
Pushing the Online Matrix-vector conjecture off-line and
identifying its easy cases

Leszek Gąsieniec Jesper Jansson Christos Levcopoulos Andrzej Lingas
Mia Persson

Abstract

Henzinger et al. posed the so called Online Boolean Matrix-vector Multiplication (OMv) conjecture and showed
that it implies tight hardness results for several basic partially dynamic or dynamic problems [STOC’15].
We show that the OMv conjecture is implied by a simple off-line conjecture. If a not uniform (i.e., it might be different
for different matrices) polynomial-time preprocessing of the matrix in the OMv conjecture is allowed then we can
show such a variant of the OMv conjecture to be equivalent to our off-line conjecture. On the other hand, we show
that the OMV conjecture does not hold in the restricted cases when the rows of the matrix or the input vectors are
clustered.

1 Introduction
Henzinger et al. considered the following Online Boolean Matrix-vector Multiplication (OMv) problem in [8]. Ini-
tially, there are given an integer n and an n × n Boolean matrix M. Then, for i = 1, ..., n, in the i-th round there is
given an n-dimensional Boolean column vector vi, and the task is to compute the product ofM with vi before the next
round. The objective is to design a (possibly randomized) algorithm that solves the OMv problem, i.e., it computes
all the n products as quickly as possible. In [8], Henzinger et al. provided efficient reductions of the OMv problem
to several basic partially dynamic or dynamic problems including subgraph connectivity, Pagh’s problem, d-failure
connectivity, decremental single-source shortest paths, and decremental transitive closure.

They also stated the following OMv conjecture in [8].

Conjecture 1. OMv conjecture For any constant ε > 0, there is no randomized algorithm that solves the OMv
problem in O(n3−ε) time with an error probability of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned partially dynamic or dynamic problems [8].
It also implies the following off-line Mv conjecture [8].

Conjecture 2. Mv conjecture For any constant ε > 0 and any polynomial p(), there is no randomized preprocessing
and randomized algorithm such that any n × n Boolean matrix M can be preprocessed in p(n) time so the Boolean
product ofM with an arbitrary Boolean n-dimensional column vector can be computed inO(n2−ε) time with an error
probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen and Williams [7]. Their recent (not
combinatorial) randomized algorithm runs in
O(n3/2Ω(

√
logn)) time. Williams has also shown in [10] that any n × n Boolean matrix can be preprocessed in

O(n2+ε) time so the Boolean product of the matrix with an arbitrary n-dimensional Boolean vector can be computed
inO(n2/ log2 n) time. This implies that the Mv problem corresponding to the Mv conjecture admits anO(n2/ log2 n)-
time solution. Also recently, Chakrabort et al. have established tight cell probe bounds for succinct Boolean matrix-
vector multiplication in [4].

Our contributions. We show that the OMv conjecture is implied by the following simple off-line MvP conjecture:
For any constant ε > 0 and any polynomial p there is an n × n Boolean matrix M that cannot be preprocessed in

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/210990581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

p(n) time such that the Boolean product of M with an arbitrary n-dimensional column vector v can be computed
in O(n2−ε) time with an error probability of at most 1/3. There is a subtle but a substantial difference between our
MvP conjecture and the Mv conjecture, the latter stated and shown to be implied by the OMv conjecture in [8]. In
our conjecture the preprocessing is not uniform with respect to the matrices while in the Mv conjecture in [8] one
considers a uniform, universal preprocessing. It follows that the difficulty of proving the OMv conjecture lies between
the two aforementioned off-line conjectures: OMv is not more difficult than MvP and it is not easier than Mv.
We also show that if we relax the OMv problem by allowing for a not uniform polynomial-time preprocessing of the
matrix M then the corresponding online conjecture will be equivalent to our MvP conjecture.
Basically, the Combinatorial Boolean Matrix Multiplication conjecture (CBMM conjecture) states that there is no
combinatorial (randomized) algorithm for the Boolean product of two n × n Boolean matrices that runs in substan-
tially subcubic time [2, 8]. Marginally, we also observe that if we strengthen the CBMM conjecture by allowing for
a polynomial-time uniform preprocessing of one of the matrices, the resulting conjecture will be equivalent to the
original CBMM conjecture.
On the other hand, by adapting known algorithms for Boolean matrix product of matrices with clustered data [3, 5, 6],
we obtain a combinatorial randomized algorithm for the product of a Boolean n×nmatrixM and an arbitrary Boolean
n-dimensional column vector v running in Õ(n + STM) time after an Õ(n2)-time preprocessing of M, where STM
stands for the cost of a minimum spanning tree of the rows of M under the extended Hamming distance (never ex-
ceeding the Hamming distance). Consequently, we obtain a combinatorial randomized algorithm for the OMv problem
running in Õ(n(n + STM)) time. We also show that OMv admits a combinatorial randomized algorithm running in
Õ(nmax{ST (V), n1+o(1))) time, where ST (V) stands for the cost of a minimum spanning tree of the column vec-
tors v1, ..., vn under the extended Hamming distance. The time analysis of the latter algorithm relies in part on our
analysis of an approximate nearest-neighbour online heuristic for the aforementioned minimum spanning tree.
The overwhelming majority of the reductions of the OMv problem to other partially dynamic or dynamic problems
in [8] are unfortunately one-way reductions that do not yield applications of our algorithms for the OMv and Mv
problems. Following the applications of the Mv problem given in[2, 10], we provide analogous applications of our al-
gorithms to vertex subset queries (e.g., for a given graph, such a query asks if a given subset of vertices is independent),
triangle membership queries and 2-CNF formula evaluation queries.

Organization of the Paper. Section 2 introduces three new conjectures and it shows implications and equivalences
between them and the OMv conjecture. Section 3 presents our algorithms for the OMv and Mv problems whose time
complexity is expressed in terms of the minimum cost of a spanning tree of the rows of the matrix or the input column
vectors under the extended Hamming distance. Section 4 presents applications of our algorithms. Section 5 concludes
with some final remarks. Because of space considerations, the proof of Lemma 3 as well as a marginal subsection
of Section 2 on Combinatorial Boolean Matrix Product, and an additional application are omitted in this extended
abstract.

2 An off-line conjecture
By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we shall mean the problem of efficiently com-
puting the product of a fixed n× n Boolean matrix M , that can be (not uniformly) preprocessed in O(n3−ε) time for
some fixed ε > 0, with an arbitrary n-dimensional Boolean column vector v. We state the following conjecture related
to the AMv problem.

Conjecture 3. AMv conjecture For any constant ε > 0 and constants c1, c2, there is an n×n Boolean matrixM that
cannot be preprocessed in c1n3−ε time such that the Boolean product of M with an arbitrary n-dimensional Boolean
column vector v can be computed in c2n2−ε time with an error probability of at most 1/3.

We shall show the AMv conjecture to imply the OMv one.

Lemma 1. Let ε be a positive constant and let M be an n × n Boolean matrix. If the OMv problem for M can be
solved inO(n3−ε) time with an error probability of at most 1/3 then the matrixM can be (not uniformly) preprocessed
in O(n3−ε) time such that the Boolean product of M with an arbitrary input n-dimensional Boolean column vector v

2

can be computed in O(n2−ε) time with an error probability of at most 1/3. Consequently, the AMv conjecture implies
the OMv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors v1,....vn iteratively by picking as vi a vector that jointly
with the preceding vectors maximizes the total time of the assumed OMv solution for v1, ..., vi. Since the assumed
OMv solution for the whole sequence takes O(n3−ε) time, there must be i ∈ {1, ..., n} such that the product of M
with vi is computed in O(n2−ε) time after computing the products of M with the preceding vectors in the sequence.
The computation of all the products clearly takes O(n3−ε) time and it has an error probability of at most 1/3. By the
definition of vi, if we compute instead of the product of M with vi, the product of M with an arbitrary n-dimensional
input vector v, the computation will take only O(n2−ε) time after the products with the preceding vectors have been
computed. Again, the computation of all the products, and hence in particular that of M with v, will have an error
probability of at most 1/3. Since the vectors v1...vi−1 are fixed, the computation of the products of M with the
preceding vectors can be regarded as an O(n3−ε)-time preprocessing.

Unfortunately, we cannot show the reverse implication, i.e., that the OMv conjecture implies the AMv one like
it implies the Mv conjecture [8]. The reason is that in the definition of the AMv problem, we do not require a
universal preprocessing that could work for any matrix M of size n×n, we only require the existence of an individual
preprocessing for a given M.

In the next lemma, we demonstrate that if we allow for an arbitrary (not uniform) polynomial-time preprocessing
instead of the substantially subcubic one, we will obtain a problem equivalent to the AMv one. This lemma and its
proof idea of dividing the matrix and the vector into appropriate submatrices and subvectors are similar to Lemma 2.3
and its proof idea in [8], respectively.

Lemma 2. Let δ and ε be positive constants. If for any n × n Boolean matrix M there is an O(n3+δ)-time prepro-
cessing such that the product of M with an arbitrary n-dimensional Boolean column vector v can be computed in
O(n2−ε) time with an error probability of at most 1/3 then there is a positive constant ε such that after an O(n3−ε′)-
time preprocessing the product of M with such a vector v can be computed in O(n2−ε′) time with an error probability
of at most 1/3.

Proof. Divide M into n2α quadratic submatrices Mi,j of size n1−α × n1−α, where i, j ∈ {1, ..., nα}. Preprocess
all the submatrices in O(n2α × (n1−α)3+δ) time. Then, the product of M with the vector v can be computed in
O(n2α × (n1−α)2−ε + n1+α) time. The last term in the expression represents the cost of summing the results of the
products of the submatrices with respective subvectors of v of length n1−α. In order to obtain an exponent of the total
preprocessing time in the form 3− ε′ and the exponent of computing the product in the form 2− ε′, it is sufficient to
solve the inequalities 2α+ (1− α)(3 + δ) < 3, 2α+ (1− α)(2− ε) < 2 and 1 + α < 2 with respect to α. Any α in
the open interval (δ

1+δ , 1) satisfies these inequalities.
Following the proof of Lemma 2.3 in [8], we can keep the error probability below 1/3 by repeating the computation

of each of the products of a submatrix of M with a respective vector O(log n) times, and picking the most frequent
answer. In order to tackle the additional logarithmic factor in the time complexity, we can slightly decrease our
ε′.

We shall call the problem and the conjecture resulting from the AMv problem and the AMv conjecture by re-
placing an O(n3−ε) (not uniform) preprocessing time with a polynomial (not uniform) preprocessing time, a Boolean
Matrix-vector multiplication with (polynomial-time not uniform) preprocessing problem and a Boolean Matrix-vector
multiplication with (polynomial-time not uniform) preprocessing conjecture (MvP for short), respectively. Since the
MvP conjecture trivially implies the AMv conjecture, by Lemmata 1, 2, we obtain the following theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the OMv conjecture.

Relaxing the OMv problem. In order to obtain a version of OMv equivalent to AMv and MvP, we shall consider
generalized versions of the OMv problem and the OMv conjecture allowing for a not uniform polynomial-time pre-
processing of the matrix. We shall term them, the OMvP problem and the OMvP conjecture, respectively.

The proof of the following lemma is analogous to that of Lemma 1..

3

Lemma 3. Let ε be a positive constant, and let M be an n × n Boolean matrix. If the OMvP problem for M and
any positive natural number n, after a polynomial-time (not uniform) preprocessing of M can be solved in O(n3−ε)
time with an error probability of at most 1/3 then the matrix M can be (not uniformly) preprocessed in polynomial
time such that the Boolean product of M with an arbitrary input n-dimensional Boolean column vector v can be
computed in O(n2−ε) time with an error probability of at most 1/3. Consequently, the MvP conjecture implies the
OMvP conjecture.

Lemma 4. Let ε be a positive constant, and let M be an n × n Boolean matrix. If the AMv problem for M can be
solved in O(n2−ε) time with an error probability of at most 1/3 after an O(n3−ε) not uniform preprocessing of M
then the OMvP problem for the matrix M and n Boolean column vectors can be solved in O(n3−ε) time with an error
probability of at most 1/3. Consequently, the OMvP conjecture implies the AMv conjecture.

Proof. Before computing the product of M with the first vector, perform the appropriate not uniform O(n3−ε) time
preprocessing of M . After that the product of M with each consecutive vector can be computed in O(n2−ε) time, so
the total time for n vectors becomes O(n3−ε). We can keep the error probability below 1/3 for the whole sequence of
input vectors similarly as in the proof of Lemma 2.

Since the conjectures AMv and MvP are equivalent (see Theorem 1), by Lemmata 3 and 4, we obtain the following
extension of Theorem 1.

Theorem 2. The MvP, AMv and OMvP conjectures are equivalent.

3 Easy cases of matrices and vectors for the conjectures
Björklund et al. [3] proposed a method of multiplying two Boolean matrices by using a close approximation of the
minimum spanning tree of the rows or columns of one of the matrices under the Hamming distance. Subsequently, the
method has been generalized to include the so called extended Hamming distance [6] and integer matrix multiplication
[5]. In the first warming-up subsection, we present an explicit adaptation of the aforementioned generalizations to the
case of the product of an n × n Boolean (or 0 − 1) matrix M and an n-dimensional Boolean (or 0 − 1) column
vector v in the context of the OMv conjecture. Several results presented in the first subsection can be regarded as
implicit in [5, 6]. This is not the case in the second subsection handling the online scenario where the input column
vectors are clustered. Here, we have to develop a novel online approach involving among other things an analysis
of an approximate nearest-neighbour online heuristic for minimum spanning tree of the vectors under the extended
Hamming distance. We shall use the following concepts in both subsections.

Definition 1. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, their Hamming distance, i.e., the number
of k ∈ {1, ...,m}, s.t., sk 6= uk, is denoted by H(s, u). An extended Hamming distance, EH(s, u), between the
strings, is defined by a recursive equation EH(s, u) = EH(sl+1...sm, ul+1...um)+ (s1 +u1 mod 2), where l is the
maximum number, s.t., sj = s1 and uj = u1 for j = 1, ..., l.
A differentiating block for the strings s, u is a maximal consecutive subsequence w of 1, 2, ...n, s.t., either for each
i ∈ w si = 1 and ui = 0 or for each i ∈ w si = 0 and ui = 1. In the first case, we set h(s) = −1 while in the second
case h(s) = 1.

3.1 Small spanning tree of the rows of the matrix (warming up)
For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum spanning tree for S is a spanning
tree in the complete weighted graph on S, with edge weights equal to the distances between the endpoints, whose total
weight is at most c times the minimum.

Fact 1. (Lemma 3 in [6]) For ε > 0, a 2+ ε-approximate minimum spanning tree for a set of n 0− 1 strings of length
d under the extended Hamming metric can be computed by a Monte Carlo algorithm in time O(dn1+1/(1+ε/2)).

By selecting ε = 2 log n, we obtain the following lemma.

4

Lemma 5. Let M be an n × n Boolean matrix. An O(log n)-approximation minimum spanning tree for the set of
rows of M under the extended Hamming distance can be constructed by a Monte Carlo algorithm in Õ(n2) time.

We shall also use the following data structure, easily obtained by computing all prefix sums:

Fact 2. (e.g., see [5]) For a sequence of integers a1, a2,. . . ,an, one can construct a data structure that supports a
query asking for reporting the sum

∑j
k=i ak for 1 ≤ i ≤ j ≤ n in O(1) time. The construction takes O(n) time.

By using Lemma 5 and Fact 2, we obtain the following algorithm which in fact computes the arithmetic product
of the input Boolean matrix M and Boolean vector v interpreted as 0 − 1 ones. Observe that the aforementioned
arithmetic product immediately yields the corresponding Boolean one.
Algorithm 1
Input: An n× n Boolean matrix M and an n-dimensional Boolean column vector v.
Output: The arithmetic product c = (c1, ..., cn) ofM and v interpreted as a 0−1 matrix and a 0−1 vector, respectively.

1. Find an O(log n)-approximate spanning tree T for the rows rowi(M), i = 1, . . . , n, of M under the extended
Hamming distance and a traversal (i.e., a not necessarily simple path visiting all vertices) of T.

2. For any pair (rowi(M), rowl(M)), where the latter row follows the former in the traversal, find the differenti-
ating blocks s for rowi(M) and rowl(M) and as well as the differences h(s) (1 or −1) between the common
value of each entry in Ml,min s, . . . ,Ml,max s and the common value of each entry in Mi,min s, . . . ,Mi,max s.

3. Initialize a data structure D for counting partial sums of the values of coordinates on continuous fragments of
the vector v.

4. Iterate the following steps:

(a) Compute cq where q is the index of the row from which the traversal of T starts.

(b) While following the traversal of T , iterate the following steps:

i. Set i, l to the indices of the previously traversed row and the currently traversed row, respectively.
ii. Set cl to ci.

iii. For each differentiating block s for rowi(M) and rowl(M), compute∑
k∈s vk using D and set cl to cl + h(s)

∑
k∈s vk.

5. Output the vector (c1, c2, ..., cn)

Definition 2. For an n × n Boolean matrix A, let STA stand for the minimum cost of a spanning tree of rowi(A),
i ∈ {1, ..., n}, under the extended Hamming distance.

Lemma 6. Algorithm 1 runs in Õ(n2 + STM) with high probability. If Steps 1, 2, 3 are treated as a preprocessing of
the matrix M then it runs in Õ(n+ STM) time after an Õ(n2)-time preprocessing.

Proof. The approximate minimum spanning tree T in Step 1 can be constructed by a Monte Carlo algorithm in Õ(n2)
time by Lemma 5. Its traversal can be easily found in O(n) time. Since the length of the traversal is linear in n, Step
2 can be easily implemented in O(n2) time. Step 3 takes O(n) time by Fact 2. Finally, based on Step 2, Step 4 (b)-ii
takes Õ(1 + EH(rowi(M), rowl(M))) time. Let U stand for the set of directed edges forming the traversal of the
spanning tree T. It follows that Step 4 (b) can be implemented in Õ(n +

∑
(i,l)∈U EH(rowi(M), rowl(M))) time,

i.e., in Õ(n+ STM) time by Lemma 5. Consequently, Step 4 takes Õ(n+ STM) time.

By Lemma 6, we obtain:

Theorem 3. The Boolean product c of an n × n Boolean matrix M and an n-dimensional Boolean column vector v
can be computed in Õ(n+ STM) time with high probability after Õ(n2)–time preprocessing.

5

Proof. The correctness of Algorithm 1 follows from the observation that a differentiating block s for rowi(M) and
rowl(M) yields the difference h(s)

∑
k∈s vk between cl and ci just on the fragment corresponding toMi,min s, . . . ,Mi,max s

and
Ml,min s, . . . ,Ml,max, respectively. Lemma 6 yields the upper bounds in terms of STM .

Corollary 1. The OMv problem for an n× n Boolean matrix can be solved in
Õ(n(n+ STM)) time while the Mv problems can be solved in Õ(n+ STM) time after Õ(n2)-time preprocessing.

3.2 Small spanning tree of the input vectors
In this subsection, we assume an online scenario where besides the Boolean matrix there is given a sequence of n-
dimensional Boolean vectors received one at time. In order to specify and analyze our algorithm, we need the following
concepts and facts on them.

Definition 3. For a metric space P and a point q ∈ P, an c-approximate nearest neighbour of q in P is a point p ∈ P
different from q such that for all p′ ∈ P, p′ 6= q, dist(p, q) ≤ c × dist(p′, q). The ε-approximate nearest neighbour
search problem
(ε-NNS) in P is to find for a query point q ∈ P a (1 + ε)-approximate nearest neighbour of q in P.

Fact 3. (See 3rd row in Table 4.3.1.1 in [1]) For ε > 0, there is a Monte Carlo algorithm for the dynamic ε-NNS in
{0, 1}d under the Hamming metric which requiresO(d`

1
1+2ε +o(1)) query time andO(d`

1
1+2ε +o(1)) update time, where

` is the maximum number of stored vectors in {0, 1}d.

Fact 4. [6] There is a simple, linear-time, transformation of any 0− 1 string w into the string t(w) such that for any
two 0− 1 strings s and u, EH(s, u) = dH(t(s),t(u))

2 e.

By combining Facts 3, 4. we obtain the following corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamicO(log `)-NNS in {0, 1}d under the extended
Hamming metric which requires O(d`o(1)) query time and O(d`o(1)) update time.

Our online algorithm is as follows.
Algorithm 2
Input: Given a priori an n×nBoolean matrixM and an online sequence of n-dimensional Boolean vectors v1, v2, ..., v`
received one at time.
Output: For i = 1, ..., `, the arithmetic product ci = (ci1, ..., c

i
n) =Mvi of M and vi, treated as a 0-1 matrix and a 0-1

column vector, is output before receiving vi+1.

1. For j = 2, . . . , n, initialize a data structure Dj that for any interval s ⊆ {1, ..., n} reports
∑
k∈sM [j, k] using

Fact 2.

2. Receive the first vector v1 and compute the arithmetic product c1 = (c11, ..., c
1
n) of M with v1 by the definition.

3. For i = 2, . . . , `, receive the i-th vector vi = (vii , ..., v
i
n) and iterate the following steps:

(a) Find an O(log `)-approximate nearest neighbour vm of vi in the set {v1, ..., vi−1}.
(b) Determine the differentiating blocks s and the differences h(s) for vm and vi.

(c) For j = 1, . . . , n iterate the following steps.

i. Set cij to cmj .
ii. For each differentiating block s of vm and vi iterate the following steps.

A. Compute
∑
k∈sM [j, k] using Dj .

B. Set cij to cij + h(s)
∑
k∈sM [j, k].

(d) Output ci = (ci1, ..., c
i
n)

6

In the following lemmata, we analyze the time complexity of Algorithm 2. The first lemma is an immediate
consequence of Corollary 2.

Lemma 7. There is a randomized Monte Carlo algorithm for a dynamic O(log `)-NNS in {0, 1}d under the extended
Hamming metric such that:

• The insertions of the vectors v1 through v` in Algorithm 2 can be implemented in O(n`1+o(1)) total time.

• The O(log `)-approximate nearest neighbours of vi, i = 2, ..., `, in {v1, ..., vi−1}, in Step 3 (a) of Algorithm 2
can be found with high probability in O(n`1+o(1)) total time.

Proof. By Corollary 2, the `−1 updates and `−2 O(log `)-approximate nearest neighbour queries takeO(n`1+o(1))
total time.

Lemma 8. The preprocessing of the matrix M in Step 1 and computing the arithmetic product of M with v1 in
Step 2 takes O(n2) time. After that, Algorithm 2 for i = 2, ..., `, computes the arithmetic product ci of M and vi
before receiving vi+1 in Õ(n(1 + min{dist(vi, vj)|j < i})) + t(i) time, where t(i) is the time taken by finding an
O(log `)-approximate neighbour of vi in {v1, v2, ..., vi−1} and inserting vi in the supporting data structure, with high
probability. The total time is Õ(n(`+ ST (V))) +

∑`
i=2 t(i), where ST (V) is the minimum cost of the spanning tree

of the vectors in V = {v1, v2, ..., v`} under the extended Hamming distance.

Proof. Step 1 can be implemented in O(n2) time by Fact 2 while Step 2 can be easily done in O(n2) time by the
definition. Step 3 (a) takes t(i) time by our assumptions. The differentiating blocks s and the differences h(s) for
vm and vi can be easily determined in O(n) time in Step 3 (b). Finally, since the number of the aforementioned
blocks is within a polylogarithmic factor of min{dist(vi, vj)|j < i}, the whole update of cm to ci in Step 3 (c) takes
Õ(n(1 + min{dist(vi, vj)|j < i})) time.

In order to pursue our time analysis of Algorithm 2, we need to specify and analyze the following simple online
approximation heuristic for minimum spanning tree (MST).
Approximate Nearest-Neighbour Heuristic for MST
Input: an online sequence V of vectors v1, v2, received one at time.
Output: a sequence of spanning trees Ti’ of the vectors v1 through vi constructed before receiving vi+1 for all i.
for each new vector vi do
find an f(i)-approximate nearest neighbour u of vi in the set of vectors received so far;
expand the spanning tree built for the vectors received before v by {u, vi}.

Theorem 4. Assume that the function f is not decreasing and the input vectors to the approximate nearest-neighbour
heuristic for MST are drawn from a metric space. The spanning tree constructed by the heuristic for the first t vectors
has cost not exceeding dlog2 tef(t) times the minimum.

Proof. Assume first that t is a power of two. Let V = {v1, ..., vt} be the sequence of t vectors received, where vi is
the i-th vector received.

Consider a minimum cost perfect matching P of V. For each edge {vi, vj} in P,where i < j, the cost of connecting
vj to the current spanning tree Ti−1 of v1 through vj−1 does not exceed f(t) × dist(vi, vj). Thus, for t/2 vectors vl
in V, the cost of connecting them to the current spanning tree Tl−1 does not exceed the total cost of P times f(t). It
is well known that the total cost of P is not greater than half the minimum cost TSP (V) of the travelling salesperson
tour of V.

In order to estimate from above the cost of connecting the remaining t/2 vectors to the current spanning trees, we
iterate our argument.

Thus, let V1 denote the remaining set of vertices and let P1 be their minimum-cost perfect matching. We can again
estimate the cost of connecting half of the t/2 vectors in V1 to the current spanning trees by the cost of P1 times
f(t). On the other hand, we can estimate the cost of P1 by 1

2TSP (V1) ≤ 1
2TSP (V). We handle analogously the

remaining t/4 vectors and so on. After log2 t iterations, we are left with the first vector, and can estimate the total
cost of connecting all other vectors to the current spanning trees by log2 tf(t)TSP (V)/2. On the other hand, by the

7

doubling MST heuristic, we know that TSP (V) is at most twice the cost ST (V) of minimum-cost spanning tree of V.
We conclude that the cost of the spanning tree of V constructed by the approximate nearest-neighbour heuristic does
not exceed log2 tf(t)ST (V).

If t is not a power of two, we have to consider minimum-cost maximum cardinality matchings instead of minimum-
cost perfect matchings. Let t′ = 2dlog2 te. Observe that the number of the remaining vectors after each iteration when
we start with a sequence of t vectors will be not greater than that when we start with a sequence of t′ vectors having
the sequence of t vectors as a prefix. This completes the proof of the dlog2 tef(t)ST (V) upper bound.

In the special case when f() ≡ 1, our online heuristic for MST in a way coincides with the greedy one for
incremental minimum Steiner tree from [9], which on weighted graphs satisfying triangle inequality could be easily
adapted to consider only received vertices. Hence, in this case a logarithmic upper bound on approximation factor
could be also deduced from Theorem 3.2 in [9]. Putting together our lemmata and theorem in this subsection, we
obtain our main result here.

Theorem 5. Let M be an n × n Boolean matrix. For an online sequence V of n-dimensional Boolean vectors
v1, v2, ..., v` received one at time, the Boolean products Mvi of M and vi can be computed before receiving vi+1. in
total time
Õ(n(`1+o(1) + ST (V))) with high probability by a randomized algorithm, where ST (V) is the minimum cost of the
spanning tree of the vectors in V under the extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differentiating block s for vm and vi yields
the difference h(s)

∑
k∈sM [j, k] between cmj and cuj just on the fragments vmmin s, . . . , v

m
i,max s and vimin s, . . . , v

i
max s,

respectively. Lemmata 7, 8 and Theorem 4 yield the upper bounds in terms of ST (V).

4 Applications to graph queries
Suppose that we are given a graph G = (V,E) on n vertices and a subset S of V . In [10] Williams observed that the
questions if S is a dominating set, an independent set, or a vertex cover in G, can be easily answered by computing the
Boolean product of the adjacency matrix of G with appropriate Boolean vectors. Hence, he could conclude (Corollary
3.1 in [10]) that these questions can be answered in O(n2/(ε log n)2) time after an O(n2+ε) preprocessing of G by
using his method of multiplying n×n Boolean matrix with an n-dimensional column vector in O(n2/(ε log n)2) time
after anO(n2+ε)-time preprocessing of the matrix. By plugging in our method of Boolean matrix-vector multiplication
(Theorem 3) instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in Õ(n2) time such that one can determine if a given
subset of vertices in G is a dominating set, an independent set, or a vertex cover of G in Õ(n+ STG) time with high
probability, where STG is the minimum cost of a spanning tree of the rows of the adjacency matrix of G under the
extended Hamming distance. Using the same preprocessing, one can determine if a query vertex belongs to a triangle
in G in Õ(n+ STG) time with high probability.

To obtain corresponding applications of the results from subsection 3.2, we need to consider the online versions
of the graph subset queries. Thus, we are given a graph G on n vertices and an online sequence of subsets S1,...,S`
of vertices in G. The task is to preprocess G first and then to determine for i = 1, ..., `, if Si is a dominating set, an
independent set, or a vertex cover of G, respectively, before Si+1 has been received.

Corollary 4. A graphG on n vertices can be preprocessed inO(n2) time such that for an online sequence S of subsets
S1,...,S` of vertices in G, for i = 1, ..., `, one can determine if Si is a dominating set, an independent set, or a vertex
cover of G before receiving Si+1 (in i < ` case) in Õ(n(`1+o(1) + STS)) total time with high probability, where STS
is the minimum cost of a spanning tree of the characteristic vectors representing the subsets in S under the extended
Hamming distance. Using the same preprocessing, for an online sequence v1, ..., v` of query vertices, for i = 1, ..., `,
one can determine if vi belongs to a triangle in G before receiving vi+1 (in case i < `) in Õ(n(`1+o(1) + STG)) total
time with high probability.

8

Proof. Recall that a subset Si of vertices in G can be easily represented by an n-dimensional Boolean column vector
wi with 1 on the j-th coordinate iff the j-th vertex belongs to Si. Then, Si is independent inG iff the vector ui resulting
from multiplying the adjacency matrix of G with wi has zeros on the coordinates corresponding to the vertices in Si.
Next, Si is a dominating set of G iff each vertex in V \Si has a neighbour in Si, i.e., iff ui has ones on the coordinates
corresponding to vertices in V \ Si. Finally, Si is a vertex cover of G iff V \ Si is an independent set of G, i.e., iff the
vector resulting from multiplying the adjacency matrix of G with the complement of wi has zeros on the coordinates
corresponding to the vertices in V \ Si.

Hence, it is sufficient to plug in our solution given in Theorem 5 to obtain the theorem. The preprocessing of G
consists just in the construction of its adjacency matrix in O(n2) time. Note also that the extended Hamming distance
between two 0-1 strings is equal to the extended Hamming distance between between the complements of these two
strings. Thus, the upper bound in terms of STS is also valid in case of vertex cover.

5 Final Remarks
Our results in Section 3 imply that to prove the conjectures OMv, AMv and MvP it is sufficient to consider n × n
Boolean matrices where STM is almost quadratic in n.

Interestingly enough, our approximate nearest-neighbour heuristic for MST combined with the standard MST
doubling and shortcuttings techniques immediately yields a corresponding online heuristic for TSP in metric spaces.
By Theorem 4, it provides TSP tours TSPs of length at most 2dlog2 sef(s) times larger than the optimum, where
s is the number of input vectors and f(s) is an upper bound on the approximation factor in the approximate nearest
neighbour subroutine. The resulting TSP heuristic for i = 2, ... simply finds an f(i)-nearest neighbour u of the new
vector vi and replaces the edge between u and its predecessor w by the path {w, vi}, {vi, u} in TSPi−1 in order to
obtain TSPi.

Acknowledgements
CL, JJ and MP were supported in part by Swedish Research Council grant 621-2017-03750.

References
[1] A. Andoni and P. Indyk, Nearest Neighbours in High-dimensional Spaces. 43rd chapter in Handbook of Discrete

and Computational Geometry, J.E. Goodman, J. O’Orourke and C.D. Toth (editors), 3rd edition, CRC Press,
Boca Raton, FL, 2017.

[2] N. Bansal and R. Williams. Regularity Lemmas and Combinatorial Algorithms. Theory of Computing, Vol. 8,
No. 1, pp. 69-94, 2012.

[3] A. Björklund and A. Lingas. Fast Boolean matrix multiplication for highly clustered data. Proc. of WADS 2001,
LNCS Vol. 2125, pp. 258-263.

[4] D. Chakraborty, L. Kamma, and K. Green Larsen Tight cell probe bounds for succinct Boolean matrix-vector
multiplication. Proc. of STOC 2018, pp. 1297-1306.

[5] P. Floderus, J. Jansson, C. Levcopoulos, A. Lingas, D. Sledneu. 3D Rectangulations and Geometric Matrix
Multiplication. Algorithmica 80(1): 136-154 (2018)

[6] L. Ga̧sieniec and A. Lingas. An Improved Bound on Boolean Matrix Multiplication for Highly Clustered Data.
Proc. of WADS 2003, LNCS Vol. 2748, pp. 329-339.

[7] K. Green Larsen, R.R. Williams: Faster Online Matrix-Vector Multiplication. Proc. of SODA 2017, pp. 2182-
2189.

9

[8] M. Henzinger, S. Krinninger, D. Nanongkai and T. Saranurak Unifying and Strengthening Hardness for Dynamic
Problems via the Online Matrix-Vector Multiplication Conjecture Proc. of STOC 2015 (also presented at HALG
2016).

[9] M. Imase and B.M. Waxman, Dynamic Steiner Tree Problem. SIAM J. Discrete Math., 4(3), pp. 369-384.

[10] R. Williams, Matrix-vector multiplication in sub-quadratic time (some preprocessing required). Proc. of SODA
2007, pp. 995-2001.

10

