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Abstract 

The purpose of the present paper is to investigate the correlation between the friction-induced 

oscillation of a wheelset-track system and curve radius and to explain a general phenomenon of rail 

corrugation based on the viewpoint of friction-induced oscillation. The typical phenomenon of rail 

corrugation in metros is that corrugation generally arises when the curve radius is quite small, 

whereas it rarely occurs when the curve radius is larger or on a straight track. Different multi-body 

models of the vehicle-track system and finite element models of the multiple-wheelset-track system 

with different curve radii are established respectively. According to the creep force analyses and 

unstable vibration analyses, the correlation between the creep force and friction-induced oscillation 

can be identified. Then, the effect of the track curve radius on the friction-induced oscillation of the 

wheelset-track system can be summarized, which provides an explanation of the typical phenomenon 

of corrugation. 
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Introduction 

With the rapid development of urban railway construction, numerous problems of track 

degradation have been found. Rail corrugation is one of the most important kinds of track 

degradation. The research work on rail corrugation can be traced back to the beginning of the last 

century. So far, researchers have made significant progress in the investigation of the mechanisms of 

rail corrugation. Many endeavors have been made to understand and control the rail corrugations. 

According to the literature reviews [1, 2], the formation mechanism of rail corrugation is generally 

described by using the feedback loop [1], which mainly includes the damage mechanism and 

wavelength fixing mechanism. The damage mechanism is a physical process involving removal of 

material from the rail head surface, which mainly represents as wear and plastic flow of rail [3-5]. 

The wavelength fixing mechanism primarily reflects the dynamic behavior of wheel-rail systems, in 

which the corrugation wavelength is equal to the forward vehicle speed divided by the vibration 

frequency caused by the dynamic excitation between the wheel and rail. Normally, the vibrations of 

the wheel-rail system are caused by various excitation factors and have different frequencies. To 

confirm that which one of vibrations is the main reason to cause rail corrugation, two main schools 

of thought associated with the main wavelength fixing mechanism excitation in railways were 

proposed, which includes the theory of rail surface irregularity and the theory of instability of the 

wheel-rail system. In the theory of rail surface irregularity, it is considered that the frequency of 

wheel-rail transient dynamic interaction due to an initial rail surface roughness is related to the 

wavelength of rail corrugation [3-8]. Another theory believes that the main cause of corrugation 



excitation is the instability of the wheel-rail system in some particular situations, which is related to 

the stick-slip oscillation [9-13] or the friction-induced oscillation [14, 15]. In the case of stick-slip 

oscillation, the oscillation mainly results from the periodic vibration of the normal contact force 

between wheel and rail near the saturation [9-12] or the negative slope of the friction-creepage 

relationship after saturation [13]. In the viewpoint of friction-induced oscillation, it is proposed that 

the friction-induced oscillation of the wheelset-track system is apt to occur when the creep force 

between the wheel and rail approaches saturation [14, 15]. In other words, the friction force leads to 

an asymmetric stiffness matrix and damping matrix of the wheel-rail system and hence the potential 

instability may occur.  

Different phenomena of rail corrugation are studied based on the above viewpoints. It is well 

known that curved tracks are high incidence areas of rail corrugation and the track curve radius has 

an obvious influence on rail corrugation [16-19]. Wen et al. [16] researched the effect of scratch on 

rail corrugation on a curved track with radius 300 m when a wheelset passed through steadily and 

repeatedly. Saulot et al. [17] performed several tribological investigations of rail corrugation on a 

sharp curved track with radius 400 m. Torstensson et al. [18] studied the development of rutting 

corrugation on a 120 m-radius curved track by means of field measurements, laboratory experiments 

and numerical simulations. Eadie et al. [19] described the field evaluations of the effect of friction 

modifier on short corrugation growth on sharp curves with different radii less than 300 m. Meehan et 

al. [20] investigated the effect of non-uniformity in speed distribution on corrugation growth in 

curves and developed an efficient corrugation growth prediction model. Although the corrugation 

phenomena with specific curve radius have been researched, a typical phenomenon of rail 

corrugation remains a mystery, in which rail corrugation generally arises when the curve radius is 



quite small, whereas it rarely occurs when the curve radius is larger or on a straight track. In Chinese 

metros, one clue of this typical rail corrugation is that the occurrence probability of rail corrugation 

on the low rail of the tight curved track is close to 100 percent, but the occurrence probability of rail 

corrugation on the high rail of the identical tight curved track is less than about 10 percent. Another 

clue is that both rails on the curved track whose curve radius is larger than 650-800 m rarely suffer 

from rail corrugation. Therefore, the purpose of the present paper is to research the afore-mentioned 

typical phenomena of rail corrugation in metros from the perspective of the correlation between the 

friction-induced oscillation of a wheelset-track system and curved track radius. Although the 

friction-induced oscillation is a possibility of rail corrugation, the viewpoint of the friction-induced 

oscillation has been verified by the field measurement [21], numerical simulation [14, 22] and 

experimental simulation [23]. In the present paper, the creep force analyses on different curve radii 

are made to identify the saturation of the creep force between the wheel and rail using the dynamic 

analyses of the multi-body models of vehicle-track systems. Then, the unstable vibration analyses on 

different curve radii are performed to study the stability of the wheelset-track systems using the 

complex eigenvalue analyses of the finite element models of wheelset-track systems. Therefore, the 

correlation between the creep force and the friction-induced oscillation of the wheelset-track system 

with different radii can be known. Furthermore, the effect of track curve radius on the friction-induce 

oscillation of the wheelset-track system can be summarized, which can provide an explanation of the 

typical phenomenon of rail corrugation. 

 

Simulation model and numerical method 

Wheelset-track contact model 



Normally, the contact conditions between wheelsets and rails are different when a vehicle passes 

through curved tracks with different curve radii, especially on the leading wheelset. In the contact 

condition of single point between the wheel and rail, with the increase of the track curve radius, the 

contact point between the outer wheel and high rail of the leading wheelset gradually shifts from the 

wheel flange to the wheel tread, and shifts from the profile of rail head to the top of rail head. Even 

on a curved track with the same curve radius, the contact conditions between the leading wheelset 

and trailing wheelset also have significant differences. Figure 1 shows the wheelset-track contact 

model on a curved track. As for the force distribution of the wheelset-track system, the left (outer) 

and right (inner) vertical suspension forces (FSVL and FSVR), the lateral suspension forces (FSLL and 

FSLR) caused by the vehicle load are applied on the axle ends of the wheelset. When the wheelset 

rolls on a curved track, the normal contact forces (NL and NR) and creep forces (FL and FR) between 

the outer and inner wheels and rails are generated. The contact angle between the outer wheel and 

high rail is L and that between the inner wheel and low rail is R. In the track support structure, the 

rail and sleeper are connected by fastener, which is simulated by the spring and damper elements. Its 

vertical stiffness and damping are KRV and CRV, and its lateral stiffness and damping are KRL and CRL, 

respectively. Besides, the sleeper is supported by the ballast and subgrade. The combined stiffness 

and damping of the ballast and subgrade also can be simulated by the spring and damper elements. 

The combined vertical stiffness and damping are KSV and CSV and the combined lateral stiffness and 

damping are KSL and CSL, respectively. 



 

Figure 1. Wheelset-track contact model on a curved track 

According to the wheelset-track contact parameters, to identify the specific contact conditions 

and force distributions between the wheelsets and rails, the multi-body models of the vehicle-track 

system on tracks with different curve radii are built and the dynamic analyses are carried out by 

Simpack. Then, the relevant finite element models of the multiple-wheelset-track system on tracks 

with different curve radii can be established using Abaqus. 

 

Multi-body model of the vehicle-track system 

The contact conditions and force distributions of the wheelset-track systems have evident 

differences due to the different curve radii. Hence the multi-body models of the vehicle-track 

systems with different curve radii built by Simpack are performed to calculate the corresponding 

parameters. The calculated lateral displacement and yaw angle of the wheelset can be used to define 

the specific contact points between wheels and rails in relevant finite element models. Additionally, 

the calculated vertical and lateral suspension forces of the wheelsets can be used to apply on the axle 

ends of each wheelset in the finite element models. Moreover, the obtained creep forces and normal 

contact forces between the wheels and rails can be used to judge whether the creep forces between 

wheels and rails are saturated or not. 



The multi-body model of the vehicle-track system on a curved track supported by fixed-dual 

short sleepers established by Simpack is shown in Figure 2. The relevant parameters are listed in 

Table 1. The vehicle model is a simplified model of a regular passenger vehicle, which is made up of 

a carbody, two bogies with wheelsets connected by primary and secondary suspensions. The 

coefficient of friction is set as a constant, which is equal to 0.4. The track consists of a straight track 

of 50 m, a transition of 50 m and a curve of 200 m with a constant curve radius. The rail cants are all 

set as 1/40 and according to the actual conditions, the track gauges, track superelevations and 

average speeds of the vehicle with different curve radii are set as shown in Table 2 based on the 

“Maintenance Rule of Railway track” in China. 

 

Figure 2. Multi-body model of the vehicle-track system 

Table 1. Parameters of the multi-body model of the vehicle-track system 

 Notation Parameter Value 

Carbody 

mc (kg) Mass of car body 23825 

Icx (kgm2) Mass moment of inertia of car body 

around X-axis 

33832 

Icy (kgm2) Mass moment of inertia of car body 

around Y-axis 

528628 

Icz (kgm2) Mass moment of inertia of car body 

around Z-axis 

506504 

Bogie 

mb (kg) Mass of bogie 3970 

Ibx (kgm2) Mass moment of inertia of bogie around 

X-axis 

2058 

Iby (kgm2) Mass moment of inertia of bogie around 

Y-axis 

2936 

Ibz (kgm2) Mass moment of inertia of bogie around 

Z-axis 

4716 

Wheelset mw (kg) Mass of wheelset 1654 



Iwx (kgm2) Mass moment of inertia of wheelset 

around X-axis 

726 

Iwy (kgm2) Mass moment of inertia of wheelset 

around Y-axis 

100 

Iwz (kgm2) Mass moment of inertia of wheelset 

around Z-axis 

726 

Suspension 

Primary 

Kpx (kN/m) Stiffness of primary suspension alone 

X-axis 

10000 

Kpy (kN/m) Stiffness of primary suspension alone 

Y-axis 

6500 

Kpz (kN/m) Stiffness of primary suspension alone 

Z-axis 

1260 

Cpz (kNs/m) Damping of primary suspension alone 

Z-axis 

10626 

Secondary 

Ksx (kN/m) Stiffness of secondary suspension alone 

X-axis 

5000 

Ksy (kN/m) Stiffness of secondary suspension alone 

Y-axis 

5000 

Csz (kNs/m) Damping of secondary suspension alone 

Z-axis 

2000 

Track subsystem [4] 

KRV (MN/m) Fastener vertical stiffness 40.73 

KRL (MN/m) Fastener lateral stiffness 8.79 

CRV (Ns/m) Fastener vertical damping 9898.70 

CRL (Ns/m) Fastener lateral damping 1927.96 

KSV (MN/m) Ballast vertical stiffness 89 

KSL (MN/m) Ballast lateral stiffness 50 

CSV (Ns/m) Ballast vertical damping 8.98×104 

CSL (Ns/m) Ballast lateral damping 4.0×104 

Table 2. Track parameters with different curve radii 

Curve radius (m) 200 250 300 350 400 450 500 550 600 650 700 750 800 

Gauge (mm) 1450 1450 1440 1435 1435 1435 1435 1435 1435 1435 1435 1435 1435 

Superelevation (mm) 120 120 120 120 120 100 100 90 70 70 60 60 50 

Average Speed (km/h) 45 45 50 55 55 60 60 60 60 60 60 60 60 

 

Finite element model of the wheelset-track system 

Based on the wheelset-track contact model and the calculated parameters from the multi-body 

models of the vehicle-track systems, the corresponding finite element model of a 

multiple-wheelset-track system on a curved track supported by the fixed-dual short sleepers was 

established using Abaqus as shown in Figure 3. It is mainly composed of three parts, which includes 

four wheelsets, two rails and a series of sleepers. The relevant material parameters are listed in Table 



3. As for the four wheelsets, the wheelsets 1 and 2 belong to the leading bogie, and the wheelsets 3 

and 4 belong to the trailing bogie. The distance between two bogies is 7280 mm, and the distance 

between two wheelsets in the same bogie is 2200 mm. Therefore, the wheelsets 1 and 3 are leading 

wheelsets, and the wheelsets 2 and 4 are trailing wheelsets. The nominal diameter of the wheel is 840 

mm and the wheel tread is LM-type tread normally used in Chinese metros. As for the curved tracks 

with different curve radii, the coefficients of friction are all set as 0.4 [14]. The standard track gauge 

is usually 1435 mm, but to keep the outer rail of curved track smooth and round, the track gauge is 

widened by traversing the inner rail. The track gauges are also set as shown in Table 2. The tracks are 

supported by fixed-dual short sleepers and the spacing between two sleepers is 625 mm. The DTVI2 

fastener is used to connect the rail and sleeper, and the support stiffness and damping of the ballast is 

simulated by a series of spring-dashpot connections, as shown in Figure 3(b). The relevant 

parameters of the track support structure are the same as those in the multi-body model of the 

vehicle-track system, as shown in Table 1 [4]. 

  

Figure 3. Finite element model of the multiple-wheelset-track system: (a) overview; (b) details of the spring-dashpot 

connections 

Table 3. Material parameters of the multiple-wheelset-track system 

Part Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio 

Wheelset 7800 2.1×1011 0.3 

Rail 7790 2.059×1011 0.3 

Sleeper 2800 1.9×1011 0.3 



 

Basic theory of corrugation wear 

Wear is the process of gradual removal of material during the contact interaction in the relative 

motion. Hence rail corrugation phenomena are strictly associated with the frictional process between 

the wheel and rail. According to Archard’s simplified wear theory shown in Equation (2-1), the 

relationship between the friction-induced oscillation of the wheel-rail system and corrugation wear 

also can be explained [24]. The model makes an assumption that the volume of removed material is 

proportional to the dissipated sliding energy duo to the friction force between two contact surfaces.  

N
V K d

H


.                                (2-1) 

Taking the corrugated wear as an example, where V is the volume of removed material, N is the 

normal contact force between the wheel and rail, H is the hardness of rail, d is the relative sliding 

distance and K is the wear coefficient. K and H can be assumed as constants. Additionally, d also 

trends to be constant in a quasi-static state when the creep force trends to be saturated. Therefore, if 

the normal contact force varies with time due to the contact instability, the volume of removed 

material will vary as well in the process of wear. Similarly, according to the formula of rail abrasion 

presented by Brockley from the viewpoint of friction work between the wheel and rail [25], it also 

can be concluded that the variation of the friction work between the wheel and rail is largely 

influenced by the normal contact force between the wheel and rail.  

Additionally, the variation of the normal contact force can be induced not only by the 

friction-induced oscillation, but also by the external-induced oscillation. To confirm which incentive 

is the main cause of rail corrugation, the dominant frequencies of friction-induced oscillation and 

external-induced oscillation are compared with the dominant frequency corresponding to the rail 



corrugation. It can be found that the frequency of the friction-induced vibration of the wheelset-track 

system is consistent with the relevant oscillation frequency of rail corrugation in the field 

measurement, while other random vibrations may only bring about the stochastic wear of a point on 

the rail working surface, which cannot lead to rail corrugation [21]. The friction-induced oscillation 

of wheel-rail system generated by saturated creep force between the wheel and rail will lead to the 

oscillation of the normal contact force at the same frequency based on the mode coupling instability 

mechanism [26]. Moreover, the correlation between the friction-induced vibration and the fluctuation 

of the normal contact force has been studied by the comparison between the friction and frictionless 

condition using the transient dynamic analysis [22]. More details about the friction-induced 

oscillation and the resultant corrugation wear are studied in Ref. [27], in which the dynamic model of 

the wheel-rail system and wear model of rail corrugation are established. Therefore, it can be 

summarized that the friction-induced oscillation of wheelset-track system may induce rail 

corrugation.  

 

Numerical method of the friction-induced oscillation 

The mode coupling instability mechanism is one of the mechanisms of friction-induced 

instability, in which the friction force act as a follower force and destroy the symmetry of the 

stiffness and damping matrices resulting in flutter instability [26, 28]. The complex eigenvalue 

analysis is mainly adopted in the analysis of friction-induced instability of multi-DOF systems, 

which can accurately forecast the stability of the system in frequency domain [29]. The unstable 

oscillation frequency and corresponding mode of the friction-induced instability also can be obtained. 

The theoretical methodology of the complex eigenvalue analysis is briefly described as below [29]. 



Generally speaking, the motion equation of a discrete mechanical system in the quasi-static stability 

state can be written as: 

,                          (2-2) 

where [M], [C] and [K] stand for the symmetric mass, damping and stiffness matrix, respectively. q is 

the vector of the generalized external forces. x stands for the nodal displacement vector, which 

includes all the degrees of freedom. 

In the numerical simulation of the friction-induced stability of the wheelset-track system, due to 

the effect of friction between the wheel and rail, the motion equation of the wheel-rail system can be 

rewritten in the following form: 

,                          (2-3) 

where [Mf], [Cf] and [Kf] stand for the asymmetric mass, damping and stiffness matrices due to 

friction, respectively. Since the global mass, damping and stiffness matrix are asymmetric, the 

system might manifest flutter instability of various modes of the system. In addition, the stronger the 

asymmetric is, the friction-induced oscillation more easily occurs. 

The corresponding eigenvalue equation can be expressed as: 

2( [ ] [ ] [ ]) 0f f fM C K    
,                          (2-4) 

where λ stands for the eigenvalue and ϕ stands for the corresponding eigenvector. Then, the general 

solution can be obtained using the subspace iteration method. 

1

( ) k

n
t

k

k

x t e





,                                 (2-5) 

where k  is the kth eigenvector. k  is the kth eigenvalue, which can be expressed by means of its 

real and imaginary part, that is, =k k ki   . The real part of the eigenvalue, k , represents the 

stability of the system. The imaginary part of the eigenvalue, k , represents the steady-state circular 



frequency of the system. When the real part of an eigenvalue is larger than zero, the unstable 

vibration of the system primarily takes place, which means that the vibration amplitude grows 

exponentially with time even under a small perturbation.  

Additionally, another parameter to judge the stability of the wheelset-track system in the 

complex eigenvalue analysis in Abaqus is the effective damping ratio, which is defined as: 

-2
= k

k

k





.                              (2-6) 

Adams proposed that the effective damping ratio, rather than the real part of the eigenvalue, was 

taken as the measure of the severity of the instability for the same reason that it was used for 

positively damped systems [30]. Positive effective damping ratio ( 0k  ) corresponding to stable 

motion ( 0k  ), whereas negative damping ratio ( 0k  ) represented unstable (self-excited) motion 

( 0k  ) [30]. Furthermore, the smaller the negative effective damping ratio is, the corresponding 

friction-induced oscillation more easily occurs. 

In the finite element analysis of the friction-induced oscillation of the wheelset-track system, the 

effective damping ratio of the wheelset-track system can be directly extracted by the complex 

eigenvalue analysis using Abaqus. The procedures of numerical simulation are introduced as follows. 

Firstly, the vertical and lateral suspension forces are imposed on the axle ends of each wheelset. The 

corresponding parameters result from the calculations using Simpack. Then, the lateral and 

longitudinal relative slipping velocities are applied on the wheels using the quasi static analysis. 

After that, the natural frequencies of the wheelset-track system are extracted using the mode analysis. 

Finally, the unstable vibration frequency and the relevant mode can be obtained using the complex 

eigenvalue analysis. Moreover, it is hypothesized that the rail surface is utterly smooth. Only the 

suspension forces are applied on the wheelsets and no other disturbance exists. Therefore, the 



predicted unstable oscillation of the wheelset-track system in numerical simulation is the 

friction-induced oscillation. 

 

Results and discussion 

Numerical results of vehicle curve negotiation 

According to the Simpack simulation results, the specific contact points and the force 

distributions between the wheelsets and tracks can be identified. The contact points between different 

wheelsets and rails can be confirmed via selecting the average values of lateral displacement and yaw 

angle in the stability range of the vehicle. Figure 4 shows the distributions of lateral displacement 

and yaw angle of each wheelset on tracks with different curve radii. It can be found that the contact 

points of the wheelsets 1 and 3 of the leading wheelsets are quite similar. With increasing the curve 

radius, the absolute value of the lateral displacement of the leading wheelset decreases. The abrupt 

change from 200 m to 350 m is mainly due to the variation of track gauge. In addition, the absolute 

value of the yaw angle of the leading wheelset decreases obviously with increasing the curve radius. 

Therefore, the contact point between the outer wheel of the leading wheelset and high rail gradually 

shifts from the wheel flange to the wheel tread, and shifts from the profile of rail head to the top of 

rail head with increasing the track curve radius, which means the relevant contact angle decreases. 

The contact point between the inner wheel of the leading wheelset and the low rail is generally 

located between the wheel tread and the top of rail head with increasing the track curve radius, which 

means the relevant contact angle changes slightly. Besides, the contact conditions of the wheelsets 2 

and 4 of the trailing wheelsets are quite similar. With increasing the curve radius, the absolute values 

of the lateral displacement and yaw angle change slightly except those values in the radius range of 



200-350 m. The contact points of trailing wheelset are usually situated between the wheel tread and 

the top of the rail head with increasing the track curve radius, which means the contact angles 

changes slightly. 
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Figure 4. Distributions of lateral displacement and yaw angle of each wheelset on tracks with different curve radii: (a) 

lateral displacement; (b) yaw angle  

In addition, the force evolution of the wheelset-track systems also can be calculated. Firstly, the 

vertical and lateral suspension forces imposed on the axle ends of the wheelsets are obtained, which 

are the average values of the suspension forces in the steady state of vehicle curve negotiation and 

the results are shown in Figures. 5-6. Figure 5 shows the evolution of the vertical suspension forces 

of left and right wheels of each wheelset. It can be found that the evolutionary tendencies of the 

vertical suspension forces on the left and right wheels of the same wheelset are symmetrical. Figure 6 

shows the evolution of the lateral suspension forces of left and right wheels of each wheelset. It can 

be found that the evolutionary tendencies of the lateral suspension forces on the left and right wheels 

of the same wheelset are consistent. Because only the vertical and lateral suspension forces are 

applied on the axle ends of each wheelset in the finite element models and the tracks are completely 

smooth, the unstable oscillations of the wheelset-track system generated in the running process are 

friction-induced oscillations. 
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Figure 5. Evolution of the vertical suspension force of each wheelset on tracks with different curve radii: (a) left wheel; 

(b) right wheel 
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Figure 6. Evolution of the lateral suspension force of each wheelset on tracks with different curve radii: (a) left wheel; (b) 

right wheel 

Creep force analyses in different curve radii 

The value of the creep force is limited by the maximum friction force when it reaches saturation. 

Whether the creep force is saturated can be estimated by comparing the creep force resultant and 

friction force. The creep force resultant is equal to the resultant of the longitudinal and lateral creep 

forces. The friction force is equal to the normal contact force multiplied by the coefficient of friction 

and the coefficient of friction is set as 0.4. According to the Simpack simulation, the lateral, 

longitudinal and normal contact forces between the wheel and rail can be obtained. Then, the creep 

force resultant and friction force between the wheel and rail can be calculated. For instance, the 



comparisons between the creep force resultants and friction forces between the wheels and rails are 

shown in Figure 7 at a curve radius of 200 m. It can be found that the creep forces on both wheels of 

the wheelsets 1 and 3 are clearly saturated. The creep forces on both wheels of the trailing wheelsets 

are unsaturated. 
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Figure 7. Comparisons between the creep force resultants and friction forces (R = 200 m): (a) Wheelset 1; (b) Wheelset 2; 

(c) Wheelset 3; (d) Wheelset 4 

Correspondingly, the creep force resultants and friction forces on the tracks with curve radius 

from 200 m to 800 m also can be calculated. In order to state the comparisons between the creep 

force resultants and friction forces on the tracks with different curve radii more definitely, the 

deviation between the creep force resultant and friction force of each wheel in the static state can be 

adopted, which is defined as: 

max -( )f c

c

F F

F
  ,                              (3-1) 

where  is the deviation. maxfF  is the friction force in the static state. cF  is the creep force resultant 

in the static state. The evolution of deviations in the static state is shown in Figure 8. It is assumed 

that the creep force between the wheel and rail can be regarded as saturated when the deviation is 

quite small. With the curve radius growing from 200 m to 800 m, the creep force on the outer wheel 

of the leading wheelset always approaches to be saturated, while that on the inner wheel of leading 

wheelset gradually trends to be unsaturated. The creep forces on both wheels of leading wheelset 

trend to be saturated when the curve radius is less than 450 m. However, the creep forces on both the 

outer and inner wheels of the trailing wheelset are obviously unsaturated in the curve radius range of 

200-800 m. 



200 300 400 500 600 700 800
0

5

10

15

20

25

30(a)

 

 

D
ev

ia
ti

o
n

 (
%

)

Curve radius (m)

 Outer wheel of wheelset 1

 Inner wheel of wheelset 1

 

200 300 400 500 600 700 800
0

100

200

300

400

500
(b)

 

 

D
ev

ia
ti

o
n

 (
%

)

Curve radius (m)

 Outer wheel of wheelset 2

 Inner wheel of wheelset 2

 

200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40(c)

 

 

D
ev

ia
ti

o
n

 (
%

)

Curve radius (m)

 Outer wheel of wheelset 3

 Inner wheel of wheelset 3

 

200 300 400 500 600 700 800
0

100

200

300

400

500
(d)

 

 

D
ev

ia
ti

o
n

 (
%

)

Curve radius (m)

 Outer wheel of wheelset 4

 Inner wheel of wheelset 4

 

Figure 8. Variation of the deviations between the creep force and friction force with curve radius: (a) Wheelset 1; (b) 

Wheelset 2; (c) Wheelset 3; (d) Wheelset 4 

Unstable vibration analyses in different curve radii 

According to the numerical results of vehicle curve negotiation in Section 3.1, the specific 

contact points and the forces between the wheelsets and tracks can be identified. After judging 

whether the creep forces between wheels and rails are saturated in Section 3.2 and applying the 

corresponding relative slipping velocities on the wheels with different curve radii, the 

friction-induced oscillations of the wheelset-track systems can be further studied. Then, the unstable 

vibration analyses in different curve radii are studied using the complex eigenvalue analysis.  

The effective damping ratio calculated by the complex eigenvalue analysis is an important 

parameter to evaluate the stability of the wheelset-track system. The unstable oscillation of the 

wheelset-track system may occur in the case of negative effective damping ratio. Additionally, the 



smaller the effective damping ratio is, the corresponding friction-induced oscillation more easily 

occurs. Figure 9 shows the distributions of the negative effective damping ratios of wheelset-track 

systems with different curve radii. Because the friction-induced oscillation corresponding to the 

smallest negative effective damping ratio is most likely to occur, it is necessary to pay attention to 

the evolution of the smallest negative effective damping ratio with different curve radius. It can be 

found that the value of the smallest effective damping ratio gradually increases when the curve radius 

changes from 200 m to 500 m. When the curve radius changes from 550 m to 800 m, no negative 

effective damping ratio exists. In summary, the friction-induced oscillation of the wheelset-track 

system is apt to occur when the curve radius is less than 500 m, and the occurrence possibility 

decreases gradually from radius 200 m to 500 m. Then, when the curve radius is larger than 500 m, 

the friction-induced oscillation rarely occurs. 
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Figure 9. Distributions of the negative effective damping ratios of the wheelset-track systems for different curve radii: (a) 

R = 200 m; (b) R = 250 m; (c) R = 300 m; (d) R = 350 m; (e) R = 400 m; (f) R = 450 m; (g) R = 500 m; (h) R = 550 m; (i) 

R = 600 m; (j) R = 650 m; (k) R = 700 m; (l) R = 750 m; (m) R = 800 m 

From Figure 9, it also can be found that the number of the negative damping radius is largest at 

the curve radius of 300 m, which corresponds to most of the potentially unstable vibration modes of 

the wheelset-track system on curved tracks. The relevant frequencies and mode shapes of unstable 

vibrations with radius 300 m are shown in Figure 10. From the mode shapes of Figure 10(a) and (b), 

the unstable oscillations of the wheelset-track system probably take place on both rails and two 

wheels. But the unstable oscillations hardly occur because the negative effective damping ratios are 

fairly close to zero [14]. Then, from the mode shapes of Figure 10(c) to (h), the unstable oscillations 



of the wheelset-track system probably occur on the low rails and inner wheels. Except for mode 

shape shown in Figure 10(h), in which the unstable oscillation occurs on inner wheels of leading and 

trailing wheelsets, other unstable oscillations mainly occur on the inner wheels of leading wheelsets. 

Particularly, the mode shape shown in Figure 10(g) presents that the deformations of low rail and 

inner wheels of leading wheelsets are obvious when the corresponding negative damping ratio is the 

smallest. The unstable oscillation is most likely to occur in the case, whose negative damping ratio is 

-0.03613 and the relevant unstable oscillation frequency is 473.80 Hz. Furthermore, the main 

unstable oscillations corresponding to the least negative damping ratios with curve radius from 200 

m to 500 m all take place on the low rail and relevant inner wheel of leading wheelset. Therefore, it 

can be concluded that the friction-induced oscillations of the wheelset-track system on tight curved 

tracks primarily generates on the low rail, which means the rail corrugations on tight curved tracks 

mainly appears on the low rail. 

 

 



 

 

 

 



 

 

Figure 10. Mode shapes of the unstable vibrations of the wheelset-track system (R = 300 m): (a)  = -0.00022, f = 229.32 

Hz; (b)  = -0.00012, f = 230.48 Hz; (c)  = -0.00422, f = 451.34 Hz; (d)  = -0.00178, f = 451.63 Hz; (e)  = -0.00025, 

f = 469.08 Hz; (f)  = -0.00011, f = 469.24 Hz; (g)  = -0.03613, f = 473.80 Hz; (h)  = -0.02763, f = 474.50 Hz 

 

Discussion 

The above simulations perform the creep force analyses and the friction-induced oscillation 

analyses of the wheelset-track systems in different curve radii. According to the creep force analyses, 

when the radius of a curved track is less than 450 m, the creep forces on both the outer and inner 

wheels of the leading wheelset of each bogie always tend to be saturated, while those on the outer 

and inner wheels of the trailing wheelset are still unsaturated in the curve radius range of 200-800 m. 

According to the friction-induced oscillation analyses, when the radius of a curved track is less than 

500 m, the friction-induced oscillation is apt to occur, while the friction-induced oscillation rarely 

occurs when the curve radius changes from 550 m to 800 m. The relationship between the creep 



force and the friction-induced oscillation is discussed as follows. 

Firstly, the saturated creep forces on both wheels of leading wheelset cause the friction-induced 

oscillation of the wheelset-track system when the curved radius is less than 450 m. But the 

friction-induced oscillation also easily generates when the curve radius is 500 m. The difference of 

curve radius ranges is mainly because it is assumed that the creep force between the wheel and rail 

can be regarded as saturated when the deviation between the creep force and friction force is less 

than 5%. Then, there is a large difference between the occurrence probabilities of friction-induced 

oscillation on the low rail of a tight curved track and that on the high rail of the identical tight curved 

track. The dominant friction-induced oscillation mostly takes place on the low rail, while that hardly 

occurs on the high rail even the creep force on the outer wheel of the leading wheelset is saturated. In 

general, in the curved track of radius 200-550 m, the contact angle between the outer wheel and high 

rail is about 14.43-29.19o, and the contact angle between the inner wheel and low rail is about 

1.50-1.78o. Therefore, the phenomena in tight curves can be explained according to Ref. [31], which 

predicted that when the contact angle is larger than 8.41o even the creep force is saturated, the 

friction-induced oscillation of the wheelset-track system seldom occurs. Next, with the curve radius 

increases from 550 m to 800 m, the creep force on the outer wheel of the leading wheelset in this 

range is still saturated, but the friction-induced oscillation rarely occurs due to the change of the 

direction of the saturated creep force [31]. Besides, the creep force on the outer wheel of the leading 

wheelset is further studied with increasing the curve radius above 800 m. It can be found that when 

the curve radius is larger than 1000 m, the creep force on the outer wheel of the leading wheelset 

trends to be unsaturated. It means that the friction-induced oscillation is more difficult to occur with 

increasing the curve radius. 



 

Conclusions 

According to the field investigations in Chinese metros, there is a typical phenomenon of rail 

corrugation in metro lines, which is still difficult to be solved so far. It can be found that corrugation 

easily occurs on the low rails of the sharp curved tracks whose curve radii are less than 350 m, but 

rarely occurs on the high rails of the same tracks, and rail corrugations seldom occur on both low and 

high rails of the curved tracks whose curve radii are larger than 650-800 m. The purpose of the 

present paper is to explain the general phenomenon of rail corrugation from the perspective of the 

correlation between the friction-induced oscillation of wheelset-track system and curve radius. 

Therefore, the effects of the curve radius on the creep force between wheel and rail and the 

friction-induced oscillation of the wheelset-track system are investigated, respectively. It can be 

summarized that there is a proportional relation between the creep force and friction-induced 

oscillation. Comparing the numerical simulation results with the field investigations on metros in 

China, the following conclusions can be drawn. 

(1) When the radius of a curved track is less than 450 m, the creep forces on both the outer and 

inner wheels of the leading wheelset of each bogie always trend to be saturated, while those on the 

outer and inner wheels of the trailing wheelset are still unsaturated for a curve radius range of 

200-800 m. Besides, when the radius of a curved track is less than 500 m, the friction-induced 

oscillation is apt to occur, but it rarely occurs when the curve radius is above 500 m. The occurrence 

possibility of rail corrugation decreases with increasing curve radius from 200 m to 500 m. 

(2) When the radius of a curved track is less than 350 m, the saturated creep force easily induces 

friction-induced oscillation of the inner wheel-low rail system, but it cannot induce friction-induced 



oscillation of the outer wheel-high rail system due to a large contact angle between the outer wheel 

and high rail. Therefore, the reason why there is such a large difference between the occurrence 

probability of rail corrugation on the low rail of a tight curved track and that on the high rail of the 

identical tight curved track is attributed to the difference in the contact angle.  

(3) When the radius of a curved track is larger than 650-800 m, although only the creep force on 

the outer wheel of the leading wheelset is saturated, no friction-induced oscillation of the 

wheelset-track system occurs due to the direction of the saturated creep force. With the curve radius 

increases sequentially, the creep forces on both the outer and inner wheels of the leading wheelset 

trend to be unsaturated. 
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