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Light sensing by tissues distinct from the eye occurs in diverse animal groups, enabling 11 

circadian control and phototactic behaviour. Extraocular photoreceptors may also 12 

facilitate rapid colour change in cephalopods and lizards, but little is known about the 13 

sensory system that mediates slow colour change in arthropods. We previously reported 14 

that slow colour change in twig-mimicking caterpillars of the peppered moth (Biston 15 

betularia) is a response to achromatic and chromatic visual cues. Here we show that the 16 

perception of these cues, and the resulting phenotypic responses, does not require ocular 17 

vision. Caterpillars with completely obscured ocelli remained capable of enhancing their 18 

crypsis by changing colour and choosing to rest on colour-matching twigs. A suite of 19 

visual genes, expressed across the larval integument, likely plays a key role in the 20 

mechanism. To our knowledge, this is the first evidence that extraocular colour sensing 21 

can mediate pigment-based colour change and behaviour in an arthropod. 22 

Dermal photoreception, the ability to perceive photic information through the skin 23 

independently of eyes, has evolved a number of times to serve a variety of functions 
1-4

. It is 24 

best known for its involvement in shadow reflexes, phototaxis, and orientation in response to 25 

light 
5
. More recently, dermal photoreception (more generally referred to as extraocular 26 

photoreception) has been proposed to mediate the rapid (physiological) colour change 27 

observed in cephalopods 
6,7

, fish 
8
, and reptiles 

9
, through the rearrangement of pigment 28 

granules or reflective platelets within specialised cells called chromatophores. Slow 29 

(morphological) colour change, occurring over hours to weeks, is common in arthropods 
10,11

. 30 

Several studies have demonstrated that substrate characteristics 
12

 and the wavelength of light 31 
13

 influence pupal colour in a variety of butterfly species 
14

, on the assumption that they use 32 

their eyes to perceive the colour stimuli. Pioneering experiments by Victorian entomologist 33 

Edward Bagnall Poulton on the control of pupal colour in the small tortoiseshell butterfly, 34 

Aglais urticae, were the first to provide evidence for extraocular photoreception in colour-35 

changing arthropods 
15

. Only recently have researchers revisited the possibility that 36 

extraocular photoreception is involved in slow colour change of arthopods 
16

. Given the 37 

prevalence of slow colour change, research is needed to examine the importance of 38 

extraocular photoreception in this category of colour change and to characterise the 39 

physiological basis of this under-investigated biological phenomenon. 40 

The peppered moth (Biston betularia) has evolved to be highly cryptic to visual predators, 41 

both in the adult and larval stages. Crypsis is achieved through contrasting mechanisms in 42 

each stage. The adult colour pattern polymorphism (melanism) is genetically determined 
17,18

, 43 

while the larvae camouflage through a combination of twig-mimicking masquerade 
19

 and 44 

colour plasticity 
20

. Colour change in these polyphagous larvae is a continuous reaction norm 45 

in response to colour cues from the twigs in the larvae’s immediate surroundings rather than 46 

the leaves they eat 
20

. The precision of this colour and pattern response is at odds with the 47 

simple larval ocelli 
21

, and the distal position of the head relative to the twig when larvae are 48 
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in the resting pose. We conjectured that the larvae could be using an additional visual sense. 49 

Here we report the results of morphological, behavioural, and gene expression experiments to 50 

investigate the role of extraocular photoreception in colour-changing B. betularia larvae. 51 

We reared 321 larvae from 4 families in replicated groups of 25 individuals, inside 52 

transparent plastic boxes containing inter-crossing artificial twigs (painted dowels), on 53 

stalkless fresh leaves of the grey willow, Salix cinerea (see Methods). We painted over the 54 

caterpillars’ ocelli with black acrylic paint with the aid of a microscope (Figure 1).  This 55 

obstruction to ocular vision or ‘blindfolding’ started at late 2
nd

 to early 3
rd

 instar, which is the 56 

earliest stage at which larvae can be effectively blindfolded, and is prior to a strong colour 57 

response. To overcome the problem of caterpillars shedding the blindfold in the process of 58 

molting between instars, we checked caterpillars twice daily for early signs of head capsule 59 

slippage. Head capsule slippage takes approximately 12-18 hrs to complete, during which 60 

time we held these individuals separately and singly overnight in opaque white boxes without 61 

any dowels. Fresh paint was applied to the new head capsule, thus preventing the caterpillars 62 

from receiving any dowel colour signal, and the caterpillars were returned to their group 63 

enclosure. We used four different dowel colours, with one colour per enclosure: brown, green, 64 

black, and white (see Methods). The first pair of colours differed in chroma and luminance; 65 

the second pair differed only in luminance. The spectral reflectance of each caterpillar’s 66 

integument was measured at the final (6
th

) instar using a spectrophotometer (six non-67 

overlapping measurements). We used a computational model of visual perception to quantify 68 

larval colour and luminance as it would be perceived by a visually hunting avian predator, the 69 

blue tit, Cyanistes caeruleus 
22

. We calculated how green the caterpillars appeared to a 70 

predator as the ratio of the medium and long wavelength cone responses; the luminance of 71 

each caterpillar as the double dorsal cone responses; and the discriminability of the larvae as 72 

units of just noticeable differences (see Methods). 73 

Results 74 

Colour change.  We found a striking whole-body colour change in the absence of visual 75 

information from the eyes, whereby caterpillars not only changed colour to resemble the 76 

dowel colour in their enclosure, but they did so to the same degree as non-blindfolded 77 

controls. This is evident to the human eye (Figures 2A, D), and is also apparent by 78 

comparison of the spectral reflectance curves in the visible wavelength range (Figures 2C, E). 79 

However, the more critical and ecologically relevant assessment is through the prism of an 80 

avian predator’s perception, which we have quantified through psychophysical modelling. 81 

Viewed through this lens, B. betularia larvae reared in white dowel enclosures were 82 

significantly brighter than those reared on black dowels, when measured as the double cone 83 

responses of the avian retina (F1, 127 = 177.4, P < 0.0001; Figure 2B), but there was no 84 

significant effect of blindfolding on the luminance of larvae from black or white treatments 85 

(F1, 127 = 0.28, P = 0.6). Larvae reared in green dowel enclosures were significantly greener to 86 

an avian predator than larvae from brown treatments (F1, 169 = 451.2, P < 0.0001; Figure 2E). 87 

Moreover, blindfolding had no significant effect on the greenness of larvae in the green or 88 

brown treatments (F1, 169 = 0.67, P = 0.4), and the distribution of greenness was similar 89 

between blindfolded and control larvae across both treatments (Figure 2E). Using a 90 

complementary approach to quantify the ability of an avian predator to distinguish between 91 

two stimuli 
23

, we find that birds would not be able to discriminate between blindfolded and 92 

control larvae, whether reared on achromatic (F1, 127 = 2.64, P = 0.1; Supplementary Figure 93 

1A) or chromatic dowels (F1, 169 = 1.01, P = 0.3; Supplementary Figures 1B and 2). 94 

Background choice.  To further evaluate B. betularia caterpillar’s capacity for extraocular 95 

colour perception, we tested background choice behaviour using two designs of background 96 
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choice arena: a transparent plastic cube containing two diagonally crossing dowels, each 97 

painted with a single colour (bright green vs. dark brown); and a transparent horizontal tube 98 

with a single horizontally suspended dowel, one half painted green and the other brown (see 99 

Methods). These two designs allowed us to test for the consistency of background choice in 100 

different contexts. For each trial, final instar larvae from blindfolded and control groups of the 101 

green and brown treatments were placed equidistant from each dowel colour. Because 102 

predation risk increases the likelihood of behavioural background matching, we simulated 103 

predation by gently poking larvae on the dorsal surface with tweezers (following methods in 104 
24

). For horizontal dowel chambers, to eliminate any positional preferences, two trials were 105 

conducted per larva. In one trial, the brown end of the dowel was at the far end of the 106 

chamber; in the other trial, the direction of the dowel was reversed (the order of trials was 107 

randomised). Individual larvae were left for 12h (7h dark: 5h light), after which the dowel 108 

colour that each caterpillar was resting on was recorded. In both types of arena (and both 109 

dowel orientations in the horizontal arena), larvae were able to maximise camouflage by 110 

selecting dowel colours that more closely matched their own body colours (Figure 3). On 111 

average, 75-80% of brown larvae chose to rest on a brown dowel, and 70-80% of green larvae 112 

chose to rest on a green dowel. In the diagonal chamber design, there was no effect of 113 

blindfolding (Z = -0.22, P = 0.83) or larval colour (Z = -0.87, P = 0.39) on matching success. 114 

In the horizontal chamber, there was also no effect of blindfolding (Z = -1.24, P = 0.21), 115 

larval colour (Z = 0.82, P = 0.41), or dowel position (Z = -1.72, P = 0.08) on matching 116 

success. 117 

Visual gene expression.  To investigate the molecular basis of the morphological and 118 

behavioural responses, we analysed the expression of key genes involved in visual perception 119 

in head (including eyes) and dermal tissue of B. betularia larvae and adults. Opsins are light-120 

sensitive proteins that mediate the conversion of a photon of light into an electrochemical 121 

signal, necessary for vision and photoreception 
25

. We identified opsins sensitive to ultraviolet 122 

(two splice variants UVA and UVB), blue (two splice variants BlA and BlB), long 123 

wavelength (two gene copies LW1 and LW2), and melanopsin (two splice variants MelA and 124 

MelB) (Supplementary Figures 3-5). We also determined the coding sequence for visual 125 

arrestin-1 (Arr-1; Supplementary Figure 6) and retinal degeneration B (RDB; Supplementary 126 

Figure 7), which are essential components of phototransduction 
26,27

. Using end-point RT-127 

PCR, we detected expression of these genes not only in the eyes (head), but also in all 128 

segments of the whole body epidermis, both in larvae and adults (Figure 4A, Supplementary 129 

Figure 8). Subsequent quantitative assessments using RT-qPCR revealed that in the head 130 

tissue, expression levels for several of the genes tested are orders of magnitude higher in 131 

adults than in larvae (Figure 4A; t71 = -5.33, P < 0.0001). This likely reflects the relative size 132 

of the compound vs the simple eyes compared to the head of the two life stages. Dermal tissue 133 

expression for all genes, averaged across all three body segments, is similar across larvae and 134 

adults (Figure 4A; t69 = -1.15, P = 0.26). Within life stages, dermal expression levels are 135 

similar among body segments for most genes (Supplementary Figure 9). In larvae 136 

(Supplementary Figure 9A), RDB expression is higher in claspers, and BlB expression is 137 

much lower in the abdomen; in adults (Supplementary Figure 9B), RDB expression is lower 138 

in the genitalia segment, and UVA expression is somewhat higher in the thorax. 139 

The ratio of gene expression in the epidermis to that in the head provides a measure of the 140 

contribution of putative photoreceptors in the larval epidermis to the total light-sensing 141 

capacity of a caterpillar. By this measure, dermal expression of photoreception genes is 142 

significantly higher in larvae, compared to adults (Z11 = 0.22, P < 0.0001), with LW2 as the 143 

only gene showing relatively higher dermal expression in adults (Figure 4B). In larvae, 144 

expression of RDB, BlB and LW1 is upregulated in dermal tissue to similar levels of that in 145 
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the head. The strongest contrast in relative dermal expression between larvae and adults is for 146 

Arr-1, BlB, MelB and LW1. 147 

Discussion 148 

Biston betularia larvae that were prevented from receiving light input through their ocelli 149 

changed colour in response to luminance and colour cues, and also maximised the benefits of 150 

this plastic masquerade by actively selecting twigs of similar colour. Experimental and 151 

control larvae were equally able to change appearance and choose the appropriate resting 152 

background, demonstrating that they are capable of spectrally sensitive extraocular 153 

photoreception, and implying that the ocelli play a secondary role in these responses. Our 154 

results contrast those of similar blindfolding experiments in other arthropods 
10,28

, where the 155 

characteristics of the blindfolding paint, rather than the background colour, affected colour 156 

change. The necessity for extraocular photoreception in B. betularia may relate to the angled 157 

twig-posture of the larvae during the daytime, which places the ocelli away from the twig 158 

perch (Supplementary Figure 10). In this position, as well as during feeding on leaves, 159 

photoreceptors across the larval skin could receive more accurate colour and pattern 160 

information on the resting twig than the ocelli. 161 

The potential role of extraocular photoreceptors in colour change via pigment-production was 162 

first suggested by Poulton 
15,29

, working on the determination of pupal colour in A. urticae. By 163 

means of individual partitioned chambers (i.e., not relying on the occlusion or destruction of 164 

the ocelli), in which the head end of a larva was exposed to a contrasting colour than the 165 

remainder of the body, he showed that the resulting pupal colour was determined by the 166 

background colour to which the greatest surface area of skin had been exposed. Over one 167 

hundred years later, Kato et al. 
30

 showed that the pupal greenness of the Japanese oak 168 

silkmoth, Antheraea yamamai, was determined by the intensity of white light and was 169 

unaffected by cauterization of the larval ocelli. Although many other species of caterpillar 170 

change colour to better match their resting background 
31

, no other research on arthropods has 171 

distinguished the role of ocular vs extraocular photoreceptors. 172 

The ability to choose a colour-matching background could be considered redundant in colour-173 

changing animals, such as peppered moth caterpillars, which gain additional protection from 174 

predation by masquerading as twigs 
32

. However, as colour change in B. betularia is a slow 175 

process, and the twig colour environment inhabited by these caterpillars is often 176 

heterogeneous, background choice matching offers added flexibility and responsiveness. The 177 

equivalent strategy of choosing to rest on matching backgrounds in visually heterogenous 178 

environments in species that are also capable of colour change has evolved in flatfish, larval 179 

newts, and salamanders 
33-35

. 180 

Epidermal opsin expression associated with achromatic light perception has been reported in 181 

cnidarians 
36

, cephalopods 
37

, arthropods 
38

, and vertebrates 
9
. Given what is known about 182 

their primary function, and the energetic cost of gene expression 
39

, the relatively high 183 

abundance of a whole suite of phototransduction gene transcripts in the larval epidermis 184 

suggests that they constitute part of the extraocular photoreceptor machinery. Whether this is 185 

also true for the adult moths, that also show appreciable levels of visual gene expression in all 186 

segments of their epidermal tissue, is an open question. Precise background matching has 187 

been reported for adults of another geometrid moth 
40

, but the evidence for B. betularia, 188 

which occur as a melanic series of genetically-determined morphs 
41

 is equivocal 
42

. To our 189 

knowledge, our study provides the first evidence for extraocular opsin expression potentially 190 

capable of detecting colour in an arthropod, linked to functional changes in appearance and 191 

behaviour. 192 
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The identity and precise location of the extraocular photoreceptors remains to be determined. 193 

Based on the uniformity and fine grain of the colour change (which is a composite of different 194 

epidermal layers; Supplementary Figure 11), together with the even expression of 195 

phototransduction genes across body sections, we speculate that they are distributed more or 196 

less evenly within a layer of the larval dermis, rather than in a few spatially restricted 197 

specialised cells 
38

. Extraocular photoreceptors, resembling light-sensitive phaosome cells in 198 

earthworm skin, have been described in the genitalia of swallowtail butterflies, proposed to 199 

aid in mate choice and oviposition 
43

. Whilst the colour response of blindfolded B. betularia 200 

larvae could, in principle, be produced by a highly compartmentalised physiological 201 

mechanism, the background matching behaviour suggests the integration of diffuse 202 

information from the epidermis, not only about the twig colours but also resemblance to self. 203 

It is therefore likely that the nervous and endocrine systems have a combined role in the 204 

colour and background choice responses. 205 

The expression profiles of visual genes in B. betularia, combined with morphological and 206 

behavioural evidence, lead us to propose that larvae of B. betularia possess photoreceptors 207 

distributed throughout the epidermis. Their function is to provide more complete information 208 

on colour and pattern than can be achieved with the ocelli alone – not only of the resting twig, 209 

but also of the match between self and twig. The detailed and composite nature of the 210 

caterpillar’s colour pattern suggests a complex signal-processing cascade that initiates, 211 

controls, and coordinates the production of multiple pigments in different cell types. Our 212 

results significantly expand the current view of dermal light sense to include slow colour 213 

change, raising intriguing questions about the evolutionary sequence of pathway recruitment 214 

and modification that has culminated in this sophisticated system of extraocular 215 

photoreception and phenotypic plasticity, driven by a predator-prey evolutionary arms race. 216 

  217 
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Figures 218 

 219 

Figure 1. Blindfolding of B. betularia larvae. (A) Final (6
th

) instar B. betularia control 220 

caterpillar showing ring of five ocelli circled in yellow, and 6
th

 ventral ocellus circled 221 

separately. (B) Example of a final instar larva with ocelli obscured by opaque black acrylic 222 

paint. Scale bar represents 1 mm. 223 

  224 

A B
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 225 

Figure 2.  Blindfolded and control B. betularia larvae from achromatic and chromatic dowel 226 

treatments. (A) Examples of final instar blindfolded (first and third from left) and control 227 

(second and fourth from left) larvae on black and white treatment dowels. (B) Luminance of 228 

black and white larvae and dowels, calculated from double dorsal blue tit cone catches, where 229 

BL=black, W=white, D=dowel, C=control larvae, P= painted or blindfolded larvae. (C) 230 

Reflectance of black and white larvae (mean and standard error) and dowels in the visible 231 

wavelength range (300-700 nm, where black = black dowel (BLD), blue = white dowel (WD), 232 

red = black control larvae (BLC: n = 29), green= black blindfolded larvae (BLP: n = 45), 233 

yellow = white control larvae (WC: n = 26), magenta = white blindfolded larvae (WP: n = 234 

49). (D) Examples of final instar blindfolded (two outermost) and control (two innermost) 235 

larvae on brown and green treatment dowels. (E) ‘Greenness’ of brown and green larvae and 236 

dowels, calculated as a ratio of mediumwave (MW) to longwave (LW) blue tit cone catches 237 

[MW/(MW+LW)], where B= brown, G = green, D= dowel, C= control larvae, P = painted or 238 

blindfolded larvae. (F) Reflectance of brown and green larvae (mean and standard error) and 239 

dowels, where black = brown dowel (BD), blue = green dowel (GD), yellow = brown control 240 

larvae (BC: n = 44), magenta = brown blindfolded larvae (BP: n = 50), green = green control 241 

larvae (GC: n = 36), and red = green blindfolded larvae (GP: n = 31). n = number of 242 

biologically independent samples. 243 
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 245 

Figure 3.  Frequency of resting background colour chosen by B. betularia caterpillars. Mean 246 

frequency, as proportions of final instar B. betularia blindfolded and control caterpillars found 247 

on each dowel colour (contrasting luminance green or brown). Individual larvae from 248 

blindfolding experiments were placed in either diagonal dowel arenas (A), or horizontal 249 

dowel arenas (B) and their resting choice was recorded after 12hrs. Sample sizes (number of 250 

biologically independent replicates) are, for horizontal and crossed dowel experiments, 251 

respectively: brown control (n = 34 and 60), brown blindfolded (n = 34 and 56), green control 252 

(n = 37 and 59), green blindfolded (n = 32 and 51). 253 

  254 
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 255 

Figure 4.  Visual gene expression in head and dermal tissues in larval (L) and adult (A) stages 256 

of B. betularia. (A) Expression of nine visual gene isoforms relative to a control gene 257 

(spectrin) in head (light blue) and body tissue (dark blue). (B) Expression of the same visual 258 

genes in the skin (dark blue) relative to the head (light blue), calculated as [dermal 259 

expression/(head + dermal expression)]. Bars show standard errors, grey circles individual 260 

estimates (n = 4 biologically independent replicates for each stage). Gene names: Arr-1 = 261 

arrestin-1, RDB = retinal degeneration B, UVA = ultraviolet wavelength sensitive opsin 262 

isoform A, BlA = blue wavelength sensitive opsin isoform A, BlB = blue wavelength sensitive 263 

opsin isoform B, MelA = melanopsin isoform A, MelB = melanopsin isoform B, LW1 = long 264 

wavelength sensitive opsin copy one, LW2 = long wavelength sensitive opsin copy two. 265 

  266 
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Methods 267 

Dowel experiments 268 

Rearing.  To control for any potential genetic effects among families in larval colour 269 

responses, the dowel experiments were conducted with a split family design (Supplementary 270 

Table 1). Biston betularia were reared from eggs and provided with goat willow (Salix 271 

caprea) ad libitum, with leaves on branches and in the absence of artificial dowels. At second 272 

instar, prior to any strong colour-matching response (Supplementary Figure 12), 25 larvae 273 

were transferred to each treatment arena. Treatment arenas comprised of transparent plastic 274 

boxes measuring 279 x 159 x 102 mm (length x width x depth) lined with plain blue C-fold 1-275 

ply paper towel, each box contained 20 x 12 cm-long wooden dowels (10 x 5 mm diameter 276 

and 10 x 3 mm diameter) held in position by a chicken-wire frame painted to match the 277 

colours of the dowels used for each experiment (Supplementary Figures 13 and 14; 278 

Supplementary Table 1). Larvae were fed on S. caprea leaves stripped from the branches and 279 

stem ad libitum and boxes were washed with 10% bleach every three days to reduce infection 280 

risk. Treatment boxes were kept 20 cm apart in a Sanyo Versatile Environment Test Chamber 281 

(model MLR-351), with a 12:12 hour day: night cycle, at 24°C in the day with luminescence 282 

set at 15,000 lux, and 18°C at night for the duration of the experiment, until pupation. 283 

 284 

Blindfolding.  Following a pilot study, black acrylic paint (Royal Langnickel Essentials 285 

Acrylic Paint PNTA158 BLACK) was chosen as the most suitable method to occlude light 286 

from ocelli and applied using a Royal Langnickel Sable Hair Detail Brush (Liner 5/ 0,0), with 287 

the aid of a microscope. The paint did not permit light transmission (Supplementary Figure 288 

15). Larvae were checked twice daily for signs of head capsule slippage. Individuals 289 

presenting signs of head capsule slippage were removed from the treatment arena and placed 290 

into small plastic boxes (70mm x 70mm base x 50mm high) covered in opaque white card, 291 

containing only food material (no dowel to rest on). This treatment removed the dowel 292 

stimulus whilst maintaining the normal day/night cycle, albeit at a reduced light intensity 293 

during the day period. Following complete head capsule slippage, the ocelli of these 294 

individuals were re-painted and they were placed back into their designated treatment arenas. 295 

The maximum time taken for complete head capsule slippage from beginning to end is 24 296 

hours 
44

. In this experiment, larvae had usually completed 6-12 hours after removal from 297 

dowels. In this way, there was no point at which the ocelli in the blindfolded group could 298 

have received visual information about the dowels. Control larvae were not painted or 299 

transferred to isolation cups. Partial removal of the blindfold was observed only twice out of a 300 

total of 11,480 checks across all experiments; these individuals were removed from the 301 

experiment. 302 

 303 

Quantifying the colour response. Colour quantification and analysis was performed as 304 

described in 
20

. The reflectance of final instar larvae (and painted dowels) was measured using 305 

an Ocean Optics USB2000 spectrophotometer, with a DH-2000 halogen deuterium light 306 

source and measured relative to a WS-1 reflectance standard. Larvae were cooled in a fridge 307 

for 2-10 minutes prior to measurement to reduce movement. A total of six measurements 308 

were taken; three from the left and three from the right lateral surfaces of each individual, 309 

always recorded from the 3rd thoracic segment, and the 2
nd

 and 6
th

 abdominal segments. This 310 

was to prevent overlap in measurements, and because these segments showed no prominent 311 

markings. All spectrometry data was recorded using Overture v.1.0.1. 312 

We processed spectra to 1 nm intervals within the visible light spectrum (300-700) using 313 

a program in MATLAB (provided by I. C. Cuthill), and modelled vision in avian colour space 314 

using cone photon catches from the blue tit, Cyanistes caerulus 
22

. Cone stimulation values 315 
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were converted to Cartesian coordinates and plotted in a tetrahedral space using a custom 316 

written MATLAB script 
45

, such that each cone is represented by an axis. This colour space is 317 

useful because if a colour stimulates only one cone type, then its coordinates lie at the 318 

appropriate tip of the tetrahedron, and when all four cone types are equally stimulated the 319 

point lies at the origin (Supplementary Figure 2). 320 

To provide a simpler measure of colour, we calculated ‘greenness’ as the ratios between 321 

the cone catch values of the medium wavelength and long wavelength photoreceptors 322 

[MW/(MW + LW)], which represent opponent mechanisms, following Arenas & Stevens 
46

. 323 

For the black and white dowel experiment we did not model response to colour, only 324 

luminance. We therefore analysed only the blue tit double dorsal cone catch, as these cones 325 

mediate luminance vision 
22,47

. 326 

We modelled the ease with which an avian predator might discriminate between dowels 327 

and larvae using just noticeable differences (JND); for mathematics, see Vorobyev & Osorio 328 
23

. For chromatic contrasts, we used spectral sensitivities of the blue tit through relative cone 329 

ratios of SW = 0.7111; MW = 0.9926; LW = 1.0 and UV = 0.3704 
48

, with a Weber fraction 330 

of 0.05 and idealised irradiance (D65). To model luminance JNDs, we used blue tit double 331 

dorsal (DD) cones. JND <1.00 indicate that two stimuli are indiscriminable; stimuli differing 332 

by 1–3 JND units are only discriminable under good viewing conditions; and stimuli showing 333 

values above this should be distinguishable with increasing ease 
49

. 334 

 335 

Microhabitat choice.  Final instar blindfolded and control larvae that had been reared on 336 

brown and green dowels were placed into two designs of choice chamber: one with a choice 337 

of two diagonally crossing dowels; and one with a single horizontal dowel. The rationale for 338 

using two design was to test larvae under different starting conditions, which may produce 339 

initial, non-selective escape responses (onto any twig when the larva is placed on a flat 340 

surface). All microhabitat experiments were conducted using 12 individuals at a time in a 341 

Sanyo Versatile Environment Test Chamber (model MLR-351) on light level 4 (15,000 lx). 342 

The diagonal habitat choice chamber consisted of a transparent plastic cube measuring 343 

70 x 70 x 80 mm (length x width x depth, including lid), each containing two diagonally 344 

crossing 100 mm-long dowels painted in the contrasting colours (brown vs green) that larvae 345 

were reared on during blindfolding experiments (Supplementary Figure 16A). Individual 346 

larvae were placed either on the base of the diagonal dowel enclosures, equidistant from each 347 

dowel. Prior to placement, larvae were gently poked with tweezers three times along the 348 

dorsal surface to simulate predation, as predation risk increases likelihood of microhabitat 349 

choice 
24

. A sticker with larva ID was placed on the side of each chamber. Individuals were 350 

left for 12h (7h dark: 5h light, chosen to reduce disturbance to the natural circadian rhythm of 351 

the larvae), after which the dowel colour that each caterpillar was resting on was recorded, 352 

followed by the larva ID. One recording was taken per larva. 353 

The horizontal design was a single 200 mm dowel suspended horizontally inside a 354 

transparent cylindrical tube measuring 210 x 60 mm length x diameter (Supplementary Figure 355 

16B). Each half of the dowel was painted with the same pairs of contrasting colours as 356 

described for the diagonal chamber design. Final instar larvae were draped along the centre of 357 

the two-tone dowel not facing either colour, after simulating predation. Individuals were left 358 

for 12h (7h dark: 5h light), as in the diagonal dowels experiments, and the dowel colour that 359 

each caterpillar was resting on and the larva ID was recorded. If the larva position was found 360 

to be crossing two colours (<10% of larvae), then the colour that the larva most occupied was 361 

recorded. Two experiments were conducted per individual, where the position of the dowel 362 

was switched, so that the brown end was facing the base of the chamber (back of the cabinet) 363 

for one experiment, and the green end for the other (the order was random). Out of 137 364 

individuals, 34 (~25%) alternated their colour choice between trials. 365 
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 366 

Identification and characterisation of visual genes 367 

Visual gene identification.  Predicted coding sequences (CDS) for ultraviolet wavelength 368 

sensitive opsin, blue wavelength sensitive opsin, melanopsin, and long wavelength sensitive 369 

opsin (copy one and two) were obtained (see Supplementary Table 2 for accession numbers) 370 

by aligning contiguous sequence reads from the B. betularia whole genome sequence (WGS) 371 

by tBLASTn 
50

 with homologous Manduca sexta sequence (Supplementary Table 2), using 372 

Geneious, v.5.5.6 (Biomatters Ltd). CDS for retinal degeneration B and arrestin-1 genes 373 

were predicted using the same method, with known Drosophila melanogaster, Bombyx mori, 374 

and Plutella xylostella homologs (Supplementary Table 2). These CDS were completed and 375 

confirmed using a B. betularia whole genome BAC library (constructed by Amplicon 376 

Express) and a mixture of larval and pupal cDNA from head and dermal tissue. BAC library 377 

clones containing sequences of interest were identified from superpools with primers 378 

designed from the predicted CDS using Oligo v.6.0 
51

 (Supplementary Table 3), and Sanger 379 

sequenced (ABI 3130xl). 380 

 381 

Phylogenetic analysis.  To ensure that visual genes were true homologs, wavelength-382 

sensitive opsins – ultraviolet (UV), blue (Bl), long wavelength copy one (LW1), and long 383 

wavelength copy 2 (LW2), in addition to arrestin-1 (Arr-1) and retinal degeneration B (RDB) 384 

– were aligned with corresponding genes of closely related Lepidoptera species 385 

(Supplementary Table 2), obtained using a combination of NCBI BLAST using Biston 386 

betularia sequence as the query sequence. Sequences were aligned manually in MEGA6 v.6.0 387 
52

, and model selection was performed on nucleotide substitutions using the Maximum 388 

Likelihood statistical method for all sites, with complete deletion of gaps/missing data. 389 

Phylogenetic trees for each gene were then constructed from nucleotide substitutions 390 

using Maximum Likelihood. The model used was the best-fitting model based on AICc and 391 

BIC values. For ultraviolet wavelength sensitive opsin nucleotide sequences, the best model 392 

was the Tamura 3-parameter model with a discrete Gamma distribution used to measure 393 

evolutionary differences among sites. For blue wavelength sensitive opsin and arrestin-1 394 

nucleotide sequences, the Tamura 3-parameter model was also used, with a discrete Gamma 395 

distribution and 5 rate categories, assuming that a certain fraction of sites are evolutionarily 396 

invariable. For LW sequences, the General Time Reversible model was used, with a discrete 397 

Gamma distribution and 5 rate categories, assuming that a certain fraction of sites are 398 

evolutionarily invariable. For RDB sequences, the General Time Reversible model was used, 399 

with a discrete Gamma distribution. Each phylogeny was constructed using all codon 400 

positions and analysis was run using 2000 bootstrap replications. Trees were constructed in 401 

MEGA6 v.6.0 and edited in Figtree v.1.4.3 
53

. 402 

 403 

Gene expression.  Four final instar larvae and four imagines (two male, two female) were 404 

placed intact (except for gut tissue removal) in 1.5 mL eppendorfs of RNAlater® 405 

(Thermofisher) and stored at -80
o
C until required. Larvae were later dissected into head, 406 

thorax, abdomen, and claspers (Supplementary Figure 17A; Supplementary Table 1) and 407 

imagines were dissected into head, thorax, abdomen, and the distal portion of the abdomen 408 

containing the genitalia (Supplementary Figure 17B; Supplementary Table 1). For all 409 

specimens, as much internal tissue as possible was removed from the body, leaving only 410 

dermal tissue intact. RNAlater was removed by pipette and all tissue was placed in a clean 1.5 411 

mL Eppendorf Safe-Lock Tube containing a 3 mm tungsten bead (Qiagen), to which 1 mL of 412 

TRIzol reagent (Thermofisher) was added. Samples were homogenised with a Qiagen tissue 413 

lyser II, at 25 Hz for 4 minutes. Total RNA was isolated following the TRIzol manufacturer’s 414 

guidelines (Invitrogen). Genomic DNA was removed from 6 μL of each RNA sample by 415 
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DNase I Amplification Grade (1 U/μL), following the manufacturer’s protocol. First strand 416 

cDNA was synthesised from 5 μL of DNase-treated RNA using 200 U/μL Superscript III 417 

Reverse Transcriptase (Thermofisher), following a modified version of the recommended 418 

protocol, excluding the RNaseOUT stage and using 0.5 μL of 100 μM Oligo (dT20) as the 419 

anchor primer. Reactions were incubated at 50°C for 60 minutes, followed by deactivation at 420 

70°C for 15 minutes. 421 

In total we quantified nine visual genes, including splice variants: UV, Bl (splice variants 422 

A and B), Mel (splice variants A and B), LW1, LW2, Arr-1, and RDB (Supplementary Figure 423 

18). We were unable to amplify the alternative splice variant of UV, so only UV splice variant 424 

A was quantified. End-point PCR reactions were performed in a Veriti (Applied Biosystems) 425 

96-well thermal cycler with LongAmp® Hot Start Taq DNA Polymerase (New England 426 

Biolabs) and the following cycling conditions: 2 min at 94
°
C, 40 cycles of [20 s at 94°C, 30 s 427 

at 57°C, 1 min at 70°C]. PCR products were loaded onto 2% agarose gel and visualised with 3 428 

μL Midori Green DNA stain (Nippon Genetics) against Hyperladder 50 bp (Bioline). 429 

Quantitative PCR was performed using KAPA SYBR fast qPCR (2x) mastermix (KAPA 430 

Biosystems), following the manufacturer’s protocol to provide a reaction mixture of 0.5 µL 431 

cDNA template (diluted to 55%), in a final reaction volume of 10 µL. Each sample was 432 

repeated in triplicate and quantified using a Roche Lightcycler 480 II and software v.1.5, 433 

under cycling conditions: [3 min at 95°C, 45 cycles of 3 s at 95°C, 20 s at optimal annealing 434 

temperature, 20 s at 72°C]. Melting curves were inspected to ensure single products. Relative 435 

expression of PCR product was determined as a ratio against a reference gene, spectrin 436 

(Supplementary Table 2), which shows uniform expression across cells in B. betularia 
18

, 437 

using [(ERef)^(CpRef)] / [(ETarget)^(CpTarget)]. Here, E = efficiency of PCR reaction 438 

(assumed to be the idealised value of 2), Cp = crossing point, Ref= reference gene (spectrin), 439 

Target= target gene (visual genes). Primers for all PCR reactions were designed using Oligo 440 

v.6.0 
51

 (see Supplementary Table 3 for sequences). 441 
 442 

Statistics and reproducibility 443 
All statistics were performed using R version 3.3.2 

54
. 444 

 445 

Gene expression.  Comparisons between head and dermal expression of larvae and adults 446 

were tested by fitting linear models to the log10 of gene expression values. Deviance from 447 

normality was checked with qqPlot. To examine the relative contribution of dermal 448 

expression within life stages, we used the ratio of dermal to head expression, taking the sum 449 

of all the dermal tissue parts (thorax, abdomen, claspers/genitalia) as a proportion of total 450 

expression [dermal expression/(head + dermal expression)]. We modelled this ratio using beta 451 

regression, appropriate for proportional data that follows a beta distribution. We tested stage 452 

(adult, larvae) as predictors of relative dermal expression across genes. Model residuals were 453 

checked for normality using qqPlot. 454 

 455 

Colour response.  To test whether treatment colour and blindfolding affected the colour and 456 

luminance of larvae, as well as their ability to match dowels (JND between larvae and 457 

dowels), we used linear models with logged JND, greenness, and luminance values. Deviance 458 

from normality was checked with qqPlot and by plotting model residuals. Treatment (dowel 459 

colour) and blindfolding were tested as predictors of larvae luminance (DD) for black and 460 

white achromatic treatments, larvae greenness for brown and green chromatic treatments, and 461 

JNDs for chromatic and achromatic treatments. 462 

 463 

Microhabitat choice.  To test the effects of blindfolding, treatment, and dowel position 464 

(horizontal dowel chambers only) on dowel colour choice, we performed generalised linear 465 
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models (family= binomial) with larva colour, blindfolding, and dowel position as predictors 466 

of matching success (0 or 1). 467 

 468 

Data Availability 469 
Genomic data were submitted to the GenBank database with accession numbers: MH166324-470 

MH166333 (details in Supplementary Table 2). The source data underlying figures 2-4 are 471 

provided as a Source Data file. All other data supporting the findings of this study are 472 

available from Figshare (DOI: 10.6084/m9.figshare.8108831) and from the corresponding 473 

author upon reasonable request. A reporting summary for this article is available as a 474 

Supplementary Information file. 475 

 476 
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