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Abstract

This project works with the risk model developed by [6] and quests modelling, estimating and
pricing insurance for risks brought in by innovative technologies, or other emerging or latent risks.
The model considers two different risk streams that arise together, however not clearly separated
or observed. Specifically, we consider a risk surplus process where premia are adjusted according
to past claim frequencies, like in a Bonus-Malus (BM) system, when we consider a classical or
historical risk stream and an unforeseeable risk one. These are unknown risks which can be of high
uncertainty that, when pricing insurance (ratemaking and experience rating), suggest a sensitive
premium adjustment strategy. It is not clear for the actuary to observe which claim comes from
one or the other stream. When modelling such risks it is crucial to estimate the behaviour of such
claims, occurrence and their severity. Premium calculation must fairly reflect the nature of these
two kinds of risk streams.

We start proposing a model, separating claim counts and severities, then propose a premium
calculation method, and finally a parameter estimation procedure. In the modelling we assume a
Bayesian approach as used in credibility theory, a credibility approach for premium calculation and
the use of the Expectation-Maximization (EM) algorithm in the estimation procedure.
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1 Introduction

This project aims at developping and also applying statistical tools for parameter estimation into the
model introduced by [6], where the so-called unforeseeable risks were taken into account. These risks
refer to those that are not really predictable due to presence of very little knowledge about them.
With the ever smarter way of living, the evaluation of risks could probably be different from classical
criteria. For instance, the introduction of autonomous cars would possibly change the magnitude of
risks on roads, yet we do not know in which direction precisely, although they were designed to reduce
human error. To model such unforeseeable feature, a defective random variable was incorporated in the
risk model by [6]. There, unforeseeable risks were reflected in claim frequencies only. Letting premium
adjust according to claim numbers imitates the operation of a Bonus-malus system (briefly, BM system
or BMS). This project takes the above cited idea, develops their work on the claim frequencies topic,
incorporates the two risk stream proposal into the claim severity, add appropriate premium calculation
and estimation, and works an estimation procedure, for the distribution parameters of the claim counts
and severities, as well as for the premium estimation. For the premium calculation/estimation cred-
ibility theory is used, parameter estimation procedure uses the Expectation-Maximization algorithm
(briefly EM algorithm).

EM algortithm is developped in [3], a guided tour can be found in [2]. We will be using mixture
distributions, particular algorithm application for these can be found in [8]. For premium calculation
we will be using Bayesian credibility methods. Introductory notions on credibility can be found in [5],
Chapters 17-19, and more advanced in [1], completely devoted to credibility theory and applications.

The output of the project should demonstrate a more reasonable pricing model, especially applied
for BMS, taking into account those uncertainties (e.g. emerging risk estimations). By embedding the
premium adjustment rules in a classical collective insurance risk model, some new risk measurements
will be introduced, so that they can be used in risk management. The work provides a theoretically
structured method.

The insurance risk process we base our developments is that of defined by Equation (3) by [6],
retrieved from [4], where the Poisson parameter λ is a realization of a random variable Λ. From
there, the premium income along time uses a Bayesian approach and is estimated by the posterior
mean λ̂(t) = E[Λ|N(t)] (it is one of [4]’s proposed estimates). We mean, the risk process is driven by
equation

U(t) = u+ c

∫ t

0
λ̂(s)ds− S(t) , t ≥ 0 , (1)

where, S(t) =
∑N(t)

j=0 Yj is the aggregate claims up to time t, u = U(0) is the initial surplus, {Yj}∞j=1

is a sequence of independent and idenciatlly distributed (briefly, i.i.d.) random variables with common
distribution HY (.), with existing mean µ = E[Y1] and Y0 ≡ 0. The premium rates are dynamically
adjusted, the underlying counting process {N(t), t ≥ 0} is a mixed Poisson process with random itensity
Λ. The other premium comonent, c, denotes the time constant part of the premium income, and often
defining a loading as a proportion of the pure premium, here c = (1 + θ)E[Y1], where θ (> 0) is the
loading coefficient.

Another [4]’s neat idea that taken by [6] was to consider a positive probability P[Λ = 0] = p (> 0),
so that the counting process {N(t)} is a mixed Poisson process conditional on Λ > 0. The latter
authors generalised to consider that the process {N(t) = N (1)(t) + N (2)(t)} is a sum of two mixed
counting processes, where {N (1)(t)} represents the historical risk stream of claim counts and {N (2)(t)}
represents the corresponding unforeseeable risk stream. This is the process that we recapture for
further developments. Concerning the first process the randomized intensity parameter has a classical
behaviour, it is positive, or P{Λ(1) = 0} = 0, whereas in the second process and we set P{Λ(2) = 0} =
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p > 0. The first one is assigned to a historical risk behaviour, and the second to an unforeseeable risk
one. Putting this idea into (1), [6] set λ̂(t) = E[Λ(1) + Λ(2)|N(t)].

Modelling in this way is assuming that the second stream may be either not as risky as the classical
one, or much riskier. If we think of the autonomous cars, experiments to date have suggested that they
are potentially safer than human driving (Waymo Team, 2016). On the other hand, if we think of the
asbestos problem it may be the other way around. Not much interpretation is given to the situation
where p > 0. About the possible outbreak of unforeseeable clims, we quote [6] at the start of their
Section 2 where they say that

...once they broke out in a negative way, it would possibly be too late for an insurance
company to control the losses... the expectation of Λ conditioning on {Λ > 0} is very large
and practically it could be assumed that it could be much more than the average number of
claims in the “historical” stream.

Modelling two different streams of risks for the same portfolio can be done exclusively on the claim
count process like [4] and [6] did, or also in the claim severity if we consider dependence between
{N(t), t ≥ 0} and sequence {Yj}∞j=1. This latter means that the different streams may (also) bring
different severity behaviour. This is not dealt by the previous authors. We start dealing with the
model as the above authors did, we mean work first the claim frequency component separately. [6]
were more concerned in ruin probability calculation, embodying the effect of the unforesseable stream
in the claim counts only.

The manuscript is organised as follows. In the next section we work the claim frequency component
of the model, in Section 3 we complete the starting model with the introduction of claim severity, since
we admit that the severity may bring some information on the stream origin. In Section 4 we deal
with the premium calculation/estimation, where a Bayesian credibility approch is used. Section 5 is
devoted to parameter estimation where the EM algortithm is used, dealing separately the claim count
and severity estimation. We finish the section by adding some discussion on the estimation procedure
and results. Our manuscript is finished inserting some notes on how to do future estimation by setting
a global likelihood in order to estimate all parameters together, from both claim frequency and severity
distributions, regarding the application of estimation algorithms like the EM algorithm.

2 Claim frequency component

The total claim numbers over a time period (0, t] within the portfolio is given by

N(t) = N (1)(t) +N (2)(t) . (2)

Due to the randomness in their intensity parameters, we know that {N (1)(t)} and {N (2)(t)} are both
mixed counting processes. More specifically, we consider now that {N (1)(t)} is a mixed Poisson process,
whereas {N (2)(t)} is mixed Poisson conditional on {Λ(2) > 0}, since the intensity must be positive.
We consider that the event {Λ(2) = 0} implies that {N (2)(t) = 0}, with probability one, like behaving
as a limiting situation of a Poisson intensity where the probability

lim
λ↓0

P{N (2)(t) = 0|Λ = λ} = lim
λ↓0

e−λ t = 1 .

It was proved by [6] [see their Lemma 1] that {N(t)} is also a mixed Poisson process with intensity
Λ(1) + Λ(2) given that N (1)(t) and N (2)(t) are independent. Under this global process, {N(t) =
N (1)(t) + N (2)}, we have that when a claim arrives it comes either from process {N(t)(1)}, or from
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process {N(t)(2)}. We remark that in practice actuaries will mostly observe the realization of the
global claim process, which means they’ll have to guess which process the arriving claim belongs to.

Let’s define and denote Ξ as the split rate, in favour of process {N(t)(1)} in {N(t)}, between the
two previous processes. It is well known that for independent Poisson processes, in our case for given
and positive rates Λ(1) = λ(1) and Λ(2) = λ(2) > 0, we have that the split between processes “(1)” and
“(2)” in the combined process is going to be given by the probabilities, respectively as

ξ =
λ(1)

λ(1) + λ(2)
and (1− ξ) =

λ(2)

λ(1) + λ(2)
. (3)

Unconditionally, considering that ξ is particular outcome of the random variable Ξ, then we can write,
extending to the unconditional mixed process as defined in (2):

Ξ =
Λ(1)

Λ(1) + Λ(2)
. (4)

Note that
{Λ(2) = 0} ⇐⇒ {Ξ = 1} ⇒ P[Λ = 0] = P[Ξ = 1] = p . (5)

We will return to this issue later in the text. We denote the distribution function of Ξ as AΞ(.).
We will now set further assumptions. From now onwards, we assume assume that the Pois-

son intensities follow gamma distributions: Λ(1) ∼ Gamma(α1, β1) and, conditional on Λ(2) > 0,

Λ(2)|Λ(2) > 0 ∼ Gamma(α2, β2). For simplicity, in the sequel we denote Λ
(2)
+ = Λ(2)|Λ(2) > 0. Also,

without loss of generality, we will be working with the random variable N(1) = N , denoting N for
simplicity. Likewise with related quantities, such as N (1)(1) = N (1) and N (2)(1) = N (2).

Under a more restrict assumption for the gamma distributions above, we can arrive at the following
result:

Lemma 1 If β1 = β2 = β, then N(1) = N is a mixture of two Negative Binomial random variables,
such that

P(N = n) = p

(
n+ α1 − 1

n

)(
β

β + 1

)α1
(

1

β + 1

)n
+(1−p)

(
n+ α1 + α2 − 1

n

)(
β

β + 1

)α1+α2
(

1

β + 1

)n
.

Proof. Let N (1)(1) = N (1) and N (2)(1) = N (2), for simplicity. Taking the moment generating function
(briefly, mgf) of N , as function of ρ, yields

MN (ρ) = E
[
eρ (N(1)+N(2))

]
= MN(1)(ρ)MN(2)(ρ)

=

(
1− 1

1+β

1− eρ 1
1+β

)α1
[
p+ (1− p)

(
1− 1

1+β

1− eρ 1
1+β

)α2
]

= p

(
1− 1

1+β

1− eρ 1
1+β

)α1

+ (1− p)

(
1− 1

1+β

1− eρ 1
1+β

)α1+α2

.

We know that this corresponds to a weighted average of two Negative Binomial distributions, with
weights p and 1− p respectively.
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Remark 1 Note that N (2) follows a ‘Zero Modified’ Negative Binomial distribution, briefly, N (2) _
ZM Negative Binomial(α2, β). It belongs to the (a, b, 1) recursion class of distributions, see Sec-
tion 6.6 of [5]. Since

MN(2)(ρ) = E
[
eN

(2) |Λ(2) = 0
]
× P

[
Λ(2) = 0

]
+ E

[
eN

(2) |Λ(2) > 0
]
× P

[
Λ(2) > 0

]
= p+ (1− p)

(
1− 1

1+β

1− eρ 1
1+β

)α2

,

which is a weighted average of the mgf’s of a degenerate distribution at {0} and a Negative Binomial,
member of the (a, b, 0) class. �

Alternatively, instead of focusing on the claim arrival process {N(t)} which consists of combining
two counting processes, {N (1)(t)} and {N (2)(t)}, as explained above, we could model the underlying
claim counts via mixing random variables, mixing two Gamma random variables with an independent
Bernoulli random variable.

Lemma 2 Assume that the randomized Poisson parameter Λ follows a prior distribution as a mixture
of two Gamma random variables, such that

Λ = I Z1 + (1− I)Z2, (6)

where Z1 ∼ Gamma(α1, β) and Z2 ∼ Gamma(α1 + α2, β) and I is a Bernoulli(p) random variable
independent of Z1 and Z2. Then the marginal distribution of N(t) = N for a fixed t is a mixture of
two Negative Binomial random variables as shown in Lemma 1 above.

Proof. Recall that given Λ = λ, P{N = n|Λ = λ} = e−λλn/n!. Now we integrate over Λ whose
density, denoted as π(.), can be written as

π(λ) = p · λ
α1−1βα1e−βλ

Γ(α1)
+ (1− p) · λ

(α1+α2)−1βα1+α2e−βλ

Γ(α1 + α2)
. (7)

Hence,

P{N = n} =

∫
Λ

e−λλn

n!

(
p · λ

α1−1βα1e−βλ

Γ(α1)
+ (1− p) · λ

(α1+α2)−1βα1+α2e−βλ

Γ(α1 + α2)

)
dλ

= p ·
∫

Λ

e−λλn

n!

λα1−1βα1e−βλ

Γ(α1)
dλ+ (1− p) ·

∫
Λ

e−λλn

n!

λ(α1+α2)−1βα1+α2e−βλ

Γ(α1 + α2)
dλ

= p

(
n+ α1 − 1

n

)(
β

β + 1

)α1
(

1

β + 1

)n
+(1− p)

(
n+ α1 + α2 − 1

n

)(
β

β + 1

)α1+α2
(

1

β + 1

)n
.

This distribution coincides with the one shown in Lemma 1.
The above enhances the fact that the distribution for claim counts N(t) over a fixed period t is

equivalent to a mixing over a Poisson with Gamma mixtures. In this way, under a Bayesian set-
up, considering a prior distribution of Gamma mixtures, we will be able to compute the posterior
distribution. This is important for computing estimates aiming experience rating. We show this in
Section 4. In fact, the equivalence of the previous two constructions can be explained further. Consider
the following remark.
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Remark 2 Let Z1 = Λ(1), Z2 = Λ(1) + Λ
(2)
+ , where Λ

(2)
+ = Λ(2)|Λ(2) > 0. Also, define Λ(2) =

(1− I) Λ
(2)
+ + IΛ

(2)
0 = (1− I) Λ

(2)
+ , with Λ

(2)
0 = 0 and I ∼ Bernoulli(p). We have,

Λ = I Z1 + (1− I)Z2 = I Λ(1) + (1− I) (Λ(1) + Λ
(2)
+ )

= Λ(1) + (1− I) Λ
(2)
+ = Λ(1) + Λ(2) .

Since N |Λ ∼ Poisson (Λ(1) + Λ(2)), it is true that N = N (1) + N (2) where N (1)|Λ(1) ∼ Poisson(Λ(1))

and N (2)|Λ(2)
+ ∼ Poisson(Λ

(2)
+ ). �

In the model presented so far, we distinguish the unforeseeable stream of risks from the historical
stream by considering two different, and independent, claim counting processes where the randomized
intensities are of different nature. For now, these parameters only cause influence in the claim number
process, not the claim size. However, we should also consider the possibility that the amounts are
affected by the risk type. The introduction of a randomness itself in the intensities does not necessarily
bring a dependence between the number of claims and sizes. However, as we put together the two risk
streams in a global process, this is the one observed, and we consider that the claim size behaviour
may depend on the risk stream, we need to admit dependence. This sets us away from the classical
risk consideration that claim arrival process is independent of the claim amount one. We may assume
the twofold stage:

1. On a starting stage, we can consider that for a given Λ(i), i = 1, 2, the independence is only
(conditional) inside each (i). Or,

2. On a further stage, a model with extended dependence.

The first situation seems quite feasible for our model, if we consider no independence. Our next
developments will clear the situation. We remark that parameters cannot be observed, only claims
can. Further, we, as actuaries, only observe the realization of the total claim process {N(t) = N (1)(t)+
N (2)(t)}, from there we’ll have to guess/estimate which process each claim arrival belongs to. Then,
using data and the model as behaving like is defined in Lemma 1 we have four parameters to estimate,
p, α1, α2, and β.

As defined in (4), Ξ is viewed as the (random) split rate for process between processes {N (1)(t)}
and {N (2)(t)} in {N(t)}. Let’s consider the event {Λ(1) + Λ(2) = λ, Ξ = ξ, 0 < ξ < 1} as given, so that
{N(t)} conditionally is a Poisson process. Consider the following lemma:

Lemma 3 Under {Λ(1) + Λ(2) = λ,Ξ = ξ, 0 < ξ < 1}, the split rate, of process {N(t) = N (1)(t) +

N (2)(t)} in favour of {N (1)(t)}, is given by ξ = Λ(1)

Λ(1)+Λ(2) .

Proof. Let us assume there are n = n1 + n1 number of arrivals within a fixed time (0, t] where n1

came from the historical stream and n2 arrived from the unforeseeable stream. We could thus write,
conditioning on {Λ(1) + Λ(2) = λ,Ξ = ξ}

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ε
}

=

∞∑
n=0

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣N (1)(t) +N (2)(t) = n,Λ(1) + Λ(2) = λ,Ξ = ξ
}

×P
{
N (1)(t) +N (2)(t) = n

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ξ
}
.
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But P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣N (1)(t) +N (2)(t) = n,Λ(1) + Λ(2) = λ,Ξ = ξ
}

= 0 when n 6= n1+n2,
then equation above continues as

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ε
}

= P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣N (1)(t) +N (2)(t) = n1 + n2,Λ
(1) + Λ(2) = λ,Ξ = ξ

}
×P

{
N (1)(t) +N (2)(t) = n1 + n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ξ
}
.

The second probability on the right-hand side of the expression above does not depend on ξ, thus

P
{
N (1)(t) +N (2)(t) = n1 + n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ξ
}

=
(λt)n1+n2e−λt

(n1 + n2)!
.

Recall that under {Λ(1) +Λ(2) = λ,Ξ = ξ}, we have ξ denoting the split rate for the underlying Poisson
process with parameter λ. Precisely, ξ means the probability of drawing an event from the first stream.
Hence, given that n1 + n2 events occurred, each event has probability ξ of being a Stream 1 event and
probability 1 − ξ of being a Stream 2 event, then we have a binomial distributed event coming into
play. Hence, the first probability in the same (above) expression is given by

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣N (1)(t) +N (2)(t) = n1 + n2,Λ
(1) + Λ(2) = λ,Ξ = ξ

}
=

(
n1 + n2

n1

)
ξn1(1− ξ)n2 .

Hence,

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ξ
}

=

(
n1 + n2

n1

)
ξn1(1− ξ)n2

(λt)n1+n2e−λt

(n1 + n2)!

With simple calculation, noting that we can write λ = λ ξ + λ (1− ξ), we have

P
{
N (1)(t) = n1, N

(2)(t) = n2

∣∣∣Λ(1) + Λ(2) = λ,Ξ = ξ
}

=

(
e−λξt(λξt)n1

n1!

)(
e−λ(1−ξ)t(λ(1− ξ)t)n2

n2!

)
.

We have independence between two Poisson random variables with means λ(1)t = λξt and λ(2)t =
λ (1− ξ) t, and ξ is such that

ξ =
λ(1)

λ
=

λ(1)

λ(1) + λ(2)
.

Remark 3 Remark that Ξ = ξ is the probability that an event arriving from process {N(t) = N (1) +
N (2)} is generated by {N (1)}. If {Λ(1)+Λ(2) = λ,Ξ = ξ} is given then Λ(1) is also given since Λ(1) = λξ.
Then Λ(2) = λ− Λ(1) = λ(1− ξ) . If ξ = 1⇒ Λ(2) = 0⇔ Λ = Λ(1) = λ and N (2)(t) = 0 ∀ t ≥ 0 almost
surely. In addition, since the values of λ, ξ, λ(1) are arbitrary, It should be also true that

(Λ(1) + Λ(2))Ξ = Λ(1) ⇔ Ξ =
Λ(1)

Λ(1) + Λ(2)
.

The variable Ξ represents the random split rate of process {N(t)} in favour of process {N (1)(t)} pre-
viously defined in the beginning of this section. �

In the next section we are going to model the influence of each risk stream in each claim severity.
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3 Claim severity component

For now, we are going to admit that the distribution of the individual claim size depend on the stream
type, either historical or unforeseeable. We keep presuming that the actuary may not be able to disclose
which stream the claim comes from. At least, he cannot be certain.

Let F and G denote the distributions for claim severities in the historical and unforeseeable streams,
respectively. Consider that the individual claim size, taken at random, say Y , follows a distribution
function denoted as H(y).

Lemma 4 For a given claim Y , its distribution function, conditional on Ξ = ξ, can be represented by

P{Y ≤ y|Ξ = ξ} := Hξ(y) = ξF (y) + (1− ξ)G(y), (8)

where Ξ = Λ(1)

Λ(1)+Λ(2) ∈ (0, 1], and F,G correspond to the distributions for claim severities in the

historical and unforeseeable streams, respectively. The set {Ξ = 1} = {Λ(2) = 0} has a probability
measure p.

Proof. The proof is straightforward using the law of total probability.

P{Y ≤ y|ξ} = P{Y ≤ y|Y = Y (1), ξ}P{Y = Y (1)|ξ}+ P{Y ≤ y|Y = Y (2), ξ}P{Y = Y (2)|ξ}
= F (y)P{Y = Y (1)|ξ}+G(y)P{Y = Y (2)|ξ}
= F (y) · ξ +G(y) · (1− ξ).

where Y (1) and Y (2) denote random variables of the size of claims stemming from Stream 1 (the
historical stream) and Stream 2 (the unforeseeable stream) respectively. Note that when Ξ = 1, i.e.,
Λ(2) = 0, N(t) = N (1)(t) and the probability of having a claim from Stream 1, i.e., P{Y = Y (1)|ξ =
1} = 1, where as P{Y = Y (2)|Ξ = 1} = 0. This special situation does not affect Equality (8).

It has been illustrated in [6], see their Lemmas 2 and 3, that the independence between Λ(1)

Λ(1)+Λ
(2)
+

and Λ(1) +Λ
(2)
+ , conditional on Ξ 6= 1, result in Ξ|Ξ 6= 1 being distributed as a Beta(α1, α2) law. Then,

it is easy to derive the unconditional distribution of Y under these assumptions.

Lemma 5 Assume that Λ(1)

Λ(1)+Λ
(2)
+

and Λ(1) +Λ
(2)
+ are independent, and that Λ(1) ∼ Gamma(α1, β) and

Λ
(2)
+ ∼ Gamma(α2, β). A given claim size is distributed according to a mixture law of F (·) and G(·),

i.e., with density,
hY (y) = ν · f(y) + (1− ν) · g(y), (9)

where ν = p+ (1− p)B(α1+1,α2)
B(α1,α2) and B(·, ·) being the Beta function.

Proof. Under the assumptions, we know that Ξ|Ξ 6= 1 _ Beta(α1, α2) according to [7]’s proportion-
sum independence theorem. The subsequent proof is then straightforward. AΞ(ξ) denotes the distri-
bution function of Ξ (a mixture), we have

P{Y ≤ y} =

∫
(0,1]

Hξ(y)dA(ξ) = pF (y) + (1− p)
∫

(0,1)
Hξ(y) · ξ

α1−1(1− ξ)α2−1

B(α1, α2)
dξ

= pF (y) + (1− p)
[
B(α1 + 1, α2)

B(α1, α2)
· F (y) +

B(α1, α2 + 1)

B(α1, α2)
·G(y)

]
=

[
p+ (1− p)B(α1 + 1, α2)

B(α1, α2)

]
· F (y) + (1− p)B(α1, α2 + 1)

B(α1, α2)
·G(y)

= ν · F (y) + (1− ν) ·G(y) .
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Remark 4 If we look carefully at the end of the proof of [6]’ Lemma 2 (see the Appendix, it is not
clear from the Lemma) we can conclude that, under the conditions of Lemma 5, Y is independent from
N . This will allow us to consider the parameter estimation using separately the claim frequency and
the severity component.

In the previous section we specified a distribution for the random variable N(t), as well as its
parametrization. The unconditional distribution for N(t) was found starting from the Poisson distri-
bution, this is commonly accepted as a starting assumption for claim count data in actuarial science,
particularly in motor insurance. We ended up developing a particular mixture of two Negative Bino-
mial distributions for N(t), having started from a different Poisson distribution for each stream of risks.
We’ll see in Section 5 that the assumption is reasonable and may fit actual data. For the claim severity
we will consider a similar reasoning, basing in a particular case from the Gamma distribution family.
The Gamma distribution family is also a common fit for insurance severity data. First, we assume a
particular form for the distribution of the individual claim severity as a mixture of two distributions,
denoted as F (·) and G(·). They represent the behaviours of the claim severities from the two streams,
separately the historical and unforeseeable streams, respectively F (·) and G(·). Then, if we specify
F (·) and G(·), we can move for the parameter estimation.

Under many different possibilities we took a simple case but an illustrative one. Consider that
both the densities of the two streams come from a common ground, and that in general the claim sizes
are distributed as the exponential distribution. Y ∼ Exp(Θ), where Θ−1 is the mean, and there is a
dependence structure embedded in a random parameter Θ, such that:

1. Θ = µ with probability one if we consider the historical stream; and,

2. Θ ∼ Gamma(δ, σ) if we consider the unforeseeable one.

This implies that claims in the historical stream conform to the Exponential distribution with mean
µ−1, whereas those of the unforeseeable stream conform to a Pareto distribution, Pareto(δ, σ). Their
respective unconditional densities are

f(y) = µe−µy and g(y) =
δσδ

(σ + y)δ+1
, µ, δ, σ > 0 . (10)

Our model will be complete, and ready for parameter estimation/distribution fit, once the premium
calculation is defined. It is of course essential for the risk modelling as well as for risk pricing. So,
in the next section we’re going to address the premium calculation. Previous developments lead us
naturally to deal premium calculation under a Bayesian framework. As explained in the above we will
work separately the claim counts and severity premium calculation.

4 Bayesian premium

A Bayesian approach and credibility in premium calculation is naturally opened. We’ll work with risk
random variables that are observable and these variables follow distributions that are mixtures of other
distributions. In turn, these latter distributions are assumed to be members of the linear exponential
family. Associated to these we consider conjugate priors as distributions for the parameters in a
Bayesian setting. Under this assumption credibility is shown to be exact, i.e., the credibility premium

9



coincides with the Bayesian premium. In another words, the Bayesian premium is a linear function
with the respect to the observable risk data, making premium calculation straightforward.

Retrieving some essentials in the theory of credibility premium, particularly credibility exact, con-
sider a generic a random variable, say X, following a distribution belonging to the linear exponential
family, depending of some parameter, say θ. Its probability or density function is of the form [see [5],
Chapters 5 and 15]:

fX|Θ(x|θ) =
p(x)er(θ)x

q(θ)
. (11)

If parameter θ is considered to be an outcome of a random variable Θ, whose density function is of the
following form, denoted as π(.):

π(θ) =
[q(θ)]−keµkr(θ)r′(θ)

c(µ, k)
, (12)

then we are in the presence of a conjugate prior. In the above formulae, (11) and (12), p(.) is some
function not depending of parameter θ, r(.), q(.) are functions of the parameter, and c(.) is a normalizing
function of given parameters.

In this manuscript we are working with finite mixtures of prior distributions of form (12) and
distributions of the linear exponential family (11). Recall that in the case of the claim counts we
considered a Poisson random variable mixed with the mixture given by (7), and that in the case of
the claim severity we considered an exponential mixed with a prior that can be given as a mixture of
a degenerate distribution and a Gamma (see end of Section 3).

Consider from now on that the prior distribution is of the following form:

π(θ) =

η∑
i=1

ωi
[q(θ)]−kieµikir(θ)r′(θ)

ci(µi, ki)
, (13)

where ωi, i = 1, · · · , η, are given weights.

Theorem 1 Suppose that given Θ = θ, the observable random variables X1, . . . , Xn =: X are i.i.d. with
common probability function given by (11), and that the prior distribution of Θ, π(θ), is of the form
given by (13). Then, the posterior distribution, denoted as π(θ|x) with x = {x1, . . . , xn}, is of a mixture
form as (13):

π(θ|x) =
∑
i

ω∗i
[q(θ)]−k

∗
i eµ

∗
i k
∗
i r(θ)r′(θ)

ci(µ∗i , k
∗
i )

, (14)

where

µ∗i =
µiki +

∑
j xj

ki + n
, (15)

k∗i = ki + n, (16)

w∗i =
ωi

ci(µ
∗
i ,k
∗
i )

ci(µi,ki)∑
i ωi

ci(µ∗i ,k
∗
i )

ci(µi,ki)

. (17)

10



Proof. With observations X = x, the posterior distribution is

π(θ|x) =

∏
j p(xj)e

r(θ)
∑
j xj

[q(θ)]n ·
∑m

i=1 ωi
[q(θ)]−kieµikir(θ)r′(θ)

ci(µi,ki)∫
Θ

(∏
j p(xj)e

r(θ)
∑
j xj

[q(θ)]n
·
m∑
i=1

ωi
[q(θ)]−kieµikir(θ)r′(θ)

ci(µi, ki)

)
dθ

=

∑
i ωi

[q(θ)]−ki−ne(µiki+
∑
j xj)r(θ)r′(θ)

ci(µi,ki)∑
i ωi

∫
Θ

[q(θ)]−ki−ne(µiki+
∑
j xj)r(θ)r′(θ)

ci(µi, ki)
dθ

=

∑
i ωi

[q(θ)]−ki−ne(µiki+
∑
j xj)r(θ)r′(θ)

ci(µi,ki)∑
i ωi

ci(µ∗i ,k
∗
i )

ci(µi,ki)

∫
Θ

[q(θ)]−k
∗
i ek

∗
i µ
∗
i r(θ)r′(θ)

c∗i (µ
∗
i , k
∗
i )

dθ

=
∑
i

ω∗i
[q(θ)]−k

∗
i eµ

∗
i k
∗
i r(θ)r′(θ)

ci(µ∗i , k
∗
i )

.

From the posterior distribution we can calculate the Bayesian premium, as an estimate for the risk
premium [see [5], Chapters 17 and 18] defined as E[X|θ] = µ(θ). The Bayesian premium is given by
estimate for next rating period, n+ 1, E[Xn+1|X = x] (with n, X and x as defined in Theorem 1) and
can be calculated via the posterior distribution π(θ|x), as

E[Xn+1|x] = E[µ(Θ)|x] .

If this expectation is a linear function on the observations then we have exact credibility. This is the
case when we work with conjugate distributions.

Moving to our particular concern, the prior distributions under study in our work, both for the
claim counts and severity are of the above (mixture) form. As said in Remark 4, we can calculate the
premium components, for the claim counts and severity, separately. We are going to consider first the
claim frequency and then the severity component.

Before going to that we must write some considerations on premium calculation and estimation.
Premia are set to be calculated for rating periods, most commonly the year period. For estimating,
risk observations must be organized by periods, suppose that we observed the risk for m years, or
rating periods. Then, our observation vector for the claim counts is n = {n1, . . . , nm}. For each year,
say year j, we’ll have nj individual claims observed, say vector yj = {yj1, . . . , yjnj}. This means that
observations in year j are set in the two fold vector (nj ,yj). Of course that if we needed to calculate
just the annual premium we would just need annual amounts on aggregate, since a premium is set for
an aggregate quantity. However, we may consider that claim severities bring some information on an
unforseeable stream. Then, it would be interesting to consider what is the premium contribution for
that. Besides, we may also consider that information in both claim counts and severity is the same,
then there is no need to double that in premium calculation.

Besides calculating Bayesian premia, we will still need to estimate parameters to feed in the Bayesian
estimates (Empirical Bayes). This is done in Section 5.

4.1 Frequency component

If we consider a prior to be a Gamma mixture of the form given by (7), we reach to a posterior with
a similar mixture, with updated paramenters. This is given in Lemma 6 that follows.
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Lemma 6 Let the prior distribution be (7). With a Poisson model distribution, the posterior distri-
bution is still a mixture of Gamma distributions, with updated parameters:

π(λ|n) = w · (β +m)
∑
j nj+α1λ

∑
j nj+α1−1e−(m+β)λ

Γ(
∑

j nj + α1)

+(1− w) · (β +m)
∑
j nj+α1+α2λ

∑
j nj+α1+α2−1e−(m+β)λ

Γ(
∑

j nj + α1 + α2)
, (18)

where

w =
1

1 +G(p, α1, α2, β,n)
(19)

G(p, α1, α2, β,n) =
1− p
p
· B(α1, α2)

B(
∑

j nj + α1, α2)
·
(

β

β +m

)α2

,

n = {n1, . . . , nm} is the vector of claim count observations and m is the sample size (
∑

j · =
∑m

j=1 ·).

Proof. Under the observations n = {n1, . . . , nm},

π(λ|n) =

∏
j
e−λλnj
nj !

{
p · λ

α1−1βα1e−βλ

Γ(α1) + (1− p) · λ
(α1+α2)−1βα1+α2e−βλ

Γ(α1+α2)

}
∫

Λ

∏
j
e−λλnj
nj !

{
p · λ

α1−1βα1e−βλ

Γ(α1) + (1− p) · λ
(α1+α2)−1βα1+α2e−βλ

Γ(α1+α2)

}
dλ

=
p · λ

∑
j nj+α1−1

βα1e−(m+β)λ

Γ(α1) + (1− p) · λ
∑
j nj+(α1+α2)−1

βα1+α2e−(m+β)λ

Γ(α1+α2)

p · Γ(
∑
j nj+α1)

Γ(α1)

(
β

β+m

)α1
(

1
β+m

)∑
j nj

+ (1− p) · Γ(
∑
j nj+α1+α2)

Γ(α1+α2)

(
β

β+m

)α1+α2
(

1
β+m

)∑
j nj

=
1

1 +G(p, α1, α2, β,n)
· (β +m)

∑
j nj+α1λ

∑
j nj+α1−1e−(m+β)λ

Γ(
∑

j nj + α1)

+
G(p, α1, α2, β,n)

1 +G(p, α1, α2, β,n)
· (β +m)

∑
j nj+α1+α2λ

∑
j nj+α1+α2−1e−(m+β)λ

Γ(
∑

j nj + α1 + α2)
.

The result is as described.
For a fixed individual claim size, The pure premium estimator will be considered as the posterior

mean of the claim frequency component, i.e.,

E[Nm+1|n] = E[Λ|n] = w ·
∑

j nj + α1

β +m
+ (1− w) ·

∑
j nj + α1 + α2

m+ β
, (20)

where z is given by (19).
We note that the Bayesian premium does not have the credibility form as it may look at first

[see [5], Chapters 17 and 18]. Our Bayesian premium estimator is not linear on the observations,
the G(·) function depend on vector n, through a Beta function, and it is not a linear function on
the observations. Furthermore, due to Stirling’s formula we have that the quocient of the Gamma
functions Γ(n+ a)/Γ(n+ b) ∼ na−b as n→∞, allowing us to write that the function

G(p, α1, α2, β,n) ∼ 1− p
p

Γ(α1)

Γ(α1 + α2)

(
β
∑

j nj

β +m

)α1

as
∑
j

nj →∞ .
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In fact, the Bayesian premium is of credibility form when we work with conjugate priors. What
we have here is a mix of conjugate priors. We have, though, a mixture of two credibility premia. For
instance, we have that the formula∑

j nj + α1

β +m
=

m

β +m
·
(∑

j nj

m

)
+

β

β +m
·
(
α1

β

)
(21)

can be viewed as the credibility premium as if there was only the historical stream claim frequency.
Similarly, (

∑
j nj + α1 + α2)/ (m+ β) gives a corresponding formula when considering the existence

of an unforeseeable stream. Then, Formula (20) is a weighted average of these two premia, where the
weights depend on the observations.

In order to calculate the Bayesian premium, we still need the claim severity component. A similar
methodology can be implemented for the claim severity component.

4.2 Severity component

For the severity component, following what we wrote on the mean of the exponetial distribution at the
end of Section 3, we can set the prior as

π(θ) = ν∆θ({µ}) + (1− ν)
θδ−1σδe−σθ

Γ(δ)
, (22)

where ∆θ({µ}) = 1{µ}(θ) is the Dirac measure, and ν is as given in (9). The posterior is still a mixture,
as follows. As said, given Θ = θ, the conditional distribution of a single severity is exponential with
mean 1/θ.

We are calculating a premium estimate for the severity component only, based on the observed
single quantities. Let’s consider that the sample is generically of size m∗ and the observation vector
is y = {y1, . . . , ym∗}. If sample size of claim counts N = n is m then m∗ =

∑m
j=1 nj , nj ≥ 1. The

posterior distribution is set in the following Lemma 7 and the premium follows after in Expression (26).

Lemma 7 Let the prior distribution be (22) and the conditional distribution of a single severity, given
Θ = θ, be exponential with mean 1/θ. The posterior distribution is still a mixture distribution in terms
of the prior form with updated parameters, such that

π(θ|y) = ω ·∆θ({µ}) + (1− ω) ·
(σ +

∑
i yi)

m∗+δ θm
∗+δ−1 e−(σ+

∑
i yi)θ

Γ(m∗ + δ)
, (23)

where

ω =
1

1 + ϕ(ν, µ, δ, σ,y)
(24)

ϕ(ν, µ, δ, σ,y) =
1− ν
ν
· Γ(m∗ + δ)σδ

Γ(δ)(σ +
∑

i yi)
m∗+δ

· µ−m∗eµ
∑
i yi ,

with ν as given in (9), y = {y1, . . . , ym∗} and
∑

i · =
∑m∗

i=1 ·.
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Proof. Under the observations y = {y1, . . . , ym∗}, and let ΠΘ(·) be the distribution function of Θ

π(θ|n) =

(∏m∗

i=1 µe
−µyi

)
{ν∆θ({µ})}+

(∏m∗

i=1 θe
−θyi

){
(1− ν) θ

δ−1σδe−σθ

Γ(δ)

}
∫

Θ

(∏m∗

i=1 θe
−θyi

)
dΠΘ(θ)

=
ν
(
µm
∗
e−µ

∑
i yi
)

∆θ({µ}) + (1− ν) θ
m∗+δ−1σδe−(σ+

∑
i yi)θ

Γ(m∗+δ)

ν
(
µm∗e−µ

∑
i yi
)

+ (1− ν) Γ(m∗+δ)σm∗+δ

Γ(δ)(σ+
∑
i yi)

m∗+δ

=
1

1 + ϕ(ν, µ, δ, σ,y)
∆θ({µ}) +

ϕ(ν, µ, δ, σ,y)

1 + ϕ(ν, µ, δ, σ,y)

(σ +
∑

i yi)
m∗+δ θm

∗+δ−1 e−(σ+
∑
i yi)θ

Γ(m∗ + δ)
.

(25)

The result is as described.
Unlike (20), the Bayesian premium for the severity component is not given directly by the posterior

mean. That is given by the posterior expectation E[µ(Θ)|x], and is the weighted average between the
mean of the exponential (1/µ) and the mean of the (posterior) Gamma(m∗ + δ, σ +

∑
i yi):

E[Yn+1|y] = E[µ(Θ)|x] = ω
1

µ
+ (1− ω)

m∗ + δ∑m∗

i=1 yi + σ
, (26)

with ω calculated through (24).
As a remark, we can see that as m∗ → 0,

∑
i yi → 0, and

ϕ(ν, µ, δ, σ,y) ∼ 1− ν
ν

.

Hence, the Bayesian premium, estimate for the next rating period m+ 1 and denoted as Pm+1 can
be given by multiplying (20) with (26), feeding (19) and (24),

E[Pm+1|n,y] =

(
w ·
∑m

j=1 nj + α1

β +m
+ (1− w) ·

∑m
j=1 nj + α1 + α2

m+ β

)

×

(
ω · 1

µ
+ (1− ω) · m∗ + δ∑m∗

j=1 yi + σ

)
. (27)

In this formula we have a set of prior parameters that are most often unkown, and they need to be
estimated from observed data, leading to the Empirical Bayesian Premium. This is not an easy task,
commonly when we have to deal with mixtures of distributions, we work with an unusual quantity of
estimating parameters.

In the coming subsection we present a numerical example to address the asymptotics of functions
G and ϕ, from (19) and (24), in the derived formulae, and to understand the non-linearity of these
functions with the observed claims (counts and costs).

4.3 Numerical example

For illustration, we work with a numerical example setting a scenario where the claim counts follow a
(0, 2, 1) pattern in every three consecutive years over a 12-year period. That is to say, we investigate
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Period
∑
nj

∑m∗

i=1 yi Premium

0 0 0 0.8840

1 0 0 0.6049

2 2 2.52 0.8135

3 3 3.98 0.8445

4 3 3.98 0.7473

5 5 6.60 0.8361

6 6 8.07 0.8047

7 6 8.07 0.7360

8 8 10.59 0.7968

9 9 11.82 0.7965

10 9 11.82 0.7423

11 11 14.50 0.7852

12 12 15.83 0.7813

Table 1: Annual Bayesian premia with (0, 2, 1) pattern

one policyholder’s claim histories and his/her claim counts for each consecutive three years are 0, 2, 1,
respectively.

Here, each individual claim size is simulated to be the prior mean

E[Y ] = ν
1

µ
+ (1− ν)

δ

σ
,

plus a Normal distributed random error with mean 0 and standard deviation 0.1. Further, we assume
that α1 = 3, α2 = 1, β = 0.5, p = 0.6, µ = 1, δ = 2, σ = 0.5. As a consequence, applying Formula (27),
we compute annual Bayesian premia, figures and graph are shown in Table 1 and Figure 1, respectively.

The pattern of the premia reflects the periodical pattern we assigned for the claim counts over years.
Note that the no claim situation in a particular year leads to a significant decrease in the premium for
the upcoming year, yet the amount of reduction diminishes over time. In addition, the rate of increase
in the annual premium is generally higher with two claims when compared to that with one claim only,
as expected. Looking at the graph on the right hand side, in the long run, the premium converges to
a fixed value with the growth of cumulative claim counts and costs.

The premium function depends on two quantities which are functions of past claim records. They
are function G(·) and ϕ(·) from (19) and (24), respectively. Now, we turn to look at some numerical
results for them and the corresponding weight functions they generate, respectively. We first show
how G(·) varies according to years elapsed. It can be seen that the values of G(·) also behaves in a
periodical manner due to the scenario setting, and eventually the speed of growth slows down. We
refer to Figure 2 and on the left hand side graph. Graph on the right hand side is the weight function
governed by G(·). That shows the weights in the mixture posterior distribution for the claim frequency
component. A large G(·) value implies a smaller weight assigned for the historical risk stream. Both
graphs demonstrate that G(·) as well as the historical weight will converge to a fixed value ultimately
with extensive fluctuations in earlier years. One should be aware that over time cumulative claim
counts and costs are non-decreasing. The graphs also verify the asymptotics of G(·) and the weight
function when accumulated claim counts m∗ =

∑
j nj →∞, as mentioned earlier.

Next we address the ϕ and its associated weight function. Similarly, we can justify the asymptotic
result of ϕ(·) when

∑
i yi → 0 is given by a fixed value dependent on ν. Additionally, ϕ(·) has a
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Figure 1: Premium evolution with (0, 2, 1) pattern
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Figure 2: Asymptotic behaviour of function G and the posterior weight generated by G

16



0

50

100

150

0 100 200 300

Year

ph
i

Asymptotic behaviour of phi

0.00

0.25

0.50

0.75

1.00

0 100 200 300

Year

w
ei

gh
t

Asymptotic weights − claim severity

Figure 3: Asymptotic behaviour of function ϕ and the posterior weight generated by ϕ

different behaviour compared to G(·) overtime. See Figure 3. Firstly, G(·) and ϕ(·) differ in convexity,
which leads to opposite asymptomatic directions. Secondly, when ϕ(·) gets larger, the variations tend
to be slightly larger as well. Graph on the right shows the weight function for posterior distribution
governed by ϕ(·). When the weight is larger, claim sizes are dominated by the exponential part in the
mixture. And a smaller weight implies dominance by the gamma part. We could see that the weight
starts at values closer to 1 and gradually lean towards values closer to 0. That means as time goes by,
more weights are being assigned to the unforseeable risk stream when calculating premiums.

5 Parameter estimation and EM algorithm

We have seven prior parameters to estimate, the direct use of the Maximum Likelihood Estimation
(briefly MLE) method is not workable. Looking a the literature we found that the use the Expectation-
Maximization (EM) algorithm suited our purpose, it is said to find also, say, best fit estimates. It is
an iterative way to approximate Maximum Likelyhood Estimates (MLE), it uses a multi-step process.
It is said to be a method to find MLE for model parameters in the presence of incomplete data [see
[3]], has missing data points, or when existing unobserved (hidden) latent variables. See also [2].

It works by choosing random values, guesses, for the missing data points, then uses those guesses
to estimate a second set of data. The new values are used to create a better guess for the first set, and
the process continues until the algorithm converges to a fixed point.

In this section we explain briefly how we employed the EM algorithm to estimate the prior param-
eters of our model based on a data set from a Portuguese insurer. Unfortunately we could not find
a data set having both the claim counts and the corresponding severities. Often data is recorded on
aggregate. The implementation of the algorithm depend on the distribution choice. We assumed the
use of a simple distribution as a choice for the severity, other realistic choices may bring other problems
to the estimation procedure, like numerical ones. However, some other choices are doable likewise.

5.1 Data description

We were provided with quarterly claim count data from a motor insurance portfolio. Namely, it
records the total number of claims arising from the portfolio every quarter and there were a total of
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approximately 180 quarters recorded. Therefore, we could treat each entry as an observation for N(t)
for a fixed t which stands for a quarter here. We start to write N for short in the sequel since N(t) is
a random variable for fixed t. We took care of the Third Party Liability claims only as those are the
obligatory components for a car insurance policy. It was assumed that the portfolio is closed over the
underlying period and that claim counts for each quarter are independent observations for N .

Table 2 shows a brief summary of the data under consideration. The last two columns show
the standard deviation and the coefficient of variation for this dataset. Its distribution can be also
visualised in the histogram shown by Figure 4. Clearly, there is a separation around 6000, which serves
as a clue for the adoption of a mixture model as we theoretically derived above. We will explain next
in more details about the estimation procedures.

5.2 EM algorithm

5.2.1 Claim frequency component

Recall that we work with a mixture model and that we only observe a global Ni ∈ N, we mean, we
do not know which negative binomial distribution it comes from. Here, we introduce a latent variable,
denoted as Z, representing the missing information of which distribution it takes for each observation.
Since we only have two mixed distributions, Z _ Bernoulli(p) is a Bernoulli random variable with
P{Z = 1} = q = 1 − P{Z = 0}. Now, the complete information is given by vector {N,Z}. We can

Min. 1st Qu. Median Mean 3rd Qu. Max. S.D. C.V.
3685 4879 5373 5552 6432 7316 902.844 0.1626

Table 2: Summary of statistics
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write the complete likelihood function as follows.

L(θ|N,Z) =
m∏
i=1

[
p

(
ni + α1 − 1

ni

)(
β

β + 1

)α1
(

1

β + 1

)ni]zi

×

[
(1− p)

(
ni + α1 + α2 − 1

ni

)(
β

β + 1

)α1+α2
(

1

β + 1

)ni]1−zi

,

and according to the law of total probability we have,

P{N} = P{N |Z = 1}P{Z = 1}+ P{N |Z = 0}P{Z = 0}.

Here, θ = {α1, α2, β, p} are the parameters we are interested in estimating for the claim count distri-
bution. Correspondingly, the log-likelihood function is given by, from above,

L(θ|N,Z) =
∑
i

zi log

[
p

(
ni + α1 − 1

ni

)(
β

β + 1

)α1
(

1

β + 1

)ni]

+
∑
i

(1− zi) log

[
(1− p)

(
ni + α1 + α2 − 1

ni

)(
β

β + 1

)α1+α2
(

1

β + 1

)ni]
. (28)

We summarize how the algorithm works. It is an iterative process where each iteration consists of
two steps, the E-step and the M-step, standing for Expectation and Maximisation, respectively.

1. We begin with an initially determined parameter values θ(0) = {α(0)
1 , α

(0)
2 , β(0), p(0)}.

2. E-Step

For the (l + 1)-th iteration, l = 0, 1, . . . , we first seek for the expected value of Zi conditional
on the observations together with the current parameter estimates θ(l), i.e., estimates from the
previous l-th iteration. This is denoted as τi,

τi = E[Zi|N, θ(l)] = 1× P{Zi = 1|Ni, θ
(l)}+ 0× P{Zi = 0|Ni, θ

(l)} =
P{Zi = 1, Ni = ni|θ(l)}

P{Ni|θ(l)}

=
p(l)
(
ni+α

(l)
1 −1
ni

) ( β(l)

β(l)+1

)α(l)
1
(

1
β(l)+1

)ni
p(l)
(
ni+α

(l)
1 −1
ni

) ( β(l)

β(l)+1

)α(l)
1
(

1
β(l)+1

)ni
+ (1− p(l))

(
ni+α

(l)
1 +α

(l)
2 −1

ni

) ( β(l)

β(l)+1

)α(l)
1 +α

(l)
2
(

1
β(l)+1

)ni
Subsequently, based on Expression (28), we compute the expectation the log-likelihood function

with respect to the conditional distribution of Z, given N under the current estimates θ(l),
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denoted as Q(θ|θ(l)). Considering we have we have m independent observations, we have

Q(θ|θ(l)) = EZi|Ni,θ(l) [L(θ|Ni, Zi)] (29)

=

m∑
i=1

τi

[
log p(l) + log

(
ni + α

(l)
1 − 1

ni

)
+ α

(l)
1 log

β(l)

β(l) + 1
+ ni log

1

β(l) + 1

]

+

m∑
i=1

(1− τi)

[
log(1− p(l)) + log

(
ni + α

(l)
1 + α

(l)
2 − 1

ni

)
+ (α

(l)
1 + α

(l)
2 ) log

β(l)

β(l) + 1
+ ni log

1

β(l) + 1

]

= log p(l)
∑
i

τi +
∑
i

τi log

(
ni + α

(l)
1 − 1

ni

)
+ α

(l)
1 m log

β(l)

β(l) + 1
+ log

1

β(l) + 1

∑
i

ni

+ log(1− p(l))
∑
i

(1− τi) +
∑
i

(1− τi) log

(
ni + α

(l)
1 + α

(l)
2 − 1

ni

)
+ α

(l)
2 log

β(l)

β(l) + 1

∑
i

(1− τi).

3. M-Step
The maximisation step is set to find the parameter values that maximises function (29) and they become
the estimates to be used in the next iteration, i.e.,

θ(l+1) = argmax
θ

Q(θ|θ(l)) (30)

For this, we take the gradient of Q(θ|θ(l)), equate to zero and solve for {α1, α2, β, p} simultaneously.

∂Q

∂α1
=

∑
i

τi[z(ni + α1)−z(α1)] +
∑
i

(1− τi)[z(ni + α1 + α2)−z(α1 + α2)] +m log
β

1 + β
= 0;

∂Q

∂α2
=

∑
i

(1− τi)
[
z(ni + α1 + α2)−z(α1 + α2)] + log

β

1 + β

]
= 0;

∂Q

∂β
=

α1m+ α2

∑
i(1− τi)− β

∑
i ni

β(1 + β)
= 0;

∂Q

∂p
=

∑
i τi
p
−
∑
i(1− τi)
1− p

= 0, (31)

where z(·) is the digamma function denoting the logarithmic derivative of a gamma function, i.e.,

z(x) =
d

dx
log(Γ(x)) =

Γ′(x)

Γ(x)
.

The estimates for the subsequent iteration (l+1)-th will be the solutions of the above equations. Equation
(31) does not depend on others than parameter p, it can be solved directly with explicit representation

p(l+1) =

∑
i τi
m

.

For the other three parameters, we can only solve numerically. The nleqslv package in R was employed
here, it solves systems of non-linear equations. As a consequence, we can obtain estimated parameters at

this iteration θ(l+1) = {α(l+1)
1 , α

(l+1)
2 , β(l+1), p(l+1)}.

4. Plug θ(l+1) into the (l + 2)-th iteration and repeat the above steps until convergence.

Initiating values using the method of moments yields α
(0)
1 = 96.14042; α

(0)
2 = 31.54888; β(0) =

0.01927362; p(0) = 0.6555556. Then we implemented EM algorithm on the chosen dataset mentioned
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Figure 5: Histogram Actual vs. Estimated
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Figure 6: Histogram Actual vs. Estimated using a different set of init. vals

earlier. At the tolerance level of 0.001, we reached convergence with 75 iterations and the resulting
estimates for α1, α2, β, p are

α1 = 97.55820446; α2 = 30.14706672; β = 0.01978072; p = 0.5929959.

Based on these parameters, we randomly generated a sequence of numbers and compared them with the
observed data. We put together both histograms, in different colors, in Figure 5. Visually it appears
to be a good fit. Note that, however, this result stemmed from initial values derived from moments.
In addition, we found that estimates vary much with different chosen initial values. For instance, if we

begin with α
(0)
1 = 150;α

(0)
2 = 20;β(0) = 0.02. Convergence happened at the 308th iteration at the same

toleration level above. Nevertheless, corresponding estimates lie closer to the initial values.

α1 = 141.98069243;α2 = 28.02122426;β = 0.02773337, p = 0.5723845.

As can be seen in Figure 6, we still have a quite good fit visually. But we could already tell that it
possibly does not provide a fitting as good as, if not worse than the previous one.
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Reference Distribution Kolmogorov-Smirnov test Chi-square test

NB1(97.55820446, 0.01978072)
and NB2(127.70527118, 0.01978072)

0.3983 0.2769

NB1(141.98069243, 0.02773337)
and NB2(170.00191669, 0.02773337)

0.006767 0.0004998

Table 3: Summary of goodness-of-fit tests

On the other hand, the Kolmogorov-Smirnov and Chi-square test results are summarised in Table 3.
In the former case, both p-values are greater than 25%. That is to say, we cannot reject the null
hypothesis that the observed data agree with the proposed model at 25% significance level. On the
contrary, neither tests present p-values greater than 0.01 for the second example. Therefore, we could
conclude the second model does not fit the data well even at 1% significance level.

5.2.2 Claim severity component

We are now ready to implement the steps of EM algorithm for estimating parameters in the claim
severity model. Before proceeding to the EM steps, let us look into the parameter ν. In fact, ν is
connected to the parameters in the claim frequency component. Therefore, once the sample of claim
counts is given, we would get an estimated value for ν. Recall from previous sections that,

ν = p+ (1− p) · B(α1 + 1, α2)

B(α1, α2)
. (32)

If we substitute in (32) the estimated values of p, α1, α2, we could obtain that the point estimation for
ν would be ν = 0.9039196. ν could then be treated as a constant onwards, and we follow an iteration
procedure similar to that presented in the previous subsection. As follows,

1. We begin with an initially determined parameter values ϑ(0) = {µ(0), δ(0), σ(0)}.

2. E-Step

For the (l+ 1)-th iteration, l = 0, 1, . . ., we first seek for the expected value of the random value
Ui, representing the latent variable, conditional on the observations together with the current
parameter estimates ϑ(l), i.e., estimates from the l-th iteration. Let τi denote this expectation

τi = E[Ui|Y, ϑ(l)] = 1× P{Ui = 1|Yi, ϑ(l)}+ 0× P{Ui = 0|Yi, ϑ(l)}

=
P{Ui = 1, Yi|ϑ(l)}

P{Yi, ϑ(l)}
=

νµ(l)e−µ
(l)yi

νµ(l)e−µ
(l)yi + (1− ν) δ(l)σ(l)δ

(l)

(σ(l)+yi)δ
(l)+1

Subsequently, we compute the expectation of its log-likelihood function with respect to the con-
ditional distribution of U given Y under the current estimates ϑ(l). Considering that we have m∗
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independent observations, we have,

Q(ϑ|ϑ(l)) = EUi|Yi,ϑ(l) [L(ϑ|Yi, Ui)] (33)

=

m∗∑
i

τi

[
log ν + log µ(l) − µ(l)yi

]
+

m∗∑
i

(1− τi)
[
log(1− ν) + log δ(l) + δ(l) log σ(l) − (δ(l) + 1) log(σ(l) + yi)

]
= log ν

∑
i

τi + logµ(l)
∑
i

τi − µ(l)
∑
i

τiyi + log(1− ν)
∑
i

(1− τi)

+ log δ(l)
∑
i

(1− τi) + δ(l) log σ(l)
∑
i

(1− τi)− (δ(l) + 1)
∑
i

(1− τi) log(σ(l) + yi).

3. M-Step

The maximisation step is set to find the parameter values that maximises (33) and they are the
estimates to be used in the next iteration, i.e.,

ϑ(l+1) = argmax
ϑ

Q(ϑ|ϑ(l)) (34)

In order to do this, we take the gradient of Q(ϑ|ϑ(l)), equate to zero and solve the system for
{µ, δ, σ} simultaneously.

∂Q

∂µ
=

∑
i τi
µ
−
∑
i

τiyi = 0;

∂Q

∂δ
=

n−
∑

i τi
δ

+ n log σ − log σ
∑
i

τi −
∑
i

(1− τi) log(σ + yi) = 0;

∂Q

∂σ
=

(n−
∑

i τi)δ

σ
− (δ + 1)

∑
i

1− τi
σ + yi

= 0 .

The estimates for the subsequent iteration (l + 1)-th are the solutions to these equations. It is
obvious that µ is independent from other parameters and could be solved directly with an explicit
representation

µ(l+1) =

∑
i τi∑
i τiyi

.

For the other two parameters, we could only solve numerically. Again we apply the nleqslv
package in R. As a consequence, we can obtain estimated parameters at this iteration ϑ(l+1) =
{µ(l+1), δ(l+1), σ(l+1)}.

4. Plug ϑ(l+1) into the (l + 2)-th iteration and repeat the above steps until convergence.

As we said, we do not have the claim severity data corresponding to the claim count one, we
simulated those based on the claim counts data we used before. Then we have for claim counts in each
period followed by a sequence of claim sizes randomly generated according to (9) when f(·) and g(·)
take Exponential(µ) and Pareto(δ, σ) forms, respectively.
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Parameters µ δ σ

Predefined 1 2 0.5

Initial value 1.5 2.5 0.2

After 1 iteration 1.0018065 1.572045 0.1476012

After 10 iterations 0.9918480 2.011409 0.4177998

After 110 iterations (at convergence) 0.9999930 1.957350 0.4856047

Table 4: Performance of estimation using EM algorithm on simulated claim severities without ν

Then, we implemented the algorithm and were able to achieve the desired parameters within
reasonable amount of iterations. In Table 4 we show our estimates against the predefined parameters.
This verifies the effectiveness of our algorithm.

As an alternative, we we have the option to estimate ν directly from claim size data. Implementing
the EM algorithm to find this estimate ν̂ is very similar to that we applied to p in Subsection 5.2.1.
Recall that the partial derivative equation with respect to p in that subsection is independent from
all other variables. A similar situation exists here for ν. We simply need to introduce one additional
equation respecting ν estimation, note that it does not affect the remainder equations. As so, we find

ν̂ =

∑
i τi
m∗

. (35)

After running the EM algorithm for this construction, we obtain results in Table 5 and we can
compare them with the “true” values.

Table 5: Performance of estimation using EM algorithm on simulated claim severities with ν

Parameters µ δ σ ν

Predefined 1 2 0.5 0.9039196

Initial value 1.5 2.5 0.2 0.9

After 1 iteration 1.000203 1.596950 0.1515525 0.9311160

After 100 iterations 1.005289 1.819941 0.3791028 0.9196332

After 1552 iterations (at convergence) 0.9991517 2.012381 0.4928861 0.904398

Notice that we have input the predefined value estimate for ν as the estimate from the claim count
data. In this way, we could further consider the value estimated from this method, i.e., 0.904398 from
Table 5, to be a secondary estimate for ν. Iteration reached convergence though at a much lower speed
than before (intuitively, we could expect this). It still led to good estimation of all the parameters
including ν, converging closely to its “true” value, eventually.

5.3 A short discussion

To conclude, on the model and estimation procedure, this manuscript has carried out a develoment and
and subsequent parameter estimation for the so-called unforeseeable risks discussed in [6]. Precisely,
for these risks, a probability p has been assigned at mass point {0} so that their corresponding counting
process is distinguished from the classical one. Since we could only observe the entire claim counts from
an insurance portfolio, this missing information could be estimated using the EM algorithm. Under
certain assumptions for the distribution of heterogeneities within the portfolio (which was denoted as
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Λ in this work), we could derive the randomness of the total claim counts given a fixed period to be
a Negative Binomial mixture distribution. Thus, the likelihood function could be presented explicitly
with which EM algorithm was implemented properly, based on a set of claim counts data for the third
party liability insurance portfolio. However, the resulting estimates seem to be very sensitive to chosen
initial values. Hence, we employed starting values which were computed via method of moments. Both
the Kolmogorov-Smirnov and Chi-square tests suggest a good fit on the observed data.

We added to the initial model a study on missing information on the claim severity, assuming that
it could bring some information, may be duplicate, on the unforeseeable stream. We could also apply
a similar estimation procedure to that of the claim count one.

According to the dataset considered here, the estimated probability of non-occurrence of claims per
period is approximately 60%. This is surprisingly larger than what we would expect, and we can argue
about it. It may be due to the quality of the data set of course, but also note that it corresponds to
the probability for a fixed time period which is a quarter here. Nevertheless, it may show that many
policies have not filed their claims to the system, yet. Also, Similar to the concerns usually put into
the right tail extreme, i.e, extreme value theory, it could also be interesting to devote some particular
atention to the left extreme. The latter one is what an insurer deals with on a daily basis, it could be
related with the “Bonus Hunge” problem, common in motor insurance. It could be quite dangerous
when someone does not show any claims before a large claim. This could be many small scratches
unreported, leaving no history, that lead to a big accident. To detect the potential of policyholders
moving from left towards right end tail would probably be more secure for an insurer. It also applies to
introduction of new policies covering autonomous cars for instance where initial information is missing
and accurate estimation of risks is needed. This study, however, serves as a starting tool to help
identifying some of these risks.

6 Combined parameter estimation and global likelihood

In our model we could consider the calculation of Bayesian premia separately for claim counts and
respective severities since we built a model where there is stochastic independence between these
two quantities. However, it would be nice to compute a premium where we estimate parameters
ϑ := (α1, α2, β, µ, δ, σ, p) altogether, using a likelihood where N and Y are jointly distributed. We will
refer to it as the global likelihood function and it will serve as a direct extension of the current work.

In general, a random sample will be composed by a sequence of m independent pairs of de-

pendent observervations (Ni,
−→
Yi), where Ni represents the number of claims in the i-th period and

−→
Yi = (Yi1, . . . , Yini) is the corresponding sequence of claim severities. It is clear that if we consider
in general that both claim counts and severities may bring information about each stream, foreseable

or unforeseable, we should consider that stochastic dependence between Ni and corresponding
−→
Yi is

present. However, they are conditionaly independent, given Λ = Λi (i = 1, 2) that is, for each in-
dividual stream we can consider the classical asumption of independence between claim counts and
severities.

Observed values are represented by corresponding lower case letters (ni,
−→yi ). We also note that in

each pair the dimension of vector −→yi depend on the observed ni. Now, we could write a likelihood

function considering the joint random vector (N,
−→
Y ) assuming we have m groups of observations and

conditional independence of each Yij , j = 1, . . . , ni, for a given i:

L(ϑ|n,−→y ) =

m∏
i=1

f
N,
−→
Y

(ni, yi1, . . . , yini) =

m∏
i=1

f−→
Y |N (−→yi |ni)P(ni) =

m∏
i=1


ni∏
j=1

f−→
Y |N (yij |ni)

P(ni) ,
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where P(ni) = P(N = ni), for simplification.
For our model, we can write the corresponding global log-likelihood function, denoted as L(ϑ|n,−→y ).

If we let claim counts conform to Lemma 1 and claim severities follow (9), i.e. f(·) and g(·) are
respectively Exponential and Pareto densities, we have

L(ϑ|n,−→y ) =

m∑
i=1

logP(ni) +

m∑
i=1

ni∑
j=1

log f−→
Y |N (−→yi |ni)

=

m∑
i=1

log

{
p

(
n+ α1 − 1

n

)(
β

β + 1

)α1
(

1

β + 1

)n
+(1− p)

(
n+ α1 + α2 − 1

n

)(
β

β + 1

)α1+α2
(

1

β + 1

)n}

+

m∑
i=1

ni∑
j=1

log

{
νµe−µyij + (1− ν)

δσδ

(σ + yij)δ+1

}
.

Instead of building a likelihood function based on a sample of observations of the pair (N,
−→
Y ), we

can build it using interarrival time and corresponding severity, where each observation is a bivariate
pair, denoted as (Tj , Yj), of dependent random varibles, in general. Let’s denote the density and the
distribution function of Tj by φ(·) and Φ(·), respectively.

For finding the distribution of (Tj) recall Lemma 2 and that, conditional on Λ = λ, {N(t)} is
a Poisson process with intensity λ. Then, given Λ = λ, conditional interarrival time Tj |Λ = λ _
Exponential(λ), with mean λ−1. If Poisson parameter is an outcome of a random variable Λ and
is distributed as (7), we have that the unconditional distribution of Tj is a mixture of two Pareto
distributions whose density is given by

φ(tj) = p
α1β

α1

(β + tj)α1+1
+ (1− p) (α1 + α2)βα1+α2

(β + tj)α1α2+1
(36)

On the other hand, the density function of Yj , conditional on a given Ξ = ξ, is given by the mixture,
see (8),

hξ(yj) = ξf(yj) + (1− ξ)g(yj) , (37)

and the unconditional density is given by (9). In particular, we assumed in our model that f _ exp(µ),
g _ Pareto(δ, σ).

Recall Remark 4, we know that with Ξ = ξ fixed, Tj and Yj are independent. A random sample of
observations are made of independent pairs (Yj , Tj), each j of dependent Yi and Ti. Each pair, j, has
density function

φ(yi, ti) =

∫
ξ
hξ(yi)φ(ti)dA(ξ) (38)

= (1− p)
∫
ξ 6=1

hξ(yi)φ(ti)dA(ξ) + p h1(yi)
α1β

α1

(β + ti)α1+1

where A(ξ) stands for the distribution function of Ξ. Note that that we separated the situations ξ 6= 1
and ξ = 1. Also, the events are equivalent: {Ξ = 1} ⇔ {Λ(2) = 0}, so that Pr{Ξ = 1} = Pr{Λ(2) =
0} = p.

A short discussion on the distributions above, (36) and (37), sounds apropriate. First, we consider
the unconditional distribution of the arrival time (unconditional of Λ) however, we considered the
conditional of the individual claim size Y , given Ξ = ξ. This ratio is given but that only means that
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Λ(1) is a given proportion of Λ, it remains random, it only means that the distribution of Λ(1) is a
scaled distribution of that of Λ, or vice versa. Looking at the density hξ(yi) we see that the split rate
ξ gives the weight for the foreseeable stream claim amount, and looking at the density φ(yj) we could
think that the probability p gives a similar meaning regarding the claim count stream. It does not
seem the case, it is not clear that the second part in the mixture represents the unforeseeable only.

Now, let’s back to joint density (38). We build the likelihood function over m∗ pairs of observations

(m∗ may be different from sample size m from random vector (N,
−→
Y ) above):

L(ϑ) =

m∗∏
i=1

Φ(yi, ti) =

m∗∏
i=1

∫
ξ
hξ(yi)φ(ti)dA(ξ)

=
m∗∏
i=1

[
(1− p)

∫
ξ 6=1

(ξf(yi) + (1− ξ)g(yi))φ(ti)Beta(ξ;α1, α2)dξ + p f(yi)
α1β

α1

(β + ti)α1+1

]
,

where Beta(ξ;α1, α2) denotes the Beta density function of Ξ, given Ξ 6= 1, and α1βα1

(β+ti)α1+1 is the density

φ(tj) when ξ = 1. Remark that we cannot interchange the product (
∏m∗

i=1) and the integral.
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