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A B S T R A C T

The latest development of smart grid technologies gives rise to big load data and requires load pattern cate-
gorization (LPC). How to determine a precise cluster number and choose an appropriate clustering algorithm
are critical and still remain challenging in LPC. In this work, we propose a novel parametric bootstrap (PB)
algorithm to address the cluster number determination problem in load pattern analysis. The proposed PB al-
gorithm is more robust against dimensionality of data and more applicable for the load demand data which is
usually of high dimensionality. The PB algorithm is also general and independent of data type, resulting in a
more precise cluster number determined than existing methods with little fluctuation. Moreover, an effective
cascade clustering scheme is proposed to categorize load demand data and analyze load patterns, based on the
PB algorithm and the K-means++ clustering algorithm. The results indicate the feasibility and the superiority
of the proposed approach.

© 2019.

1. Introduction

Load pattern categorization (LPC) refers to the process of cluster-
ing similar electricity consumption patterns into clusters. It is an es-
tablished yet active research topic due to its widespread applications
in smart grid. The recent ongoing development of smart grid technolo-
gies for data acquisition and supervision, metering, and communica-
tion, also gives rise to huge volume of load data which can offer vast
benefits with respect to LPC research [1]. The potential applications
of LPC can be summarized in four major aspects.

(1) Power system planning and operation. In smart grid, the electric-
ity suppliers are operating with a competitive environment as the
electricity distribution and supply services have been unbundled.
The electricity suppliers need to get accurate information on the
actual load demand of their users for setting up dedicated commer-
cial offers, thus improving the planning and operation of power
system [2,3]. Customer grouping on the basis of similar load de-
mand pattern is likely to provide an effective solution.

(2) Demand response. Enhanced knowledge on LPC can be decid-
edly useful to support demand response (DR) in smart grid. LPC
has been proposed as effective means for enhancing targeting
and tailoring of DR programs as well as providing reasonable
load scheduling recommendations, owning to availability
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of advanced technology for load shifting and to emerging opportu-
nities for flexible demand management, producing incentives and
rewards to the participating users [4,5].

(3) Load demand forecasting. LPC plays a crucial role in load de-
mand forecasting (LDF) in smart grid, which is an essential part
of power generation, distribution and regulation. LDF usually re-
lies on available data from similar days and it is often estimated by
the aggregation of typical load patterns (TLPs) which are the out-
comes of LPC [6–8]. Obviously, an effective and precise LPC can
provide relevant information so as to improve the performance of
LDF.

(4) Electricity tariff formulating. LPC is also proposed for the pur-
pose of setting variable electricity tariffs in smart grid. Electricity
suppliers now have some degrees of freedom in formulating tariff
offers which can meet the requirements set by regulatory authori-
ties. However, each tariff is formulated with reference to a specific
load category, defined by a number of load characteristics [9]. Ad-
ditionally, LPC also can be used to assist electricity consumers
in adequately selecting an appropriate tariff [10] in an electricity
market.

As having extensive applications in the industrial field, a wide va-
riety of clustering technologies have been conducted and applied to
load demand data. There are many ways for clustering technique clas-
sification. According to different clustering objectives, the clustering
technologies can be generally summarized as three categories: parti-
tion-based methods, hierarchical methods and model-based methods.
The partition-based methods include K-means [11,12], K-medoids
[13,14] and other generations of K-means (e.g., fuzzy K-means [15]
and Kernel K-means [16]). In addition, the main repre
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sentatives of the hierarchical methods are agglomerative clustering
and divisive clustering [17]. An alternative approach, beyond parti-
tion-based and hierarchical clustering methods, is the use of distribu-
tion mixture models. Gaussian mixture models [18,19] and C/D-vine
Copula mixture models [20,21]) are outstanding candidates in
model-based methods. Besides, the approaches of using wavelet trans-
forms [22,23], neural network [24,25] and other machine learning al-
gorithms for data clustering become increasingly popular in recent
years. Several clustering algorithms can be applied to a certain dataset,
however, there is no single method best for all datasets. Hence, we de-
termine a more effective clustering method which is appropriate for
load data clustering instead of developing a new method in this work.

Meanwhile, a common problem in the most existing clustering
methods is that the number of clusters (called k) has been assumed to
be a pre-defined parameter, which is difficult to set in practice. It is not
always clear what is the best value for k. Nevertheless, using an impre-
cise cluster number as the input in LPC significantly reduces the clus-
tering accuracy of load data and increases the complexity [26]. There-
fore, a reliable cluster number has to be determined ahead of cluster-
ing in LPC.

A number of algorithms including X-means [27,28], G-means
[22,29], and other methods which determine the cluster number by
finding an “inflection point” by certain criteria [20,30,31], have been
proposed in the literature to determine the value of k automatically,
mainly on the basis of K-means or similar clustering techniques.

Specifically, a regularization framework for learning the value of
k, which is called X-means, was first proposed in Ref. [32]. The algo-
rithm searches over many potential k values in the range [kmin,kmax]
. With X-means, each cluster is treated as a parent cluster, which can
be split into two children clusters according to the score of Bayesian
information criterion (BIC) (Akaikes information criterion (AIC), is
also acceptable in the usage of X-means). The scores help to deter-
mine whether the parent cluster or the children clusters are a better
representative for the data. For example, the X-means algorithm was
adopted in cluster number determination for load profile clustering of
smart metering data in Ref. [27]. However, this algorithm is slow as it
needs to rerun K-means for each cluster splitting.

In addition, the Gaussian-means (G-means) algorithm [22,29] also
provides a way to determine an appropriate cluster number. G-means
starts with a small number of K-means centers, and grows the num-
ber of centers. Each iteration of the algorithm splits into two cen-
ters whose data appear not to come from a Gaussian distribution via
the Anderson-Darling (AD) statistic, which is a powerful 1-dimension
test. The splitting continues until the data in all clusters pass the AD
test so that the expected cluster number can be obtained. For example,
the authors of [22] proposed a load pattern clustering strategy based
on wavelet transformation and using G-means to determine the clus-
ter number. In this way, the adopted load data of N-dimension has to
be reduced to a single dimension, as the G-means algorithm is not ef-
fective for highly dimensional data. However, the actual load data of
a typical day is usually in 24-dimension or 48-dimension, and the di-
mensional-reduction always gives rise to the risk of information loss.
Therefore, the G-means algorithm is not proper for the data that is of
multi-dimension.

Another popular approach of cluster number determination is to
find an inflection point by certain criteria, such as the AIC based
method or BIC based method [20,30,31]. For example, a mixture
model for residential load data clustering was presented in Ref. [20].
Authors selected the optimal cluster number by seeking the first knee
always at the local maximal of the curve of AIC. However, the AIC
based algorithm is not reliable and cannot guarantee to find a precise

cluster number, since the estimated inflection point normally varies in
a range in AIC calculations.

Motivated by the above open issues, in this paper, we propose a
novel parametric bootstrap (PB) algorithm to address the cluster num-
ber determination problem in LPC and incorporate it with compatible
clustering techniques. The main contributions of our work are summa-
rized as follows.

(1) The proposed PB algorithm is more robust against dimensional-
ity of the data in LPC than conventional methods (e.g., G-means
[22]). In particular, it can effectively determine the cluster num-
ber for the data in high dimensional space, for which the previous
methods [22,29] are not applicable. Therefore, the proposed PB
algorithm is applicable to analyzing load demand data, which is
usually of 24-dimension or 48-dimension.

(2) The proposed PB algorithm is general and independent of data
type. It is more reliable and stable in cluster number determina-
tion than the existing methods (e.g., G-means [22] and the AIC
based algorithm [20]), with much higher probability of success-
fully finding a precise cluster number and lower standard devia-
tion (STD) value.

(3) An effective cascade clustering scheme which classifies the initial
load data into a series of sub-cascades according to external fea-
tures, is proposed to reduce the clustering errors and improve the
efficiency over clustering the raw data directly. Besides, the pro-
posed PB algorithm is incorporated with various clustering tech-
niques [11–14,18,19], among which K-means++ demonstrates the
best performance in LPC.

The rest of this paper is organized as follows. A cascade cluster-
ing scheme is presented specifically in Section 2. In Section 3, the
parametric bootstrap algorithm with compatible clustering techniques
is illustrated in details. The feasibility and reliability of the proposed
approach are also evaluated. Afterwards, the verified approach is ap-
plied to the actual load data to address the cluster number determina-
tion problem and obtain the objective TLPs in Section 4. The cluster-
ing performances are compared. Finally, the paper is concluded con-
cisely in Section 5.

2. Cascade clustering scheme for load data preprocessing

In this section, we propose a cascade clustering scheme that com-
prises two major stages for load data processing, as illustrated in Fig.
1.

Based on the observations of load demand in different time in UK
(as shown in Fig. 2), the total load demand of electricity consumers is
significantly influenced by external factors with apparent facts:

(1) The load demand of weekends is evidently less than that of week-
days, even though the trends are similar.

(2) The weekly periodicity of the load series is broken by the occur-
rence of a UK bank holiday, as shown in Fig. 2(b).

(3) The load shapes of UK bank holidays are also dissimilar to both
weekdays and weekends.

(4) The load demand apparently varies with seasonality, as shown in
Fig. 2(a) and (c).

According to these, pre-clustering the initial load demand data into
a series of sub-cascades at the first stage of the proposed cascade clus-
tering scheme is significant, and obviously it is capable of reducing
the clustering errors and improving the efficiency compared with clus-
tering the raw data directly.

As a result, the initial load demand data is divided into
sub-cascades, where i and j are referred to as the day type and the
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Fig. 1. Cascade clustering scheme for load data processing.

Stage 1: A set of load demand data is classified into a series of sub-cascades based on the external features including the seasonality and the day type.
Stage 2: Objects in each individual sub-cascade are further categorized into numbers of clusters based on the PB algorithm incorporated with a compatible clustering technique.

Fig. 2. Load demand observations of different time in a year. (a) Data of February; (b) Data of May; (c) Data of August; (d) Data of November.

seasonality, respectively. In this work, the day types are considered
as “working day” consisting of weekdays excluding UK bank holi-
days, “non-working day” consisting of weekends excluding UK bank
holidays and “UK bank holiday”, i.e., Good Friday, Easter

Monday, Christmas Day, etc. Meanwhile, the seasonality is divided by
month.

Following this, the second stage of the cascade scheme focuses
on finding the internal relationships between objects within the same
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sub-cascade and allocate the objects into refined clusters, ensuring that
the objects within the same cluster are similar. In terms of sub-cascade
clustering, a precise cluster number k, has to be determined at first.
Thus, we propose a robust parametric bootstrap (PB) algorithm to re-
solve the cluster number determination problem and it is incorporated
with a compatible clustering technique to cluster load data simultane-
ously. Afterwards, the typical load patterns (TLPs) of each sub-cas-
cade can be extracted as yi,j,k, as shown in Fig. 1. Note that in a practi-
cal implementation, the sub-cascade clustering can be executed in par-
allel, thus making this a potentially very fast scheme.

3. Parametric bootstrap algorithm for precise cluster number
determination

This section illustrates the parametric bootstrap (PB) algorithm in-
corporated with a compatible clustering technique to determine a pre-
cise cluster number in details. The proposed PB algorithm is more
robust against dimensionality of the data in LPC than conventional
methods and has a better performance of successfully finding a precise
cluster number with little fluctuation. It is verified in subsection 3.3.

3.1. Parametric bootstrap algorithm

The PB algorithm can be considered as a bootstrap re-sampling
based technique, which estimates the number of components by incre-
mentally testing the hypothesis that there are k + 1 components against
the null hypothesis that there are k components via parametric boot-
strap. An accepted k value is determined based on the significance
level (SL) of the hypotheses. The whole process of determine a precise
cluster number by the proposed PB algorithm is briefly summarized in
Algorithm 1.

Specifically, given an input dataset of a random sub-cascade
with N objects, it can be mathematically characterized as:

where d denotes the dimensionality which indicates the resolution of
a load curve. To begin with, the input data is firstly hypothesized as
consisting of k clusters and it is categorized into k groups by using a
compatible clustering technique.

In addition, the feature parameter vector of a cluster, P = {μ,c,E},
consisting of mean vector μ, covariance c and a covariance ma-
trix E, can be obtained according to Equations (1)–(3), respectively.

Mean vector μ:

Covariance c:

Covariance matrix E:

where Nk is the total number of objects within kth cluster among K
clusters and . The feature parameter P is obtained from
the given dataset and it is used to generate synthetic data. After-
wards, sets of synthetic data with the same size as the real data can be
generated periodically based on the obtained feature parameters. The
process of generating the synthetic data is the core of the algorithm
and it is called “bootstrap simulation” (BS).

Moreover, the sum of square errors (SSE, denoted as Φ) which is
the summation of the squared distance of each point within a cluster
from the cluster center, is proposed to evaluate the clustering quality.
Hence, SSE of ith BS data set is demonstrated in Equation (4). The
probability density function (PDF) over a number of ΦBS (denoted as
F(ΦBS)) also can be obtained.

Further, to assess the hypothesis that a dataset is composed of k + 1
clusters against the null hypothesis that it has only k clusters, the ac-
tual data is clustered into k + 1 clusters and SSE of the actual dataset
on the hypothesis k can be obtained in Equation (5).

Although the real dataset is actually consisting of k clusters, the
performance of k + 1 clusters (or more) is normally “better” than sim-
ulations, since the data is categorized into smaller and tighter clus-
ters. Thus, the objective is to find the rate at which SSE decreases will
slow down for k beyond the objective cluster number. Accordingly,
the p value (proposed in Equation (6)) which is a widely used para-
meter in a statistical hypothesis [33] is adopted to determine a precise

(1)

(2)

(3)

(4)

(5)

Algorithm 1 Parametric bootstrap algorithm for cluster number determination

Input: dataset .
Output: cluster number k.
1: hypothesize an initial k.
2: classify into k clusters.
3: obtain the feature parameter vector P = {μ,c,E}
4: generate sets of BS data utilizing P vector.
5: calculate of each BS dataset.
6: generate PDF over a number of .
7: classify into k + 1 clusters, calculate related ΦAC.
8: calculate p-value of the hypothesis k.
9: if p-value satisfies the requirement: p ≥ α
10: then accept the hypothesis k as an appropriate cluster number.
11: else
12: repeat step 2 - step 10.
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k.

In the proposed PB algorithm, the requirement of an acceptable hy-
pothesis k is defined as: if p < α, the hypothesis of including k clusters
is rejected and we tend to hypothesize that the data has at least k + 1
clusters. The evaluating process continues with the increase of the val-
ues of k until it satisfies the condition p ≥ α, where α is an accepted
threshold in statistical hypothesis and is generally set to 0.01 or 0.05
[34].

3.2. Compatible clustering technique: K-Means++

In order to execute the PB algorithm, a compatible clustering tech-
nique is required. A number of clustering algorithms can be used to
assist the proposed PB algorithm to determine the cluster number as
well as clustering data. However, there is no single algorithm best for
all datasets. In this work, K-means++ which is an improved version of
K-means algorithm is selected as the classifier due to its higher effi-
ciency and improved robustness compared with others (e.g., standard
K-means, K-medoids, Gaussian mixture models, etc.).

A good clustering result satisfies the condition that the distance be-
tween arbitrary two clusters should be as far as possible [35]. Intu-
itively, it is wise to choose the initial centers that are far away from
each other in the beginning in the K-means++ algorithm. Except for
the first center that is chosen uniformly and randomly from the data
samples, each subsequent center is chosen from the remaining data
samples with the probability proportional to its squared distance from
the determined cluster center that is closest to the point. This special
seeding can greatly increase the convergence speed of the algorithm.

After having initial centers, for a dataset
, the algorithm divides into k ex-

haustive clusters , ,
for . For a cluster, the center is given by:

where Ωi is the center of ith cluster. Let be a set of
centers and represent the Euclidean distance between xi and
xj. The objective of K-means++ is to find an optimal ω to minimize:

The K-means++ algorithm tries to put object x into a cluster Ωk
to be similar to each other whilst being dissimilar to objects in other
clusters, which is similar to the standard K-means algorithm. It takes
the cluster number as the input parameter and k initial centers are
specifically selected. Afterwards, the remaining objects are assigned
to the clusters with the closest centers according to the similarity. The
algorithm continues to update the means of clusters until the means
converge and become stable. Let D(x) be the Euclidean distance be-
tween x and the nearest center that has already been chosen. Hence,
the K-means++ algorithm that proceeds by alternating three steps, the
initialization step, the assignment step and the update step can be il-
lustrated concisely in Algorithm 3.2.

Compared with the standard K-means, K-means++ guarantees to
find a solution that is O(logk) competitive to the optimal K-means
solution, which means that K-means++ has better effectiveness in
clustering than the standard K-means algorithm. Although the spe-
cial seeding in K-means++ takes extra time, its clustering part con-
verges fast so that the clustering efficiency is significantly improved.
The K-means++ algorithm also demonstrates a better clustering per-
formance in LPC compared with other clustering techniques such as
K-medoids and GMM. It is presented in subsection 4.5.

3.3. Algorithm verification

It is impossible to evaluate the feasibility of algorithms on the ac-
tual load data, since the data is not labeled by groups. Therefore, this
section proposes unsupervised examples to assess the effectiveness of
the proposed PB algorithm. The tested dataset actually consists of 4
random Gaussian components in 24-dimensional space, which is simi-
lar to the actual load demand data. The hypothesis of k normally starts
with a small number (e.g., k = 2) and increases gradually until a sat-
isfied k is obtained. In this case, the hypotheses of are pre-
sented. For each hypothesis, bootstrap simulations are
generated. The amount of BS data is usually set according to the re-
quirements that an accurate PDF of ΦBS can be obtained. Addition-
ally, the significance thresholds α1 = 0.01 and α2 = 0.05 are both ac-
counted in the evaluation. The proposed PB algorithm can be proved
valid and effective while the evaluation result corresponds with the
setup, i.e., the obtained cluster number is equal to 4.

Fig. 3 presents the cluster number determination result of the pro-
posed testing data based on the PB algorithm incorporated with the
K-means++ clustering technique, where the red curves denote SSE of
the actual data (ΦAC) in k + 1 clustering and the black curves repre-
sent PDF of total square errors of BS data (ΦBS). Specifically, the
result shows that the p-values of the cases k = 2 and in Fig.
3(a) and (b), respectively, are equal to 0, which indicates that the hy-
potheses are rejected and the dataset includes at least k + 1 clusters.
In addition, when k = 4 in Fig. 3(c), the p-value increases to 0.197,
which is greater than the pre-defined significance threshold α. There-
fore, the hypothesis k = 4 is accepted as a precise cluster number ac-
cording to the cluster number determination requirement in subsec-
tion 3.1. Moreover, it can be seen that the p-value (0.334) of hy-
pothesis in Fig. 3(d) is greater than the p-value (0.197) of hy-
pothesis k = 4 as well as greater than α. The result conforms to the

(6)

(7)

(8)

Algorithm 2 K-means++

Input: cluster number k, dataset .
Output: centers .
1: .
2: Initialization Step:
3: Choose one center x from at random, ω = ω∪x.
4: Choose with probability: , ω = ω∪x.

5: Repeat step 4 until k centers are chosen.
6: Assignment Step:
7: Assign each object xp to a cluster Ω(t) according to:

.

8: Update Step:
9: Update centers of clusters according to:

.

10: Repeat step 6 - step 9 until ω becomes stable.
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Fig. 3. Cluster number determination for a 24-dimensional space dataset based on the PB algorithm incorporated with K-means++. Hypotheses of k = 2 to 5 are evaluated.

expectation that the rate of Φ decreases with the k value increasing.
Therefore, the hypothesis of k = 4 is regarded as a precise cluster num-
ber, which also corresponds to the initial setup in this case.

Compared with the most popular methods, G-means [22] and the
AIC based algorithm [20], which also can be used in the cluster num-
ber selection, the PB algorithm is more robust and reliable, particu-
larly in processing the high dimensional space data. Specifically, the
G-means algorithm is not effective for highly dimensional data such
as the load data, since it cannot ensure the data within all dimensions
simultaneously pass the Anderson-Darling (AD) statistic which is a
powerful 1-dimension test. One solution is to reduce the data of N-di-
mension to a single dimension [22]. However, the dimensional-reduc-
tion always gives rise to the risk of information loss and failures of
obtaining a cluster number always occur.

On the other hand, the AIC based algorithm is also compared. The
AIC based algorithm determines the precise cluster number by seeking
the first knee always at the local maximal of the curve of AIC. How-
ever, the AIC based algorithm also cannot guarantee to find a precise
cluster number as the estimated inflection point normally varies in a
range in AIC calculations.

In order to evaluate the reliability of an algorithm, a performance
metric of failure rate (FR) is defined as:

where Nfailure and Ntest represent the numbers of failed tests and total
tests, respectively.

The comparison results of algorithms in terms of the probability
of finding an actual cluster number, the standard deviation (STD) and
FR, over tests are presented in Table 1.

The results show that the proposed PB algorithm is more effective
in the cluster number determination than G-means and AIC based al-
gorithms, with much higher probability (0.97) of successfully finding
an actual cluster number. In addition, the PB algorithm is more robust
against dimensionality of the data than G-means (
). However, the dimensional conditions have few effects ( )
upon the outcome of cluster number selection by using the PB algo-
rithm. Moreover, the PB algorithm is also more stable than the AIC
based algorithm with a lower STD value ( ) (as a num-
ber of tests by G-means failed to obtain a cluster number, the G-means
algorithm is not accounted in STD evaluation). In summary, although
G-means and AIC based algorithms can achieve the correct cluster
number in some cases, both algorithms cannot guarantee to find a pre-
cise cluster number at all times due to their inherent defects.

Table 1
Performance comparison of cluster number determination between algorithms.

Criterion Algorithm

PB G-means AIC based algorithm

Probability 0.97 0.45 0.28
STD 0.17 – 1.03
FR 0 0.28 0

(9)
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4. Case study

The verified PB algorithm for cluster number determination incor-
porated with the K-means++ clustering algorithm is applied to real-life
load data in this section. The initial load dataset is classified into a
number of sub-cascades at first according to the proposed scheme
described in Section 2. Afterwards, the cluster numbers of selected
sub-cascades are determined and typical load patterns (TLPs) are de-
rived.

4.1. Case descriptions

In this study, a large set of historical load demand data on national
level provided by the National Grid Ltd, UK [36] is adopted. The
dataset includes 3653 days’ load demand data with time intervals 2h (
d = 12) and 0.5h (d = 48) from the year 2007–2016.

As objects in the initial dataset are classified into a series of
sub-cascades, we simply utilize mathematical numbers to label the
seasonal features and the day types of each sub-cascade. Specifically,
the numbers “1–12” are used to label 12 months in different seasons
and “1–3” are used to indicate the day types (“1”→ “working day”,
“2” → “none-working day” and “3” → “UK bank holiday”). For in-
stance, denotes the sub-cascade of working day in May. The rest
sub-cascades can be deduced by analogy. Additionally, due to limited
data samples on special events such as UK bank holidays that can be
collected (8 UK bank holidays per year and 82 UK bank holidays in
total), the exclusive sub-cascade consists of all load information
of UK bank holidays. Other types of special events data can be ana-
lyzed in a similar way.

Due to the limited space, 9 typical sub-cascades (i.e., , ,
, , , , , and ) covering various scenarios

of load data are selected as examples to perform the results.

4.2. Evaluation metrics

In order to evaluate the similarity of TLPs between a variety of
sub-cascades, the Pearson correlation coefficient (PCC, denoted as ρ)
which is a measure of the linear correlation between two variables X
and Y in statistics, is proposed in Equation (10).

where D is the sample size of the compared time series TLPs. xd, yd
are the individual sample points indexed with d. and
analogously for . PCC has a value between +1 and − 1, where +1 in-
dicates the total positive linear correlation, 0 represents no linear cor-
relation, and − 1 denotes the total negative linear correlation between
X and Y.

In terms of assessing the clustering performance between a variety
of algorithms, a number of evaluation metrics [6,22] are introduced.
The proposed metrics which are object distance based, mainly eval-
uate the compactness performance between objects within the same
cluster and the separation performance between disparate clusters.

Given a sub-cascade , we assume the objects in are classi-
fied into K clusters. For an individual cluster Ωi, xi,n and ωi repre-
sent an object within Ωi and the center of Ωi, respectively. Hence, the
evaluation metrics including compactness (CP), separation (SP) and

Davies-Bouldin index (DBI) can be presented in Equations (11)–(14),
respectively, as follows.

Compactness (CP) metric:

where is the averaged taxicab distance between objects xi,n and
the cluster center ωi within the cluster Ωi. Metric of CP shows the
compactness or homogeneity between objects within clusters. The
smaller value of CP indicates the more compact of objects within a
cluster.

Separation (SP) metric:

Metric of SP describes the separation or the distance between clus-
ters. The larger value of SP illustrates the greater distance between the
centroid of clusters.

Davies-Bouldin index (DBI) metric:

Metric of DBI represents the system-wide average of the similarity
measures of each cluster with its most similar cluster. The lower value
of DBI, the better performance.

In addition, the sum of square errors (Φ, proposed in subsection
3.1) which is the most significant metric, is also considered in the eval-
uation of accurate clustering. Moreover, as the time consuming of al-
gorithms executed on disparate platforms is different, the relative run-
ning time (RRT) which is defined in Equation (15), is taken to evalu-
ate the efficiency between algorithms.

where CTi denotes the running time of the ith algorithm and CTmin is
the minimal running time among all the algorithms of comparison.

4.3. Cluster number determination of load demand data

One necessary and significant task before clustering objects into
several clusters is to determine an appropriate cluster number. In
this subsection, the cluster number determination program for each
sub-cascade has been run for multiple times, to ensure a reliable result.
The significance levels (SL) α1 = 0.01 and α2 = 0.05 are both taken
into account. Based on the verified PB algorithm incorporated with
K-means++, the cluster number determination results for the load data
of 9 typical sub-cascades are presented in Table 2.

(10)

(11)

(12)

(13)

(14)

(15)
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Table 2
Results of the cluster number determination with p-values for the typical sub-cascades using the PB algorithm incorporated with K-means++.

Dimension SL Sub-cascade

d= 12 α1 = 0.01 k= 4 k= 4 k= 4 k= 4 k= 3 k= 3 k= 3 k= 3 k= 3
p= 0.017 p= 0.040 p= 0.039 p= 0.036 p= 0.057 p= 0.038 p= 0.027 p= 0.042 p= 0.110

α1 = 0.05 k= 5 k= 6 k= 5 k= 5 k= 3 k= 4 k= 4 k= 4 k= 3
p= 0.064 p= 0.073 p= 0.066 p= 0.053 p= 0.057 p= 0.051 p= 0.060 p= 0.064 p= 0.110

d= 48 α1 = 0.01 k= 4 k= 4 k= 4 k= 4 k= 3 k= 3 k= 3 k= 3 k= 3
p= 0.017 p= 0.030 p= 0.012 p= 0.019 p= 0.037 p= 0.037 p= 0.018 p= 0.049 p= 0.133

α1 = 0.05 k= 5 k= 5 k= 5 k= 5 k= 4 k= 4 k= 4 k= 4 k= 3
p= 0.068 p= 0.086 p= 0.064 p= 0.120 p= 0.115 p= 0.070 p= 0.105 p= 0.090 p= 0.133

Specifically, the results illustrate that the cluster numbers of the
“working day” in sub-cascades , , and are normally
equal to 4 for α1 = 0.01, and 5 for α2 = 0.05. However, the cluster
numbers of the “none-working day” in sub-cascades , ,
and are usually equal to 3 for α1 = 0.01, and 4 for α2 = 0.05. In
addition to these, the exclusive sub-cascade is suggested to be
classified into 3 clusters. The obtained cluster numbers are used as in-
put parameters to ensure the data classification and TPLs extraction in
LPC.

4.4. Load pattern categorization

In order to reduce the risk of ending up in a local optimum, the
clustering process has been executed for multiple time with random
initializations. Besides, the obtained cluster number which is under the
significant level α1 = 0.01, is adopted as an input parameter in the cat-
egorization. The center of a cluster which leads to a minimal SSE of
the cluster, is regarded as one of the TLPs within a sub-cascade.

While the final TLPs are regarded as the aggregation of TLPs
within each individual sub-cascade under the cascade clustering
scheme.

The obtained TLPs of 9 typical sub-cascades covering a variety of
scenarios are proposed as examples in Fig. 4. Specifically, the light
grey curves represent the actual load demand data that is required to
be categorized and the colorized curves are the objective TLPs. The
results show that the extracted TLPs follow the shape of actual load
curves and cover the most actual load curves within the same sub-cas-
cade. The proportion of objects categorized into different TLPs is pre-
sented in Table 3.

In addition, Table 4 illustrates the evaluation of similarity be-
tween TLPs of relevant sub-cascades based on the metric of PCC.
High correlations between TLPs are marked in bold. It can be seen
that the achieved coefficients of the compared TLPs are very high (
≥ 0.837) in general, which means that there are positive relationships
among TLPs. Moreover, the coefficients between TLPs within the
same sub-cascades are extremely high (≥ 0.97). On the contrary, the
coefficients between TLPs from different sub-cascades are relatively
low for most cases. The facts indicate the higher correlations between
TLPs within the same sub-cascade and relatively weaker relationships
between TLPs from the different sub-cascades. It is also in line with
the analysis in Section 2.

4.5. Clustering performance evaluation

The clustering performance is another issue we may concern. The
performance comparison of different clustering techniques incorpo-
rated with the PB algorithm for d = 12 and d = 48 are presented in
Tables 5 and 6, respectively. The best performance metrics are

marked in bold. Obviously, the K-means++ algorithm outperforms
in most metrics in overall comparison. Specifically, K-means++ per-
forms the best in Φ and CP evaluations, which means the objects clus-
tered by K-means++ algorithm are more compact and have less square
errors. In addition, in terms of SP and DBI evaluations, K-means++
also performs the best in some cases, such as , , and
. On the contrary, the GMM algorithm has the worst clustering perfor-
mance in the evaluation and it is not effective in clustering the data in
high dimensional space, such as d = 48.

Moreover, the adopted K-means++ algorithm is also the most ef-
ficient clustering algorithm as it spends the minimal running time
among all compared algorithms. In accordance with the RRT results
in Tables 5 and 6, K-means++ is 2.11, 3.93 and 381 times faster than
K-means, K-medoids and GMM, respectively in average.

Much more interesting, we notice that the clustering performance
of the K-means algorithm is similar to the K-means++ algorithm, ex-
cept the RRT evaluation. This is because the K-means++ algorithm is
improved based on the standard K-means algorithm. The difference
is that the special seeding in K-means++ significantly accelerates the
convergence process in K-means. Besides, the multiple simulations
which are taken in our work significantly avoid the risk of ending up
in a local optimum for the K-means++ algorithm.

5. Discussion and conclusion

This paper proposed an innovative parametric bootstrap algorithm
incorporated with K-means++ clustering technique, to address the
cluster number determination problem as well as clustering the load
data simultaneously in LPC. A number of evaluations were presented
in this work, which indicated that our approach is more robust and re-
liable in finding a precise cluster number than conventional methods
and it also has a better performance in load pattern clustering com-
pared with literature methods.

In this paper, we mainly focus on addressing cluster number de-
termination problem in clustering, rather than developing a new clus-
ter algorithm. In fact, for a given dataset, the data clustering perfor-
mance is largely influenced by the choice of clustering algorithm, the
input cluster number and the characteristics of the data. Several clus-
tering algorithms can be applied to a certain dataset, however, there
is no single clustering method that is best for all datasets. Therefore,
we have utilized a relatively robust and efficient clustering technique,
K-means++, instead of developing a new method in this work.

As the proposed PB algorithm is entirely unsupervised, it also can
be widely adopted in solving the cluster number determination prob-
lem for a variety of data processing tasks. The future research can fo-
cus on testing the PB algorithm with other suitable clustering tech-
niques and apply the algorithms to other datasets in industry.
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Fig. 4. Extracted TLPs of 9 selected sub-cascades. The objective TLPs are colorized. (a) Sub-cascade ; (b) Sub-cascade ; (c) Sub-cascade ; (d) Sub-cascade ; (e)
Sub-cascade ; (f) Sub-cascade ; (g) Sub-cascade ; (h) Sub-cascade ; (i) Sub-cascade.

Table 3
Proportion of objects categorized into different TLPs.

TLP Sub-cascade

TLP #1 24.2% 23.9% 36.2% 10.8% 35.0% 42.2% 45.6% 18.4% 41.5%
TLP #2 28.6% 36.3% 20.5% 30.1% 22.5% 23.3% 27.8% 21.8% 19.5%
TLP #3 17.2% 29.4% 13.8% 39.9% 42.5% 34.5% 26.6% 59.8% 39.0%
TLP #4 30.0% 10.4% 29.5% 19.2% – – – – –

Table 4
Similarity evaluation between TLPs of 3 typical sub-cascades based on the metric of PCC.

TLPs

TLP#1 TLP#2 TLP#3 TLP#4 TLP#1 TLP#2 TLP#3 TLP#1 TLP#2 TLP#3

TLP#1 1.000 0.999 0.998 0.998 0.911 0.908 0.908 0.934 0.837 0.910
TLP#2 0.999 1.000 0.999 0.999 0.910 0.908 0.907 0.934 0.848 0.915
TLP#3 0.998 0.999 1.000 0.999 0.906 0.905 0.902 0.931 0.848 0.914
TLP#4 0.998 0.999 0.999 1.000 0.915 0.914 0.911 0.939 0.858 0.923
TLP#1 0.911 0.910 0.906 0.914 1.000 0.998 0.999 0.994 0.906 0.973
TLP#2 0.908 0.908 0.905 0.914 0.998 1.000 0.997 0.994 0.919 0.980
TLP#3 0.908 0.906 0.902 0.911 0.999 0.997 1.000 0.993 0.899 0.968
TLP#1 0.934 0.934 0.931 0.939 0.994 0.994 0.993 1.000 0.923 0.983
TLP#2 0.837 0.847 0.848 0.858 0.906 0.919 0.899 0.923 1.000 0.976
TLP#3 0.910 0.915 0.913 0.922 0.972 0.980 0.968 0.983 0.976 1.000
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Table 5
Performance comparison of different clustering techniques incorporated with the PB algorithm, d = 12.

Metric Algorithms Sub-cascade

Φ×1010
K-means++ 4.16 2.45 1.85 3.81 2.73 1.65 1.25 2.95 4.69
K-means 4.16 2.45 1.85 3.81 2.73 1.65 1.25 2.95 4.69
K-medoids 4.61 2.76 1.96 4.12 3.29 1.93 1.42 3.31 5.58
GMM 4.69 2.91 2.11 5.95 2.76 1.70 – – 5.34

CP×104
K-means++ 3.91 2.93 2.64 3.72 5.10 3.68 3.15 5.13 6.61
K-means 3.91 2.93 2.64 3.72 5.10 3.68 3.15 5.13 6.61
K-medoids 4.10 3.04 2.69 3.78 5.42 3.80 3.26 5.39 6.86
GMM 4.15 3.22 2.78 4.39 5.15 3.75 – – 7.92

SP×104
K-means++ 4.88 4.48 3.73 6.87 4.99 3.38 3.18 6.62 7.45
K-means 4.88 4.48 3.73 6.87 4.99 3.37 3.18 6.62 7.45
K-medoids 4.95 3.60 3.64 5.96 4.97 3.67 3.35 6.63 8.44
GMM 4.74 3.69 3.50 5.41 4.77 3.28 – – 7.12

DBI K-means++ 2.80 2.61 2.62 2.22 2.83 3.10 2.69 2.54 2.46
K-means 2.80 2.61 2.62 2.22 2.83 3.10 2.69 2.51 2.46
K-medoids 2.79 3.11 2.41 2.40 2.97 2.94 2.59 2.55 2.38
GMM 3.20 3.59 2.95 3.10 3.05 3.42 – – 3.16

RRT K-means++ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
K-means 2.29 2.01 2.13 2.16 2.79 1.74 2.50 2.99 3.03
K-medoids 4.86 4.83 4.41 4.60 4.56 4.66 4.42 5.32 5.44
GMM 583 581 446 703 120 113 – – 122

Table 6
Performance comparison of different clustering techniques incorporated with the PB algorithm, d = 48.

Metric Algorithms Sub-cascade

Φ×1010
K-means++ 1.10 0.648 0.496 1.00 0.712 0.434 0.331 0.770 0.123
K-means 1.10 0.648 0.496 1.00 0.712 0.434 0.331 0.770 0.123
K-medoids 1.26 0.739 0.536 1.09 0.863 0.513 0.383 0.879 0.149
GMM – – – – – – – – –

CP×104
K-means++ 4.01 3.00 2.70 3.80 5.19 3.73 3.24 5.23 6.75
K-means 4.02 3.00 2.70 3.80 5.19 3.74 3.24 5.23 6.75
K-medoids 4.24 3.14 2.76 3.88 5.52 3.89 3.35 5.50 7.04
GMM – – – – – – – – –

SP×104
K-means++ 2.44 2.25 1.87 3.45 2.50 1.70 1.59 3.31 3.73
K-means 2.44 2.25 1.87 2.95 2.50 1.69 1.60 3.31 3.73
K-medoids 2.49 1.82 1.81 2.98 2.42 1.85 1.69 3.33 4.24
GMM – – – – – – – – –

DBI K-means++ 5.75 5.29 5.41 4.55 5.78 6.31 5.51 5.16 5.06
K-means 5.75 5.29 5.41 4.55 5.78 6.31 5.51 5.12 5.06
K-medoids 5.70 5.93 5.44 5.01 6.04 6.06 5.28 5.18 4.87
GMM – – – – – – – – 3.16

RRT K-means++ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
K-means 1.48 1.34 1.45 1.31 1.95 2.25 2.10 2.27 2.23
K-medoids 2.70 2.91 2.72 2.48 3.07 3.45 3.40 3.50 3.49
GMM – – – – – – – – 122
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