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This study was done with the aim to analyze and evaluate the strengths and limitations of the Markov Chain
Monte-Carlo (MCMC), Transitional Markov Chain Monte-Carlo (TMCMC), and Sequential Monte-Carlo (SMC)
sampling methods in the context of solving engineering design problems. For each of these methods discussed in
this paper, a case example will also be presented in the form of simply toy-model problems to demonstrate its use and
effectiveness in estimating parameters under uncertainty and comparing it with determined results. For the MCMC
case example, a simple harmonic oscillator will be looked into to estimate the value of the spring constant, k. For
the TMCMC case example, the problem will be extended into a coupled oscillator problem and the goal would be
to estimate the values of two spring constants to which there is imprecise knowledge: κ and κ12. Finally, for the
SMC case example, a simple harmonic oscillator will be analyzed once again as a static linear system to estimate
the spring constant, k. As such, this conference paper is also targeted at readers who are new to these methods and
to provide succinct information in facilitating the understanding of the three sampling approaches.
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1. Introduction
In engineering design problems, one of the prob-
lems faced is the absence or lack of available
physical data given that it wold be too costly
to obtain new information. Under such circum-
stances, these new information would have to
be obtained via machine-learning techniques and
computer simulation of the physical system. From
there, the data that is obtained from both physical
and computer simulation experiments would be
integrated to perform the necessary mathematical
modelling or model-updating of the physical sys-
tem for various purposes such as the estimation
of an unknown parameter. One such framework
under which such integration and update of in-
formation can be done would be the Bayesian
inference method.

The Bayesian inference method originates from
the Bayes’ Rule in statistics which is defined as
such according to Beech et al. (1959):

P (θ|D) =
P (D|θ) · P (θ)

P (D)
(1)

In Eq. (1), θ represents the vector of parame-
ters of interest, D represents the observed data,
P (θ) represents the prior probability distribution
of θ, P (D|θ) represents the likelihood probability
distribution, P (θ|D) represents the posterior (or
target) probability distribution, and P (D) is the
evidence probability distribution.

The prior distribution, P (θ), can be described
as a distribution which reflects what is known
about the unknown parameters, θ, before any data
is collected. For instance, a Uniform distribution
is chosen as the prior distribution when the only
bounds of values of θ is known. The likelihood
distribution, P (D|θ), reflects the distribution of
the measured quantity, D, which depends on the
value of θ. This is usually known through data
collection and it illustrates the degree to which the
parameters D and θ agree. The posterior distribu-
tion, P (θ|D), represents the updated distribution
of θ after taking into account the values of D.
And finally, the evidence distribution, P (D) can
be simply described as the normalization constant
to ensure the posterior probability sums to one.

In most cases, the constant P (D) may be dif-
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ficult to compute analytically and is usually not
accounted for in solving Bayesian inference prob-
lems. As such, Eq. (1) can be simplified to the
following form:

P (θ|D) ∝ P (D|θ) · P (θ) (2)

This conference paper seeks to provide a review
of three different sampling methods adopted in
addressing Bayesian inference problems, namely
Markov Chain Monte-Carlo (MCMC) sampling,
Transitional Markov Chain Monte-Carlo (TM-
CMC) sampling, and Sequential Monte-Carlo
(SMC) sampling. For each of these methods, a
brief description and explanation of its concepts
will be provided. This will then be followed
by an illustration in the form of a simple case
example to show how they can be applied to solve
an engineering Bayesian inference problem. The
results will be compared to that obtained analyti-
cally highlight its effectiveness. After which, an
overall evaluation of the sampling method will be
discussed before finally concluding the paper.

2. Markov chain monte-carlo sampling
MCMC is a computerized sampling method which
aims to sample from a probability distribution
as highlighted by Gamerman and Lopes (2006).
Its advantage comes as a result of being able to
identify the characteristics of an unknown distri-
bution from which it samples without the need to
know all of the mathematical properties of that
distribution. As such, this makes MCMC a more
favoured approach in extracting information on
a distribution of interest, thereby making such
technique useful in solving Bayesian inference
problems according to Ravenzwaaij et al. (2018).

There are two underlying key concepts behind
the workings of MCMC sampling: Monte-Carlo
and Markov chain.

Monte-Carlo, as stated by Robert and Casella
(2013), involves the practice of taking repeated
samples in order to estimate a property of a dis-
tribution of interest. As such, it provides an alter-
native method to solve deterministic problems via
randomness. Markov chain provides a sequential
manner in which the samples will be drawn from
the target distribution. Through this process, the
random sample which is drawn at present will be
used as a basis on which the next random sample
will be drawn. This eventually forms a chain
which contains a special property on its own in
which each new random sample depends only on
the previous random sample and no earlier. Such
property is referred to, by Serfozo (2014), as the
“Markov” property.

A straight-forward MCMC approach would be
through the use of the Metropolis algorithm which
provides a selection criteria of the samples chosen
to reflect the posterior distribution. It involves

the use of a symmetric proposal distribution, such
as the Normal distribution, to choose and select
a new sample based on the target distribution.
A summary of the workings of the Metropolis
algorithm is as follows:

• Step 1: Starting from a random sample, θ1, the
symmetric proposal distribution would then se-
lect the next random sample, θ2. For example,
if a Normal distribution is used as the proposal
distribution, θ2 will be chosen randomly from
that distribution with mean θ1 and a defined
value of standard deviation assigned by the user.

• Step 2: Upon choosing θ2, the probability of θ2
with respect to the target distribution, P (θ2|D),
is compared to that for θ1, P (θ1|D). This
is done by taking the ratio between these two
quantities giving rise to α. In essence:

α =
P (θ2|D)

P (θ1|D)
(3)

• Step 3: A random number, r, is drawn from
a Uniform distribution ranging between 0 and
1. If the value of α is greater than r, θ2 will
be accepted as the new sample and the process
repeats from Step 1. Otherwise, θ2 will be
rejected and the process repeats from Step 1
using θ1 again.

Full details can be found in the reference by
Smith and Roberts (1993) and the approach is
shown through an illustrative example in the next
section.

2.1. MCMC case example: Simple
harmonic oscillator

Fig. 1. Illustration of the set-up for the simple harmonic
oscillator. Image taken from Thorton and Marion (2004)

A simple harmonic oscillator system illustrated
in Figure 1 is analyzed with a determined value of
the spring constant, k = 0.6 Nm−1, and mass,
m = 0.5 kg. In this problem, the parameter k is
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not known precisely and objective of this analysis
is to quantify and determine the precision of k.

The prior distribution for k is set to follow a
Uniform distribution between 0.01 Nm−1 and
3.00 Nm−1. The likelihood distribution of the
measured quantity, which in this case would be
the frequency of the oscillation, ω(k), which is
defined as:

ω(k) =

√
k

m
(4)

The measured frequency is set to follow a Nor-
mal distribution with mean ω(k), which depends
on the choice of values of k, and a standard de-
viation of 0.05 Hz, which is usually known from
taking repeated measurements.

According to the Law of Large Number, it
states that the sample mean will converge to the
expected value with increased sampling. As such,
the number of samples to be taken from this
MCMC problem, N , will be set at 10000. The
results will be presented in the form of a histogram
as shown in Figure 2.

Fig. 2. Histogram illustrating the results from MCMC ob-
tained for N = 10000.

Table 1. Results of the distribution func-
tion fitting of the histogram.

Distribution Parameter(s)
(Nm−1)

Normal Mean: 0.604188
Stdev: 0.0702912

From Table 1, it can be seen that the his-
togram appears to follow a Normal distribution
with a mean value of 0.604188 Nm−1 which is
a 0.698% discrepancy from the determined value
of k. This indicates a high degree of accuracy as-
sociated with the estimated results obtained from

MCMC. In addition to this, the value of standard
deviation associated with the Normal distribution
fitting is at 0.0702912 Nm−1 which indicates
that the degree of imprecision of the results is at
11.6%.

2.2. Limitation(s) of MCMC
As seen from the case example, the MCMC
method is an effective tool to draw samples from
target distributions which are not well-defined and
had to be approximated using a prior and likeli-
hood function. However, complications will arise
when sampling directly from a target distribution
with a distinct, sharp peak. This is due to the sam-
ple acceptance criteria within the MCMC algo-
rithm which causes the samples to crowd around
the peak making it ineffective in obtaining ran-
dom samples from across the distribution. Such
problem is made worse if there are multiple of
such peaks which leads to a problem whereby the
random samples would gather around one of those
peaks and miss the other regions. Furthermore,
Ching and Chen (2007) added that it will also
become inefficient and computationally expensive
in solving problems in which more than one pa-
rameters are to be estimated. To address this issue,
the method of TMCMC will be used. Details will
be provided in the next section.

3. Transitional markov chain
monte-carlo sampling

TMCMC is a method devised by Ching and
Chen (2007) and is inspired from the Adaptive
Metropolis-Hastings (AMH) algorithm proposed
by Beck and Au (2002). It adopts the concept
of obtaining random samples from a series of
relatively simpler “transitional” probability distri-
butions instead of obtaining them directly from
complex distributions.

According to Ching and Chen (2007), one uni-
versal way in devising such intermediate proba-
bility distribution stems from the proportionality
relation in Eq. (2) and is as shown below:

Pj(θ|D) ∝ P (D|θ)βj · P (θ) (5)

In Eq. (5), j is the stage number taking integers
values from 0 to m, m denotes the iteration num-
ber in updating the transition probability distribu-
tion, and βj takes values such that β0 = 0 < β1 <
... < βm−1 < βm = 1. This condition allows for
the transition probability distribution to the take
the form starting from that of prior and eventually
converge to that of the posterior at the end of all
the iterations.

The workings of the TMCMC algorithm can be
summarized as such:

• Step 1: Random samples are obtained via
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MCMC from the prior distribution (Iteration
j = 0).

• Step 2: Add a small increment to βj such that
the transition from Pj to Pj+1 is gradual and
smooth.

• Step 3: At each iteration j, use the random
samples drawn from Pj as the basis for the
Metropolis algorithm to draw samples from
Pj+1 in the next iteration j + 1.

• Step 4: Repeat Steps (2) and (3) until iteration
j = m when βj = 1.

To provide a better understanding of its applica-
tions, an illustrative example is provided in section
3.1 to demonstrate the use of TMCMC sampling
method.

3.1. TMCMC case example: Coupled
oscillator

Fig. 3. Illustration of the set-up for the coupled oscillator.
Image taken from Thorton and Marion (2004)

For this case example, the problem is extended
from a simple harmonic oscillator to a coupled
oscillator as shown in Figure 3. The set-up con-
sists of two bobs with identical mass, M = 0.5
kg, and three springs with spring constant κ1,
κ12, and κ2. κ1 is set to be equal to κ2 with a
determined value of κ′ = 0.6 Nm−1 while κ12
has a determined value of 1.0 Nm−1. Here, the
method of TMCMC will be used to quantify the
uncertainty of κ′ and κ12.

The prior distributions for both κ′ and κ12 are
set to follow a Uniform distribution between 0.01
Nm−1 and 3.00 Nm−1. As in the case of the
simple harmonic oscillator, the measured quantity
would be the oscillation frequency. However, this
time, there are two values of frequencies, ω1 and
ω2, which are to be determined. These two values
of frequencies correspond to the two distinct vi-
bration modes associated with the coupled oscil-
lator: in-phase and out-of-phase. The likelihood
distribution of both ω1 and ω2 follow a Normal
distribution with means ω1(κ′, κ12) and ω2(κ′,
κ12) respectively and with standard deviations of
0.05 Hz. The mathematical expression of ω1 and
ω2 as a function of κ′ and κ12 are as follows:

ω1(κ′, κ12) =

√
κ′ + 2κ12

m
(6)

ω2(κ′, κ12) =

√
κ′

m
(7)

The number of samples to be obtained for this
TMCMC case example,N , would be set at 10000.
The results will be illustrated in the form of a con-
tour profile of the scatter plots as seen in Figures
4 to 8.

Fig. 4. Contour profile of the scatter plot at iteration j = 0
obtained for N = 10000.

Fig. 5. Contour profile of the scatter plot at iteration j = 1

obtained for N = 10000.
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Fig. 6. Contour profile of the scatter plot at iteration j = 2

obtained for N = 10000.

Fig. 7. Contour profile of the scatter plot at iteration j = 3
obtained for N = 10000.

Fig. 8. Contour profile of the scatter plot at final iteration j =
4 obtained for N = 10000.

Note that in the results above, the red contours
reflect the contour profile of the scatter plots in the
current iteration while the black contours reflect
the contour profile of the scatter plots in the next
iteration. As seen in Figure 4, the scatter plot
follows a Uniform distribution along the values
of the parameters κ′ and κ12 whereas in Figure
8, the scatter plot appears to possess a contour
profile belonging to a Normal distribution with

a distinct peak. In addition, the scattered points
and the contour lines converge towards a specific
coordinate which indicates the estimated values of
κ′ and κ12.

Based on Figure 8, the estimated values of κ′
and κ12 are summarized in the table below:

Table 2. Results of the estimated and determined values of
κ′ and κ12.

Parameter Estimated value Determined value
(Nm−1) (Nm−1)

κ′ 0.6061 0.6

κ12 1.0100 1.0

Based on solutions obtained analytically, the
theoretical values of κ′ and κ12 are as shown
in Table 2. Compared to the estimated values
obtained via the TMCMC method, the percentage
discrepancy is at 0.678% and 1.00% for κ′ and
κ12 respectively which indicates a high degree of
accuracy associated with the results.

3.2. Limitation(s) of TMCMC
The case example highlights a key advantage of
the TMCMC method which is that it can be em-
ployed for multi-dimensional problems whereby
more than one parameter is to be studied. How-
ever, as the dimension of the problem becomes
higher, more data is to be analyzed resulting in the
increase of computational cost, thereby reducing
the efficiency of the TMCMC method. Such short-
coming also applies to the MCMC method. To
address this, small subsets of ‘highly-informative’
data will be chosen selectively while the rest are
discarded. This, however, may potentially exclude
just as ’highly-informative’ data as highlighted by
Green and Maskell (2018). To tackle these prob-
lems, Green and Maskell (2018) propose the use
of the SMC sampling method to solve Bayesian
inference problems involving big data.

4. Sequential monte-carlo (SMC)
sampling

SMC, according to Moral et al. (2006), is a sam-
pling method consisting of a set of Monte-carlo
algorithms and is generally employed to solve
Bayesian inference problems involving large data
sets and to sample from a time-evolving posterior
in a sequential manner.

The workings of SMC is made up of two
phases: Importance Sampling (IS) and Re-
sampling.

IS is a technique which recognizes the impact
of some input random samples over the others in
the estimation of a parameter and thus puts more
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weight on these data as mentioned by Rubinstein
and Kroese (2016). This leads to the increase
sampling of these relatively important samples
resulting in the increased precision of the esti-
mator. The mathematical description is as such.
Suppose we want to determine the expected value
of a function, f(θ), from an un-normalized target
distribution, T ∗(θ), it follows that:

E[f(θ)] =

∫
f(θ)T ∗(θ)dθ∫
T ∗(θ)dθ

E[f(θ)] =

∫
f(θ)q(θ)ω(θ)dθ∫
q(θ)ω(θ)dθ

(8)

In the above equation, ω(θ) = T∗(θ)
q(θ) and it

represents the ’importance weight’ of samples θ.
q(θ) represents the proposal distribution. As such,
Equation (8) can be re-expressed as such:

E[f(θ)] ≈
N∑
i=1

f(θi)ω̂i (9)

In Equation (9), ω̂i = ωi∑
j ω

j and it repre-
sents the normalized importance weights for i =
1, ..., N where N is the total number of samples.

Re-sampling, according to Green and Maskell
(2018), is the idea of performing repeated sam-
pling with replacement from the original sample.
This makes up for the degeneracy problem which
arises during IS whereby too few samples have
significant weights. The mathematical descrip-
tion of Re-sampling is as such. We first define
f(θj) = δ(θj − θ), for which δ denotes a Dirac
delta function. Using the definition of expected
values, with T (θ) denoting the normalized target
distribution, we obtain the following expression:

E[f(θj)] =

∫
δ(θj − θ)T (θ)dθ = T (θj) (10)

∴ E[f(θj)] ≈
N∑
i=1

δ(θj − θi)ω̂i = ω̂j (11)

Equations (10) and (11) imply that if we have
set of N samples for which the respective weight
of each sample is known, {θ1, ω̂1}, ..., {θN , ω̂N},
while a new set of samples, {θ̄1, ..., θ̄N} is be-
ing chosen for which P (θ̄ = θi) = ω̂i, then
{θ̄1, ..., θ̄N} will become the approximate sam-
ples obtained from T (θ).

To determine the condition under which Re-
sampling is to be executed, Kong et al. (1994) first

introduced the term ’effective sample size’, Neff ,
which is defined as follows:

Neff =
1∑
i(ω̂

i)2
(12)

This serves as an indicator such that if this value
of Neff falls below a certain threshold value, Nt,
Re-sampling will be carried out. In the paper by
Green and Maskell (2018), this value of Nt is set
at N2 .

The workings of a SMC algorithm can be sum-
marized as such:

• Step 1: In the initialization step, iteration k =
1, samples {θ1k, ..., θNk } are obtained from the
proposal distribution, p(θk) with initial weights
ω(θik) =

T∗(θik)

q(θik)
where i = 1, ..., N .

• Step 2: In the IS step, iteration k = 2, sample
{θ1k, ..., θNk } from the new proposal distribu-
tion p(θk|θk−1) based on the previous sample
sets and their respective weights. For the new
samples obtained, their respective importance
weights will be evaluated and normalized

• Step 3: Within the same iteration, ifNeff < N
2 ,

the Re-sampling step is executed after the IS
step. In general, for Re-sampling, the sam-
ples obtained from the previous iteration are
sampled from the sample set obtained from the
current iteration according to their respective
importance weights.

• Step 4: For the subsequent new iterations, k =
3, 4, ..., return to Step 2 and the process repeats
itself.

A simple application of the SMC sampling
method would be in solving an unknown param-
eter within a static linear system. An example
would be the simple harmonic oscillator which
would be analyzed once again to estimate the
unknown spring constant parameter.

4.1. SMC case example: Simple
harmonic oscillator

With reference to the set-up as seen in Figure 1,
the spring obeys the Hooke’s Law which can be
expressed in the form of a linear equation (Hooke
(1678)):

F = k · x (13)

In the above equation, F represents the magni-
tude of the restoring force on the spring due to the
weight of the mass, k represents the spring con-
stant , and x represents the length of displacement
by the spring due to the applied force.

For this case example, the measured quantity
Y consists of 20 independent and equally spaced
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artificial measurements between (and including)
1.0 N and 10.0 N . This measurement is also
accompanied by external “noise”, ε, which will
be assumed to follow a Normal distribution with
mean 0.0 N and a standard deviation, σε, of 0.8
N . As such, the tth measurement of Y for a given
tth measurement of F , where t = 1, 2, ..., 20, can
be expressed as follows:

Yt = k · xt + ε (14)

As such, the likelihood function, P (Y1:20|k),
whereby Y1:20 represents the sum of 20 indepen-
dent measurements of Y , can be expressed in the
form of a Normal distribution:

P (Y1:20|k) ∝ exp(− 1

2σ2
ε

20∑
t′=1

(Yt′ − k · xt′)2)

(15)
On the other hand, the prior function for k,

P (k), would be taken to follow a Normal distri-
bution with mean, µ0, of 3.0 Nm−1 and standard
deviation, σ0, of 1.0 Nm−1:

P (k) ∝ exp(− 1

2σ0
(k − µ0)2) (16)

Using Equation (2), the posterior, P (k|Y1:20),
can be expressed as follows:

P (k|Y1:20) ∝ exp(− 1

2σ2
(k − µ)2) (17)

whereby

σ2 =
1

σ−2ε
∑20
t′=1 x

2
t′ + σ−20

(18)

µ = σ2(
1

σ2
ε

20∑
t′=1

xt′ · yt′ +
µ0

σ2
0

) (19)

For this case example, the number of samples,
N , to be obtained would be set at 10000 with 500
iterations to be performed. The results of the SMC
sampling method is as shown in Figure 9.

Based on the graphical plot in Figure 9, the
determined value of mean k is at 0.982 Nm−1,
while the determined values of the upper and
lower bounds are 1.01 Nm−1 and 0.953 Nm−1

respectively.
The estimated value of k from the SMC sam-

pling method shows little deviation from the de-
termined values which indicates a high degree of
precision associated with the results. In addition,
the one sigma value, σ, is at 0.0291 Nm−1 which
indicates a percentage error of 2.96% associated

Fig. 9. Result of the estimated value of k obtained over 500
iterations for N = 10000.

with the estimated value of k. This implies a high
degree of precision of the estimated value of k
which is expected given that a large sample size
of N = 10000 is used.

4.2. Limitation(s) of SMC
A distinct advantage in the SMC sampling method
lies in its ability to perform parallel computations
as it is able to compute the state for all N samples
in the system within one iteration. In contrast,
the MCMC and TMCMC methods perform only
series computation as they only compute the state
of one sample per iteration. One key limitation
of the SMC sampling method, however, lies in its
assumption that measurements are taken indepen-
dently of one another in the sense that the “noise”
associated with one data is not carried forward
in the next successive data as stated by Green
and Maskell (2018). In reality, such assumption
may not be true and for such problems, the SMC
sampling method may not be able to efficiently
address it.

5. Conclusion
In this conference paper, a review and discussion
of MCMC, TMCMC and SMC sampling methods
have been provided in detail. This aims to provide
the readers, especially those who are new to these
concepts, a concise introduction so as to gain a
better understanding of each of these sampling
methods.

In addition, case examples in the form of toy-
problems have been analyzed which seeks to il-
lustrate their applications in quantifying the un-
certainty of the parameters of interest within the
context of simple engineering problems. Such
applications can be further extended to estimating
parameters within a distribution function that is
used to model the failure probability of an indus-
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trial component so as to perform reliability analy-
sis under imprecise or incomplete information.

Finally, the paper also evaluates and highlights
the key strengths and limitations of each of these
sampling methods so as to provide and better
understanding as to which of these methods would
be most effective under the different types of prob-
lems that needs to be addressed and the nature
of their set-up. The MCMC sampling method
would be useful in one-dimensional problems
whereby only one parameter needs to be esti-
mated while TMCMC would be useful in situa-
tions whereby the target distribution exhibits one
or multiple sharp peaks or in higher-dimension
problems when two or more parameters need to
be estimated. The SMC sampling method would
be preferred in cases when there is a large data
set which needs to be handled and when the target
distribution is updated with each new information.
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