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25 Abstract

26 Adipose tissue (AT) has wide functions as an active endocrine organ acting as a site of nutrient 

27 storage  and thermogenesis. Recently it has been identified as having a key role in murine and 

28 human immunity and inflammation. Type 1 or type 2 immune responses and their respective 

29 cytokines have been linked to white or brown AT, respectively.  Most dramatic is the 

30 involvement of type-2 innate lymphoid cells (ILC2s) in stimulating eosinophil recruitment via 

31 interleukin (IL)-13 which in turn stimulates alternative macrophage activation via IL-4/IL-13. 

32 Recruited leukocytes are capable of influencing the cellular composition and function of 

33 adipose tissue and present a route to combat human obesity, however these processes are 

34 poorly understood in ruminants. Here we have characterised the resident leukocytes 

35 populations within bovine mesenteric AT (MAT) and subcutaneous AT (SAT), compared with 

36 the corresponding mesenteric lymph node (MLN). Concurring with related studies, we find 

37 bovine AT has its own resident leukocyte populations where eosinophils and neutrophils 

38 dominate. Importantly the proportion of eosinophils or neutrophils corresponded to the 

39 adipocyte size found in both depots. Further exploration of this area may have important 

40 implications on the food production industry or could be applied to improve the course of 

41 pathogenesis during disease.   
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49 1. Introduction 

50

51 Until recently adipose tissue was considered metabolically unremarkable, functional only in 

52 triglyceride storage and non-shivering thermogenesis (Cannon and Nedergaard, 2004). 

53 Studies attempting to treat obesity led to a greater understanding of the composition and 

54 function of adipose tissue; now adipose tissue is widely accepted as an active endocrine 

55 organ, capable of manipulating both metabolic and inflammatory pathways through 

56 adipokine secretion (Lehr, Hartwig and Sell, 2011). The most surprising relationship to arise 

57 from these studies is an understanding of the resident leukocyte populations and how these 

58 interact with adipocytes and how readily one can shape the other through alterations in 

59 signalling or cellular composition. 

60

61 Environmental adaptation to the cold triggers a norepinephrine signalling cascade from the 

62 hypothalamus to stimulate a brown adipose tissue (BAT) associated expression profile, 

63 including peroxisome proliferator-activated receptor  (PPAR) and uncoupling-protein 1 

64 (UCP1), instigating thermogenesis (Nguyen et al., 2011; Johnson et al., 1977). This pathway 

65 has been found to be dependent on leukocyte involvement, mainly recruitment of ILC2s 

66 mediated by IL-33. The type 2 cytokines, IL-5 and IL-13, released by ILC2s mobilise eosinophils 

67 to the area; these in turn produce IL-4 (Lee et al., 2015) causing macrophage recruitment and 

68 alternative activation. Alternatively activated macrophage (AAM) produce norepinephrine in 

69 turn stimulating the beiging of adipocytes (Qiu et al., 2014). Nguyen et al. (2011) 

70 demonstrateded this pathway was essential when inducing cold conditions in Il4-/-Il13-/- mice, 

71 where no macrophage migration to white adipose tissue (WAT) or BAT occurred, thereby 

72 severely impairing thermogenic adaptation. This mechanism is fundamental in initiating the 
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73 first non-shivering thermogenesis: IL-33 triggers the induction of UCP1 upon parturition, 

74 absence of IL-33 or its receptor ST2, impairs UCP1 expression despite the presence of 

75 normally developed BAT (Odegaard et al., 2016).

76

77 Research has looked to the manipulation of leukocytes to overcome adipose tissue deposition 

78 and has linked the inflammatory phenotype of leukocytes to human obesity. Preventing 

79 alternative activation of macrophages by PPAR deletion was sufficient to render mice 

80 susceptible to glucose intolerance and obesity (Odegaardet al., 2007). PPAR expresson is 

81 induced in macrophages by eosinophil derived IL-4, therefore maintenance of high eosinophil 

82 counts in adipose tissue may be essential in controlling obesity and glucose tolerance (Wu et 

83 al., 2011). Instinctive dietary control may already rely on this mechanism; Nussbaum et al. 

84 (2013) showed resident gastric ILC2 increase IL-5 and IL-13 production post feeding thereby 

85 stimulating eosinophilia. 

86

87 Adipose tissue is known to be vital to the immune response to bacteria in insects (Azeez, 

88 Meintjes and Chamunorwa, 2014). A similar role is possible in mammals as key cytokines 

89 associated with adipose tissue are also associated with anti-parasitic immunity. IL-33 

90 responsive ILC2s are particularly prevalent in mesenteric lymph node, spleen and liver, and 

91 are the key IL-13 expressing cells during helminth infection (Neill et al., 2010). ILC2s were 

92 found to rely on adipose tissue acid metabolism in mice when nutrient deprived and 

93 nematode challenged, where they selectively maintained IL-13 production over energy 

94 conservation; thus highlighting the balance between the two compartments (Wilhelm et al., 

95 2016). ILC2s are core to the maintenance of IL-13 production as depletion of ILC2s 

96 dramatically impairs expansion of adipose tissue eosinophils even upon parasitic challenge 
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97 (Molofsky et al., 2013). Some parasites have been found to alter the somatic composition of 

98 adipose tissue – Neospora caninum tachyzoites residing in adipose tissue induce a strong local 

99 Th1 response and systemic leptin levels (Teixeira et al., 2015). Increased leptin due to leptin 

100 resistance would lead to increased adiposity therefore re-enforcing the local protective Th1 

101 response within this tissue. .  

102

103 Greater understanding of the interaction between adipose tissue and immune function could 

104 be fundamental in preventing or treating infection particularly in production animals where 

105 subclinical and chronic infection leads to enormous losses. However very little work has been 

106 done on ruminant adipose tissue. Smith et al. (2004) demonstrated variation in calf lipid store 

107 exhaustion times between breeds of cow, suggesting diversity in post-partum vulnerability to 

108 infection as a result of resource availability. In sheep at 12h post-parturition adipose tissue 

109 depots are depleted but UCP1 levels are found to peak. By 30 days post-parturition, UCP1 is 

110 almost undetectable indicating low BAT levels (Pope, Budge and Symonds, 2013). This may 

111 suggestive of a mechanism mobilised to combat the effects of peri-parturition nematode egg 

112 increases.  Thus, maintaining BAT levels by stimulating UCP1 could improve immune function 

113 or even carcass composition of the animal. 

114 To investigate if this was possible in cattle we sought toto assess what if any leukocyte 

115 population was present in the adipose tissue. To this end we characterised the immune 

116 profile, cellular composition and cytokine capacity, of bovine subcutaneous adipose tissue 

117 (SAT) and mesenteric adipose tissue (MAT), in contrast to the mesenteric lymph node (MLN). 

118 The same adipose sites were examined to determine the phenotype of adipocytes present 

119 and if this was related to the local leukocyte composition. 

120
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121 2. Methods 

122 2.1 Sample collection

123 MLN, MAT and SAT were harvested from 10 clinically healthy beef cows at slaughter. Tissues 

124 were collected at two local premises (CH62 1AB) or (WN3 6PH). Animals were euthanised by 

125 standard application of captive bolt stunning and exsanguination. Samples were collected into 

126 sterile PBS for transport prior to processing. All animals sampled were male between the age 

127 of 14-18 months of age with a body condition score of 5-7. 

128

129 2.2 Leukocyte and adipocyte preparations

130 MLN samples were pushed through a 100 m cell strainer using a 5ml syringe then washed 

131 with PBS. The cell suspension was centrifuged at 500xg for 10 minutes, the supernatant 

132 removed and then the pellet resuspended in PBS and kept at 4 C. Leukocytes were isolated 

133 from SAT and MAT by collagenase digestion as described in Cho, Morris and Lumeng (2014). 

134 In brief, adipose samples were minced in 1 mg/ml collagenase D (from Clostridium 

135 histolyticum) per gram of tissue, then incubated at 37 C for 45 minutes. The solution was 

136 passed through a 100 m cell strainer before centrifugation at 500xg for 10 minutes at 4 C. 

137 Primary adipocytes were removed from the upper phase of the supernatant and the 

138 leukocytes pellet was resuspended in PBS. Residual adipocytes bound to the cell strainer were 

139 collected in PBS warmed to 37 C, and added to the adipocyte fraction from the supernatant.

140

141 2.3 Total cell counts

142 Leukocytes were stained with trypan blue and viable cells counted in a haemocytometer by 

143 microscopy (CK, Olympus, Tokyo). Total cell counts were expressed per gram of tissue. The 
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144 cell suspension was centrifuged at 500xg for 10 minutes then resuspended in PBS to 1x106 

145 cells/mL. Cells were stored at 4 C until use. 

146 2.4 Differential cell count

147 Cytospins were prepared from leukocyte preparations from MLN and MAT by centrifuging at 

148 300 g for 5 minutes (Shandon, Cheshire, UK). Slides were fixed in 100% methanol for 3 

149 minutes and stained with Giemsa for 30 minutes (stain diluted 1/10 in buffered water, pH 

150 7.2). Cell morphology was observed under 100x objective using an optical microscope 

151 (LABORLUX S, LEITZ, Germany). 20 cells per field of view were typed as lymphocytes, 

152 macrophage, eosinophils or neutrophils and percentage cell type composition of each tissue 

153 was calculated. For eosinophils and neutrophils absolute cell numbers were also quantified. 

154

155 2.5 Adipocyte analysis

156 MAT and SAT adipocytes were adhered to slides by cytocentrifuge at 300 g for 5 minutes 

157 (Shandon, Cheshire, UK). Slides were photographed under 40x objective using UCam+ 

158 connected to GXCAM ECLIPSE (GT Vision, Suffolk, UK), via an objective microscope (LABORLUX 

159 S, LEITZ, Germany). Absolute adipocyte cell diameters from 5 fields of view were measured 

160 using image analysis software (ImageJ 1.51m9, publically available at National Institute of 

161 Health), then scaled to length in m using a graticule. Relative frequencies of cell diameters 

162 were plotted per tissue. 

163

164 2.6 Tissue cytokine ELISAs 

165 In a separate analysis six adult beef animals were sampled at slaughter for both MLN and 

166 MAT. Tissue was homogenised in PBS, supernatants were collected from homogenates after 

167 centrifuging. Supernatants were tested for total protein by BCA assay and subsequently by 
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168 ELISA for IL-17A VetSet (KingFisher Biotech) and IFN-γ (MABETCH, AB, Sweden). ELISA results 

169 were expressed as ng/mg of total protein.  

170

171 2.8 Statistics

172 All data was initially collected in Microsoft Excel and exported for graphing and statistical 

173 analysis using GraphPad Prism version 7.2 for Mac, (La Jolla, California, USA). Data are 

174 presented as mean ± SEM; statistical tests applied are indicated in the relevant figure legends 

175 and a P value of <0.05 was taken as significant. Initially data were tested for normality before 

176 application of the relevant test. 

177

178

179
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180 3. Results 

181 3.1 Bovine adipose tissues possess a resident leukocyte population. 

182 Initially, the total leukocyte cell population was estimated in the MLN, MAT, and SAT. 

183 Representative images of the major leukocytes present are presented in Figure 1A-D. 

184 Unsurprisingly in MLN there was a significantly greater pool of leukocytes compared with 

185 MAT or SAT (1637.4±104.2 x105; 16.3±2.7 x105; 11.5±1.5 x105 per g tissue in LN, MAT and SAT 

186 respectively, P<0.001) (Fig. 2). There was still however a significant difference between the 

187 total leukocyte counts of MAT and SAT (P < 0.05). 

188

189 3.2 Compositional of leukocytes in MAT and SAT.

190 Leukocyte preparations were then prepared for cytospin, stained, and differential counts 

191 conducted by microscopic examination. There was a greater degree of animal to animal 

192 consistency in the MLN differential when compared to both the MAT and SAT (Figure 3A). 

193 Unsurprisingly, the MLN had the greatest proportion of lymphocytes compared to MAT and 

194 SAT but this was not significantly different (Figure 3A, 35.23%±6.13 vs 27.74%±4.0 vs 

195 22.48%±6.3). Macrophage proportions were stable between the MLN (24.57%±4.7) and MAT 

196 (24.38±5.1) but dropped in the SAT (15.29±4.35), Figure 3A but again these were not 

197 significantly different. Eosinophils followed a different pattern where a rise in proportions 

198 was seen moving from MLN to MAT to SAT (Figure 3A; 23.88%±5.14, 39.41%±7.88, 57.45%

199 ±9.04;2-way Anova, MLN vs MAT P<0.01, MAL vs SAT P<0.001) . This trend was clearly 

200 reversed in terms of neutrophils. With SAT having the highest proportion of neutrophils 

201 followed by MAT then MLN (Figure 3A; 16.32%±3.19, 8.47%±2.24, 4.78%±1.46; MLN vs SAT 

202 P<0.05). Despite this trend neutrophils were the smallest proportion of cells in each tissue 

203 sampled. To further examine the trend for rising neutrophil and eosinophils counts in adipose 
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204 tissues we compared the cell proportions as absolute counts. It was apparent that eosinophils 

205 numbers were greater in both adipose tissues when compared with neutrophils (Figure 3B; 

206 P<0.05 for SAT and P<0.01 for MAT). 

207

208 3.3. Functional response of adipose tissue leukocytes. 

209 To test if adipose tissues were also cytokine competent matched MLN and MAT samples from 

210 a separate cohort of animals were obtained. Levels of IFN-γ and IL-17A are presented in Figure 

211 4A and 4B. Higher levels of both cytokines are found in the MLN compared with the matched 

212 MAT samples; statistically significant by Mann-Whitney U-Test P<0.05. However, it was 

213 apparent that a greater degree of variation in both cytokines was present in the MLN 

214 compared with the MAT.    

215

216 3.4. Variation in adipocyte size across MAT and SAT

217 Adipocyte diameters (m) were determined using ImageJ software. Thereafter adipocyte 

218 distributions were plotted (Figure 4A and 4B). MAT adipocytes have a denser frequency at a 

219 smaller diameter with a higher distribution coefficient amplitude (Gaussian distribution: 

220 amplitude = 46.06, mean = 1.115, SD = 0.2874) than SAT (Gaussian distribution: amplitude = 

221 42.02, mean = 1.224, SD = 0.3295). This is suggestive of a smaller adipocyte cell population 

222 within the MAT depots.  

223

224



11

225 4. Discussion

226 We sought to characterise the resident leukocyte population of adipose depots, we selected 

227 visceral (MAT) and subcutaneous (SAT) sites as being distinct and compared these within 

228 animals with respect to the MLN.  As expected there was a larger pool of leukocytes per gram 

229 of tissue present in MLN than either type of adipose tissue. However the difference in 

230 composition between the MLN and nearest the adipose depot (MAT) was not. MAT has a 

231 profile rich in eosinophils with generous proportions of macrophage with very few 

232 neutrophils. Contrastingly, MLN is dominated by neutrophils and lymphocytes with few 

233 eosinophils. SAT had a similar leukocyte profile to that of MAT sampled here, representing a 

234 uniformity within animals. SAT was dominated by eosinophils and macrophages with low 

235 proportions of both lymphocytes and neutrophils. For both adipose depots, the proportional 

236 counts were reflected in the absolute cell counts which were dominated by eosinophils and 

237 neutrophils.  

238 The role of adipose tissue as an endocrine organ in recent years, including functions in 

239 immunity and inflammation, has been expanded (Lehr, Hartwig and Sell, 2011). Much work 

240 has recently identified the pathways leadings from type-2 response initiation, via ILC2s andIL-

241 25/IL-33, through to eosinophil and macrophage recruitment to adipose depots. Ultimately 

242 this drives a beiging process with upregulated UCP1 expression and a transition of WAT to 

243 BAT. This process can be initiated either by injection of the canonical type-2 cytokines IL-25 

244 or IL-33, or by nematode infection. Considering the mechanisms indicating eosinophils 

245 ultimately promote beiging of adipose tissue (Qiu et al., 2014), we may expect to see a greater 

246 proportion of BAT over WAT in the eosinophil rich MAT and SAT. Work by Lapa et al. (2017) 

247 showed a smaller adipocyte diameter is associated with BAT cells. While there was both a 

248 difference in the range of adipocyte diameters from our adipose depots and eosinophil counts 
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249 there was no significant difference between either of these parameters. On the contrary, 

250 mean adipocyte diameter of SAT is larger than that of MAT however the range of diameters 

251 for SAT is larger. It may be possible that this range occurs from the presence of a variety of 

252 WAT and BAT as more adipocyte precursors are stimulated to beige here, whereas the visceral 

253 nature of MAT predisposes it to smaller adipocyte size and a BAT driven thermogenesis 

254 function (Hocking et al., 2010). 

255 Functional testing of the adipose resident leukocytes suggested that the MAT depot, was 

256 competent in terms of IL-17A and IFN-γ production. For both cytokines however, the MLN 

257 produced greater amounts compared with the MAT. Strikingly, there was larger animal to 

258 animal variation for both cytokines within the MLN compared with the MAT; this may be 

259 reflective of the reactive nature of the MLN. Ultimately, our findings demonstrate that cellular 

260 sources of two major T-helper cytokines are present within MAT tissue.   . Individual variation 

261 between animals of IFN production could be rationalised by recent findings that WAT is 

262 enriched with memory CD8 T-cells, serving as a pool of anti-microbial effectors (Han et al., 

263 2017). A detailed investigation of the T-cell phenotypes will be required to fully understand 

264 the nature of the interaction between potential IFN-γ producing lymphocytes and resident 

265 eosinophils. The link between non-specific inflammation and obesity has long been 

266 established. Gomez-Ambrosi et al., (2002) established a relationship between high leptin 

267 levels in obese patients. Moreover, leptin was also correlated with C-reactive protein, linking 

268 inflammation and obesity. The dynamic nature of this relationship was proven when obese 

269 patients undergoing weight loss surgery were shown to have reduced SAA levels compared 

270 to their pre-surgery levels (Gomez-Ambrosi et al., 2006). Alongside the changes in SAA there 

271 was also a notable leptin decrease in the same cohort of patients, demonstrating that the 

272 inflammatory state may be driven in part by leptin. Previously, Worthington et al., (2013) had 
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273 shown that high leptin impaired the murine type-2 response to nematode infection delaying 

274 worm expulsion. Thus obesity-linked inflammation (type-1 or type-17 responses) can diminish 

275 the type-2 response. Mouse models showing a lean phenotype in IL-1Rα (Hirsch et al., PNAS 

276 1996) and TNF-α (Ventre et al., Diabetes 1997). support the role for baseline homeostatic 

277 inflammation in maintaining adipose tissue. 

278 The immune-adipose pathway has already been clinically targeted in ruminants. Goats 

279 administered 2,4-thiazolidinedione (TZD) – a PPARG agonist – had improved somatic cells 

280 counts in milk and reduced inflammatory markers (Rosa et al., 2017). Understanding the 

281 mechanisms behind this causal relationship and the associations identified above could 

282 provide novel therapeutics to improve animal production. Applying the data from this study 

283 now provides opportunities to evaluate whether or not differences are observed in adipose 

284 tissue composition and immune system activity, under routine challenges such as parasitic 

285 infection and dietary constraints or resource restriction. 

286

287
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390 Figure Legends:

391 Figure 1: Representative leukocytes. Giemsa stained leukocytes isolated from bovine MAT or 

392 SAT, representative of cells identified in differential cell counting. Images were captured via 

393 Zen on a Zeiss Imager M2AX10 (Oberkochen, Germany). Scale bar 10 μm is shown in images; 

394 A – macrophage (arrowhead) and lymphocyte (arrow); B – eosinophil (arrowhead); C - 

395 neutrophil (arrowhead).

396 Figure 2: Adipose tissue leukocytes. Total Leukocyte cell counts for MLN (N=9), MAT (N=10) 

397 and SAT (N=10) as expressed as cells (x105)/g tissue. Individual data is presented with means 

398 ±SEM. Data were analysed by Kruskal-Wallis test with Dunns multiple comparisons test. MLN 

399 was significantly different compared to both MAT and SAT (P<0.001), with MAT vs SAT 

400 differences (P<0.05). 

401 Figure 2: Adipose tissue leukocyte composition. (A) Differential counts were performed on 

402 cytospins from (N=8) animals for each tissue type with at least 5 fields of view, containing 20 

403 cells, per slide. Differences between cell type and tissue were tested via 2-way Anova where 

404 *P<0.05 and ** P<0.001. (B) Absolute cell numbers for eosinophils and neutrophils were 

405 calculated and presented as 105 cells/g tissue. Differences between cell type and tissue were 

406 tested via 2-way Anova where *P<0.05 and ** P<0.001.

407 Figure 4: Adipose tissue cytokine levels. Matched MLN and MAT tissues (N=6) were 

408 homogenised and tested for IFN-γ (A) and IL-17A (B). Cytokine levels are presented as ng (of 

409 cytokine) per mg of total protein. Differences amongst tissues were tested by Mann-Whitney 

410 Test  (* P<0.05).

411 Figure 5: Adipocyte parameters within MAT and SAT.  (A) Frequency distribution of the 

412 diameter of adipocytes (m) isolated from MAT, n=684. Gaussian distribution curve is plotted 

413 (amplitude = 46.06, mean = 1.115, SD = 0.2874).  (B) Frequency distribution of the diameter 
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414 of adipocytes (m) isolated from SAT, n=738. Gaussian distribution curve is plotted 

415 (amplitude = 42.02, mean = 1.224, SD = 0.3295).
















