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Key Points

• In BP-CML multiple,
nonhierarchically
arranged immuno-
phenotypic stem/
progenitor populations
have functional LSC
activity.

•BP-associated cytoge-
netic abnormalities are
detected equally in all
immunophenotypic
stem/progenitor cells.

Chronic myeloid leukemia (CML) is an excellent model of the multistep processes in cancer.

InitiatingBCR-ABLmutations are required for the initial phase of the disease (chronic phase,

CP-CML). Some CP-CML patients acquire additional mutation(s) that transforms CP-CML

to poor prognosis, hard to treat, acute myeloid or lymphoid leukemia or blast phase CML

(BP-CML). It is unclear where in the hemopoietic hierarchy additional mutations are

acquired in BP-CML, how the hemopoietic hierarchy is altered as a consequence, and the

cellular identity of the resulting leukemia-propagating stem cell (LSC) populations. Here,

we show that myeloid BP-CML is associated with expanded populations that have the

immunophenotype of normal progenitor populations that vary between patients. Serial

transplantation in immunodeficient mice demonstrated functional LSCs reside in multiple

populations with the immunophenotype of normal progenitor as well as stem cells.

Multicolor fluorescence in situ hybridization detected serial acquisition of cytogenetic

abnormalities of chromosome 17, associatedwith transformation to BP-CML, that is detected

with equal frequency in all functional LSC compartments. New effective myeloid BP-CML

therapies will likely have to target all these LSC populations.

Introduction

Chronic phase (CP) chronic myeloid leukemia (CML), a clonal myeloproliferative disease, requires the
constitutively active tyrosine kinase BCR-ABL. The majority of CP-CML patients achieve a durable
complete cytogenetic response1 with tyrosine kinase inhibitors (TKIs; eg, imatinib, dasatinib, nilotinib).
However, in the first few years after diagnosis, 1% to 1.5% of CP-CML patients per annum progress to a
more aggressive acute leukemia, blast phase (BP)-CML. The rate of progression of CP-CML to BP-CML
falls sharply when a major molecular response to TKI therapy is obtained. Less than 10% of patients
present with de novo BP-CML, and two-thirds of these BP-CML patients have a myeloid immunophenotype.
Response to TKIs in BP-CML is short-lived, and median survival following diagnosis of BP-CML is 6.5 to
11 months,2 with many patients developing additional mutations within the BCR-ABL kinase domain,
leading to TKI resistance and rapid disease progression.3
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Recent studies of de novo acute myeloid leukemia (AML)4-6 and
myelodysplastic syndrome7 suggest AML-initiating mutations occur
in a functional stem cell compartment that could either be long-term
or short-term hemopoietic stem cell (ST-HSC/multipotent progenitor
[MPP]) to create pre–leukemic stem cells (pre-LSCs) that expand
by clonal advantage. However, pre-LSCs still differentiate
completely, or almost completely, and can be associated with
normal blood counts.8-10 Additional mutations, possibly acquired in
pre-LSCs or downstream pre–leukemic progenitors, are required for

full transformation. In fully transformed AML, most functional
leukemia-propagating stem cell (LSC) populations have global gene
expression profiles and immunophenotypes most similar to normal
progenitor populations (“progenitor-like”)11 or normal myeloid
precursors,12 suggesting that LSCs are arrested at progenitor
or precursor stages. When LSCs are arrested at progenitor-
like stages, patient samples contain a mixture of expanded func-
tional LSC populations with global RNA expression profiles most
similar to lymphoid-primed multipotent progenitors (LMPP) and
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Figure 1. Expansion of LMPP-, GMP-, MPP-, and CMP-like populations in myeloid BP-CML. Representative FACS plots of CD341 enriched (A) normal bone marrow;

(B) CP-CML; (C) AP-CML; myeloid BP-CML with (D) MPP-like and CMP-like populations; or (E) LMPP-like and GMP-like populations. Numbers of samples studied are shown on

the right. Markers studied are shown below plots. Numbers in gates are the mean of all samples within the group expressed as a percentage of Lin2CD341 cells.
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granulocyte-macrophage progenitors (GMP).11 A smaller group of
patients have expanded populations that share the same immuno-
phenotype as ST-HSC/MPP and the common myeloid progenitor
(CMP).11 However, it is unclear if, in AML, functional LSCs exist
in the ST-HSC/MPP and CMP compartments. In comparison, in
CP-CML, CML propagating stem cells are contained within immuno-
phenotypic HSC populations, and progenitors do not have extended
self-renewal capacity.13

In contrast, there have been limited studies of LSC populations in
myeloid BP-CML. Jamieson et al identified a GMP-like population
as potential LSCs in myeloid BP-CML.14 However, this study did
not examine in vivo LSC activity and did not comprehensively
assess all immunophenotypic stem/progenitor compartments for
LSC function. Here, we demonstrate that in myeloid BP-CML
functional LSC populations are present in multiple immunophe-
notypic compartments with marked interpatient variability of in vivo
LSC characteristics.

Methods

Patient samples

Informed consent was obtained in accordance with the Declaration of
Helsinki and with approval from UK Ethics Committees (Oxford 06\Q1606\
110; Greater Glasgow and Clyde 10/S0704/2). Mononuclear cells (MNC)
were isolated by Histopaque density gradient within 24 to 48 hours of
collection. CD341 cells were purified using the CD34 Microbead Kit/MACS
separation columns (Miltenyi Biotec).

NSG xenograft assay

Experiments were performed in accordance with UK Government Home
Office–approved Project License 30/2465. Eight- to 14-week-old female
NSG mice were irradiated 100 to 125 cGy twice, 4 hours apart, followed
24 hours later by IV tail vein injection of myeloid BP-CML stem/progenitor
cells. To abrogate antibody-mediated cell clearance, NSG mice were
injected intraperitoneally with 200 mg of anti-CD122 antibody or IV
immunoglobulin (1 mg/g body weight).11 Peripheral blood or bone marrow
engraftment was monitored by blood sampling from 12 weeks onwards.
Mice were culled for bone marrow harvesting between 16 and 22 weeks.
Human myeloid (hCD451CD331CD192) or B-lymphoid (hCD451CD332

CD191) engraftment was analyzed by fluorescence-activated cell sorting
(FACS) and defined as$0.1% of live MNC gate. Leukemic engraftment was
confirmed by karyotypic and BCR-ABL analysis.

Flow cytometric analysis and sorting

Different antibody panels were used for FACS purification of cells for
injection into immunodeficient mice (Figures 2 and 3) and for quantitation of
stem/progenitor sizes in primary human samples (Figure 1). For FACS
purification, additional antibodies (anti-CD2, anti-CD4, anti-CD8, anti-
CD235a–glycophorin) against lymphoid (to avoid graft-versus-host disease)
and erythroid cells (to reduce ineffective cell number injected) but not
myeloid cells (anti-CD14 and anti-CD16) were used. For Figure 1, cells were
stained with lineage cocktail–fluorescein isothiocyanate (CD3 [MfP9],
14 [3G8], 16 [NCAM16.2], 19 [SJ25C1], 20 [SK7], 56 [L27]), and CD34-
PerCP (8G12), CD38-V450 (HIT2), CD45RA-APC H7 (HI100), CD90-PE
Cy7 (5E10), and CD123-APC (7G3). All antibodies were from BD (Oxford,
UK). In Figures 2 and 3, the following antibodies were used: lineage cocktail:
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Figure 2. Dynamic changes in immunophenotypic

compartments in the progression from CP to BP-CML.

(A) Bar graphs of mean sizes of indicated populations (x-axis) as

a percentage of bone marrow Lin2CD341 population (y-axis).

Error bar corresponds to standard error of the mean: *P , .05;

**P , .01; ***P , .001. (B) Tabular representation of the data

in panel A.
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anti-CD2 (RPA-2.10), CD3 (HIT3a), CD4 (RPA-T4), CD8 (RPA-T8), CD19
(HIB19), CD20 (2H7), andGPA (GA-R2) (all from e-Bioscience, Hatfield, UK).
Following this, cells were stained with QDOT605-conjugated goat F(ab9)
anti-mouse immunoglobulin G (H1L; Invitrogen, Paisley, UK). Cells were
then washed and subsequently stained with fluorescein isothiocyanate–
conjugated anti-CD38 (HIT2; e-Bioscience), phycoerythrin-conjugated anti-
CD45RA (HI100; e-Bioscience), PerCP-conjugated anti-CD34 (581;
BioLegend, London, UK), PECy7-conjugated anti-CD123 (6H6; e-Bioscience),
and biotin-conjugated anti-CD90 (5E10; e-Bioscience). Finally, cells were stained
with a streptavidin-conjugated APC-eFluor 780 (e-Bioscience). All samples were
double sorted where cell numbers permitted (95% of sorts).

Fluorescence in situ hybridization (FISH) analysis

FACS-sorted cells were incubated at 37°C for 15 minutes in a hypotonic
solution (0.075 M KCl). Cells were then centrifuged at 1500 rpm for 5 minutes
and resuspended in fixative (3:1 methanol:acetic acid) added in a dropwise
manner while continuously vortexing. Cells were incubated at room
temperature for 5 minutes and centrifuged at 12 000 rpm for 2 minutes.
The cells were washed twice in fixative (12 000 rpm for 2 minutes) before
resuspension in 1 mL fresh fixative. Fixed cell suspension (3 mL) was dropped
onto a glass slide and air-dried, and cell density was checked using a phase
contrast microscope. Probe mixes were prepared according tomanufacturer’s
instructions and 2 mL was added and covered with a coverslip sealed with

rubber solution. The slide was placed in a hybridization chamber, heated to
75°C for 5 minutes and then 37°C overnight. Coverslips were removed, and
slides were washed in a 0.43 saline sodium citrate/3% Nonidet P-40 wash
buffer at 72°C for 2 minutes and then a 23 saline sodium citrate/1% Nonidet
P-40 wash buffer at room temperature for 2 minutes. 49,6-Diamidino-2-
phenylindole mounting medium (Vector Laboratories, Peterborough, UK) was
applied to the slide; a coverslip was attached, and the slide was analyzed using
a Zeiss Axio Imager Z2 and Cytovision software from Leica Biosystems. For
multiprobe studies, probes to BCR-ABL fusion and deletions of p53 and
iso(17)q were custom designed and manufactured (Empire Genomics)
with BCR fluorescently labeled in green, ABL in Texas red, TP53 in gold, and
MPO (iso17q) in aqua. All probes were used following the manufacturer’s
instructions. Standard BCR-ABL pattern is R1G1F2. We also observed 2
patterns of atypical BCR-ABL profiles: R1G1F3 and R1G1F1.

Results

Immunophenotypic analysis of CML progression from

CP to myeloid BP

We first compared the size of different immunophenotypic hemopoi-
etic stem and progenitor (HSPC) compartments: HSC (Lin2CD341
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Figure 3. Functional LSC activity in myeloid BP-CML. (A) Purities of immunophenotypic populations (expressed as percentage), after FACS sorting, used in primary

xenotransplantation from 5 patients (COL091, COL091R, CML371, CML002, and HER002). (B) Number of mice with human cell engraftment above engraftment threshold

(defined as 0.1% human CD451CD331CD192 cells) out of the total number of mice injected. Myeloid engraftment or absence of engraftment is indicated. ND, nondetected.

(C) Primary engraftment (4 patients: COL091, COL091R, CML371, and CML002, x-axis) in 1 to 6 mice from the indicated population. Black and red dots show the engraftment level

in individual mice. y-axis: mean percentage human (h)CD451CD331CD192 cell engraftment/total live MNC. x-axis: injected cell fraction. Red line: engraftment threshold.

(D) Number of human cells (y-axis) injected in primary mice from indicated population from 4 patients: COL091, CML371, COL091R, and CML002 (x-axis) in 1 to 6 mice. Black

dots: engrafted mice. Red dots: mice that failed to engraft above the engraftment level of 0.1%.
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CD45RA2), LMPP (Lin2CD341CD382CD902CD45RA1), CMP
(Lin2CD341CD381CD45RA2CD1231), GMP (Lin2CD341CD381

CD45RA1CD1231), and megakaryocyte-erythroid progenitor (MEP;
Lin2CD341CD381CD45RA2CD1232) in normal, CP-, accelerated
phase (AP)-, and myeloid BP-CML (Figure 1A-E). When compared
with normal, CP-, and AP-CML (Figure 1A-C, respectively), in myeloid
BP-CML, there are 2 distinct immunophenotypic patterns: a dominant
MPP-like/CMP-like phenotype (Figure 1D) and a dominant LMPP-
like/GMP-like phenotype (Figure 1E). Consequently, there are striking
differences in the sizes of cellular subcompartments within the Lin2

CD341 population between normal, CP-, AP-, and myeloid BP-CML
(Figure 2A-B). LMPP-like cells were,0.5% of Lin2CD341 in normal,
CP-, and AP-CML, but significantly increased with progression to
LMPP-like/GMP-like BP-CML (18.1%; P , .01). GMP-like cells
decreased as disease progressed from normal and CP- to AP-CML
(P , .05), but significantly increased on progression to LMPP-like/
GMP-like BP-CML (P , .05). The MEP fraction was significantly
expanded in CP- and AP-CML (P, .01), but significantly decreased
on progression to BP-CML (P , .001) (Figure 2A-B). In contrast, the
size of the immunophenotypic HSC compartment remained relatively
constant despite disease progression. Inmyeloid BP samples, with what
we have termed an MPP-like/CMP-like profile, the overall percent-
age of CMP-like and MPP-like cells was not significantly increased.

In summary, we demonstrate dynamic changes in size of the different
immunophenotypic HSPC-like compartments with disease progres-
sion in CML and heterogeneity of HSPC-like populations in myeloid
BP-CML. As a next step, we proceeded to functionally characterize
the different HSPC-like compartments in myeloid BP-CML.

LSC function in myeloid BP-CML

To identify which cell compartments contain leukemia-propagating
function, we purified HSPC-like populations from 5 BP-CML patient

samples (COL091, COL091R, CML371, CML002, and HER002)
(Figure 3A). For patient COL091, 2 samples were tested: the initial
myeloid BP diagnostic sample and a follow-up sample at relapse
(COL091R), 9months after therapy with palliative oral 6-mercaptopurine
chemotherapy. Samples were tested for engraftment in primary
immunodeficient murine recipients (Figure 3B). Human myeloid-only
leukemic engraftment was detected in 4 of 5 samples (Figure 3C) by
immunophenotype and FISH analysis for leukemia-associated muta-
tions (see “Analysis of clonal evolution in HSPC populations in
BP-CML”). HER002 failed to engraft despite injection of up to 23 105

cells (data not shown).

Two engrafting samples had large MPP-like/CMP-like compartments
(COL091, CML371). In samples with expanded MPP-like/CMP-like
populations, HSC-like, MPP-like, CMP-like, and MEP-like populations
reproducibly engrafted. The GMP-like population variably engrafted,
and the LMPP-like population was too small to purify.

Two engrafting samples had expansion of LMPP-like/GMP-like
compartments (COL091R and CML002). In both samples, all
HSPC-like populations that could be purified engrafted in primary
recipient mice (Figure 3C). Because varying numbers of cells were
available and thus injected from each immunophenotypic compart-
ment, we considered whether failure to engraft primary recipients could
be explained by injection of low cell numbers. In all 4 samples, there
were examples of engrafting populations (black dots) that had been
injected at lower cell numbers compared with nonengrafting popula-
tions (red dots) (Figure 3D). Failure to engraft may have occurred either
because (i) LSC frequency was low in nonengrafting populations and
cell numbers did not permit establishing LSC frequencies by limiting
dilution analysis; (ii) cell populations were too small to purify (eg, MEP-
like compartment in COL091); (iii) we had insufficient cell numbers to
inject into several mice (eg, GMP-like compartment in CML371).
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Figure 5. Clonal structures of stem/progenitor populations in myeloid BP-CML. (A-C) Data from patients CML002, COL091, and COL091R. Clone identities denoted

by circles or bars. (i) Immunophenotypic HSPC populations in patient sample. y-axis: proportion of population as percentage of Lin2CD341 cells. (ii) Clonal composition of

purified patient populations is based on FISH analysis. x-axis: HSPC population. y-axis: frequency of clones per population. (iii) Clonal hierarchies inferred from FISH data. (D) FISH
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For 2 samples (COL091 and CML002), we purified cell populations
from primary engrafted subpopulations (Figure 4A) and analyzed
engraftment in secondary recipient mice (Figure 4B). There were 2
aims of the experiment. First, we wanted to establish if patient HSPC
populations could serially engraft leukemia. For COL091, HSC-like,
CMP-like, and GMP-like populations serially propagated leukemia (ie,
had LSC function). For sample CML002, both the LMPP- and the
GMP-like populations from the patient serially engrafted. Collectively,
these data demonstrate multiple LSC populations in myeloid BP-CML.

Second, we asked if the leukemic HSPC populations were organized in
a hierarchical manner akin to the hierarchy seen in normal hemopoiesis.
In COL091, the HSC-like population from the patient generated an
HSC-like population and downstream progenitor populations
(Figure 4A-B), but only the HSC-like and CMP-like populations from
the primary mice engrafted secondary mice. Furthermore, when the
CMP-like population from the patient was injected into primary mice,
it generated an MPP-like population in addition to CMP-like and
GMP-like progenitor-like populations. Both MPP-like and CMP-like
populations from primary mice were able to engraft secondary
recipients. However, although GMP-like cells from the patient-
generated CMP-like and GMP-like populations, only the GMP-like
cells from primary mice were able to engraft secondary mice. From
patient CML002, both LMPP-like and GMP-like cells generated both
LMPP-like and GMP-like populations in primary mice that could be
purified and that were transplantable in secondary recipients. Based
on these limited immunophenotypic analyses of engrafting popula-
tions, one interpretation of the data is that the leukemia is not hi-
erarchically organized. An alternative interpretation is that the cell surface
markers used to immunophenotype normal HSPC populations do not
reliably separate out hierarchically organized populations in BP-CML.

Analysis of clonal evolution in HSPC populations

in BP-CML

Clonal evolution, often associated with acquisition of additional
cytogenetic abnormalities (ACAs) beyond t(9:22), is a marker of
disease progression to AP- and BP-CML. Thus, we wanted to
understand in which cell compartments ACAs were present in BP-
CML by identifying clonal structures in myeloid BP-CML patients.
Furthermore, given the multiple LSC populations in BP-CML,
we asked if there was a correlation between LSC function and
cytogenetic heterogeneity. Finally, we asked how accurately clonal
structure in patients was captured in the experimental immunode-
ficient mouse model.

Karyotypic analysis of patient cells identified abnormalities in addition
to t(9:22) in 4 patient samples (COL091, COL091R, CML371, and
CML002) (supplemental Table 1). In 3/4 cases (COL91, COL091R,
and CML002), we detected the ACAs by multicolor FISH at a level of
.5%. Thus, we examined clonal structure in these cases in all available
HSPC-like cell subpopulations from patient samples (Figure 5A-Ci-iii)
and engrafted mice (Figure 6). For some subpopulations and in some
engrafted mice, insufficient cells were available for analysis.

Taking data from all 3 patient samples and engraftedmice together, the
following points emerge. First, in the 3 patients, the ACAs involved
heterozygous loss of chromosome 17p (detected with a TP53 probe),
and in 2/3 cases, the ACAs also involved heterozygous loss of iso-
chromosome 17q, consistent with previous data showing chromosome
17 aberrations are common in the clonal evolution of CML.15 Second,
in all 3 cases, ACAs are detected in multiple immunophenotypic com-
partments regardless of which immunophenotypic compartments are
expanded (Figure 5A-Ci-iii). Third, in all 3 cases, there were differences
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Figure 6. (Continued).
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in clonal composition of cells in the patient and in the mice. For
example, in the patient sample COL091, all 3 clones in patient cells had
a standard BCR-ABL FISH signal (standard BCR-ABL, standard
BCR-ABL plus 17p13 loss, and standard BCR-ABL plus 17p13 loss
with isochromosome 17q) (Figure 5B). In contrast, in secondary
transplanted mice, clones with an aberrant BCR-ABL signal were
detected (Figure 6B). In 1 of these mice, the aberrant BCR-ABL
clones comprised 90% of engrafted cells. In the relapsed sample
COL091R, there was evidence of clones in the transplanted mice
not detected in the patient sample (Figure 6C).

Discussion

BP-CML is a serious unmet clinical need with poor outcomes and
5-year survival rates ,20% with the only aggressive, curative
option, conventional chemotherapy followed by allogeneic stem
cell transplant. Thus, there is an urgent need to improve our
understanding of the biology of BP-CML to identify novel improved
therapeutic strategies. As a step toward this goal, we have fully
characterized the leukemia stem and progenitor cell populations in
myeloid BP-CML.

We demonstrate in myeloid BP-CML the sizes of the immunophe-
notypic stem/progenitor compartments are heterogeneous and
often show expanded progenitor populations. Serial transplantation
indicates that LSCs can reside in any of the immunophenotypically
defined HSPC populations. Concordantly, we show that ACAs are
also present in the multiple immunophenotypic HSPC-like pop-
ulations with LSC potential.

Our data are in contrast to previous reports that suggested LSCs
in myeloid BP-CML were present only in a transformed GMP
population.14,16 However, these studies did not systematically
assess stem cell function in all human immunophenotypic HSPC
compartments in immunodeficient mice. Considering the limited
number of samples we have assessed, further studies will be
required to validate how representative our data are of myeloid
BP-CML.

Separately, data presented here are consistent with and extend our
prior studies, which demonstrated expanded progenitor compart-
ments in de novo AML and established the presence of functional
LSCs in GMP-like and LMPP-like populations11 by now showing
functional LSCs present in MPP-like/CMP-like and HSC-like
compartments. However, an important caveat in the interpretation of
the data is that cell surface marker expression used to define current
normal HSPCs compartments may be altered by transformation
leading to aberrant marker expression. This caveat prevents an
unequivocal determination of whether the varied immunophenotypi-
cally defined stem/progenitor populations are truly different. Future
studies of global RNA profiling of myeloid BP-CML LSCs will
address this question as we have done previously in AML.11,12

However, it is noteworthy that in our previous study,11 immunophe-
notypic primary human LMPP-like and GMP-like LSC populations
were most closely related to normal LMPP and GMP, not just on the
basis of cell surface markers but also on the basis of the whole
transcriptomes.

The inability to relate the leukemic cell populations back to normal
HSPC beyond immunophenotype also does not allow us to
determine in which compartment ACAs are first acquired; rather a
more limited conclusion can be made that they are present in all
leukemic stem/progenitor compartments.

In all 3 samples, we demonstrate that clonal structures in the
patient are not faithfully recapitulated in the mouse (striking
examples, Figure 6Biii and Figure 6Ciii). These discrepancies may
arise because of clonal selection in the mouse of minor clones
from the patient, not detected by FISH (100 cells were analyzed by
FISH), suggesting the selection pressures for clonal expansion in the
patient and the mouse differ. Alternatively, it is possible that clonal
evolution occurs in the mouse. We cannot distinguish between
these possibilities. Regardless of which explanation is correct, the
data would support the hypothesis that the widely used NSG
immunodeficient mouse model does not accurately model clonal
competition and stem cell function. This mirrors other recent data
wherein engrafting potential did not match clonal composition in the
patient.12,17

In summary, our data conclusively show that functional LSCs re-
side in multiple immunophenotypically distinct HSPC populations
in myeloid BP-CML. Moreover, FISH analysis demonstrates
clonal evolution in all HSPC compartments, including the HSC-like
populations. Future studies will focus on identifying deregulated
pathways (in addition to WNT/b-catenin) in myeloid BP-CML, which
may be amenable to therapy in combination with TKIs to reduce
resistance and improve patient outcomes.
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