitosan and silk fibroin have been tested but these 

are from non-human sources. Collagen type-I has been the most commonly 

used scaffolding material used for modelling of breast tumours either alone or 

in combination with other components of the ECM tissue such as fibronectin, 

laminin, hyaluronic acid and MatrigelTM (Rijal and Li, 2016). Collagen is the 

most abundant protein of human connective tissue and is categorised to 28 

types of either fibrillar or non-fibrillar forms. 

Fibrillar type-I collagen accounts for 90% of collagen found in the human body 

and has been the most frequently used natural material for 3D culture and 

tissue engineering studies.  In humans, collagen type-I fibrils are mainly 

present in skin, tendon, vascular ligature, organs and bone whilst in the normal 

mammary gland, interstitial ECM contains fibrillar collagens (I, III and V) and 

basement membrane contains the non-fibrillar type-IV collagen. In breast 

cancer a reduction in the levels of collagen IV and an increase in levels of 
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collagen I, III and V has been reported (Egeblad et al., 2010a, Oskarsson, 

2013). Earlier studies of malignant tumours showed that the expression levels 

of mRNA for type-I and type-III procollagen increased in the fibroblastic cells 

resident in the stroma. Furthermore, an in vivo study of a ductal infiltrating 

breast carcinoma reported increased deposition of bundles of collagen type-I 

and III at the invasive front of the tumour (Kauppila et al., 1998).  

Cancer invasion requires remodelling of the ECM - this is primarily facilitated 

by the degradation of collagen, re-deposition, cross-linking and stiffening and 

is accompanied by infiltration of immune system cells and re-differentiation of 

monocytes at the invasive front. During tumorigenesis, the smooth and twisted 

structure of collagen characteristic of normal breast tissue alters to become a 

stiff, thick and linear collagen, this is associated with a change in epithelial cell 

polarity and alterations in cell–cell adhesion, this in turn enhances growth 

factor signalling, EMT and invasion, features associated with a metastatic 

phenotype (Egeblad et al., 2010a). Increases in ECM cross-linking alongside 

deposition of fibronectin, proteoglycans and collagens I, III and IV have been 

reported in other types of invasive cancers (Zhu et al., 1995, Huijbers et al., 

2010). The mentioned modifications may lead to generation of invasion 

‘highways’ for cancer cells whereby cells migrate along the collagen fibres.  

Drug delivery and drug efficacy has been shown to be affected by collagen 

density and other physical and molecular features of the ECM network 

(Egeblad et al., 2010a).  

In addition to material derived from mammalian tissues, other biomaterials 

extracted from natural sources, have been used as biodegradable scaffolds. 

For example, MCF-7 breast cancer cells grown on the polymeric 

polysaccharide chitosan (produced from the chitin of the exoskeleton of 

crustaceans), showed growth kinetics comparable with those cultured in tissue 

culture flasks (Dhiman et al., 2004). MDA-MB231 cells cultured on silk fibrin 

scaffolds displayed enhanced MMP-9 activity, suggesting a higher invasion 

potential of the cells when grown in 3D culture. Concurrently it was reported 

that the cells produced the same yield of lactate from glucose consumption as 

in vivo conditions, indicating that the scaffolds were able to maintain the 
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metabolic activity of the MD-MB231 cells (Jastrzebska et al., 2015). In various 

studies mixtures of different natural biomaterials have created unique scaffold 

structure with improved biophysical and biochemical properties. For instance, 

a mixture of silk fibroin and chitosan results in a unique scaffold with more 

fibro-porous structure which is non-toxic and highly permeable for water and 

oxygen, supporting cell growth and adhesion (Li et al., 2017). The multitude of 

studies with different matrices and cell types have shown the importance of 

cell culture methods on cell growth, invasion and drug responsiveness. 

Elucidating the molecular mechanisms that might be affected in response to 

different microenvironments, will provide the more reliable cell culture methods 

for use in the drug discovery process. It may also aid the development of novel 

methods for personalised therapy strategies.  

 Doxorubicin and resistance to therapy 

 

Doxorubicin, a chemotherapeutic drug with a molecular weight of 543 g/moL, 

was first extracted from Streptomyces peucetius var. caesius in the 1970’s 

(Arcamone et al., 1969). Doxorubicin belongs to the anthracycline category of 

chemotherapeutics which act through the intercalation of DNA, inhibition of 

topoisomerase II and the formation of free radicals (Tacar et al., 2013). Since 

it was discovered doxorubicin has been in routine use for the treatment of a 

range of cancers including breast, lung, gastric, ovarian, thyroid, non-

Hodgkin’s and Hodgkin’s lymphoma, multiple myeloma, sarcoma, and 

paediatric cancers (Lao et al., 2013, Rathos et al., 2013, PDQPTE, 2002, Saini 

et al., 2018). In clinical practice, doxorubicin is administered 

independently/alone or in combination with other chemotherapeutic or 

targeted biological agents or encapsulated in liposomes or other nanoparticle 

materials for treatment of various types of cancers. Since breast cancer cells 

were used in this project, the primary focus was the toxicity of doxorubicin on 

breast cancer cells.  

Current approaches for the adjuvant therapy of breast cancer is a combination 

of anthracyclines, such as doxorubicin and epirubicin; taxanes, including 

paclitaxel and docetaxel, along with fluorouracil and cyclophosphamide 
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(Hernandez-Aya and Gonzalez-Angulo, 2013). However, resistance to 

chemotherapy has been reported for many breast cancer patients. Such 

resistance mechanisms may be acquired after exposure to the therapeutic 

agent or may be inherent characteristics which exist in the tumour prior to 

treatment, figure 6.   

Cancer cells may acquire resistance to therapy as a result of the accumulation 

of mutations and sequential genetic changes occurring during the 

development of cancer over time. Acquired resistance may occurs in cancer 

cells which have survived exposure to an initial therapeutic regimen, whilst 

inherent (de novo) resistance is associated with intrinsic factors within the 

cancer cells themselves. Resistance may also be mediated by environmental 

factors such as the attachment of the cancer cells to the ECM (Dittmer and 

Leyh, 2015). As an example, culturing MCF-7 and MDA-MB231 breast cancer 

cells in 3D ECM-based model has been shown to result in a reduction in 

doxorubicin efficacy. However, the application of a β1-integrin blocking 

antibody prior to addition of doxorubicin to MDA-MB231 cells cultured in ECM 

(Matrigel), resulted in a significant increase in sensitivity of MDA-MB231 cells 

to doxorubicin in a dose dependent manner (Lovitt et al., 2018). This approach 

has indicated the importance of understanding molecular mechanisms 

underlying interaction of tumour cells with the microenvironment and a 

potential route through which cancer cells may acquire resistance to therapy. 

This should be noted with regards to chemotherapeutic drugs when a non-

responsive patient receives serious life-threatening side effects without 

gaining any benefit from the therapy.  
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 Aims and objectives 

 

The aim of this project was to study the effect of the tumour microenvironment, 

in particular, fluid flow and pressure, on breast cancer cell behaviour and re-

sponsiveness to the chemotherapeutic agent doxorubicin. 

The long-term aspiration for this research was to create an in vitro tumour 

model which would provide a more physiologically relevant environment for 

studying molecular mechanisms underlying breast tumour growth and inva-

sion and for evaluating drug efficacy in drug discovery processes. 

The objective in the first part of the project was to compare the behaviour and 

sensitivity of breast cancer cells to doxorubicin when cells were grown (1) in 

2D culture; (2) in 3D spheroids and (3) in 3D after embedding in collagen type-

I using the RAFT system to form 'artificial cancer masses' (ACM).  The second 

focus of the project was an assessment of the biochemical effect of interstitial 

fluid flow and pressure on tumour cell invasion, levels of markers of EMT, pro-

liferation, hypoxia, apoptosis-related markers and drug responsiveness. 
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 Materials and equipment 

2.1.1 General reagents, buffers and other chemicals  

The details of general chemicals and reagents used in this study are listed in 

Appendix 1. 

2.1.2 Media, buffers, reagents and consumables used in cell 

culture, cell harvest and cell lysate processes  

 

High glucose (4.5 g/L) Dulbecco’s modified Eagle’s medium (DMEM) 

(Hyclone, Life Technologies, U.K.); foetal bovine serum (FBS) (Gibco, Life 

Technologies, U.K.); Trypsin-EDTA Solution 10X (Sigma-Aldrich, U.K.); Rat 

Tail Collagen Type-I >2 mg/mL Chloroform Treated (First Link Ltd, U.K.); 

Phosphate-Buffered Saline (PBS) (Gibco, U.K.); Minimum Essential Medium 

(MEM) (Lonza, U.K.); Antibiotic Antimycotic Solution 100X (Sigma-Aldrich, 

U.K.); Neutralising buffer (1.6 M NaOH in 840 mM HEPES buffer) (home- 

made); RAFT™ absorbers for 96-well and 24-well plates (Lonza, U.K.); 

Collagenase type-I (Gibco, U.K.); Hanks’ Balanced Salt solution (HBSS) 

(Sigma, U.K.); RIPA Buffer (Sigma, U.K.); 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) buffer (Thermofisher Scientific, USA). 

2.1.3 Kits 

2.1.3.1  RNA extraction, cDNA library construction and 

quantitative polymerase reaction (qPCR) 

 

The RNeasy Micro Kit was used to extract RNA from the cancer cells the 

QuantiTect Reverse Transcription Kit was used to produce cDNA from mRNA 

(Qiagen Ltd, U.K.). Gene expression levels were measured using the 

QuantiNova SYBR Green RT-PCR Kit (Qiagen Ltd, U.K.).  
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2.1.3.2  Protein measurement kit 

 

The Pierce™ BCA Protein Assay Kit was utilised to measure total protein 

concentration in the cell lysates (Thermofisher Scientific, USA).  

 

2.1.3.3  Alamar blue reagent  

 

The metabolic activity of cells cultured in 2D and 3D was measured using the 

Alamar blue reagent kit (Invitrogen, U.K.) 

 

2.1.4 Electrophoresis buffers and reagents 

2.1.4.1  Agarose gel electrophoresis 

 

The integrity of extracted RNA and the size of qPCR products were assessed 

using agarose gel electrophoresis. The materials used were: agarose (Sigma, 

U.K.), Gel Red (Biotium, USA), tris-borate-EDTA buffer 1X (homemade TBE: 

108 g Tris, 55 g boric acid, 40 mL 0.5 M Na2EDTA, pH 8.0 in 900 mL distilled 

water), loading buffer (home-made). DNA Gel Loading Dye (6X) (Thermofisher 

Scientific, USA), DNA ladder (New England Biolabs, USA).  

 

2.1.4.2  Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) 

 

Separation of proteins was carried out using SDS-PAGE. The following 

materials were used: acrylamide/bis-acrylamide 30% v/v (Sigma, U.K.); 

sodium dodecyl sulphate (SDS) (Sigma, U.K.); running buffer: 14.4 g Tris 

base, 3.03 g glycine and 1 g SDS, loading buffer 2x (Sigma-Aldrich, U.K.), Tris 

–HCl pH, 6.8, Tris HCl pH, 8.8, catalysts: N,N,N′,N′-
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Tetramethylethylenediamine (TEMED) (Severn Biotech Ltd, U.K.) and 

ammonium persulfate (APS) (Sigma-Aldrich, U.K.); Precision Plus Protein 

Dual Colour Standards (Bio-Rad, U.K.). 

2.1.5  Western blotting reagents  

 

Transfer buffer (25 mM Tris, 0.2 mM Glycine, 20% v/v methanol, pH 8.3); 

Ponceau S solution (Sigma, U.K.); filter paper (Thermofisher Scientific, USA); 

Nitrocellulose Membrane (Thermofisher Scientific, USA); enhanced 

chemiluminescent (ECL) substrate (Thermofisher Scientific, USA), bovine 

serum albumin (BSA) (Sigma, U.K.). phosphate-buffered saline with 0.05% 

Tween-20 (PBST). 

 

2.1.6  Antibodies  

 

Antibodies used for immunostaining of the cells and Western blot analysis. 

 

2.1.6.1  Primary antibodies 

 

Rabbit monoclonal anti-ErbB 2 antibody (ab134182, Abcam, U.K.); rabbit 

monoclonal anti-vimentin (Cell Signalling Technology, USA); rabbit polyclonal 

anti-β-actin antibody (Abcam, U.K.); rabbit polyclonal anti GAPDH antibody 

(Abcam, U.K.). 

 

2.1.6.2  Secondary antibodies 

 

Goat polyclonal anti-rabbit IgG H&L (HRP) pre-adsorbed (Abcam, U.K.); goat 

polyclonal anti-rabbit IgG H&L (Alexa Fluor 488) (Abcam, U.K.).  



46 

 

2.1.7 Doxorubicin 

 

Doxorubicin was used in its hydrophilic form (doxorubicin hydrochloride) from 

Thermofisher Scientific.  

 Methods 

2.2.1 Cell culture  

 

Human breast cancer cell lines, MDA-MB231 and SKBR3 (available at the 

University of Westminster, purchased from ATCC).  Normal fibroblast cells 

isolated from breast tissue outside the cancer margin and distal to the cancer 

growth were kindly provided by Dr Hazel Welch, Division of Surgical and 

Interventional Sciences, Royal Free and University College London Medical 

School, University College London. The cells were cultured in monolayer (2D) 

and multilayer/matrix (3D) formats.  

 

2.2.1.1  2D monolayer cell culture 

 

MDA-MB231, SKBR3 and normal fibroblast cells were cultured in high glucose 

Dulbecco’s modified Eagle’s medium (DMEM) (Hyclone, Life Technologies) 

supplemented with 10% v/v foetal bovine serum (FBS) (Gibco, Life 

Technologies) and maintained in a humidified atmosphere at 37oC in 5% v/v 

CO2.  For routine passage, the cells were allowed to reach 80% confluency, 

the media was removed, cells were washed by PBS twice, 10X trypsin-EDTA 

was added to detach the cells from the surface of the cell culture flask and 

from each other. Due to the different cell attachment properties across the cell 

lines, the incubation time in this step ranged from 30 to 60 seconds for MDA-

MB231 cells and 3 minutes for SKBR3 cells. Cells grown as 2D monolayers 

were transferred to a collagen scaffold for the preparation of the 'artificial 

cancer mass' (ACM) system as described below.  
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2.2.1.2   Three-dimensional tumour models 

 

An artificial cancer mass (ACM) was prepared using the RAFT 3D cell culture 

system in 96-well plates, following the manufacturer’s instructions (Lonza, 

U.K.). An overview of the preparation of the ACM is shown in Figure 7. The 

proportions of reagents used for constructing ACMs are shown in table 2. In 

brief, 2.8 mL of minimal essential medium (10X MEM) was added to a mixing 

vessel, then, slowly 22.4 mL of rat-tail collagen type- I (2 mg/mL) was added, 

care was taken to avoid introducing air bubbles, swirling the solution carefully 

around the mixing vessel. The solution was neutralised by addition of 1.624 

mL of neutralising solution (1.6 M NaOH in 840 mM HEPES buffer). A solution 

containing the cells (cell stock solution) prepared previously and added to the 

collagen type- I scaffold mixture slowly.  

The number of cells in the cell stock solution for seeding 50,000 cells per well 

required 1.92 x106 cells per plate in the cell stock solution. The final mixture of 

collagen-MEM-cell solution was mixed gently and aliquoted into the 96-well 

plate (240 µL per well) and placed in the incubator set at 37 oC for 15 minutes  

to form a cell populated collagen hydrogel. In the next step biocompatible 

hydrophilic RAFT absorbers were placed on top of each well for 15 minutes 

(at room temperature). Absorption of liquid resulted in a 40-fold increase in the 

concentration of cell-collagen mixture and a final concentration of 80 mg/mL 

Plate  
No. 
of 
well 

10X 
MEM 

(mL) 

2 mg/mL 
collagen 
(mL) 

Neutralising 
solution 
(mL) 

Cell 
stock 
(mL) 

Cell seeded 
collagen 
(mL)  

96-well 
plate 

96 2.8 22.4 1.624 1.200 0.240 

24-well 
plate 

24 3.5 28.2 2.042 1.500 1.300 

Table 2. Proportion of reagents used for preparation and construction of 

ACMs.   
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collagen (manufacturer’s instructions). After removal of the absorbers, in order 

to prevent the gel dehydrating, 100 µL of culture medium (DMEM with 10% v/v 

FBS) was added to each 100 µM thick RAFT gel.  For preparation of the ACM 

the RAFT gel was initially embedded in a looser collagen matrix of 1.6 mg/mL 

in 24-well plate RAFT system. The gel was placed in the incubator set at 37 

oC for 15 minutes to allow it to set and then absorbers were applied for 15 

minutes to remove the liquid from the collagen (at room temperature).  After 

removing the absorbers, 1 mL of culture medium, DMEM with 10% v/v FBS, 

was added to each ACM. 

Prior to the co-culture of cancer cells with normal fibroblasts cells, the 

fibroblasts were cultured only in the 24-well plate RAFT system and not in the 

96-well plate to enable the diffusion into the media of growth factors and other 

stimuli released from fibroblasts. The fibroblast cells were embedded in the 

collagen matrix, and 3 x 104 cells were placed within each well.  
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2.2.1.3  Applying interstitial fluid flow and pressure using the 

Quasi Vivo system  

 

A dynamic growth environment incorporating flow and pressure was created 

by using the Quasi Vivo QV500 system (Kirkstall, U.K.). This system consists 

of cell culture chambers made from polydimethylsiloxane (PDMS); a 

biocompatible, transparent and flexible silicone, reservoir bottle, inlet and 

outlet tubing and filter. All the compartments of the Quasi Vivo system are 

autoclavable and can be reused except the filter which has to be replaced for 

each experiment.  

To construct the circuit in the Quasi Vivo system a ‘series’ configuration was 

used. The two chambers containing the cells were plugged in sequence by 

connecting the outlet tubing of the first chamber, in the direction of flow, to the 

inlet tubing of the second chamber. In turn, the outlet tubing of the second 

chamber was connected to the 'return tubing' enabling the media to return to 

the reservoir bottle through a length of outlet tubing (2.4 mm) and a Luer lock.  

A length of smaller diameter tubing (1.6 mm) was used to connect the inlet of 

the first chamber to the reservoir bottle using a Luer lock. The tubing was 

mounted on a peristaltic pump roller enabling the transfer of the media from 

the reservoir bottle to the chambers in a circulatory flow system (Figure 8A). 

Dimensions and materials of different compartments of the Quasi Vivo QV500 

system are shown in Table 3.  

Cells cultured in 3D as ACMs were allowed to settle for 48 hours before being 

transferred to the Quasi Vivo QV500 chamber. The flow of media was 

generated using a Masterflex peristaltic pump housed in the 37oC, 5% v/v CO2, 

humidified incubator (Figure 8C). The pump produced a pulsatile-laminar-

unidirectional flow of the media in the Quasi Vivo circuit at various flow rates. 

However, other variables including number of chambers, the diameter and 

length of the tubing, the position of chambers and reservoir in relation to the 

pump and the type of pump, may affect the actual flow rates in the system. 

Hence, the system was calibrated for every new design and flow rate to ensure 

the flow rate is correct. The calibration process is described in section 2.2.1.4 
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Chamber width  15 mm internal 

Chamber depth 
10 mm from culture surface to top of chamber 
base 

Materials 
Chamber: PDMS; Tubing: Tygon; Luers & 
reservoir bottle: polypropylene 

Overall dimensions 23 mm height x 37 mm diameter 

Diameter of tubing Inlet: 1.6 mm; Outlet: 2.4 mm 

Volume of chamber 2 mL 

Table 3. Specification of Quasi Vivo® system 

The suppliers of the Quasi Vivo system (Kirkstall U.K.) estimated that a flow 

rate of 550 µL/min corresponds to an interstitial fluid pressure, IFP, of 1.1 mm 

Hg (personal communication to T. Azimi. This IFP is consistent with the 

pressure in normal breast tissue. Four one-way Luer check-valves, female-

male styrene acrylonitrile (SAN) with silicone diaphragm (Cole-Parmer, U.K.) 

were used to restrict the flow and consequently increase the pressure inside 

the chambers to 19 mmHg (Figure 8B). These valves that are referred to 'flow 

restrictors', they were biocompatible and meet the USP Class VI/ISO 10993 

specifications. 
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2.2.1.4  Calibration of the Quasi Vivo system 

 

The Masterflex peristaltic pump used in this study was used initially. First, in a 

series configuration, the two chambers were filled with sterile PBS buffer and 

the pump was allowed to flow. After the air bubbles were expelled from the 

system the liquid output was collected from the final chamber over a minute 

and weighed. This procedure was repeated three times and the mean average 

value indicated the flow rate (µl min-1) of the liquid in the system. Using this 

method, the flow rate was measured and adjusted according to the experiment 

undertaken, varying the pump speed, with and without flow restrictor(s).  

2.2.2 Immunostaining  

 

Cells seeded in 2D and 3D (ACMs) were immunostained to determine cell 

invasion pattern and expression of specific proteins including HER2 and 

vimentin at cellular level. The protocol used for immune staining cells in 2D 

had been optimised previously in Dr. Dwek’s lab. ACMs were stained using 

the optimised protocol kindly provided by Judith Pape from UCL.  

 

2.2.2.1  Immunostaining of cells in 2D (monolayer) 

 

Cells were grown in 6-well plates (2D) for a week in order to keep the growth 

conditions as close as possible to cells grown in 3D. After the cells reached 

70-80% confluency, they were washed with PBS and fixed for 30 minutes in 

10% V/V formalin in PBS (pH 7.4). Formalin was washed away, and PBS was 

added to each well. The cells were left in the fridge (4 oC) until they were used 

for immunostaining. Before starting immunostaining, process PBS was 

removed and 5% BSA in PBS (blocking solution) was added. The plate gently 

was incubated rocking at room temperature for 30 minutes. The wells were 

washed with PBS for 5 minutes (twice and gently rocking). Then primary 
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antibody was diluted in PBS by following the manufacturer instruction. Primary 

antibodies and their optimum concentration used are listed in table 4. The 

diluted primary antibody was added to the wells and incubated gently rocking 

at room temperature for 1 hour or in cold room overnight.  Then wells were 

washed three times for 5 minutes in PBS buffer gently rocking. 

Cells were incubated with secondary fluorescent labelled antibody: goat anti-

rabbit IgG (Alexa Fluor 488) at the final concentration of 10 µg/mL in PBS at 

room temperature and for an hour while gently rocking. From this step onward, 

the ACM was housed under aluminium foil to prevent the Alexa Fluor quench-

ing. Cells were washed with PBS three times for 5 minutes. In order to coun-

terstain the nuclei, To-Pro-3 dye or DAPI was used. Before using To-Pro-3, in 

order to remove RNA in the cytosol, cells were incubated with ribonuclease A 

(Sigma, U.K.) at the concentration of 100 µg/mL at room temperature for 20 

minutes. Then wells were washed with PBS twice for 5 minutes and incubated 

with To-Pro-3 (Life Technology, USA) at 1 µM in PBS at room temperature, 

gently rocking for 20 minutes. Then wells were washed three times for 5 

minutes in PBS. For the negative control, the addition of primary antibody was 

omitted and all other steps in the protocol was applied. 

 

Antibody Concentration Supplier 

Goat anti-rabbit IgG 

(Alexa Fluor 488) 

10 µg/mL Abcam 

Anti-ErbB2  1.228 µg/mL Abcam 

Anti-vimentin Dilution: 1/100 Cell Signalling 

Technology 

Table 4. Antibodies used in immunostaining processes.   
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2.2.2.2   Immunostaining of cells in 3D (ACM) 

 

Cells grown in 3D in 24-well plates were washed three times with PBS and 

fixed in 4% w/v formaldehyde for 30 minutes. ACMs were permeabilised with 

1% w/v BSA, 0.2% v/v Triton in PBS at room temperature for 1 hour and 

washed with PBS three times for 5 minutes. The primary antibody was diluted 

to the same concentration used in 2D staining in 1% w/v BSA, 0.2% v/v Triton 

in PBS and was applied to the ACM and incubated at 4 oC overnight. The 

following day the ACMs were equilibrated to room temperature for 1 hour and 

washed three times with PBS, each wash for 5 minutes. The secondary 

antibody: goat anti-rabbit IgG, Alexa Fluor 488 was prepared in 1% w/v BSA, 

0.2% v/v Triton in PBS at the same concentration used for the 2D 

immunostaining and allowed to incubate for 2.5 hour at room temperature. The 

rest of the experiment was undertaken under aluminium foil to avoid Alexa 

Fluor quenching. The ACMs were washed three times with PBS for 5 minutes 

each and the nuclei of the cells stained with DAPI. 

 

2.2.3 Harvesting cancer cells for gene and protein analysis 

 

MDA-MB231 and SKBR3 cells cultured in 2D monolayers were washed with 

PBS and detached from the culture surface using trypsin-EDTA 10X (Sigma, 

U.K.) for 30 - 60 seconds. Since the spheroids were not attached to the surface 

and were floating in the well, trypsin-EDTA treatment was not needed and 

spheroids of 5 wells were pooled together in a Falcon tube. 10 mL media (high 

glucose DMEM) was added to the cells and was centrifuged in a Falcon tube 

at 1500 RPM for 5 minutes. To remove all the phenol-red dye from the DMEM 

the cell pellet was re-suspended in 3 mL PBS and re-centrifuged at 1500 RPM 

for 5 minutes, the PBS was removed, and the cell pellet was either stored at -

80 oC or used for RNA extraction and/or protein extraction straight away. 
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To harvest cells cultured in ACMs, firstly, the ACMs were treated with 200 

units/mL collagenase I (Gibco, U.K.) in HBSS buffer (450 µL) for each ACM) 

for 60 minutes in a plate shaker incubator (Stuart, U.K.). When the collagen 

had solubilised, the mixture was centrifuged at 1700 rcf for 5 minutes and the 

cell pellet used for the RNA extraction or for the Western blot analysis pur-

poses. 

2.2.4 Cell lysate preparation for SDS-PAGE 

 

The cells harvested from 2D cell cultures and ACMs (as described in section 

2.2.3) were lysed using the mixture of RIPA buffer (Sigma, U.K.) and 10% v/v 

protease inhibitor cocktail (Sigma, U.K.). The number of cells cultured in 3D 

was 50,000 cells per ACM and for each experiment only two ACMs were used 

(since only two quasi vivo chambers were used in each run). Therefore, in 

order to increase the protein concentration only 100 µL of RIPA buffer and 

proteinase A mixture was added to the two pooled ACM. The cells cultured in 

2D (~106 cells) were lysed using 500 µL RIPA buffer mixture. Cells were mixed 

with RIPA buffer and protease Inhibitor by pipetting and maintained on iced 

water for 15 minutes. The resulting cell lysate was centrifuged at 13,000 RPM 

at 4 oC for 15 minutes. The supernatant was carefully collected in a new sterile 

tube and stored at -80 oC until use. 

2.2.5 Bicinchoninic acid (BCA) Protein assay 

 

The protein concentration of cell lysates obtained from the cells cultured under 

different growth conditions was estimated using the BCA kit (Thermofisher 

Scientific, USA). The assay was performed by following the instructions 

provided by manufacturer. In brief, a working solution was prepared by mixing 

50 parts of reagent A (containing sodium carbonate, sodium bicarbonate, 

bicinchoninic acid and sodium tartrate in 0.1M sodium hydroxide) and 1 part 

reagent B (containing 4% cupric sulphate). A set of protein standards (range 
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= 125- 2000 µg/mL) was prepared by serial dilution of bovine serum albumin 

(BSA) standard solution at a stock solution concentration of 2 mg/mL provided 

by the manufacturer. For microplate-based procedures, 200 µL working 

solution and 10 µL of sample (standard/cell lysate/RIPA buffer) were added to 

each well and mixed thoroughly on a plate shaker for 30 seconds. Since RIPA 

buffer had been used for lysing the cells, it was added into the blank well. The 

plate was covered and incubated at 37 oC for 30 minutes after which the plate 

was allowed to cool to room temperature and the absorbance read at 562 nm 

(Spectrostar, BMG LabTech, Germany). A standard curve was prepared, and 

the equation of the line used to calculate protein concentration, using the 

absorbance values of the lysate samples (Appendix 2). 

2.2.6 SDS polyacrylamide gel electrophoresis (PAGE) 

 

SDS-PAGE was firstly introduced by Ulrich K. Laemmli in 1970. The technique 

was used to separate proteins in the cell lysates. A Mini-protein 

electrophoresis system (Bio-Rad Laboratories, U.K.) was used for these 

experiments. The reagents used for two gels with gel dimensions 7.0 x 8.3 cm 

(H x W); 1 mm thickness are shown in Table 5. 

The ingredients of resolving and stacking gels were mixed according to the 

proportions shown in Table 5.  A set of clean glass plates and spacers (1 mm 

thickness) was assembled in a gel holder on a casting stand. After checking 

the system for leaking and being assured that system is properly sealed, the 

10% w/v ammonium persulphate and TEMED were quickly added to the 

resolving gel mixture. 2.5 mL of the gel mixture was poured in the space 

between the glass plates, overlaid with water and left to polymerise for 15 

minutes.  The water was poured off and 4% stacking gel was prepared with 

the same procedure and poured on top of the polymerised resolving gel. A 1 

mm comb was inserted between the glass plates in order to form the wells for 

loading the samples. After the gel was polymerised, the comb was removed, 

and wells were washed with water. Then gel was assembled into the running 
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module, placed in the tank, and top and bottom of gel was covered with 

running buffer (Tris base 14.4 g, glycine 3.03 g and SDS 1 g). 

The cell lysate samples were mixed with Laemmli sample buffer (2X) (Bio-

Rad) in 1:1 ratio, heated for 5 minutes at 100 oC, centrifuged briefly and loaded 

on the gel. 10 µL of protein standard (Bio-Rad, U.K.) was also loaded on the 

gel to estimate the size of bands after detection step. The gel was electro-

phoresed for 120 minutes at 110 V. Two gels were run for each analysis, one 

to evaluate SDS-PAGE protein separation and the other used for Western 

blotting. 

 

Stock solution 10% Resolving gel  4% Stacking gel 

30% Acrylamide/Bis 

Acrylamide 

 

4 mL 0.5 mL 

1.M Tris-HCl (pH 8.8) 2.5 mL - 

MilliQ water 3.3 mL 2.1 mL 

10% SDS 100 µL 30 µL 

0.5M Tris HCl (pH 6.8) - 0.380 

Before pouring the gel 

10% Ammonium per-

sulphate 

100 µL 30 µL 

TEMED 4 µL 3 µL 

Table 5. Quantity of reagents used for SDS-PAGE 

2.2.7 Coomassie Brilliant Blue staining of protein gels 

 

After SDS-PAGE, protein bands were visualised by staining the gel with 

0.025% w/v Coomassie Blue R-250 in 10% v/v acetic acid overnight, and de-
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stained in a mixture of H2O, methanol, and acetic acid in a ratio of 50/40/10 

(v/v/v).  

2.2.8 Western Blotting (wet blot) 

 

Western blotting was performed using the method initially developed by 

Towbin et al. (1979). However, some modifications were made in the 

procedures. A Mini Trans-Blot Cell (Bio-Rad, U.K.) was used for this 

experiment. For each gel, one piece of nitrocellulose membrane (Thermo 

Scientific, USA), two pre-cut Western blotting filter papers (Thermo Scientific), 

and two fibre pads were soaked in the transfer buffer and assembled into a 

cassette in a correct orientation and order (providing the movement of proteins 

from gel to the nitrocellulose blot). The cassette was inserted inside an 

electrode module and was placed in the buffer tank along with an ice cooling 

unit (stored in -20 oC). The buffer tank was filled with transfer buffer (25 mM 

Tris, 0.2 mM Glycine, 20% v/v methanol, pH 8.3). The protein transfer was 

performed at 100 V for 2 hours at 4 oC (cold room). 

After the Western blotting step, in order to ensure the proteins had been 

transferred successfully, the nitrocellulose membrane (blot) was removed from 

the cassette and stained in 0.1% w/v Ponceau S 5% v/v acetic acid (Sigma, 

U.K.) for 2 minutes. Then the membrane was washed quickly with water for 4-

5 minutes. In the case of primary antibodies (HER2, β-actin and GAPDH) from 

Abcam company, the blot was blocked using 5% w/v BSA in PBST buffer 

(0.1% Tween 20 in PBS) for 1 hour at room temperature, while for the primary 

antibodies supplied by Cell Signalling Technology (CST), 5% w/v milk protein 

PBST was recommended by the manufacturer. After blocking, the blot was 

washed with PBST buffer three times for 5 minutes and incubated in the 

dilution of primary antibody recommended by the manufacturer in a 5% w/v 

BSA in PBST at 4 oC, gently rocking overnight. The blot was washed three 

times for 5 minutes each with 15 mL with PBST and incubated with the loading 

control (in this study anti-GAPDH and anti-beta Actin antibodies (Abcam, U.K.) 

for 1.5 hour at room temperature. The blot was washed three times for 5 
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minutes each with 15 mL with PBST. The blot was incubated with secondary 

antibody (Goat anti-rabbit IgG conjugated with HRP) diluted (1/5000) in 5% 

w/v skimmed milk powder in PBST (if the primary ab was from CST) or 5% w/v 

BSA in PBST (if the primary ab was from Abcam) for 1 hour, gently rocking at 

room temperature. The blot was washed three times for 5 minutes each with 

15 mL with PBST. Before starting the detection procedure, the blots were 

stored in PBS to avoid dehydration. The enhanced chemiluminescent (ECL) 

detection system (Thermofisher, USA) was used to detect the antibody-protein 

binding. Super Signal West Femto Trial Kit (Thermo scientific, USA) was used 

for this purpose. A working solution was prepared by mixing 1:1 ratio of the 

two reagents included in the kit (Luminol/Enhancer and Stable Peroxide 

Buffer). The mixture was added on the blot and incubated for 5 minutes. The 

remaining solution was absorbed by blue tissue and the blot was visualised 

using the Biospectrum Imaging System called UVP camera.  

 

2.2.9  Gene expression analysis 

 

For studying gene expression levels in the samples using qPCR method, ini-

tially cells were collected as a pellet, RNA was extracted, and mRNA was re-

verse transcribed into complementary DNA (cDNA).   

 

2.2.9.1  RNA extraction  

 

The cells cultured under different conditions were harvested with the 

procedures described previously in section 2.2.3. Total RNA was extracted 

using RNeasy Micro kit (Qiagen, Germany) according to the manufacturer’s 

instructions. In brief, 350 µL buffer RLT was added to the cell pellet and 

homogenized by pipetting. One volume of 70% v/v ethanol was added to the 

lysate and mixed well by pipetting. The mixture was transferred to a RNeasy 
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MinElute spin column (included in the kit and stored at 4 oC) and centrifuging 

for 15 secs at 13,000 RPM. The flow-through was discarded and 350 µL buffer 

RW1 was added to the column, centrifuging for 15 secs at 13,000 RPM. The 

flow-through was discarded and a mixture containing 10 µL of DNase I stock 

solution and 70 µL of buffer RDD (both included in the kit) was added directly 

to the RNeasy MinElute spin column membrane. The column was placed on 

the bench top at room temperature for 15 minutes. 350 μL buffer RW1 was 

added to the column and centrifuged for 15 sec at 13,000 RPM. The collection 

tube was discarded, and the column was housed in a new 2 mL collection 

tube. 500 μL Buffer RPE was added to the column and centrifuged for 15 sec 

at 13,000 RPM. The flow-through was discarded and 500 μL of previously 

prepared 80% v/v ethanol was added to the column. The column was 

centrifuged for 2 minutes at 13,000 RPM.  The collection tube was discarded, 

and column was placed in a new 2 mL collection tube. The column was 

centrifuged for 5 min to dry the membrane. The flow-through and collection 

tube were discarded, and column was placed in a new sterile 1.5 mL collection 

tube. 20 μL RNase-free water was added directly to the centre of the spin 

column membrane. The spin column was centrifuged for 1 min at 13,000 RPM. 

All steps were performed using a Pico 17 centrifuge (Thermo scientific, USA) 

and at room temperature.  

 

2.2.9.2  Evaluation of RNA integrity and purity 

 

The concentration of total RNA was measured using a Nanodrop spectropho-

tometer (Thermofisher Scientific, USA) at 260/280 nm. The RNA integrity was 

evaluated by separation of the RNA using a 1% w/v agarose gel prepared in-

house; 0.5 g agarose in 50 mL TBE buffer (10.8 g Tris, 5.5 g boric acid and 4 

mL 0.5 M NaEDTA, pH 8.0 in 1 litre water). RNA samples were mixed with 6 

X loading buffer (BioLabs, U.K.) and 6 µL of the mixture was loaded on the 

gel. 7 µL of 1Kb DNA ladder (BioLabs, U.K.) was used to estimate the base 

pair size of separated bands. The gel was placed in an electrophoresis tank 
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(Bio-Rad, U.K.) filled with TBE buffer and electrophoresed at 120 V for 1 hour 

with the Gel Red dye system and visualised using UV light (Appendix 3).  

 

2.2.9.3  Reverse transcription of mRNA to complementary 

DNA (cDNA) 

 

The mRNA was reverse transcribed into complementary DNA (cDNA) using 

the QuantiTect Reverse Transcription Kit (Qiagen, Germany) according to the 

manufacturer’s instructions. Briefly, 1 µg RNA was used for the preparation of 

each of the cDNA libraries. In the case of samples with lower amounts of RNA, 

500 ng RNA was used. In an Eppendorf tube, the RNA was mixed with 2 µL 

of gDNA (genomic DNA) wipe-out reagent and the volume were adjusted to 

14 µL with RNase free water. The mixture was incubated on a dry bath (Bio-

Rad, U.K.) at 42 oC for 2 minutes. A mixture of 1 µL reverse transcriptase (RT) 

enzyme, 4 µL of buffer and 1 µL of primer mix was prepared and added to the 

tube containing RNA, mixed by pipetting and incubated at 42 oC for 15 

minutes. To stop the reaction (deactivating the RT enzyme), the tube was in-

cubated at 95oC for 3 minutes. cDNA was stored at -80 oC freezer for future 

use.  

 

2.2.9.4  Quantitative polymerase reaction chain qPCR 

 

The cDNA library was used for the relative quantification of expression of EMT-

related genes including vimentin, snail1, cadherin-11, MMP14, apoptotic 

markers including Caspase 3, Caspase 9 and BCL2 and hypoxia marker 

including HIF1α and proliferation marker Ki67. The primer efficiency was 

assessed for each primer pair using the known concentrations of cDNA. The 

standard curve and R2 values obtained from primer efficiency tests. The 

reaction tubes were prepared using Quanti-Nova SYBR Green kit (Qiagen) 

and the manufacturer’s instructions were followed. In brief, for each reaction 
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tube with final volume of 20 µL, 4 µL of cDNA, containing 40 ng, 4 µL molecular 

biology grade water (Fisher Scientific, USA), 1 µL of 10 pmol/µL concentrated 

forward and reverse primer, and 4 µL of water was added into the sterile PCR 

tube. When the number of sample were more than 36, strip tubes 

(Qiagen,U.K.) were used. Negative controls were used in every run of qPCR: 

non-template control (NTC) and –RT controls (prepared by omitting the 

reverse transcriptase step during the preparation of the cDNA library). The 

tubes were placed in Rotor Gene real-time cycler (Qiagen, Germany) and 

cycling program was set as shown in Table 6. The sequences of the forward 

and reverse primers for the genes studied in this project are listed in table 7. 

The expression levels of GAPDH and β-actin, as an endogenous control gene, 

was measured in all samples in order to normalise input amounts. qPCR 

product sizes were estimated using the NCBI data base (Primer BLAST) and 

were assessed by separation of the PCR products using a 1.5% w/v agarose 

gel electrophoresis. 

 

 

 

 Step Time Temperature  

PCR initial heat activa-

tion 

2 min 95oC 

2 step cycling 

Denaturation 5 sec 95oC 

Combined anneal-

ing/extension 

10 sec 60oC 

 

Number of cycles 40 

Table 6. Cycling conditions for the qPCR analysis 
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Gene Forward primer Reverse primer 

Vimentin AGATGGCCCTTGACATTGAG CCAGAGGGAGTGAATCCAGA 

Snail1 TTTCTGGTTCTGTGTCCTCTGCC

T 

TGAGTCTGTCAGCCTTTGTCCTGT 

MMP14 ATAAACCCAAAAACCCCACC AAACACCCAATGCTTGTCTC 

Cadherin-

1 

CCCAGTACACGTTGATGCCT GACGTTCCCACATTGGACCT 

GAPDH GACAGTCAGCCGCATCTTCT TTAAAAGCAGCCCTGGTGAC 

Caspase-

3 

CAGCAAACCTCAGGGAAAC TCACCCAACCACCCTGGTCTT 

Caspase-

9 

GCTCTTCCTTTGTTCATCTCC GCTGCTTGCCTGTTAGTTC 

BCL2 TCGCCCTGTGGATGACTGA CAGAGACAGCCAGGAGAAATCA 

Ki67 CCACACTGTGTCGTCGTTTG CCGTGCGCTTATCCATTCA 

HIF-1α CGTTCCTTCGATCAGTTGTC TCAGTGGTGGCAGTGGTAGT 

β-Actin CTGTGGCATCCACGAAACTA CGCTCAGGAGGAGCAATG 

Table 7. List of primer sequences used for qRT-PCR. 

 

2.2.10 Alamar blue cell viability assay 

 

When cells are alive, they maintain a reducing environment in the cytosol. 

Resazurin (MW= 229 g/mol), the main compound in Alamar blue reagent is a 

non-toxic, cell permeable dye, blue in colour and non-fluorescent.  Following 

entry into the cells Alamar blue reagent is reduced to Resorufin, a red highly 

fluorescent component. MDA-MB231 and SKBR3 cells were cultured at a 

density of 5 x 104 cells per ACM/well for 3D culture and 3 x 104 for 2D 

monolayer. Metabolic activity was assessed over 14 days using the Alamar 
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blue assay according to the manufacturer’s protocol (Invitrogen). In brief, a 

10% v/v solution of Alamar blue in phenol and FBS free media was added to 

each well. For the negative control, the solution was also added to the wells 

without cells. Then plate was placed in the incubator at 37 oC, 5% CO2 for 4 

hours. The optimum incubation time and cell number had been determined 

beforehand. The absorbance values were measure using microplate reader 

(BMG, Labtech, U.K.) at a wavelength of 570 nm and 600 nm to calculate the 

percentage reduction of Alamar blue reagent using following formula:  

 

 

 

                                                                      (Eoxi600 × A570) – (Eoxi570 × A600)    

                                                                      (Ered570 × C600) – (Ered600 × C570) 

 

Eoxi 570 = molar extinction coefficient (E) of oxidized Alamar blue Reagent at 

570nm =80586 

Eoxi 600 = E of oxidized Alamar blue Reagent at 600nm = 117216 

A 570 = absorbance of test wells at 570nm 

A 600 = absorbance of test wells at 600nm 

Ered 570 = E of reduced Alamar blue at 570nm = 155677 

Ered 600 = E of reduced Alamar blue at 600nm = 14652 

C 570 = absorbance of negative control well (media, Alamar blue reagent, no 

cells) at 570nm 

C 600 = absorbance of negative control well (media, Alamar blue reagent, no 

cells) at 600nm 

 

 

X100 % Reduction of Alamar blue reagent = 



 

 

66 

 

2.2.11 Drug treatment in 2D and 3D 

 

SKBR3 and MDA-MB231 cells cultured in 2D and 3D conditions were treated 

with doxorubicin (a DNA-damaging chemotherapeutic drug, MW= 543 g/mol). 

For 2D monolayer experiments, first, cells were seeded at the density of 3 x 

104 and grown overnight. Cells were serum starved with 2% v/v FBS DMEM 

for 24 hours before treatment.  For 3D culture, 5 x 104 cells were seeded in 

each gel for the two cell lines. Cells were allowed to acclimatize to the new 

environment and to form cell clusters for 5 days prior to serum-starvation.  To 

find the best concentration of the drug for treatment, cells were treated with 

different concentrations of doxorubicin (20 µM, 10 µM, 5 µM, 1 µM and 0.5 

µM) diluted in serum-free DMEM for 48 hours. Controls were treated with 

serum free DMEM only. The Alamar blue assay was used to assess cell 

viability after doxorubicin treatment. In order to compare drug response in 

static and dynamic conditions the concentration of 5 µM doxorubicin was 

selected for the treatment of cells in ACM. For each experiment, eight ACMs 

were constructed and maintained in static conditions for five days to allow cells 

to acclimatise to the 3D environment. Then, four ACMs were transferred to the 

Quasi Vivo chambers, and a flow of 550 µL/min of media was applied. Two 

separate systems of two-chamber Quasi Vivo with separate reservoir bottles 

were used in order to keep untreated and treated ACMs separate and under 

the same flow condition.  For static condition, 2 ACMs were treated and 2 were 

kept as untreated controls.   

 Statistical Tests 

Statistical analysis was performed using paired t-test when comparing mRNA 

expression of the genes and the cell viability in different culture conditions. a 

P-value of less than 0.05 was considered statistically significant. At least three 

dynamic experiments and three static controls were performed per flow rate 

for viability tests. Origin Lab software was used for analysing all the data and 

calculation of P values.  
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CHAPTER 3              

RESULT 
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3.1 Viability of cancer cells cultured in 2D and 3D 

MDA-MB231 and SKBR3 cells were cultured as 2D monolayers and in 

collagen type-I as ACMs, as shown in Figure 9, below. Since the space for 

cells cultured in 2D was limited to the well surface, fewer cells were initially 

seeded in the 2D cultures (20,000 cells/well) compared to 3D cultures (50,000 

cells/ACM).  

The viability of MDA-MB231 and SKBR3 cells cultured in the ACM with 

collagen type-I was compared, over a 7-day time course, with cells from the 

same passage number of cells cultured in 2D monolayer. The percentage 

reduction of the Alamar blue reagent was calculated and considered as a 

surrogate measure of the percentage of cell viability, Figure 10. 

The metabolic activity of SKBR3 cells cultured in both 2D and 3D increased 

after 3 days. However, the rate of increase in metabolic activity was lower in 

3D cell culture compared with 2D (not statistically significant). After 7 days the 

metabolic activity of cells decreased from 95% to 70% when the cells were 

cultured in 3D but in contrast, the metabolic activity increased slightly from 

72% to 80% in cells grown in 2D culture. The results illustrated that SKBR3 

cells were less metabolically active when grown in 3D cell culture compared 

to 2D monolayers. In contrast, when MDA-MB231 cells were grown in 2D 

compared with 3D they exhibited a 75% and 30% increase respectively 

(P<0.05). The metabolic activity of MDA-MB231 cells continued to increase by 

21% in 2D and 7% in 3D conditions until day 7 (P< 0.05). Overall, the results 

demonstrated that MDA-MB231 and SKBR3 cells were less metabolically 

active when grown in 3D compared with 2D cell culture. 
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Figure 10. reduction of alamar blue reagent indicating the metabolic activity 
of MDA-MB231 and SKBR3 cells grown over a 7-day period in 2D or in 3D 
(ACM). Overall, the rate of increase in metabolic activity reduced in both cells 
grown in 3D compared to 2D. Mean average values ± SD (n=3).                                           
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3.2 Ki67 mRNA expression in 2D and 3D cell culture 

 

To check if the results obtained in the cell viability assays (described above) 

were associated with changes in cell proliferation or metabolic activity the 

expression levels of a cell proliferation marker, Ki67, was assessed. Relative 

quantification of Ki67 mRNA levels for cells grown in 2D monolayers, 3D 

cultures embedded in collagen type-I (ACM) and without collagen (spheroids) 

for a week, was assessed using qRT-PCR. Gene expression levels were 

calculated for all samples and the levels were compared to cells cultured in 2D 

(control). GAPDH was used as the internal reference gene to normalize the 

cycle threshold (Ct) values of the mRNA. Three biological repeats were 

conducted, Figure 11.  

A significant decrease in Ki67 mRNA expression-levels were observed in both 

cell lines when they were cultured in collagen type-I in 3D (ACM) compared to 

2D conditions, figure 11. MDA-MB231 cells exhibited a 0.33 fold and SKBR3 

cells exhibited a 0.35 fold reduction in Ki67 mRNAs level when grown as ACM 

compared with 2D cell culture. In contrast, when cells were grown as spheroids 

there was a significant increase in relative gene expression for Ki67: MDA-

MB231 exhibited a 1.5 fold increase and SKBR3 exhibited a 2 fold increase in 

Ki67 mRNA compared to the control 2D culture.  These results demonstrate 

that cancer cells proliferation is affected by the microenvironment and cells 

grown as spheroids express more Ki67 compared with cells grown in contact 

with collagen type-I. 
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Figure 11. Quantification of Ki67 mRNA expression level in MDA-MB231 and 
SKBR3 cells cultured in 3D (ACM) and 3D (spheroid) relative to 2D culture. 
Ki67 mRNA level increased significantly when cells were cultured as spheroids 
compared to 2D culture. However, its expression decreased significantly when 
cells were grown in collagen matrix (ACM). The experiment was performed 
using quantitative real time PCR technique and mRNA expression levels were 
normalised with GAPDH as reference ΔΔCT was calculated by subtracting 
ΔCT 2D culture (control) from ΔCT of each culture condition. R= 2^-ΔΔCT, 
corresponds to the fold change. Data presented is mean average ± SD (n = 
3). Asterisks denote significant differences in gene expression, paired 
Student’s t-test; ∗P <0.05; ∗∗P<0.01; ∗∗∗P<0.001 

3.3 Investigating hypoxia status by measuring HIF-1α mRNA 

expression 

To investigate if the growth of MDA-MB231 and SKBR3 cells in 3D culture 

format (with and without ECM) can generate a hypoxic environment, the 

mRNA expression level of HIF-1α was measured using qPCR.  

HIF-1α is an oxygen sensitive subunit of HIF-1 protein and its expression is 

induced under hypoxic conditions. The relative gene expression was 

calculated for all samples in relation to control samples (cells cultured in 2D) 
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with gene expression normalised to GAPDH as an internal reference gene. 

The data have been obtained from three experiments performed in triplicate, 

Figure 12, There was no significant difference between HIF-1α mRNA level of 

MDA-MB231 cells cultured in ACMs compared to that for cells cultured in 2D.  

HIF-1α levels in SKBR3 cells was significantly increased, in ACM conditions. 

However, growing both cell lines as spheroid resulted in significant increase in 

HIF-1α mRNA level with 7 fold and 37 fold increase in MDA-MB231 and 

SKBR3 cells respectively.  

 

Figure 12. Quantification of HIF-1α mRNA expression levels in MDA-MB231 
and SKBR3 cells cultured in ACM and spheroid relative to its level in 2D culture 
after a week. HIF-1α mRNA expression level increased significantly when both 
cells grown in spheroid format compard to 2D culture. Its expression also in-
creased significantly when SKBR3 cells cultured in collagen matrix. The ex-
periment was performed using quantitative real time PCR technique and 
mRNA expression levels were normalised with reference to GAPDH. ΔΔCT 
was calculated by subtracting ΔCT 2D culture (control) from ΔCT of each cul-
ture condition. R= 2^-ΔΔCT, corresponds to the fold change. Data presented 
are mean average values ± SD (n=3). Asterisks denote significant differences 
in gene expression, paired Student’s t-test; ∗P <0.05.   
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3.3 EMT mRNA expression levels in MDA-MB231 

 

In this part of study, the aim was to investigate if maintaining cells in 3D culture, 

ACM and spheroid, affects the EMT status of MDA-MB231 cells. Since 

expression levels of the selected EMT marker genes were too low in SKBR3 

cells, they were excluded from this part of study. Accordingly, qRT-PCR was 

used to assess the levels of mesenchymal cell markers: snail, Cadherin-11, 

Vimentin and MMP14 (MT1-MMP) for cells grown in 2D, and in 3D as ACM 

and spheroids for 7 days. Relative gene expression was determined for 

samples grown in 3D compared with those grown in 2D in relation to control 

samples (MDA-MB cells cultured in 2D) and corrected to Ct values of the 

housekeeping gene (GAPDH). The data has been obtained from three 

experiments performed in triplicate, Figure 13.  

Although the vimentin mRNA level was shown to be slightly higher in both 3D 

cultures compared to 2D condition, no significant difference between the 3 

samples (3 culture conditions) was evident.  

Different trends were observed in results obtained from analysing MMP14 and 

snail1 mRNA expression level in MDA-MB231 cells. Compared to 2D culture, 

MMP14 mRNA level increased significantly by 2 folds in ACM and 3 folds in 

spheroid. A significant elevation in snail1 expression was also observed, with 

2.7 (ACM) and 3 (spheroid) folds increase compared to 2D condition.  

In contrast, a significant reduction (75%) in Cadherin-11 mRNA level was 

observed in MDA-MB231 cells cultured in (ACM) compared to the cells in 2D. 

However, when cells were grown as spheroids, Cadherin-11 mRNA level 

increased significantly by 5-fold. These results suggest that 3D 

microenvironment may induce the expression of MMP14 and snail 1 genes 

regardless of ECM presence and that vimentin expression was less affected 

by altering the microenvironment. In contrast, different microenvironments and 

culture conditions may have an influence on cadherin11 expression.  
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Figure 13. Quantification of expression level of the genes involved in EMT in 
MDA-MB231 cells cultured in 3D (ACM) and 3D (spheroid) relative to 2D cul-
ture. The expression levels of MMP14, snail and cadherin 11 increased signif-
icantly when cells were grown as spheroid. The mRNA expression of MMP14 
and snail 1 also increased in cells grown in collagen matrix while cadherin 11 
expression showed a significant reduction compared to 2D condition. Vimentin 
mRNA expression increased slightly in 3D spheroid and ACM culture com-
pared to 2D condition (non-significant). The experiment was performed using 
quantitative real time PCR technique and mRNA expression levels were nor-
malised against GAPDH. ΔΔCT was calculated by subtracting ΔCT 2D culture 
(control) from ΔCT of each culture condition. R= 2^-ΔΔCT, corresponds to the 
fold change. Data presented are mean average values ± SD (n=3). 

3.4 Western blot analysis and immunostaining for vimentin 

protein in MDA-MB231 cells 

 

To confirm the results obtained from qRT-PCR analysis of vimentin in MDA-

MB231, the protein level was assessed using Western blot analysis. Since 

ACMs were selected as 3D model to be used in the next step of the project 

(applying flow), only ACM (using collagen type-I) were selected to be assessed 

in this regard. The MDA-MB231 cells cultured in 3D (ACM) conditions were 

harvested following collagenase treatment of the ACM as described in 2.2.3  
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The total protein concentration was measured using BCA assay and 10 µg of 

total protein from each sample (2D and 3D) was separated using SDS-PAGE 

and probed against vimentin antibodies after being transferred to nitrocellulose 

membrane. An anti-GAPDH antibody was used as a reference protein (loading 

control).  Secondary antibody conjugated with HRP was used to detect primary 

antibodies bonded to the proteins on nitrocellulose paper and an enhanced 

chemiluminescence reaction system was used to detect the bands.  

Additionally, immunostaining experiments were performed to confirm the 

presence and distribution of target proteins in cells. Since the cells were 

embedded in collagen, the staining protocol followed for cells in ACM was 

slightly different from that used for cells in 2D culture. 

The western blot result is shown in Figure 14(a). The vimentin protein was 

present in increased levels in MDA-MB231 cells grown in 3D (ACM) compared 

to those grown in 2D for 2 weeks. Since the anti-vimentin antibody used in 

western blot was against phosphorylated and non-phosphorylated types of 

vimentin, we assumed that the observed two bands correspond to 

phosphorylated and non-phosphorylated forms of vimentin. As can be seen in 

the Western blot result, the relative amounts of phosphorylated vimentin are 

increased in cells cultured in collagen (ACM) compared with cells cultured in 

2D. This result suggested that although vimentin mRNA levels in 2D and 3D 

culture were not predominantly different, more vimentin filaments become 

phosphorylated through post translational modifications when the cancer cells 

are grown as 3D (ACM). Vimentin phosphorylation can lead to disassembly of 

vimentin filaments which increases cancer cell motility and invasion (Yasui et 

al., 2001). Vimentin protein levels were confirmed by images obtained from 

immunostaining of MDA-MB231 cells cultured in 2D and 3D for 2 weeks. 

Although different fluorescent microscopes were used due to limitations in the 

confocal microscopy apparatus, the images of the cell aggregates show that 

MDA-MB231 cells express almost the same amount of vimentin protein in their 

cytosol as they present in 2D, Figure 14 (b). 
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3.5 Expression of HER2 in SKBR3 cells cultured in 2D and 3D 

 

As described earlier, SKBR3 cells are highly positive for HER2 expression. To 

investigate the impact of different culture conditions on the level of HER2 

mRNA expression, RNA was extracted from SKBR3 cells grown in 2D, ACM 

and spheroid for a week Then, cDNA was prepared using reverse 

transcriptase kit and qPCR reactions performed. Relative to the 2D culture 

method, the HER2 mRNA level was higher by 1.3- and 1.7-fold when cells 

were grown as ACM and spheroid respectively, Figure 15. However, only 

spheroid culture conditions resulted in a statistically significant difference in 

gene expression, (p<0.05). 

 

 

Figure 15. Quantification of HER2 mRNA expression in SKBR3 cells cultured 
as ACM and spheroid relative to its expression in cells grown in 2D condition. 
HER2 expression increased significantly in cells grown as spheroid and ACM 
compared to 2D culture. The experiment was performed using quantitative real 
time PCR and mRNA expression levels normalised against GAPDH. ΔΔCT 
was calculated by subtracting ΔCT 2D culture (control) from ΔCT of each cul-
ture condition. R= 2^-ΔΔCT, corresponds to the fold change. Data presented: 
mean average ±SD (n=3).        
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3.6 Western blot analysis and immunostaining of HER2 

protein in SKBR3 cells 

 

To confirm the results of the HER2 expression analysis obtained using the 

qPCR technique, the HER2 protein levels of SKBR3 cells cultured in 2D and 

3D (ACM) was measured using Western blot and immunostaining assays. For 

HER2 Western blot analysis, SKBR3 cells were not treated with collagenase 

to avoid loss of HER2 from cell membrane. The ACMs were disrupted using 

lysis buffer (RIPA buffer) added to two pooled ACMs and a homogeniser (T25 

digital Ultra-Turrax, U.K.). The anti-GAPDH antibody was used as loading 

control. The HER2 protein levels were slightly higher when the cells were 

cultured in collagen type-I as ACMs compared with 2D, Figure 16. However, 

the bands showing higher molecular weight indicate higher levels of 

phosphorylated HER2 compared to non-phosphorylated HER2 in both 2D and 

3D cultured cells.  

In addition to the results of the Western blot analysis, microscopy images 

taken following immunostaining of SKBR3 cells using the anti-HER2 antibody 

indicated the presence of HER2 protein in the cell membrane of the cells 

grown in 2D and cell aggregates that formed in 3D culture (Figure 16b).  
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Figure 16. HER2 protein level in SKBR3 cells grown in 2D and 3D (ACM) 
condition. Panel a) Western blot analysis of HER2 protein in SKBR3 cells 
grown as 2D or 3D (ACM) cultures. 10 µg protein was loaded in each well. 
GAPDH antibody was used as loading control. Panel b) Immunofluorescent 
staining of SKBR3 using HER2 antibody. Left picture, taken using confocal 
microscopy, shows SKBR3 cells grown in 2D and stained with To-Pro-3 (blue) 
and HER2 antibody (green). The middle image shows SKBR3 cell aggregates 
in ACM imaged using confocal microscope. The right image, taken using Zeiss 
Apo Tom 0.2 fluorescent microscope, shows SKBR3 cells grown in ACM and 
stained with DAPI (blue) and anti-HER2 antibody (green). The images 
indicated the presence of HER2 protein in SKBR3 cells cultured in 2D and 3D 
collagen matrix. Representative images taken from n=2 experiments imaged 
in triplicate.      
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3.7 mRNA expression of apoptosis-related genes 

 

To investigate if apoptotic changes occurred in MDA-MB231 and SKBR3 cells 

cultured in 3D (ACM), qPCR analysis was performed focusing on a panel of 

three apoptosis related genes including caspase 3, caspase 9 and BCL2. The 

transcriptional expression levels of BCL2, an anti-apoptosis factor, was 

significantly upregulated in MDA-MB231 cells grown in ACM, with a 5-fold 

increase compared to 2D conditions, Figure 17. However, no significant 

difference was observed in the mRNA expression levels of the proapoptotic 

markers caspase -3 and caspase -9 when MDA-MB231 cells were cultured in 

3D.  There was a reduction in the mRNA level of these proapoptotic genes in 

SKBR3 cells cultured in 3D (ACM) while a significant 1.4-fold increase was 

observed in BCL2 mRNA levels was observed in these cells.  These results 

suggest that 3D collagen microenvironment do not induce the expression of 

pro-apoptotic markers in SKBR3 and MDA-MB231 cells. However, this 

environment may be associated with upregulation of the anti-apoptotic marker, 

BCL2. 

 

 

 

 



 

 

82 

 

 

 

Figure 17. Relative quantification of apoptosis related genes in MDA-MB231 
and SKBR3 cells cultured in 2D and 3D. The results indicated that BCL2 anti-
apoptotic gene was upregulated in both cells when they were grown in 3D 
(ACM) condition compared to 2D condition. Transcriptional expression of 
indicated genes was measured by real-time qPCR. mRNA expression levels 
were normalised against GAPDH. ΔΔCT was calculated by subtracting ΔCT 
2D culture (control) from ΔCT of each culture condition. R= 2^-ΔΔCT, 
corresponds to the fold change. Data were presented are mean average ± SD 
(n=3)           
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3.8 Efficacy of doxorubicin in 2D and 3D culture 

 

To investigate if 3D culture and the microenvironment surrounding the cancer 

cells affected the cytotoxicity of doxorubicin, viability of the cells cultured in 2D 

and 3D (ACM) was measured after doxorubicin treatment using Alamar blue 

assay. To find out the appropriate concentration of doxorubicin for treating 

breast cancer cells in the next phase of study (comparing static and dynamic 

culture conditions), cells grown in 2D and 3D culture were treated with different 

concentrations of doxorubicin.   

MDA-MB231 cells were insensitive to lower concentrations of doxorubicin (0.1 

µM and 0.5 µM) in both culture conditions while they responded to 1 µM 

doxorubicin only in 2D culture. However, when MDA-MB231 cells were grown 

in 3D conditions they were significantly less sensitive to doxorubicin at 

concentrations of 5 µM and 10 µM compared to those grown in 2D, with 

increase in cell viability from 30% to 70% in concentration of 5 µM and from 

28% to 65% in concentration of 10 µM, Figure 18. SKBR3 cells grown in 2D, 

showed a dose dependant decrease in cell viability in response to doxorubicin 

treatment, Figure 18. As observed with the MDA-MB231 cells, SKBR3 cells 

showed least sensitivity to lower concentrations (0.1 µM and 0.5 µM) of 

doxorubicin.  However, SKBR3 cells grown in both 2D and 3D, appeared to 

responsd to doxorubicin at concentrations of 5µM and 10µM. The viability of 

the cells treated with 5 µM doxorubicin appeared to be significantly (2.3 fold, 

p<0.01) greater in the cells grown in 3D compared to those in 2D. Also, at 

concentration of 10 µM, the percent viability in SKBR3 cells grown in 3D 

culture appeared to be significantly (~1.6-fold, P <0.01) higher than those 

grown in 2D monolayer format.   

Collectively, the results obtained from this part of project showed that both cell 

lines appeared to be more resistant to doxorubicin when cells cultured in ECM 

in 3D culture compared to 2D culture. 
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Figure 18. The cytotoxic effect of doxorubicin on MDA-MB231 and SKBR3 
cells cultured in 2D and 3D. Both cell types showed less sensitivity to specific 
concentrations of doxorubicin when they were grown in 3D collagen matrix 
(ACM) compared to 2D condition. Three wells were assessed for each 
concentration. Data were presented as mean ± SD (n = 3) 
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3.9 Cell aggregates and invasion bodies formed in static and 

flow/pressure conditions 

 

The cancer cells were grown in collagen type-I using RAFT system (ACM) and 

were maintained in static and flow/pressure conditions for two weeks (MDA-

MB231) and one week (SKBR3). The formation of cell aggregates and 

invasion bodies were monitored using light microscopy and fluorescent 

microscopy (by staining only nuclei). To observe the number of cells in each 

aggregate, the nuclei of the cells in ACMs were stained with DAPI and imaged 

by the Apo Tom 0.2 microscope. Figure 19 shows a monochrome image of 

DAPI staining of the ACMs of both cell lines in static and flow/pressure 

conditions. As can be seen in Figure 19, left panel, from observing the nuclei 

of the MDA-MB231 ACMs, they formed more structured mass-shaped clusters 

whilst a grape-like morphology was adopted by the cells cultured under flow 

and pressure.  Also, flow/pressure was associated with lower number of cells 

in MDA-MB231 cell aggregates compared to static condition. 

When comparing the overall distribution of cancer cells in ACMs maintained in 

static and dynamic condition for a month, MDA-MB231 cells were dispersed 

more evenly over the ACM area while the shape of the invasion bodies -

protrusion of cancer cells from the centre of ACM to the surrounding collagen 

- were more organised in static conditions, whereas in the presence of flow 

and pressure, cell protrusion was disorganised, and the edges were more 

jagged. In the case of SKBR3, no difference between the ACMs was noticed.  

The size of SKBR3 cell aggregates and the number of cells in each cluster 

were not different in ACMs maintained in static and flow/pressure Figure 19, 

right panel. Also, comparing the two cell lines, SKBR3 cells formed smaller 

aggregates compared to MDA-MB231 cells. Also, the same distribution of 

SKBR3 cells in ACMs maintained in static and flow/pressure conditions was 

observed after a week. Overall, these results suggest that different breast 

cancer cells may react to changes in the fluid dynamics within their 

microenvironment in a different manner.  
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3.10 Comparing cell viability of cancer cells in static and 

flow/ pressure 

To investigate the effect of flow and pressure on cell viability of cancer cells, 

MDA-MB231 and SKBR3 cells cultured in 3D RAFT system (ACMs) were 

maintained under static and flow/ pressure (flow of 550 µL/min and pressure 

of ~19 mmHg) conditions for 14 (MDA-MB231) and 7 (SKBR3) days. Two 

ACMs were used for each condition. For the cells grown under static 

conditions, half of the media was replaced with fresh media every other day 

and for those grown in flow, this was done every 4 days due to the higher 

volume of the media (20 mL) that needed to run the Quasi Vivo system. Cell 

viability was measured using Alamar blue assay at three-time points: a day 

after constructing the ACMs (day 1), day 7 and 14 (for MDA-MB231 cells only).  

As shown in Figure 21, the viability of MDA-MB231 cells maintained under 

flow/ pressure appeared to be less than those maintained in the static 

condition over a 14-days period. On the first day, all ACMs showed the same 

level of cell viability indicating that the cell density was the same in all ACMs 

before putting them under different conditions (static and flow + pressure).  

After 7 days, the viability of the cells in static condition increased by 50% while 

those grown in the flow /pressure condition, increased by only 15%, indicating 

a significant decrease in cell viability in flow/pressure system (P <0.05). 

However, the same increase gradient was observed in both conditions 

between 7th and 14th days, with only a 3.2% increase for both conditions. 

Overall, MDA-MB231 cells exhibited a 30% decrease in cell viability when 

cultured in flow/ pressure compared to static condition. 
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Figure 21. The effect of fluid flow and pressure on cell viability when cells are 
grown in 3D under static and flow conditions, measured by Alamar blue assay.  
Upper graph, MDA-MB231 cells grown over a 14-day, bottom graph, SKBR3 
grown over a 7-day period. Both cell types were less metabolically active in 
the presence of flow and pressure compared to static condition. Data 
presented are mean average ± SD (n=3). 
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Since the cellular viability of SKBR3 cells grown in 3D and flow + pressure 

conditions decreased considerably after a week, the Alamar blue assay was 

performed only on days 1 and 7. Four ACMs were formed using RAFT system 

and 2 ACMs were allocated to each condition. Cell viability was measured at 

day 1 after seeding was slightly different in each condition.  

Cells grown under the static conditions demonstrated a 20% increase in cell 

viability while those cultured under flow/ pressure exhibited no increase in cell 

viability, but surprisingly their viability fell by 58% compared to first day. In 

general, these results indicate that SKBR3 cells cultured in 3D (ACMs) and 

flow condition are significantly (P <0.05) less viable compared to those grown 

in 3D/static condition.  

 

3.11 Ki67 mRNA expression level in the cancer cells cultured 

in static and dynamic conditions 

 

Metabolic (oxidation-reduction) reactions maintain a reduced environment in 

the  cell’s cytosol which can reduce Alamar blue reagent and change its colour 

from blue to pink. Given this fact, any change in percentage of reduction of 

Alamar blue reagent can be either due to alteration in cell proliferation and 

growth or changes in the metabolic activity of the cells themselves. To identify 

if cells cultured under static and flow/pressure conditions differ in terms of cell 

proliferation, Ki67 expression levels were measured using qPCR.  In both 

conditions, 3D static and flow/pressure, cells exhibited lower expression levels 

of Ki67 compared to when they were cultured on 2D surfaces (Appendix 4). 

However, comparing static and flow/pressure conditions, there was a 

significant (P<0.01) increase in Ki67 mRNA expression levels in the cells (both 

cell lines) maintained in flow/pressure compared to those grown in static 

condition. Figure 22  The Ki67 expression level increased by 1.31 and 1.33 

fold in MDA-MB231 and SKBR3 cells respectively, when they were grown 

under the flow/pressure condition compared to the static condition. These 
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results indicated that the dynamic environment (flow/pressure) increased 

expression of proliferation markers in MDA-MB231 and SKBR3 breast cancer 

cell lines.  Also, these results indicate that the decrease in metabolic activity, 

which was found in previous Alamar blue assay is not due to lower proliferation 

rate in cells cultured in flow but likely due to lower rate in metabolic reactions 

themselves.   

 

 

 

 

Figure 22. Relative quantification of Ki67 gene expression levels in MDA-
MB231 and SKBR3 cells cultured in static and flow/pressure conditions. Ki67 
mRNA level of both cell types increased significantly in the presence of flow 
and pressure compared to static condition. ΔΔCT was calculated by 
subtracting ΔCT 2D culture (control) from ΔCT of each culture condition. R= 
2^-ΔΔCT, corresponds to the fold change. Data is mean average ± SD (n=3). 
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3.12 Hypoxia status of the cells grown in 3D/static and 

3D/dynamic conditions  

 

To investigate if flow and pressure might generate hypoxic conditions in cancer 

cells grown in 3D scaffolds (ACM), HIF-1α mRNA expression levels were 

measured in MDA-MB231 and SKBR3 cells grown in 3D and maintained under 

three different conditions: static, flow (150 µl/min) and flow/pressure (550 

µl/min, ~19mmHg), Figure 23. The R (fold change) (Schmittgen and Livak, 

2008), was calculated by considering cells cultured in static condition as the 

control group. A significant increase in expression of HIF1-α mRNA was 

observed in cells cultured in flow condition (2.2 fold) compared to those 

cultured in static condition. However, when ACMs were maintained under flow/ 

pressure conditions, there was no significant difference in HIF1-α expression. 

A similar pattern was observed in SKBR3 cells cultured in the different 

conditions. Flow was associated with a significant increase (1.8 fold, P <0.05) 

in HIF-1α gene expression whereas flow and pressure resulted in no 

significant difference in expression of this gene compared to the static 

condition. These results suggest that cells cultured under flow rate (of 150 

µL/min) may be under more hypoxic conditions compared to those cultured in 

the higher flow rate sof 550 µl/min + pressure (~19 mmHg). 
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Figure 23. Relative quantification of HIF-1α mRNA expression levels in MDA-
MB231 cells cultured in 3D static, 3D flow and 3D flow + pressure after 2 
weeks. HIF-1α expression increased significantly in flow condition compared 
to static condition however it remained unchanged in flow + pressure. The 
experiment was performed using quantitative real time PCR and mRNA 
expression levels were normalised against GAPDH. ΔΔCT was calculated by 
subtracting ΔCT static culture (control) from ΔCT of the other culture 
conditions. R= 2^-ΔΔCT, corresponds to the fold change. Data presented are 
mean average ± SD (n = 3). 
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3.13 EMT marker expression in MDA-MB231 cultured in static 

and dynamic conditions 

 

Having defined the effect of 3D culture and cell-ECM contacts on expression 

of mesenchymal markers in MDA-MB231 cells (section 3.5), the effect of flow 

and pressure on expression of these markers in MDA-MB231 cells cultured in 

3D (ACM) was evaluated. Six ACMs were constructed in 24-well plates and 

maintained at 37oC with 5% CO2 in static condition for one day. On day 2, two 

ACMs were kept in the static condition, two ACMs were transferred to flow 

(150 µL/min) and two ACMs were transferred to flow/pressure (550 µL/min & 

~19 mmHg) culture conditions.  After two weeks, the cells in all ACMs were 

collected and cDNA was prepared from extracted RNA. Cells grown in static 

were considered as control samples. Equal amounts of cDNA was used for 

qPCR analysis of the genes in all conditions.  

The 2D culture was considered as control and relative gene expression was 

calculated. There was generally an increase in gene expression for Vimentin, 

MMP14 and snail1 in MDA-MB231 cells cultured in 3D and maintained in all 

three conditions (static, flow and flow/pressure) relative to cells grown in 

conventional 2D monolayer culture. The only exception observed was the 

reduction of vimentin (40%) mRNA level in the cells cultured in flow/pressure. 

However, there was a 1.6 fold increase in its expression level when the ACMs 

maintained under flow of 150 µl/min (Appendix 5) As it was also shown in 

previous section (3.4) there was no significant increase in vimentin mRNA 

level when they grew in 3D/static compared to 2D condition. Figure 24 shows 

the mRNA expression of the three genes for MDA-MB231 cells grown in the 

dynamic condition relative to static condition. Vimentin expression increased 

by 1.7-fold (P<0.05) in the presence of flow and decreased by 0.7 (P<0.05) 

fold when flow/pressure was applied.  Analysis of MMP14 mRNA level in MDA-

MB231 cells cultured in flow and flow/pressure indicated a 1.5-fold increase in 

both conditions compared to static. These results show that presence of fluid 

flow and pressure in the microenvironment of MDA-MB231 cell growth, result 

in elevated expression of MMP14. Like vimentin and MMP14, snail 1 mRNA 
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expression level increased when MDA-MB231 cells were grown in flow 

compared to when grown in static conditions, with 2.5- fold increase (P<0.01). 

However, flow/pressure conditions appeared to have no effect on snail1 

mRNA expression level compared to static conditions. 

 

 

 

Figure 24. Relative quantification of vimentin, MMP14 and snail1 mRNA 
expression levels in MDA-MB231 cells cultured in 3D/static, 3D/flow and 
3D/flow/pressure after 2 weeks. The experiment was performed using 
quantitative real time PCR technique and mRNA expression levels were 
normalised against GAPDH. ΔΔCT was calculated by subtracting ΔCT of static 
culture (control) from ΔCT of each culture condition. R= 2^-ΔΔCT, corresponds 
to the fold change. Data is mean average ± SD (n=3). 
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3.14 Western blot and immunostaining of vimentin protein in 

MDA-MB231 cells cultured in static and flow/pressure 

condition 

 

To confirm the results obtained from qRT-PCR analysis for vimentin in MDA-

MB231, the protein level of vimentin was assessed using Western blot. 

Additionally, immunostaining was performed to confirm the presence and the 

location of the proteins in the cells. The same staining protocol was followed 

for ACMs maintained in static and flow/pressure condition. The Western blot 

results of 2D and 3D conditions has been previously discussed in section 3.5. 

Figure 25 shows that the vimentin protein level significantly decreased in MDA-

MB231 cells grown in flow/pressure compared to those grown in static for 2 

weeks. Two bands correspond to phosphorylated and non-phosphorylated 

forms of vimentin. 

Vimentin protein level was confirmed by images obtained from 

immunostaining of MDA-MB231 cells cultured in static and flow/pressure for 2 

weeks. The images of cell aggregates showed that MDA-MB231 cells express 

lower amount of vimentin protein in their cytosol in static conditions (figure 

25b). Also, left panel of the images show that the amount of vimentin is lower 

in the edge of the ACMs (where the cells invade to the surrounding stroma) 

when they were maintained in flow/pressure compared to static.  
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3.15 Expression of HER2 in SKBR3 cells cultured in 3D/static 

and 3D/flow/pressure conditions 

 

As indicated in the previous chapter, HER2 mRNA level appeared to increase 

slightly as a result of cell-ECM interactions in the ACMs. To evaluate the effect 

of flow and pressure on HER2 expression of SKBR3 cells grown in ACM, 2 

ACMs were maintained under flow of 550 μL/min and pressure of ~19 mmHg 

in the Quasi Vivo system for a week. The cells were harvested from the ACMs 

and RNA was extracted to be used for cDNA preparation. SKBR3 cells with 

the same passage number cultured in 3D (ACM) were considered as control 

group in qRT-PCR analysis and calculation of R (fold change). As shown in 

Figure 26, HER2 mRNA expression increased by 2.4 fold in flow/pressure 

compared to static condition and the difference was significant (P <0.05).  The 

results suggest that SKBR3 cells express higher level of HER2 mRNA when 

they are grown under flow/ pressure conditions.  

 

Figure 26. Relative quantification of HER2 mRNA expression levels in SKBR3 
cells cultured in 3D static and 3D flow + pressure system after a week. The 
results indicated that HER2 expression upregulated in the presence of flow 
and pressure compared to static condition. The experiment was performed 
using quantitative real time PCR technique and mRNA expression levels were 
normalised against GAPDH. ΔΔCT was calculated by subtracting ΔCT static 
condition (control) from ΔCT of each culture condition. R= 2^-ΔΔCT, 
corresponds to the fold change. Data were presented as mean ± SD (n = 3). 
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3.16 Immunostaining of SKBR3 cells against HER2 antibody 

 

Following qRT-PCR analysis for HER2 gene expression, ACMs maintained in 

static and flow/pressure were stained using the anti-HER2 antibody, Figure 

27. The fluorescent images obtained from the ACMs showed there was no 

significant difference between HER2 protein level in SKBR3 cells grown in 

3D/static vs those in 3D/flow/pressure conditions.    

   

3.17 mRNA expression of apoptosis-related genes in breast 

cancer cells cultured in 3D/static and 3D/dynamic 

conditions 

 

Relative quantification of caspase -3, caspase-9 and BCL2 genes was 

performed to investigate the effect of flow and pressure on expression of 

apoptosis-related genes in SKBR3 and MDA-MB231 cells. There was a 60% 

reduction in the expression of caspase 3 MDA-MB231 cells cultured in flow 

and pressure compared to static condition. In contrast, flow/pressure condition 

was associated with a significant increase of 13 fold in the expression of 

caspase 9 (P <0.05). Although not significant, expression of BCL2 reduced by 

almost 80% in flow and pressure compared to static condition, Figure 28.   

A significant increase in mRNA levels of caspase -3 and -9 was observed in 

SKBR3 cells grown in flow/pressure condition with 3.5 and 2.5 fold higher 

expression, respectively, compared to static condition. Overall, the results 

obtained indicated that introducing flow and pressure on breast cancer cells 

increases the expression of pro-apoptotic markers (caspase-3 and caspase -

9) and reduces the expression of the anti-apoptotic marker BCL2.  
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Figure 28. Quantification of apoptosis related genes in MDA-MB231 (top 
graph) and SKBR3 cells (bottom graph) cultured in flow + pressure condition 
relative to its level in static condition.  Caspase 9 mRNA expression increased 
and BCL2 decreased in both cell types suggesting induction of apoptosis in 
the presence of flow and pressure. Transcriptional expression of indicated 
genes was measured by real-time qPCR. mRNA expression levels were 
normalised against GAPDH. ΔΔCT was calculated by subtracting ΔCT of static 
(control) from ΔCT of each culture condition. R= 2^-ΔΔCT, corresponds to the 
fold change. Data were presented as mean ± SD (n = 3). 
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3.18 Sensitivity to doxorubicin in breast cancer cells cultured 

in 3D/static and 3D/dynamic conditions 

 

Interstitial fluid flow (IFF) and interstitial fluid pressure (IFP) are also important 

components of the tumor microenvironment and is suggested to influence drug 

responsiveness of cancer cells. Cytotoxicity effect of doxorubicin on MDA-

MB231 and SKBR3 cells grown in collagen (ACM) and maintained in static or 

under different dynamic conditions in our Quasi Vivo system was assessed 

using the Alamar blue assay.  

As indicted in the methods section, all ACMs were prepared and maintained 

under static conditions for 5 days to allow cells to acclimatise to the new 

environment (collagen). On the day 5, the percentage of cell viability was 

measured in all ACMs to make sure the number of cells seeded in all ACMs 

was the same. Then, two ACMs were transferred to two Quasi Vivo systems 

(two in each system, one system for untreated controls and one system for 

treated ones). All ACMs including those in static and those in flow/pressure 

(550 µL/min and 19 mmHg) or only flow (150 µl/min) were serum starved for 

24 hours prior to being treated with 5 µM doxorubicin for 48 hours. A 5 µM 

concentration was selected according to the results obtained from the previous 

experiments on treating cells in 2D and 3D (ACM) using different 

concentrations of doxorubicin. The viability of the cells was measured using 

Alamar blue assay after 48 hours. 

The cytotoxicity of doxorubicin on the cells cultured in static condition was 

compared with those in flow/pressure conditions. Figure 29a indicates that low 

flow (150 µL/min) was associated with a 40% decrease in MDA-MB231 cell 

viability compared to the static condition (P <0.05). Likewise, treating MDA-

MB231 cells under flow and pressure conditions, maintained cell viability with 

a 36% enhancement compared to treating the cells in the static condition, 

figure 29b. As the result showed, figure 29c, SKBR3 cells were also more 

sensitive to doxorubicin treatment when they were grown in static compared 

to flow/pressure conditions. There was a 50% increase in cell viability when  
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they were grown in 3D/flow/pressure compared to 3D/static condition. These 

results suggest that flow and pressure in tumour microenvironment can affect 

cancer cell sensitivity to chemotherapeutic drugs. 

      

                                              

 



 

 

104 

 

                                                   

                   

                        

Figure 29. Comparing the cytotoxic effect of doxorubicin on MDA-MB231 and 
SKBR3 cells grown in different conditions. a) Viability of MDA-MB231 ACMs 
maintained in 3D low flow with those in 3D static condition. b) Comparing 
viability of MDA-MB231 cells grown in flow/pressure with those grown in static. 
c) SKBR3 responses to doxorubicin treatment in flow + pressure and static 
conditions. The results indicated that the cells are less sensitive to doxorubicin 
treatment when they were grown in the dynamic (flow and pressure) condition 
compared to static condition. Two wells were assessed for each concentration 
and the result is from three experiments. 

3.19 Expression of EMT markers in presence of flow and 

normal fibroblasts 

 

In the final part of the project, the effects of fibroblast cells grown in 3D 

scaffolds (ACMs) on induction of EMT in the cancer cells were investigated 

under flow condition. The fibroblasts grown in a 24-well plate format RAFT gel 

and a cancer ACM were nested in a series chamber format designed so that 

the fibroblast chamber was next to the reservoir bottle. Another Quasi Vivo 

system having only one chamber (ACM) was also run in parallel as control. 

The growth media was supplemented with 2.5% v/v FBS and a flow of 150 
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µL/min was applied for 7 days. The relative quantification of mRNA of EMT 

markers and Ki67 was performed using qRT-PCR. The initial results from a 

single experiment showed that MMP14 and snail mRNA expression increased 

in the presence of fibroblasts while the expression levels of vimentin and 

cadherin 11 slightly decreased and that the Ki67 mRNA level remained 

unchanged, Figure 30. However, these experiments require repeats for further 

validation. The results suggest that fibroblasts produce chemokines and 

factors that may affect the expression of the genes associated with ECM 

remodelling and mesenchymal phenotype.  

 

 

 

 

Figure 30. Relative quantification of vimentin, MMP14, snail1, cadherin 11 and 
Ki67 mRNA expression levels in MDA-MB231 cells cultured in 3D flow with 
and without fibroblasts after a week. MMP14 and snail1 mRNA expression 
increased in the presence of normal fibroblasts (NFs). The experiment was 
performed using quantitative real time PCR technique and mRNA expression 
levels were normalised against GAPDH. ΔΔCT was calculated by subtracting 
ΔCT of flow culture (control) from ΔCT of flow + NF condition. R= 2^-ΔΔCT, 
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corresponds to the fold change. Data is presented as single experiment 
performed in triplicate. 

3.20 MDA-MB231 invasion in ACMs with and without normal 

fibroblasts 

 

To investigate if addition of normal breast-derived fibroblasts can affect cancer 

cell invasion, the fibroblast cells were embedded in the stromal collagen in the 

RAFT system. Three ACMs were imaged for each condition using an inverted 

light microscope after 7 days, Figure 31.  

The images indicate an increase in the number of cancer cells invading from 

tumour mass to the stroma where normal fibroblasts exist. The migration dis-

tance of the MDA-MB231 cells increased in the presence of fibroblasts. The 

results suggest that even normal breast-derived fibroblasts may affect the in-

vasive behaviours of the cancer cells. 
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           CHAPTER 4 

DISCUSSION 
  



 

 

109 

 

4.1 Breast cancer cell viability, proliferation and apoptosis 

 

The effect of different components of tumour microenvironment on cancer cells 

behaviour has been intensely studied (Wang et al., 2017, Anari et al., 2018). 

Since cell proliferation and growth are major causative factors in the 

development and the progression of cancer changes in these parameters 

have most often been assessed and in particular when cancer cells were 

exposed to different microenvironments. In this study the viability and 

proliferation of breast cancer cells was evaluated whilst cells were cultured 

under different conditions including 2D, 3D, static and dynamic flow and 

flow/pressure. In addition, to better understand the underlying molecular 

mechanisms of the observed alterations in cell growth, the expression of a 

range of markers was also evaluated.  

4.1.1. Cellular viability in 3D cell culture compared with 

conventional 2D cell culture 

 

The first part of this project involved culturing cancer cells in a 3D system, 

leading to the key question: does 3D culture alter cell proliferation and 

viability? To address this fundamental question, researchers have conducted 

diverse projects using various 3D culture methods and cell types. In this 

project, cell viability, an indicator of cell proliferation/growth was evaluated by 

assessing the metabolic activity of breast cancer cells grown in 2D monolayers 

and in 3D as ACMs of 10% w/v collagen type-I. Amongst the diverse cell 

viability assays available to researchers, the Alamar blue assay was selected 

owing to the non-toxic properties of this reagent which has allowed the assay 

to be performed at different time points on the same cells. Unfortunately, the 

Alamar blue assay was not suited to the analysis of cancer cells grown as 3D 

spheroids due to lack of reproducibility caused by floating/unattached cells.  

Since different numbers of the cells were initially seeded in the 2D and 3D 

format the rate of increase and/or decrease in cell viability was compared 
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rather than the actual percentage cell viability at each time point.  MDA-MB231 

cells were grown for 14 days (data not shown) and SKBR3 were grown for 7 

days as a significant decrease in the viability of SKBR3 cells was observed at 

day 7. Reduced viability rates for MDA-MB231 and SKBR3 cells were 

observed over the 7-day period when the cells were grown in 3D ACM 

compared to 2D.  In the case of MDA-MB231 cells, there was a significant 

difference between day 1 and day 3 when cells were grown in 3D compared 

to 2D, P<0.05. Although the (rate of) increase in cell viability was reduced in 

both culture conditions between days 3 and 7 a significantly lower rate was 

observed in 3D compared to 2D. The viability of SKBR3 cells increased 

approximately with a similar rate between day 1 and day 3 and continued to 

increase slightly on day 7 in 2D while a significant reduction was observed in 

the 3D culture (P<0.05). To assess whether the observed changes in cell 

viability, as measured using the Alamar blue assay, were due to an alteration 

in the proliferation rate of the cells, their metabolic activity and cell death 

(particularly apoptosis) was determined by measurement of the expression 

levels of markers of these processes using qRT-PCR.   

Ki67 is a proliferation marker associated with dividing cells, its expression 

varies in different phases of the cell cycle, but it is not detected while cells are 

in cell cycle arrest; G0 (Juríková et al., 2016).  MDA-MB231 and SKBR3 cells 

exhibited reduced expression levels of Ki67 when they were cultured in the 3D 

ACM compared to 2D monolayer cultures. These results were consistent with 

the results of the Alamar blue cell viability assay and suggest that growing the 

cells in collagen type-I may exhibit a decrease in cell division and, therefore, 

cell proliferation. However, when the cells were cultured in the ultra-low 

attachment plates and allowed to form spheroids a significant increase in the 

Ki67 expression level was observed compared with 2D cell culture (P<0.05). 

This may be associated with increased cell-cell interactions, a feature of 

spheroid formation. The increase in Ki67 expression levels in SKBR3 might be 

associated with the HER2 positivity of this cell line as Ki67 expression has 

previously been shown to be elevated in HER2 enriched cells compared to the 

claudin-low breast cancer subtypes (Holliday and Speirs, 2011). Examination 
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of the levels of other cell-cycle-specific antigens including proliferating cell 

nuclear antigen (PCNA), and mini-chromosome maintenance (MCM) proteins, 

may help to further elucidate the molecular alterations involved in tumour cell 

growth and proliferation that occur when cells are cultured in 3D ACM. 

To further understand the behaviour of cells grown in 3D ACM the expression 

levels of genes coding for proteins involved in intrinsic and extrinsic apoptosis 

pathways were analysed. The pro-apoptotic markers caspase -3 and caspase 

-9 were expressed in the cancer cells at approximately the same level 

irrespective of whether cells were grown in 3D or in 2D cultures. The only 

exception was the significantly decreased expression-levels of caspase -3 

observed when SKBR3 cells cultured in 3D.  The expression-levels of the anti-

apoptosis marker BCL-2 of both cell lines was elevated when the cells were 

grown in 3D (ACM) compared to 2D. Taken together, the expression levels of 

BCL-2/caspase -3 and -9 suggest that the induction of apoptosis may not be 

the underlying mechanism associated with the reduction in cell viability 

described above. Analysis of a larger panel of genes and proteins involved in 

apoptotic processes in conjunction with other assays, for example annexin V 

and caspase 3/7 activity assays would serve to more fully understand the 

changes in cancer cell behaviour when grown in 3D.  

A further consideration when evaluating the data from the Alamar blue assays 

is that reduced cellular viability in the collagen scaffolds (ACMs) may result 

from a decrease in concentration of the Alamar blue reagent (dilution effect) 

when applied to the collagen matrix, and/or differential uptake of Alamar blue 

dye by cells which have formed clusters within the collagen. 

Previous studies using cancer cell lines have shown that cell proliferation rates 

depend on both the cell type and the ‘matrix’ supporting cell growth. In a study 

of endometrial cancer cell lines, RL95-2, KLE, EN-1078D, Chitcholtan et al 

(2013) reported a significant decrease in cell proliferation of cells cultured in 

reconstituted basement membrane (rBM) compared to 2D culture. Similarly, 

in another study, a panel of colorectal cancer cells including SW-480, HT-29, 

DLD-1, LOVO, CACO-2, COLO-205 and COLO-206F were grown in Matrigel 

(3D) and exhibited a decrease in cell viability, measured by MTT assay, and 
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proliferation, quantified by 5-bromo-2′-deoxyuridine, compared to the cells 

grown in 2D monolayers (Luca et al., 2013). Conversely, JIMT1 breast cancer 

cells exhibited a higher proliferation rate when cultured in Matrigel but slower 

growth in a synthetic, polyHEMA 3D scaffold compared with 2D culture 

(Hongisto et al., 2013). The viability of C4-2B prostate cancer cells grown in 

3D hyaluronic acid hydrogels was not found to be significantly different 

compared to those cultured in 2D, in a report utilising Trypan blue staining to 

count the total cells and the dead cells (Gurski et al., 2009). In a recent study, 

the proliferation of glioma cells lines, U87, U251 and HS683, was evaluated 

by determining the number of cells within collagen scaffolds and 2D 

monolayers over a 10-day time course. They concluded that cell growth 

declined in 3D collagen scaffolds compared to 2D culture and qRT-PCR and 

Western blot analysis revealed that the expression of Ki67 in the glioma cells 

reduced when they were grown in collagen scaffolds, compared with the 2D 

monolayer system (Jia et al., 2018).  

In summary, the results presented here indicate that the growth rate of MDA-

MB231 and SKBR3 cells collagen type-I matrix compared to growth as con-

ventional 2D monolayers. This reduction in cell growth was associated with 

decreased metabolic activity and/or arrest of cells in the G0 phase of the cell 

cycle but not apoptosis and cell death.   

4.1.2. Cellular viability and colony morphologies of the cells 

grown in 3D culture and in the presence of fluid flow 

 

Biophysical cues from the tumour microenvironment include the stiffness of 

the ECM, interstitial fluid flow and pressure and these have been shown to 

have broad-reaching effects on cancer cells (Broders-Bondon et al., 2018). In 

this part of the study, there were two aims: 1) to investigate if the cells 

remained viable under the new 3D/dynamic system which was developed in 

this project and 2) to compare viability and proliferation of the cells grown in 

dynamic systems with their counterparts in static conditions. Accordingly, 
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ACMs were maintained under different conditions: static, flow (150 µL/min) 

and flow/pressure (550 µL/min, ~19mmHg) and cell viability was measured 

using the Alamar blue assay as described above.  

Applying a flow of media over the cells cultured as 3D ACMs resulted in a 

lower cell viability at a flow rate of 550 µL/min and pressure of ~19mmHg 

compared to cells grown in equivalent but static conditions. After 7 days cell 

culture, the viability of MDA-MB231 cells was significantly reduced when 

grown under flow/pressure compared with static conditions.  However, 

between days 7 and 14 a similar (rate of) cell viability was observed, 

irrespective of the culture conditions. If this tumour model were to be used in 

drug cytotoxicity testing setting, cancer cells would need to be maintained in 

the flow model at least for 7 days prior to treatment in order to avoid 

misinterpretations of the results. 

The viability of MDA-MB231 cells exposed to a flow rate of 550 µL/min without 

the application of pressure was similar when compared with cells cultured 

under static conditions (Appendix 6). When a flow rate of 150 µL/min was 

applied over the ACMs of MDA-MB231 cells the viability was similar to that 

observed in flow/pressure (results not shown). These results indicate that 

applying pressure while using high flow rates, affects the cell viability in the 

same manner as a low flow rate.   

Although there have been several in vivo studies with tumour tissue derived 

samples and animal models of cancer in which fluid flow/pressure have been 

associated with tumour cell proliferation, invasion and metastasis (Leunig et 

al., 1992, Hofmann et al., 2006).  Only a few in vitro studies have demonstrated 

that cancer cell proliferation is altered in the presence of fluid flow or high 

interstitial fluid pressure. In an in vitro study conducted on SCC-4 and SCC-9 

human tongue squamous carcinoma cells, an increase in the extracellular 

pressure from 15 mm Hg to 30 mm Hg resulted in a significant elevation in cell 

proliferation and an alteration in expression levels of more than 1800 genes 

involved in invasion and metastasis (Yu et al., 2013).  In another report, 

increasing the hydrostatic pressure (20, 50, 100 mm Hg) applied to primary 

osteosarcoma (HOS, U2OS, SaOS2) and two metastatic tumour cell lines 
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(MCF7 breast, H1299 lung), using an Opticell–HPA cell culture system 

showed the cancer cells to react differently with regards to their proliferation 

rate(s) (DiResta et al., 2005). 

The results obtained during this project concur with previous research in which 

it has been reported that the application of sheer stresses to human cancer 

cells , two osteosarcoma and two oral squamous carcinoma, resulted in G2/M 

arrest and a decrease in cellular differentiation; with the mad signalling 

pathway recognised as the underlying molecular mechanism (Chang et al., 

2008). It would be intriguing to determine if the smad signalling pathway is 

activated in the MD-MB231 cells grown in the 3D ACM system utilised in this 

study. 

In contrast to the observations with the MDA-MB321 cells, when SKBR3 cells 

were used for the preparation of ACMs and maintained under flow and 

pressure conditions their viability reduced between day 1 and 7 whilst cells 

maintained under static conditions exhibited a significant increase in cell 

viability. This is the first report in which SKBR3 cells have been cultured under 

flow and pressure conditions; it may be the case that breast cancer cells 

behave differently depending upon their subtype, when maintained in 3D and 

under fluid flow and pressure.   

An investigation aimed at elucidating molecular mechanisms underlying the 

changes in cell viability evaluated the mRNA expression levels of the 

proliferation marker Ki67 and apoptosis-related markers caspase -3, caspase 

-9 and BCL2. MDA-MB231 and SKBR3 cells exhibited a significant increase 

in the expression level of Ki67 when grown under flow/pressure compared to 

static conditions. This report is the first of its kind to consider the effect of fluid 

flow and pressure on the Ki67 expression level in human cancer cells. The 

only previous report indicating an association between IFP and Ki67 found that 

lowering the IFP for at least 6 h significantly suppressed Ki67 expression in an 

epidermoid vulva carcinoma and lung carcinoma tumours of mice (Hofmann 

et al., 2007). It has been reported, however, that mechanical signals control 

the shuttling of Yes-associated protein (YAP) to the nucleus where it interacts 
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with transcriptional enhanced associate domain (TEAD) is associated with 

increased cellular proliferation (Aragona et al., 2013). 

To further understand the behaviour of cells maintained in a microenvironment 

incorporating fluid flow and pressure, the expression levels of key genes 

involved in intrinsic and extrinsic apoptosis pathways were analysed. In these 

experiments caspase -9 expression levels were significantly increased in 

MDA-MB231 cells grown under flow and pressure, while caspase -3 and BCL2 

expression levels were decreased (non-significant) compared with the static 

3D cell culture conditions. However, in the case of the SKBR3 cells, significant 

increase in expression levels of either caspase -3 or caspase -9 were 

observed.  This is the first time that the effect of flow/pressure on the 

expression of apoptotic markers of cancer cells has been reported.  

Microscopic analysis revealed that the cancer cells form colonies when they 

are maintained in 3D conditions - a feature common to cells cultured under 

both static and flow conditions as ACMs. MDA-MB231 cells grew in regular-

shaped colonies in static conditions but under flow/pressure they displayed a 

‘grape-like’ morphology. In contrast, SKBR-3 cells exhibited a ‘grape-like’ 

morphology irrespective of the condition: static or flow/pressure. The types of 

colonies formed when breast cancers are grown in 3D has been the subject of 

a number of studies. The morphology of colonies of a large panel of breast 

cancer cell lines grown in 3D Matrigel, alongside their gene expression profiles 

was studied. They classified the morphology into four categories; mass, round, 

stellate and grape-like. The gene expression pattern of the cells was strongly 

associated with colony morphology. However, it was reported that MDA-

MB231 cells exhibited a stellate morphology and SKBR3 cells a grape-like 

morphology (Kenny et al., 2007). Comparing the results of this study with theirs 

it can be concluded that: 1) a specific cancer cell line can adopt different colony 

morphologies in biochemically or biophysically different microenvironments 

and 2) changes in the gene expression profile of the cells grown under 

flow/pressure may cause the changes in colony morphology. 

In summary, the growth rate of MDA-MB231 and SKBR-3 cells was reduced 

when the cells were maintained under flow/pressure compared to when they 



 

 

116 

 

remained in static conditions. This reduction in cell growth was associated with 

reduced metabolic activity and increased apoptosis and was not associated 

with proliferative activity.  

4.2. Epithelial mesenchymal transition (EMT) of breast 

cancer cells grown under different conditions 

 

EMT is a process which occurs during tumour cell invasion and intravasation 

and the identification of factors that can trigger and sustain EMT is an 

important aim. EMT-related signalling pathways play an important role in 

epithelial-mesenchymal switching. Signalling pathways altered during EMT 

include TGF-β, Wnt/β-catenin and NF-κB. Transcription factors, for example 

STAT3 and snail, slug, Nanog, ZEB1 (Guaita et al., 2002a)  and microRNAs 

have also been implicated in this process (Ren et al., 2017). Factors in the 

tumour microenvironment have been shown to induce EMT in epithelial cancer 

cells leading to cellular invasion (and metastasis) (Yang et al., 2018). 

In this project, the effect of biochemical and biomechanical components of the 

tumour microenvironment on the expression of EMT-associated markers was 

investigated. 

4.2.1. EMT of breast cancer cells maintained in 3D cell 

cultures compared with conventional 2D cell culture 

 

In this part of the study the aim was to investigate whether growing MDA-

MB231 cells in 3D dense collagen type-I or in spheroids, rather than 

conventional 2D culture, would alter expression levels of mesenchymal 

markers. SKBR3 cells exhibited extremely low expression levels of vimentin, 

snail, N-cadherin, MMP14 and cadherin 11 when grown in either in 2D and 3D 

(data was not shown). 
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Relative quantification of the EMT markers vimentin, MMP14, snail and 

cadherin-11 was performed using qRT-PCR; an increase in the expression 

levels of these markers was observed when the cells were cultured in 3D as 

either ACM or spheroids. The exception was cadherin-11 expression-levels 

which were observed to decrease when MDA-MB231 cells were cultured in 

3D as ACM in type-I collagen.  

Vimentin is an important marker of EMT but a significant increase in the 

expression of this marker in most cells cultured in 3D compared with those in 

2D has not been reported. Further analysis of vimentin levels was undertaken 

by separation of proteins extracted from cells grown in both 2D and 3D by 

SDS-PAGE followed by Western blotting and by immunofluorescent, confocal, 

microscopy. MDA-MB231 cells grown in 2D and in 3D as ACM in collagen 

type-I did not exhibit a significant difference in overall levels of the vimentin 

protein. The Western blot analysis utilised a primary anti-vimentin antibody 

(D21H3, Cell Signalling Technology) raised against both the phosphorylated 

and non-phosphorylated forms of vimentin, accordingly, 2 bands were 

observed on the Western blots and whilst vimentin mRNA levels in 2D and 3D 

culture were not different, more of the vimentin filaments appeared 

phosphorylated when the cancer cells were grown in 3D as ACM.  

In contrast to the results obtained in this study, others have shown vimentin 

expression-levels to be increased when mammary epithelial cells were 

cultured in 3D collagen scaffolds or as spheroids. For example, the growth of 

the normal mammary epithelial cell line MCF 10A in 1-1.5 mg/mL collagen was 

associated with upregulation of vimentin gene-expression (Decarlo et al., 

2015). Another study utilising immunohistochemical methodology reported a 

significant elevation in vimentin levels when MCF7 cells were grown in 

spheroids compared to 2D culture (Herheliuk et al., 2016). Upregulation of the 

gene-expression and protein levels of vimentin were also reported when 

glioma cells were grown on collagen scaffolds with larger pore sizes (Jia et al., 

2018). Colorectal cancer cells HT29 and HTC116 were also cultured in the 

same collagen scaffold as the ACM used in this study. Western blot analysis 

showed increased levels of vimentin protein in both cell lines when cultured in 
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the ACM compared with 2D cell culture (Magdeldin et al., 2017). It should be 

noted that HT29, HTC116, MCF7, MCF-10A and glioma cells do not express 

high levels of vimentin in 2D cell culture in contrast to MDA-MB231 cells which 

constitutively express vimentin. The results obtained in this study, therefore, 

suggest that when cells already express relatively high levels of vimentin, 

those levels do not alter when the cells are grown in 3D but rather the 

phosphorylation status of vimentin may be affected by the culture conditions.  

 MMP14 is a membrane-type matrix metalloproteinase (synonym MT1-MMP) 

which paves the path for cancer cell migration by cleavage of ECM 

macromolecules including collagen type-I, type-II, type-III, laminin-1, laminin-

5, fibronectin and vitronectin (Itoh, 2006).  MMP14 expression-levels were 

increased significantly when MDA-MB231 cells were grown in 3D as either 

ACMs or spheroids, compared with 2D culture. These results suggest that 

MMP14 expression levels in MDA-MB231 cells is affected by the 3D 

microenvironment irrespective of the presence of macromolecules associated 

with the ECM, the significance of this paradoxical finding remains unclear. 

Currently there are few reports concerned with the effect of 3D culture on the 

levels of MMP14 in cancer cells, although a recent study showed a significant 

increase in MMP14 expression levels in human mammary fibroblasts grown in 

3D collagen scaffolds compared to those grown in 2D (Sung et al., 2013).  

As detailed above, signalling pathways and transcription factors are involved 

in EMT. Amongst the transcription factors activated, snail has emerged factor 

as an important modulator of EMT, principally via its inhibitory effect on E-

cadherin levels (Guaita et al., 2002b). However, snail also controls other 

factors that are involved in cancer cell survival and invasion. For example, 

snail has been shown to regulate the glycolytic switch (Warburg effect) 

repressing levels of fructose-1,6-biphosphatase (FBP1) in basal type breast 

cancer cells (Dong et al., 2013). This in turn may lead to increased production 

of reactive oxygen species (ROS) with genotoxic effects (Wang et al., 2013). 

In addition to modulating soluble factors of the tumour microenvironment which 

trigger signalling pathways involved in snail activation, ECM molecules, for 

example collagen and hyaluronic acid, affect snail induction. A recent study 
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has shown that 3D culture of ovarian cancer cells on collagen type-I scaffolds 

induced expression of snail and slug through co-activation of TGFβ and Wnt 

signalling pathways (Liu et al., 2018). Another study revealed that the growth 

of pancreatic ductal adenocarcinoma cells in 3D collagen gels induced snail 

expression. The same study reported that TGF-β type-I receptor and its 

downstream effector molecules, smad3 and smad4, were essential for 

induction of snail by collagen (Shields et al., 2011). Furthermore, snail 

expression-levels have emerged as important in the lymph node metastasis of 

MDA-MB-231 cells (Olmeda et al., 2007). However, to date, little is known 

about the effect of the collagen type-I matrix in the expression of snail in MDA-

MB231 cells. In this study, MDA-MB231 cells were grown on ultra-low 

attachment surfaces or were embedded in collagen type-I (ACM) - a significant 

increase in snail mRNA expression-levels was observed in cells cultured in 3D 

(as ACMs and spheroids) compared with cells grown in 2D monolayers - 

suggestive that stimulating factors other than collagen may exist in the 3D 

microenvironment of tumour cells which induce snail activation. These results 

concur with previous studies utilising other cancer cell lines (Shields et al., 

2011, Carey et al., 2017, Liu et al., 2018). 

The final EMT related marker evaluated in this study was cadherin-11. 

Cadherin 'switching' occurs during EMT, a phenomenon described during 

human embryonic development and also during tumour invasion and 

metastasis. This 'switching' results in weaker homotypic cadherin interactions 

and consequently facilitates cell migration and invasion (Theveneau and 

Mayor, 2012). Higher cadherin-11 gene expression-levels have been reported 

for cancer cell lines derived from bone and this has led researchers to 

investigate whether there is a correlation between upregulation of cadherin-11 

in certain cancers including some types of prostate and breast cancers, and 

bone metastases. It has been reported that MDA-MB231 cells from secondary 

tumours in bone express higher levels of cadherin-11 compared to MDA-

MB231 with those metastatic to the brain. They also demonstrated that MDA-

MB231 cells re-expressing cadherin-11 are more prone to metastasise to bone 

(Tamura et al., 2008). Transfection of the BT-20 breast cancer cell line with 
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cadherin-11 gave rise to a more invasive and motile phenotype compared to 

parental cells although they remained less motile than cells transfected with 

N- cadherin (Nieman et al., 1999). In this study, initially, qRT-PCR analysis 

was performed to evaluate the effect of cellular growth in the 3D 

microenvironment (collagen and spheroid) on mRNA expression-level of E 

and N-cadherin and cadherin 11. The results were consistent with those of 

Nieman et al. (1999): MDA-MB231 cells did not express E-cadherin and N-

cadherin (results not shown). Therefore, cadherin-11 expression of the cells 

grown in 3D was measured relative to those grown in 2D. The results showed 

that cadherin-11 mRNA expression decreased significantly in the cells grown 

in 3D scaffold while it increased significantly in the cells grown in the ultra-low 

attachment plates (spheroids). This observation suggests that MDA-MB231 

cells downregulate CDH11 gene upon exposure to collagen type-I, and that 

floating and unanchored MDA-MB231 cells express higher levels of cadherin-

11 mRNA compared to when they are attached to the surface of flask in 

conventional 2D culture method.  

 

4.2.2.  EMT of 3D cell cultures in the presence of fluid flow 

 

To date, little research has been conducted on the impact of fluid flow and 

pressure on the induction of EMT in cancer cells. In this part of the project, the 

aim was to investigate how mechanical stress generated from interstitial fluid 

flow and pressure may interact with biochemical signals arising from ECM to 

induce EMT in solid tumours. MDA-MB231 cells grown as ACMs were 

maintained under static, flow (150 µL/min) and flow/pressure (550 µL/min, ~19 

mmHg) for two weeks. The mRNA expression levels of vimentin, snail and 

MMP14 in flow and flow/pressure was measured relative to the levels when 

cells were grown in static conditions. MDA-MB231 cells exhibited increased 

levels of vimentin, MMP14 and snail in the presence of fluid flow of 150 µL/min 

compared to static conditions. In contrast, when cells were maintained under 
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flow/pressure (550 µL/min, ~19 mmHg) conditions, only the MMP14 mRNA 

expression-levels increased significantly, while vimentin expression-levels 

significantly decreased, and snail expression-levels remained unchanged. 

Further analysis of vimentin levels was undertaken by Western blotting and 

immunofluorescent confocal microscopy. The MDA-MB231 cells grown in 3D 

collagen as ACMs under flow/pressure exhibited a significant decrease protein 

levels of vimentin compared to those grown in static conditions. Images 

obtained following immunostaining of the MDA-MB231 cells cultured in static 

and flow/pressure for 2 weeks showed reduced levels of vimentin protein in 

the cell aggregates at the edges of ACMs, where the cells invade to the 

surrounding stroma, when maintained under flow/pressure compared to their 

counterparts grown under static conditions. The increased vimentin mRNA 

expression-levels when ACMs were maintained under lower flow (150 µL/min) 

and pressure (~ 1 mmHg) may reflect increased levels, or ‘pockets’, of 

hypoxia, this may be evaluated by assessment of the hypoxia-inducible factor 

α (HIF-1α). HIF-1α has been shown to be involved in induction of EMT in 

cancer cells. Increased levels of MMP14 mRNA expression in flow and 

flow/pressure suggest that matrix remodelling, an essential factor for cellular 

invasion, is induced in the presence of flow and pressure. Overall, when MDA-

MB231 cells were cultured in 3D, irrespective of the conditions (static, flow and 

flow/pressure) increased expression-levels of vimentin, MMP14 and snail 

were observed, compared to cells maintained as 2D monolayers. The only 

exception was the reduction of vimentin mRNA expression levels of cells 

cultured in the flow/pressure system, discussed above. These results indicate 

that addition of complexity to the cell culture system perturbs expression-levels 

of genes involved in EMT. 

This is the first time the effect of fluid flow and pressure on the expression of 

EMT-associated genes of breast cancer cells grown in a dense collagen matrix 

has been reported. Other studies have investigated the impact of 

microenvironment on breast and ovarian cancer cells behaviour using different 

types of 3D engineered tumour models and flow systems. For example, it has 

been shown that applying different IFP profiles alters the expression levels of 
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EMT markers in MDA -MB231 cells embedded in 4 mg/mL collagen type-I. 3D 

cultures accommodated within chambers of PDMS were subjected to a 

hydrostatic pressure gradient between the core and the tip of cell aggregates 

in a model incorporating hypotension (Ptip>Pbase), hypertension (Ptip<Pbase) and 

control pressure (Ptip=Pbase) conditions generated by changing the height of 

the cell growth medium in the reservoirs connected to either sides of the 

channel. Hypotensive conditions promoted cellular invasion and vimentin/snail 

expression-levels were significantly increased compared to the other IFP 

profiles; epithelial markers (E-cadherin and keratin-8) were also upregulated 

under hypotension (Piotrowski-Daspit et al., 2016).  Rizvi et al. have 

maintained the ovarian cancer cell line OVCAR5 in a Matrigel-containing 

microfluidic system under continuous flow (2.0 µL/min) for 7 days: E-cadherin 

levels were down-regulated whilst vimentin and EGFR expression levels were 

upregulated under flow conditions compared to static 3D cell culture (Rizvi et 

al., 2013). Although the flow rate, pressure, ECM (both material and density) 

and the flow generating system used in our project were different from the 

previous studies, they all highlight the substantial roles of fluid dynamics in 

regulating EMT and which cells encounter under pathological and/ or 

physiological conditions.  

4.3. The effect of cell culture conditions on HIF-1α 

expression levels in breast cancer 

 

Since one of the objectives of this study was to develop a tumour model for 

drug discovery purposes and since increased amounts of HIF-1α have been 

associated with drug resistance mechanisms, the effect of different culture 

conditions on the expression of HIF-1α in MDA-MB231 and SKBR3 cells was 

evaluated using the qRT-PCR technique.   
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4.3.1. HIF-1α expression of breast cancer cells in 3D cell 

culture 

The effect of different 3D culture systems (ACM and spheroids) on HIF-1α 

expression was assessed. A slight increase in HIF-1α mRNA expression-

levels was observed when MDA-MB231 cells were cultured in collagen 

scaffolds compared to 2D culture, whereas a significant increase in HIF-1α 

was observed in cells grown on the ultra-low attachment plates (spheroids). 

However, in the case of SKBR3 cells, HIF-1α expression was significantly 

elevated in both types of 3D culture (ACMs and spheroids), although there 

was a greater elevation in spheroids than in ACMs compared to 2D culture. 

These results suggest 1) the 3D collagen model (ACM) was not associated 

with the generation of hypoxic conditions for MDA-MB231 cells, 2) MDA-

MB231 cells are less sensitive to oxygen-depletion when they are grown in the 

dense collagen scaffold compared to SKBR3 cells; 3) the cancer cells grown 

in the spheroid format are exposed to a lower oxygen gradient in the centre of 

the spheroid which affects the general amount of HIF-1α expression in all cells 

and/or 4) HIF-1α may be associated with the upregulation of the EMT markers 

including snail, MMP14 and cadherin 11 in the 3D spheroid system. Previous 

studies have reported an association between hypoxia and expression of EMT 

markers in tumour cells. For example, it has been demonstrated that hypoxia-

stabilised HIF-1α induces EMT through enhancing snail transcription in 

hepatocellular carcinoma cells (Zhang et al., 2013). It has also been reported 

that hypoxic conditions lead to an increase in the levels of HIF‑1α, N‑cadherin 

and vimentin, but repressed the expression of E‑cadherin and cytokeratin in 

pancreatic cancer cells (Zhu and Zhao, 2017).  

4.3.2. HIF-1α expression of 3D cell cultures in the presence of 

fluid flow 

 

Increased levels of IFP and hypoxia are a feature of the tumour 

microenvironment and have been shown to promote tumour cell invasion and 
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metastasis to local or distant sites (Finger and Giaccia, 2010). However, 

associations between tumour IFP and hypoxia have rarely been studied. In a 

study on human melanoma xenografts, tumours with high IFP (IFP >20 mm 

Hg) exhibited higher central hypoxic fraction compared to those with low IFP 

(Rofstad et al., 2014). The work reported in this thesis was concerned with the 

effect of fluid flow and pressure on HIF-1α expression-levels in tumour cells 

grown in 3D scaffolds (ACMs). HIF-1α mRNA expression was assessed to 

also understand the molecular alterations underlying induction of EMT (in 

MDA-MB231) and HER2 expression (in SKBR3) as well as drug resistance. 

The HIF-1α mRNA expression-levels were increased significantly in both cell 

lines in the presence of flow of 150 µL/min whilst, surprisingly, in the 

flow/pressure conditions (500 µL/min, ~19 mmHg) expression-levels remained 

nearly unchanged. These results suggest that lower flow rates generate a 

hypoxic condition in the bioreactor chamber while higher flow rate and 

pressure do not. Although the induction of hypoxia should be confirmed by 

other techniques, for example measurement of oxygen pressure inside the 

flow chamber and staining the cells with pimonidazole, (Varia et al., 1998), the 

results found during this study demonstrate the importance of assessing the 

hypoxia status of closed bioreactors and microfluidic systems used for the 

study of cancer cell behaviour and drug responsiveness under more 

physiologically relevant conditions. 

4.4. The effect of culture conditions on HER2 expression of 

SKBR3 cells 

 

HER2 overexpression has been reported in many types of malignancies 

particularly in breast and gastric cancers. HER2 overexpression occurs in 15-

20% of all breast cancer cases and is associated with poor prognosis and 

metastatic disease. Therefore, several HER2-targeting agents have been 

identified and established, including; Trastuzumab, Pertuzumab and Lapatinib 

(Nahta et al., 2004). Despite promising initial outcomes of these therapeutic 

agents for breast cancer patients, de novo and acquired resistance remains 
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the main complication in the clinic. Hence, further physiologically relevant in 

vitro tumour models are required to identify microenvironmental cues relevant 

to the drug discovery process.  Previous studies have shown that response to 

HER2 targeting drugs including Trastuzumab and Pertuzumab is highly 

dependent on whether cells are grown in 2D or 3D culture systems. For 

example, SKBR3 cells grown as 3D spheroids on Matrigel appeared to be 

more resistant to trastuzumab compared to those grown in a 2D monolayer 

system (Weigelt et al., 2010). It has been shown that HER2 overexpressing 

breast cancer cells stabilise HIF1α protein through PI3K and AKT pathway in 

nonhypoxic conditions (Laughner et al., 2001). Hence, in this study the HER2 

and HIF1α expression-levels of SKBR3 cancer cells cultured in 3D formats 

were compared with those grown in 2D monolayers.  

4.4.1.  HER2 expression of breast cancer cells in 3D cell 

culture 

 

In this study, we compared HER2 expression (at mRNA and protein level) for 

SKBR3 cells cultured in our 3D collagen engineered system (ACM) and 

spheroids relative to cells grown in the conventional 2D monolayer. A 

significant increase in HER2 mRNA expression level was observe for cells 

grown in 3D collagen and spheroids compared to 2D monolayers. The 

Western blot analysis showed a slight increase in the HER2 protein level of 

cells grown in 3D collagen (ACM) compared to those cultured in 2D. Similarly, 

(qualitative) analysis of confocal images also showed a slight increase in 

HER2 protein levels when SKBR3 cells were cultured in ACM compared to 

those grown in 2D monolayers. The results suggest that HER2 expression 

increases when the epithelial cancer cells aggregate spontaneously in an 

anchorage-independent manner without the addition of exogenous ECM. In 

turn, the increased cell-cell interactions during spheroid formation may trigger 

signals which induce HER2 expression. No alteration in total amounts of HER2 

protein levels was reported when SKBR3 cells were grown on polyHEMA 

coated (low attachment) plates. However, they found a significant increase in 
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phosphorylation of HER2 in 3D spheroids compared to 2D culture (Pickl and 

Ries, 2009). This may indicate that if our 3D model is going to be used in the 

future, one should consider the possible changes in the expression of HER2. 

Also, it may indicate that the necessity of considering ECM when Trastuzumab 

dosage and IC50 values are assessed in the drug discovery processes.  

 

HER2 expression of 3D cell cultures in the presence of fluid 

flow 

 

The analysis of HER2 levels is a diagnostic and prognostic tool used during 

the clinical management of breast cancer patients. HER2 levels are used to 

determine those patients likely to benefit from Trastuzumab (Herceptin) 

therapy. Targeted therapy using Trastuzumab (Herceptin) has been a gold 

standard therapy for treatment of HER2 positive breast cancer patients.  With 

the application of new in vitro tumour models, implementing mechanical 

aspects of the tumour microenvironment in drug discovery and personalised 

therapy, it is important to understand whether the target molecules and/or 

biomarkers themselves undergo conformational and/or transcriptional 

changes in according to the different microenvironments. Since the tumour 

model and flow system designed in this study might, in the future, be used to 

assess SKBR3 response to Trastuzumab an investigation into whether HER2 

levels are altered when cells are grown as ACM was undertaken. A further 

objective was to determine if an increase in the fluid flow and pressure affected 

the expression of HER2 in HER2 enriched breast cancer cells. This has been 

studied for the first time in this project and no previous research has been 

conducted in this area. The results showed that HER2 gene expression-levels 

increased significantly (P<0.05) when the cells were grown under flow + 

pressure compared to static conditions. HER2 levels were also investigated 

using protein and cells using confocal microscopy. Qualitative analysis of the 

microscopy images showed no increase in HER2 of cells cultured in flow + 

pressure compared to those grown in the static conditions. These results 
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suggest that if the in vitro tumour model and Quasi Vivo system used in this 

project were to be employed as a platform for testing HER2 targeting 

therapeutic agents, changes in the level of HER2 expression should be 

considered prior to treatment. The results showed that increased fluid flow and 

pressure in the tumour microenvironment is associated with an increase in the 

HER2 expression in breast cancer cells. 

4.5. Efficacy of doxorubicin under different culture 

conditions 

 

The five-year survival following breast cancer has increased from 

approximately 30% in the 1970s to 80% in 2016 (Cancer research UK, 2017). 

This has been a result of improved diagnosis and the development of many 

cancer treatments including chemotherapy, immunotherapy, hormone therapy 

and radiotherapy. Nevertheless, cancer remains a leading cause of death 

worldwide and there is a need to understand the treatment responses for 

individual cancer patients. It is also not uncommon for anti-cancer drugs which 

have demonstrated promise during the development phase in pre-clinical 

research to fail during the clinical trial phase. This failure, known as the attrition 

rate, is in part due to the intrinsic complexity and heterogeneity of tumours; 

features that are often difficult to recapitulate during the drug discovery phase.  

Since the 1970s, cancer cells have been cultured on 2D surfaces as 

monolayer cultures while biochemical and physical cues found in the TME 

have often been overlooked. The interaction between tumour cells and the 

microenvironment triggers reciprocal alterations in their structures and the 

physiological functions that support tumour growth and invasion, and the TME 

has been shown to affect cancer cell sensitivity and resistance to treatments 

(Giancotti and Ruoslahti, 1999).  

Conventional monolayer cultures (2D) are simplistic models for testing 

therapeutic drugs failing to reflect key aspects of tissue architecture. In 2D 

monolayer cell cultures the cancer cells are in contact only with peripheral 
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cells, adhering to a plastic or a glass surface, this results in a default apical-

basal polarity and cell shape which can alter cell function (Baker and Chen, 

2012), in contrast, when cells are cultured in 3D they have a greater surface 

area for cell-cell attachments and have been shown to have more contacts 

with neighbouring cells.  

When cancer cells are grown as 2D monolayers they are exposed to equal 

levels of oxygen, nutrients, waste products and therapeutic agents, whilst in 

vivo, a cancer cell mass would be exposed to the gradients of these 

components across the tumour, a phenomenon which can be recapitulated in 

3D cell culture models (Lin and Chang, 2008). 

In this project the effect of different microenvironmental conditions on cancer 

cell viability following treatment of the cells with chemotherapeutic drugs was 

assessed. Doxorubicin was chosen as it is used as a combination therapy for 

breast cancer treatment. MDA-M231 and SKBR3 cells were grown in the 

different culture conditions (2D, 3D static and dynamic) and were treated with 

doxorubicin hydrochloride. After 48 hours treatment, the viability of the cells 

was measured using the Alamar blue assay.  

4.5.1. Efficacy of doxorubicin when breast cancer cells are 

cultured in 3D 

 

Initially, the cytotoxic effect of different concentrations of doxorubicin on cells 

grown in 2D and 3D cultures was investigated. This experiment was also 

performed to optimise the concentration of doxorubicin to be used in 

subsequent experiments. In general, the Alamar blue assay results showed 

that cells cultured in 3D were less responsive to doxorubicin treatment 

compared to 2D, this was significant at the concentrations of 1 µM and 5 µM 

for cells treated in 3D compared 2D culture (P<0.01), figure 18. The increased 

resistance of cancer cells to the chemotherapeutic agent when they were 

grown in 3D compared with 2D may be attributed to limited drug diffusion 

through the collagen matrix; it is relevant to note that the molecular weight of 
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doxorubicin hydrochloride is 579.98 kDa which is greater than nutrients and/or 

Resazurin, the main constituent in the Alamar blue reagent. In addition, as 

reported above (section 3.3), SKBR3 cells exhibited a significant increase in 

HIF-1α mRNA expression in the 3D ACM system compared to conventional 

2D cell culture. HIF-1α has been shown to be associated with induction of 

genes associated with cellular survival (Ziello et al., 2007). Therefore, reduced 

drug responsiveness in SKBR3 cells grown in 3D (ACM) may be associated 

with increased expression of HIF-1α. Furthermore, the increased level of 

antiapoptotic marker BCL2 in both cell lines grown in 3D (ACM) compared to 

2D may also be associated with increased resistance to Doxorubicin 

treatment.  

In the case of MDA-MB231 cells, elevation in the expression of EMT markers 

MMP14 and snail may also have contributed to the decreased sensitivity to 

doxorubicin in 3D compared to 2D culture. These results are consistent with 

previous studies in which cancer cells were treated with chemotherapeutic 

drugs in 2D and 3D culture conditions. For example, it has been reported that 

the viability of human epithelial ovarian cancer cells OV-MZ-6 grown as 3D 

spheroids was 50% greater than the viability of 2D cell monolayers following 

the same level of exposure to Paclitaxel (Loessner et al., 2010). Another study 

showed that immortalized human cervical cells, HeLa, had lower toxic 

response to doxorubicin after 24h exposure when they were grown in collagen 

type-I compared to 2D monolayer culture (Casey et al., 2016). The sensitivity 

of colon cancer HT-119 cells to four standard anticancer drugs (melphalan, 5-

FU, oxaliplatin, and irinotecan) has been reported to be lower when the cells 

were grown in 3D culture compared to 2D monolayers (Karlsson et al., 2012). 

In this study, SKBR3 cells were found to be non-responsive to <1 µM 

doxorubicin when maintained as 2D cell culture whilst MDA-MB231 cells were 

sensitive to ≥0.1 µM. SKBR3 cells were, however, more sensitive to 

doxorubicin at concentrations of 5 µM and 10 µM compared to MDA-MB231 

cells treated with the same concentration. The greater sensitivity to 

doxorubicin may be attributable to the positive HER2 status of SKBR3 cells 

compared with MDA-MB231 cells which are HER2 negative. In a study of 
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n=220 breast cancer patients with tumours >2.5 cm diameter, three cycles of 

doxorubicin was found to be more effective for patients with HER2 positive 

tumours than HER2 negative patients (Campiglio et al., 2003). Collectively, 

the results obtained here indicate that conventional 2D monolayer cell culture 

methods lack fundamental microenvironmental cues as determining factors for 

drug responsiveness.  

 

 

4.5.2. Efficacy of doxorubicin when breast cancer cells were 

cultured in the presence of fluid flow 

 

Over the last two decades there has been an interest in the potential effect of 

increased IFF and IFP on efficacy of different cancer therapeutics. It has been 

argued that elevated IFF and IFP may be associated with treatment failure 

particularly when therapeutic agents are delivered systemically (Heldin et al., 

2004). High molecular-weight drugs such as biological, immunotherapy and 

nanoparticles are transported and delivered via the circulatory system by 

moving through the interstitial space by convection (i.e. carried by streaming 

fluid) whereas small molecules (<1 kDa) mainly diffuse from areas with high 

concentrations to the area with low concentration (Rippe and Haraldsson, 

1994). Increased IFP in the centre of the tumour and the sharp drop in IFP at 

the edge generates a high-pressure gradient at the periphery of the tumour. 

However, many modelling data also suggest that there is uniform high 

pressure over the majority of the tumour mass. Either of these phenomena 

may contribute to reduced uptake of therapeutic agents by the tumour cells 

and a non-uniform distribution of drugs in the tumour mass (Welter and Rieger, 

2013). A further important factor is the observation that anti-cancer drugs may 

be sequestered by the tumour cells or may bind to molecules in the 

extracellular matrix, hindering drug penetration deep into the tumour (Berk et 

al., 1997).  Increased IFP has been shown to be a significant barrier against 
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delivering therapeutic drugs such as chemotherapeutic agents into the centre 

of a tumour mass (Heldin et al., 2004). In another study, high IFP found to be 

associated with low diffusion of anti EpCAM MOC31 antibody into xenograft 

tumour models of HT29 colorectal cancer cells (Heine et al., 2012). Studies 

concerned with the role of IFP of tumours in the response of patients to cancer 

treatment have reported that decreasing IFP using Imatinib, an inhibitor of 

platelet-derived growth factor receptor, resulted in improved treatment 

response to chemotherapeutic drugs (Taxol and 5-FU) in mice bearing thyroid 

carcinoma tumours (Pietras et al., 2002).  

In this project the cytotoxic effects of doxorubicin on SKBR3 and MDA-MB231 

cells grown and treated under dynamic conditions was compared with its effect 

on cells treated under static conditions. The results showed a significant 

increase in the viability of the cells (survival) under dynamic conditions for both 

cell lines compared to static conditions. Sensitivity of MDA-MB321 cells to 

doxorubicin decreased significantly when cells were treated under 

flow/pressure or flow (150 µL/min) conditions compared to static condition. 

SKBR3 cells also exhibited significantly higher resistance to doxorubicin 

treatment under flow and pressure compared to static condition (P<0.05). The 

reduction of sensitivity to doxorubicin treatment in dynamic compared to the 

static conditions may be associated with various molecular events within the 

ECM or cancer cells themselves. For instance, flow and/or pressure may 

induce ECM matrix remodelling and alter collagen network deposition and/or 

stiffness resulting in stimulation of integrin signalling and cancer cell 

proliferation and survival (Paszek et al., 2005). 

Our findings are consistent with the results obtained in other studies. For 

example, MCF7 and MDA-MB231 cells exhibited much greater resistance to 

doxorubicin and paclitaxel when they were grown under flow compared to 

static conditions (Pradhan et al., 2018). In that study, the cancer cells 

encapsulated with BJ-5ta normal human foreskin immortalized fibroblasts 

within PEG-fibrinogen (PF) hydrogels and housed in a microfluidic chip and a 

continuous flow of (0.1 μL/min) was generated using syringe pump. 

Endothelial cells had also been lumenised in the microvasculature of the chips 
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prior to housing the cells and matrix inside the chamber to recapitulate 

vascular network surrounding the tumour. The 3D static condition contained 

the same components as the flow except for endothelial cells and dynamic 

flow (Pradhan et al., 2018). 

Overall, the results obtained in this study indicate 1) the necessity of 

incorporating other pathophysiological complexities into tumour models used 

in drug testing processes; 2) the importance of assessment of biophysical 

characteristics of the solid tumours before selecting the treatment regimen for 

a patient.   

4.6. Addition of fibroblasts to breast cancer cell cultures 

 

Fibroblasts are the main stromal cells in breast, prostate and pancreatic 

carcinoma (Alkasalias et al., 2018). During tumourigenesis, normal fibroblasts 

become activated and undergo a phenotypic modification and transform to 

cancer associated fibroblasts (CAFs). Although CAFs can originate from other 

types of cells including adipocytes, epithelial cells, endothelial cells (Zeisberg 

et al., 2007), bone marrow derived mesenchymal stem cells (Quante et al., 

2011), and hematopoietic stem cells, it has been shown that cancer cells 

induce the conversion of resident fibroblasts to CAFs by secreting cytokines.  

In turn, CAFs positively promote survival and proliferation of cancer cells by 

secreting growth factors and cytokines including CXCL12 (Orimo et al., 2005, 

Yu et al., 2014b), CCL7 (Jung et al., 2010), TGFβs (Zhuang et al., 2015), 

fibroblast growth factors (FGFs) (Bai et al., 2015), HGF (Tyan et al., 2011), 

periostin (Ratajczak-Wielgomas et al., 2016) and TN-C (O'Connell et al., 

2011). To date, the impact of fibroblasts on cancer cells has been studied 

either by various co-culture methods (2D and 3D) or by growing cancer cells 

on fibroblast conditioned medium.  In this study, normal fibroblasts were grown 

in collagen type-I (RAFT) and flow condition, while they were connected to 

cancer cells (ACMs) in a series set up in the Quasi Vivo system. This method 

has not been used in any previous study of fibroblast-cancer cell interaction. 
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This closed system allowed to mimic the paracrine signalling that occurs 

between cancer cells and fibroblasts. The aim was to investigate if normal 

breast-derived fibroblasts grown under flow conditions alter the expression of 

EMT related and proliferation-associated genes in the cancer cells. 

The initial qRT-PCR results for expression of EMT markers and Ki67 genes 

showed that mRNA expression levels of MMP14 and snail increased while 

vimentin and Ki67 remained unchanged and cadherin 11 decreased in MDA-

MB231 cell grown under flow in the presence of normal breast-derived 

fibroblasts. These findings suggest that normal fibroblasts may be converted 

to CAFs under flow condition and affect invasion of cancer cells by increasing 

the expression of matrix metalloproteinase.  

To investigate the effect of fibroblasts on invasion distance of cancer cells, 

fibroblasts were co-cultured with cancer cells in ACM, embedding fibroblasts 

in the stromal collagen surrounding the cancer cells. The initial images and 

qualitative analysis of invasion distances showed that MDA-MB231 cells 

invade over further distance when they are co-cultured with fibroblasts 

compared to those in the absence of fibroblasts. These findings suggest that 

normal fibroblasts increase cancer cell invasion to stroma. However, the 

signalling pathways underlying this phenomenon need to be further 

investigated.  
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Future perspectives  

 

In this project, a bioengineered tumour model was combined with a Quasi Vivo 

bioreactor system for the first time to produce a biomimetic breast tumour. The 

findings were encouraging, indicating that dynamic flow conditions modulate 

cancer cell behaviour and response to treatment. However, further 

investigations can be carried out in a number of different areas. Such future 

work might be considered in four broad areas: 

The first area would focus on further refinement of the bioengineered tumour 

model by addition of other biochemical components of tumour environment.  

The results indicated that dynamic flow conditions modulate cancer cell 

behaviour and response to treatment. However, apart from cancer cells, the 

biochemical phase of the tumour microenvironment is also affected by flow 

conditions. Therefore, addition of other biochemical components of the ECM 

including laminin, fibronectin and hyaluronic acid would serve to provide more 

complexity to the bioengineered 3D system and would better recapitulate the 

in vivo condition. In addition, to investigate the regulatory effects of stromal 

cells including fibroblasts (HDFs or CAFs) on inducing EMT and invasion of 

cancer cells in the presence or absence of flow and pressure, these cells can 

be added to the stromal collagen surrounding the cancer cells. Since 

immunotherapy is an emerging approach in cancer treatment, the immune 

cells including neutrophils, macrophages and lymphocytes could usefully be 

added to the stromal collagen to investigate the interplay between these cells 

and the cancer cells. Endothelial cells may also be added to stromal collagen 

to create a microvasculature network within the ACMs, enabling to study the 

interaction between endothelial cells and the cancer cells.  

The second phase would be to expand and validate the present tumour model 

using a larger panel of breast cancer cell lines and/or different types of cancer 

cells. Breast cancer subtypes are highly heterogenous and may behave 

differently in our bioengineered model and under flow condition(s). 

Furthermore, investigating how stem cells and cancer cells other than 
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epithelial cells behave and respond to treatment in the model would also open 

new avenues for creating a physiologically relevant model for studying cell 

behaviour(s).  

The third area would concentrate on various applications of this in vitro tumour 

model in cancer research. Primary renal carcinoma cells have been grown in 

RAFT culture system successfully (Prof. Loizidou, unpublished data). Primary 

cancer cells isolated from breast cancer patients might be usefully grown in 

this model and under the flow conditions. This would allow for drug 

responsiveness of the tumour cells isolated from each patient to be tested in 

the biomimetic microenvironment which ultimately would facilitate patient 

stratification, currently incorporating in clinical trials. 

Another application would be using the Quasi Vivo circuit system to provide a 

co-culture system where the cancer cells grown in 3D culture in one chamber 

connect to the other chamber containing cells from other organs which are 

most likely to be the sites of distant metastases. This approach might help to 

elucidate mechanisms underlying metastasis and might offer potential in terms 

of prediction of the potential likely site for distant metastasis for patients. 

The final priority for future work would be to investigate the molecular 

mechanisms and signalling pathways as well as matrix remodelling which may 

be induced under the flow and pressure condition used in this study. For 

example, changes in collagen orientations might be studied using scanning 

electron microscopy. An investigation into how tissue stiffness and flow 

modulate penetrance and delivery of drugs through 3D volumes, nanoparticle-

conjugated drugs with imaging capacities can be used. Mathematical 

modelling concentrating on developing prediction algorithms based on the 

physical characteristics of the drugs and the environmental parameters would 

also further develop our current tumour model. 
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Conclusion 

 

This study has provided evidence that cancer cells behave differently in 

response to changes in the tumour microenvironment.  Growing cancer cells 

in a more complex bioengineered tumour model containing components of 

tumour microenvironment including ECM and fluid flow and pressure resulted 

in a reduction of cell viability compared to conventional 2D culture. Molecular 

mechanisms underlying this reduction in cell viability include changes in 

proliferation and the apoptotic capacities of the cancer cells in the new 

microenvironment. The results indicated that biochemical and mechanical 

components of tumour microenvironment affect the expression of the genes 

involved in EMT of cancer cells. Growing breast cancer cells in a 3D format 

under flow conditions altered expression levels of genes related to hypoxia 

which might be due to differential distribution of oxygen in the more complex 

tumour model system developed during this project.  

A unique finding of this study has been the observation that when cells are 

cultured in 3D scaffolds, they adopt a different colony morphology under flow 

and pressure conditions compared to static conditions. The sensitivity of 

breast cancer cells to doxorubicin treatment decreased when the cells were 

maintained in 3D culture compared to 2D culture and in flow/pressure 

compared to static conditions.  

Collectively, the results obtained in this project indicate the substantial role of 

biochemical and mechanical cues of the tumour microenvironment on cancer 

cell behaviour and highlight the importance of incorporating complexity into in 

vitro tumour models used for studying cancer and used for preclinical phases 

of the drug discovery process.  
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Appendix 1 

 

 

Chemicals used in this project 

 

 

Chemical Company and country 

Tris base Sigma Aldrich 

Glycine Sigma Aldrich 

Methanol VWR 

Ethanol VWR 

Formaldehyde 4% w/v Sigma 

Tween 20 Fisher Scientific 

Sodium Dodecyl Sulphate (SDS) Sigma 

30% Acrylamide/Bis Sigma 

HCl Thermofisher 

TEMED Sigma 

HEPES buffer Sigma 

NaOH Thermofisher 

Hanks Balanced Salt Solution 

(HBSS) 

Sigma 

Triton X-114 Sigma 

Glycerol PROLABO 

Bromophenol Blue Plusone 

DMSO Sigma 
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Appendix 2 

 

Protein standard curve (BCA assay) 
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Appendix 3 

RNA integrity test on 1% agarose gel (2D Vs 3D) 

 

RNA integrity test on 1% agarose gel (static Vs flow + pres-

sure) 
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Appendix 4 

 

Ki67 mRNA expression in static and flow/pressure conditions 

compared to 2D culture  
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Appendix 5 

 

EMT markers mRNA expression in static and flow/pressure 

conditions compared to 2D culture 
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Appendix 6 

 

Cell viability (static vs flow, 150 µL/min) 

 

 

Cell viability (static vs flow, 550 µL/min) 

 


