
Neural Logic Reinforcement Learning

Zhengyao Jiang 1 Shan Luo 1

Abstract

Deep reinforcement learning (DRL) has achieved
significant breakthroughs in various tasks. How-
ever, most DRL algorithms suffer a problem of
generalising the learned policy, which makes the
policy performance largely affected even by mi-
nor modifications of the training environment.
Except that, the use of deep neural networks
makes the learned policies hard to be inter-
pretable. To address these two challenges, we
propose a novel algorithm named Neural Logic
Reinforcement Learning (NLRL) to represent the
policies in reinforcement learning by first-order
logic. NLRL is based on policy gradient methods
and differentiable inductive logic programming
that have demonstrated significant advantages in
terms of interpretability and generalisability in
supervised tasks. Extensive experiments con-
ducted on cliff-walking and blocks manipulation
tasks demonstrate that NLRL can induce inter-
pretable policies achieving near-optimal perfor-
mance while showing good generalisability to
environments of different initial states and prob-
lem sizes.

1. Introduction
In recent years, Deep Reinforcement Learning (DRL) al-
gorithms have achieved stunning breakthroughs in vairous
tasks, e.g., video game playing (Mnih et al., 2015) and
the game of Go (Silver et al., 2017). However, similar to
traditional reinforcement learning algorithms such as tab-
ular TD-learning (Sutton & Barto, 1998), DRL algorithms
can only learn policies that are hard to interpret (Montavon
et al.) and cannot be generalized from one environment to
another similar one (Wulfmeier et al., 2017).

1Department of Computer Science, University of Liv-
erpool, Liverpool, United Kingdom. Correspondence to:
Zhengyao Jiang <z.jiang22@student.liverpool.ac.uk>, Shan Luo
<shan.luo@liverpool.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(Doshi-Velez & Kim, 2017) defines interpretability as the
ability to explain or to present the decision in understand-
able terms. The interpretability is a critical capability of
reinforcement learning or generally all machine learning
algorithms for system verification and improvement. Inter-
pretable RL can promote the scientific understanding of the
algorithm or the problem to be solved. Furthermore, we can
check whether an AI system is safe and whether it complies
with existing rules, ethnically or legally, in human society.
On the engineering level, the interpretability also enables
easier debugging of the system. The neural network based
DRL models, however, lack interpretability since the infer-
ence processes of neural networks are opaque to humans.

The generalizability is also important for reinforcement
learning algorithms. In the real world, it is not com-
mon that the training and test environments are exactly the
same. However, most DRL algorithms have the assumption
that these two environments are identical, which makes a
trained network that performs well on one task often per-
forms very poorly on a new but similar task. An exampleis
the reality gap (Collins et al., 2018) in the robotics applica-
tions that often makes agents trained in simulation ineffec-
tive once transferred in the real world.

The generalization of DRL policy is a rather intricate and
difficult problem since the action can affect the environ-
ment dynamics. In supervised learning, there are regular-
ization techniques such as Dropout (Srivastava et al., 2014)
that can help to promote generalization. However, (Zhang
et al., 2018) shows that noise injection methods used in sev-
eral DRL works cannot robustly detect or alleviate overfit-
ting. On the other hand, it is good to see that, similar to
the supervised learning, a proper inductive bias that fits the
problem bias can significantly improve the generalizability
of the learned policies (Zhang et al., 2018). One candi-
date of inductive bias suitable for general decision-making
is the relational inductive bias (Zambaldi et al., 2018). Re-
lational inductive bias usually represents the abstract con-
cepts as entities and relationships between them and per-
form deduction on the relations. The graph-based relational
inductive bias has been tested in RL context (Zambaldi
et al., 2018; Wang et al., 2018) and showed significantly
better generalization compared with Multilayer Perceptron
(MLP) architectures or Convoluational Neural Networks
(CNNs). However, another more expressive relational in-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/210990351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Neural Logic Reinforcement Learning

ductive, i.e., the one based on first-order logic, is still not
much explored by the DRL community.

The traditional symbolic methods intrinsically have good
interpretable and generalizable capabilities, however, re-
quire the systems dynamics to be known and ideally deter-
ministic when solving general sequential decision-making
problems (Fikes & Nilsson, 1971). By contrast, relational
reinforcement learning (Džeroski et al., 2001) learns first-
order logic rules in some simple block manipulation tasks
without the knowledge of system dynamics, and also shows
good generalizability and interpretability on these tasks.
However, such methods become ineffective when applied
to more complex tasks, especially given that the symbolic
learning methods have poor scalability.

A spectrum of such interpretable neural architec-
tures is Differentiable Inductive Logic Programming
(DILP) (Rocktäschel & Riedel, 2017; Cohen et al., 2017;
Evans & Grefenstette, 2018). Compared with traditional
symbolic logic induction methods, with the use of differen-
tiable models, DILP can leverage modern gradients based
methods. On the other side, thanks to the strong rela-
tional inductive bias, DILP shows superior interpretabil-
ity and generalization ability than neural networks (Evans
& Grefenstette, 2018). However, to the authors’ best
knowledge, all current DILP algorithms are only tested
in supervised tasks such as hand-crafted concept learn-
ing (Evans & Grefenstette, 2018) and knowledge base com-
pletion (Rocktäschel & Riedel, 2017; Cohen et al., 2017).

To make a step further, in this paper we develop a novel
framework named as Neural Logic Reinforcement Learn-
ing (NLRL) to enable the differentiable induction in se-
quential decision-making tasks. It can alleviate the inter-
pretability and generalizability problems in deep reinforce-
ment learning. In addition, the proposed NLRL framework
is also of great significance in advancing the DILP research.
By applying DILP in sequential decision-making tasks, the
agents can learn new concepts without human supervision,
instead of describing a concept already known to the human
in supervised learning tasks.

The rest of the paper is organized as follows: In Section
2, related works are reviewed and discussed; In Section
3, an introduction to the preliminary knowledge is pre-
sented, including the first-order logic programming ∂ILP
and Markov Decision Processes (MDPs); In Section 4, the
NLRL model is introduced, both the DILP architecture and
a general NLRL framework modeled with MDPs; In Sec-
tion 5, the experiments of NLRL on block manipulation
and cliff-walking are presented; In the last section, the pa-
per is concluded and future directions are directed.

2. Related Work
We place our work in the development of relational rein-
forcement learning (Džeroski et al., 2001) that represent
states, actions and policies in Markov Decision Processes
(MDPs) using the first order logic where transitions and re-
wards structures of MDPs are unknown to the agent. To
this end, in this section we review the evolution of rela-
tional reinforcement learning and highlight the differences
of our proposed NLRL framework with other algorithms in
relational reinforcement learning.

Early attempts that represent states by first-order logics in
MDPs appeared at the beginning of this century (Boutilier
et al., 2001; Yoon et al., 2002; Guestrin et al., 2003), how-
ever, these works focused on the situation that transitions
and reward structures are known to the agent. In such cases
with environment models known, variations of traditional
MDP solvers such as dynamic programming (Boutilier
et al., 2001), linear programming (Guestrin et al., 2003)
and heuristic greedy searching (Yoon et al., 2002) were em-
ployed to optimise policies in training tasks that can be gen-
eralized to large problems. In these works, the transition
and reward functions are also represented in logic forms.
The setting limits their application to complex tasks whose
transition and reward functions are hard to be modeled us-
ing the first order logic.

The concept of relational reinforcement learning was first
proposed by (Džeroski et al., 2001) in which the first or-
der logic was first used in reinforcement learning. There
are extensions of this work (Driessens & Ramon, 2003;
Driessens & Džeroski, 2004), however, all these algorithms
employ non-differential operations, which makes it hard
to apply new breakthroughs happened in DRL commu-
nity. In contrast, in our work using differentiable inductive
logic programming, once given the logic interpretations of
states and actions, any type of MDPs can be solved with
policy gradient methods compatible with DRL algorithms.
Furthermore, most relational reinforcement learning algo-
rithms represent the induced policy in a single clause and
some auxiliary predicates, e.g., the predicates that count the
number of blocks, are given to the agent. In our work, the
DILP algorithms have the ability to learn the auxiliary in-
vented predicates by the agents themselves, which not only
enables stronger expressive ability but also gives possibili-
ties for knowledge transfer.

One previous work close to ours is (Gretton, 2007) that also
trains the parameterised rule-based policy using policy gra-
dient. An approach was proposed to pre-construct a set
of potential policies in a brutal force manner and train the
weights assigned to them using policy gradient. Compared
to this work, in our NLRL framework weights are not as-
signed directly to the whole policy; the parameters to be
trained are involved in the deduction process and the num-

Neural Logic Reinforcement Learning

ber of parameters is significantly smaller than that in an
enumeration of all policies, especially for larger problems,
which gives our method better scalability. In addition, in
(Gretton, 2007), expert domain knowledge is needed to
specify the potential rules for the exact task that the agent
is dealing with. However, in our work, we use the same
rules templates for all tasks we test on, which means all the
potential rules have the same format across tasks.

A recent work on the topic (Zambaldi et al., 2018) pro-
poses deep reinforcement learning with relational inductive
bias that applies neural network mixed with self-attention
to reinforcement learning tasks and achieves the state-of-
the-art performance on the StarCraftII mini-games. The
proposed methods show some level of generalization abil-
ity on the constructed block world problems and StarCraft
mini-games, showing the potential of relation inductive
bias in larger problems. However, as a graph-based rela-
tional model was used (Zambaldi et al., 2018), the learned
policy is not fully explainable and the rules expression is
limited, different from the interpretable logic-represented
policies learned in ours using DILP.

A parallel work (Dong et al., 2019) use neural networks to
approximate the first-order logic deduction, achieving good
generalization on both supervised and reinforcement learn-
ing tasks. Their method has better scalibility than DILP
based approaches, however, it is still not clear how to inter-
pret the policies learned by their model.

3. Preliminary
In this section, we give a brief introduction to the necessary
background knowledge of the proposed NLRL framework.
Basic concepts of the first-order logic are first introduced.
∂ILP, a DILP model that our work is based on, is then de-
scribed. The Markov Decision Process (MDP) and rein-
forcement learning are also briefly introduced.

3.1. First-Order Logic Programming

Logic programming languages are a class of programming
languages using logic rules rather than imperative com-
mands. One of the most famous logic programming lan-
guages is ProLog, which expresses rules using the first-
order logic. In this paper, we use the subset of ProLog,
i.e., DataLog (Getoor & Taskar, 2007).

Predicate names (or for short, predicates), constants and
variables are three primitives in DataLog. In the language
of relational learning, a predicate name is also called a
relation name, and a constant is also termed as an entity
(Getoor & Taskar, 2007). An atom α is a predicate fol-
lowed by a tuple p(t1, ..., tn), where p is an n-ary predicate
and t1, ..., tn are terms, either variables or constants. For
example, in the atom father(cart, Y), father is the predicate

name, cart is a constant and Y is a variable. If all terms in
an atom are constants, this atom is called a ground atom.
We denote the set of all ground atoms as G. A predicate
can be defined by a set of ground atoms, in which case the
predicate is called an extensional predicate. Another way
to define a predicate is to use a set of clauses. A clause is a
rule in the form α← α1, ..., αn, where α is the head atom
and α1, ..., αn are body atoms. The predicates defined by
clauses are termed as intensional predicates.

3.2. ∂ILP

Inductive logic programming (ILP) is a task to find a defi-
nition (set of clauses) of some intensional predicates, given
some positive examples and negative examples (Getoor &
Taskar, 2007). The attempts that combine ILP with differ-
entiable programming are presented in (Evans & Grefen-
stette, 2018; Rocktäschel & Riedel, 2017) and ∂ILP (Evans
& Grefenstette, 2018) is introduced here that our work is
based on.

The major component of ∂ILP operates on the valuation
vectors e whose space is E = [0, 1]|G|, where each ele-
ment of a valuation vector represents the confidence that a
related ground atom is true. The logical deduction of each
step of the ∂ILP is applied to the valuation vector. The
new facts are derived from the facts provided by the valu-
ation vector in the last step. For each predicate, ∂ILP gen-
erates a series of potential clauses combinations in advance
based on rules templates. Trainable weights are assigned to
clauses combinations, and the sum of weights for a predi-
cate is constrained to be summed up to 1 using a softmax
function.

With the differentiable deduction, the system can be trained
with gradient-based methods. The loss value is defined
as the cross-entropy between the confidence of predicted
atoms and the ground truth. Compared with traditional in-
ductive logic programming methods, ∂ILP has advantages
in terms of robustness against noise and ability to deal with
fuzzy data (Evans & Grefenstette, 2018).

4. Neural Logic Reinforcement Learning
In this section, the details of the proposed NLRL frame-
work1 are presented. A new DILP architecture termed as
Differentiable Recurrent Logic Machine (DRLM), an im-
proved version of ∂ILP, is first introduced. The MDP with
logic interpretation is then proposed to train the DILP ar-
chitecture.

1Code available at the homepage of the paper: https://
github.com/ZhengyaoJiang/NLRL

https://github.com/ZhengyaoJiang/NLRL
https://github.com/ZhengyaoJiang/NLRL

Neural Logic Reinforcement Learning

4.1. Differentiable Recurrent Logic Machine

Recall that ∂ILP operates on the valuation vectors whose
space is E = [0, 1]|G|, each element of which represents
the confidence that a related ground atom is true. A DRLM
is a mapping fθ : E → E, which performs the deduction
of the facts e0 using weights w associated with possible
clauses. fθ can then be decomposed into repeated applica-
tion of single step deduction functions gθ, namely,

f tθ(e0) =

{
gθ(f

t−1
θ (e0)), if t > 0.

e0, if t = 0.
, (1)

where t is the deduction step. gθ implements one step de-
duction of all the possible clauses weighted by their confi-
dences. We denote the probabilistic sum as ⊕ and

a⊕ b = a+ b− a� b, (2)

where a ∈ E, b ∈ E. gθ can then be expressed as

gθ(e) =

 ⊕∑
n

∑
j

wn,jhn,j(e)

+ e0, (3)

where hn,j(e) implements one-step deduction of the valu-
ation vector e using jth possible definition of nth clause.2

For every single clause c, we can constrain the sum of its
weights to be 1 by letting wc = softmax(θc), where wc is
the vector of weights associated with the predicate c and θc
are related parameters to be trained.

Compared to ∂ILP, in DRLM the number of clauses used
to define a predicate is more flexible thanks to associating
the weights with clauses directly instead of combinations
of clauses; it needs less memory to construct a model (less
than 10 GB in all our experiments); it also enables learning
longer logic chaining of different intensional predicates.
All these benefits make the architecture be able to work in
larger problems. Detailed discussions on the modifications
and their effects can be found in the appendix.

4.2. Markov Decision Process with Logic Interpretation

In this section, we present a formulation of MDPs with
logic interpretation and show how to solve the MDP with
the combination of policy gradient and DILP.

An MDP with logic interpretation is a triple (M,pS , pA):

• M = (S,A, T,R) is a finite-horizon MDP;

2Computational optimization is to replace ⊕ with typical +
when combining valuations of two different predicates. For fur-
ther details on the computation of hn,j(e) (Fc in the original pa-
per), readers are referred to Section 4.5 in (Evans & Grefenstette,
2018).

• pS : S → 2G is the state encoder that maps each
state to a set of atoms including both information of
the current state and background knowledge;

• pA : [0, 1]|D| → [0, 1]|A| is the action decoder that
maps the valuation (or score) of a set of atoms D to
the probability of actions.

For a DILP system fθ : 2G → [0, 1]|D|, the policy π : S →
[0, 1]|D| can be expressed as π(s) = pA(fθ(pS(s))). Thus
any policy-gradient methods applied to DRL can also work
for DILP. pS and pA can either be hand-crafted or repre-
sented by neural architectures. The action selection mech-
anism in this work is to add a set of action predicates into
the architecture, which depends on the valuation of these
action atoms. Therefore, the action atoms should be a sub-
set of D. As for ∂ILP, valuations of all the atoms will be
deduced, i.e., D = G. If pS and pA are neural architec-
tures, they can be trained together with the DILP architec-
tures. pS extracts entities and their relations from the raw
sensory data. In addition, the use of a neural network to
represent pA enables agents to make decisions in a more
flexible manner. For instance, the output actions can be de-
terministic and the final choice of action may depend on
more atoms rather than only action atoms if the optimal
policy cannot be easily expressed as first-order logic. For
simplicity, in this work, we will only use the hand-crafted
pS and pA. Notably, pA is required to be differentiable
so that we can train the system with policy gradient meth-
ods operating on discrete, stochastic action spaces, such as
vanilla policy gradient (Willia, 1992), A3C (Mnih et al.,
2016), TRPO (Schulman et al., 2015a) or PPO (Schulman
et al., 2017).

We use the following schema to represent the pA in all ex-
periments. Let pA(a|e) be the probability of choosing ac-
tion a given the valuations e ∈ [0, 1]|D|. The probability
of choosing an action a is proportional to its valuation if
the sum of the valuation of all action atoms is larger than 1;
otherwise, the difference between 1 and the total valuation
will be evenly distributed to all actions, i.e.,

pA(a|e) =

{
l(e,a)
σ , σ ≥ 1

l(e, a) + σ
|A| , σ < 1

(4)

where l : [0, 1]|D| × A → [0, 1] maps from valuation vec-
tor and action to the valuation of that action atom, σ is the
sum of all action valuations σ =

∑
a pA(a|e). Empirically,

this design is crucial for inducing an interpretable and gen-
eralizable policy. If we apply a trivial normalization, it is
not necessary for NLRL agent to increase rule weights to 1
for the sake of exploitation. The agent instead only needs
to keep the relative valuation advantages of desired actions
over other actions, which in practice leads to tricky poli-
cies. We train all the agents with vanilla policy gradient
(Willia, 1992) in this work.

Neural Logic Reinforcement Learning

5. Experiments and Analysis
In general, the experiment is going to act as empirical in-
vestigations of the following hypothesis:

1. NLRL can learn policies that are comparable to neural
networks in terms of expected returns;

2. To induce these policies, we only need to inject mini-
mal background knowledge;

3. The induced policies are explainable;

4. The induced policies can generalize to environments
that are different from the training environments in
terms of scale or initial state.

Four sets of experiments, which are STACK, UNSTACK
and ON block manipulation tasks, and cliff-walking, have
been conducted and the benchmark model is a fully-
connected neural network. The induced policy will be eval-
uated in terms of expected returns, generalizability and in-
terpretability.

5.1. Experiment Setup

In the experiments, to test the robustness of the proposed
NLRL framework, we only provide minimal atoms describ-
ing the background and states while the auxiliary predicates
are not provided. The agent must learn auxiliary invented
predicates by themselves, together with the action predi-
cates.

5.1.1. BLOCK MANIPULATION

In this environment, the agent will learn how to stack the
blocks into certain styles, that are widely used as a bench-
mark problem in the relational reinforcement learning re-
search. We examine the performance of the agent on three
subtasks: STACK, UNSTACK and ON. In the STACK task,
the agent needs to stack the scattered blocks into a single
column. In the UNSTACK task, the agent needs to do the
opposite operation, i.e., spread the blocks on the floor. In
the ON task, it is required to put a specific block onto an-
other one. In all three tasks, the agent can only move the
topmost block in a pile of blocks. When the agent finishes
its goal it will get a reward of 1; before that, the agent keeps
receiving a small penalty of -0.02. The training is termi-
nated if the agent does not reach the goal within 50 steps.

There are 5 different entities, 4 blocks labeled as a, b, c,
d and floor. The state predicates are on(X,Y) and top(X).
on(X,Y) means the block X is on the entity Y (either blocks
or floor). top(X) means the block X is on top of an col-
umn of blocks. Notably, top(X) cannot be expressed using
on here as in DataLog there is no expression of negation,
i.e., it cannot have “top(X) means there is no on(Y,X) for

a
b

c

d

floor

state: top(d),
top(c), on(d, floor),

on(c, b), on(b, a),
on(a, floor)

background: isF loor(floor)

Figure 1. A Blocks Manipulation state noted as ((a, b, c), (d)).

all Y ”. For all tasks, a common background knowledge is
isFloor(floor), and for the ON task, there is one more back-
ground knowledge predicate goalOn(a,b), which indicates
the target is to move block a onto the block b. The action
predicate is move(X,Y) and there are 25 actions atoms in
this task. The action is valid only if both Y and X are on
the top of a pile or Y is floor and X is on the top of a pile.
If the agent chooses an invalid action, e.g., move(floor, a),
the action will not make any change to the state. We use
a tuple of tuples to represent the states, where each inner
tuple represents a column of blocks, from bottom to top.
For instance, Figure 1 shows the state ((a, b, c), (d)) and
its logic representation.

The training environment of the UNSTACK task starts
from a single column of blocks ((a, b, c, d)). To test the
generalizability of the induced policy, we construct the test
environment by modifying its initial state by swapping the
top 2 blocks or dividing the blocks into 2 columns. The
agent is also tested in the environments with more blocks
stacking in one column. Therefore, the initial states of
all the generalization test of UNSTACK are: ((a, b, d, c)),
((a, b), (c, d)), ((a, b, c, d, e)), ((a, b, c, d, e, f)) and
((a, b, c, d, e, f, g)). For the STACK task, the initial state is
((a), (b), (c), (d)) in training environment. Similar to the
UNSTACK task, we swap the right two blocks, divide them
into 2 columns and increase the number of blocks as gen-
eralization tests. The initial states of all the generalization
test of STACK are: ((a), (b), (d), (c)), ((a, b), (d, c)),
((a), (b), (c), (d), (e)), ((a), (b), (c), (d), (e), (f)),
((a), (b), (c), (d), (e), (f), (g)). For ON, the initial
state is ((a, b, c, d)). We swap either the top two or middle
two blocks in this case, and also increase the total number
of blocks. The initial states of all the generalization test
of ON are thus: ((a, b, d, c)), ((a, c, b, d)), ((a, b, c, d, e)),
((a, b, c, d, e, f)) and ((a, b, c, d, e, f, g)).

5.1.2. CLIFF-WALKING

Cliff-walking is a commonly used toy task for reinforce-
ment learning. We modify the version in (Sutton & Barto,
1998) to a 5 by 5 field, as shown in Figure 2. When the
agent reaches the cliff position it gets a reward of -1, and if
the agent arrives at the goal position, it gets a reward of 1.
Before reaching these absorbing positions, the agent keeps

Neural Logic Reinforcement Learning

receiving a small penalty of -0.02 at each step, encouraged
to reach the goal as soon as possible. If the agent fails to
reach the absorbing states within 50 steps, the game will
be terminated. This problem can be modelled as a finite-
horizon MDP.

The constants in this experiment are integers from 0 to 4.
We inject basic knowledge about natural numbers includ-
ing the smallest number (zero(0)), largest number (last(4)),
and the order of the numbers (succ(0,1), succ(1,2), ...). The
symbolic representation of the state is current(X,Y), which
specifies the current position of the agent. There are four
action atoms: up(), down(), left() and right().

In the training environment of cliff-walking, the agent starts
from the bottom left corner, labelled as S in Figure 2. In
the generalization tests, we move the initial position to the
top left, top right, and the centre of the field, labelled as
S1, S2 and S3 respectively. Then we increase the size of
the whole field to 6 by 6 and 7 by 7 without retraining.

We also test a stochastic variant of cliff-walking, i.e., windy
cliff-walking, where the agent has a 10% chance to move
downwards no matter which action it takes.

CliffS

S1 S2

S3

G

state: current(1, 2)

background: zero(0),
last(4), succ(0, 1),
succ(1, 2), succ(2, 3),

succ(3, 4)

Figure 2. Cliff-walking, the circle represents location of the agent.

5.1.3. HYPERPARAMETERS

Similar to ∂ILP, we use RMSProp to train the agent, whose
learning rate is set as 0.001. The generalized advantages
(λ = 0.95) (Schulman et al., 2015b) are applied to the value
network where the value is estimated by a neural network
with one 20-units hidden layer.

Like the architecture design to the neural network, the rules
templates are important hyperparameters to the DILP al-
gorithms. The rules template of a clause indicates the ar-
ity of the predicate (can be 0, 1, or 2) and the number
of existential variables (usually pick from {0, 1, 2}). It
also specifies whether the body of a clause can contain
other invented predicates. We represent a rule template
as a tuple of its three parameters, such as (2, 1, T rue),
for the simplicity of expression. The rules templates
of the DRLM are quite general and the optimal set-
ting can be searched automatically. In this work, how-
ever, we use the same rules templates for invented pred-
icates across all the tasks, each with only 1 clause, i.e.,
(1, 1, T rue), (1, 2, False), (2, 1, T rue), (2, 1, T rue). The

templates of action predicates vary in different tasks but
it is easy to find a good one by exhaustive search. To
this end, little domain knowledge is needed. For the UN-
STACK and STACK tasks, the action predicate template is
(2, 1, T rue). For the ON task, the action predicate tem-
plates are (2, 1, T rue) and (2, 0, T rue). There are four ac-
tion predicates in the cliff-walking task, we give all these
predicates the same template (3, 1, T rue).

5.1.4. BENCHMARK NEURAL NETWORK AGENT

In all the tasks, in addition to a random agent, we use an
MLP agent as another benchmark that has two hidden lay-
ers with 20 units and 10 units respectively. All the units in
the hidden layers use a ReLU (Nair & Hinton, 2010) acti-
vation function. For the cliff-walking task, the input is the
coordinates of the current position of the agent. For block
stacking tasks, the input is a 7 × 7 × 7 tensor X , where
Xx,y,i = 1 if the block indexed as i is in position x, y. We
set each dimension of the tensor as 7 that is the maximum
number of blocks used in the generalization test.

5.2. Results and Analysis

The performance of policy deduced by NLRL is sta-
ble against different random seeds once all the hyper-
parameters are fixed, therefore, we only present the evalu-
ation results of the policy trained in the first run for NLRL
here. For the neural network agent, we pick the agent that
performs best in the training environment out of 5 runs. The
induced policy is also evaluated in terms of interpretability.

5.2.1. PERFORMANCE AND GENERALIZATION TEST

The NLRL agent succeeds to find near-optimal policies on
all the tasks. For generalization tests, we apply the learned
policies on similar tasks, either with different initial states
or problem sizes.

We present the average and standard deviation of 500 re-
peats of evaluations in different environments in Figure 3
and Table 1. The highest average return of the three agents
are marked in bold in each row of the table and the optimal
performance of each task is also given. Each left group of
bars in Figure 3 shows that the NLRL not only achieves a
near-optimal performance in all the training environments
but also successfully adapts to all the new environments we
designed in experiments. In most generalization tests, the
agents manage to keep the performance in the near opti-
mal level even if they never experience these new environ-
ments before. For instance, we can observe in Table 1 that
in the UNSTACK task the NLRL agent achieves 0.937 av-
erage return, close to the optimal policy, and can achieve
0.940 final return. The minor difference between induced
policy and the optimal one is caused by the stochasticity of
the induced rules since the rule confidence is close but not

Neural Logic Reinforcement Learning

(a) UNSTACK (b) STACK (c) ON

(d) Cliff-walking (e) Windy Cliff-walking

Figure 3. Performance of different agents in the training and test environments. Each sub-figure shows the performance of the three
agents in a task. The performance of each agent is divided into a group. In each group, the blue bar shows the performance in the
training environment while the others show the performance in the test environments.

Table 1. The returns of different agents in the training and test environments. The first three columns demonstrate the returns of the three
agents; the last column shows the returns of the optimal policy, which is computed using value iteration.

NLRL MLP Random Optimal

UNSTACK training 0.937± 0.008 0.940± 0.000 −0.807± 0.466 0.940
swap top 2 0.936± 0.009 −0.940± 0.232 −0.827± 0.428 0.940
2 columns 0.958± 0.006 −0.852± 0.414 −0.522± 0.710 0.960
5 blocks 0.915± 0.010 −0.980± 0.000 −0.948± 0.208 0.920
6 blocks 0.891± 0.014 −0.980± 0.000 −0.980± 0.000 0.900
7 blocks 0.868± 0.016 −0.980± 0.000 −0.980± 0.000 0.880

STACK training 0.910± 0.033 0.940± 0.000 −0.292± 0.759 0.940
swap right 2 0.913± 0.029 −0.980± 0.000 −0.240± 0.739 0.940
2 columns 0.897± 0.064 −0.980± 0.000 −0.215± 0.772 0.940
5 blocks 0.891± 0.032 −0.980± 0.000 −0.718± 0.542 0.920
6 blocks 0.856± 0.169 −0.980± 0.000 −0.905± 0.307 0.900
7 blocks 0.828± 0.179 −0.980± 0.000 −0.973± 0.097 0.880

ON training 0.915± 0.01 0.920± 0.000 −0.837± 0.405 0.920
swap top 2 0.912± 0.013 −0.980± 0.000 −0.821± 0.432 0.920
swap middle 2 0.914± 0.011 −0.980± 0.000 −0.853± 0.394 0.920
5 blocks 0.890± 0.016 −0.980± 0.000 −0.949± 0.195 0.900
6 blocks 0.865± 0.018 −0.980± 0.000 −0.975± 0.081 0.880
7 blocks 0.844± 0.017 −0.980± 0.000 −0.980± 0.000 0.860

Cliff-walking training 0.862± 0.026 0.877± 0.008 −1.096± 0.307 0.880
top left 0.749± 0.057 −0.980± 0.000 −1.115± 0.606 0.840
top right 0.809± 0.064 −0.980± 0.000 −0.966± 0.817 0.920
center 0.859± 0.05 −0.917± 0.296 −0.952± 0.730 0.920
6 by 6 0.841± 0.024 −0.934± 0.578 −1.101± 0.260 0.860
7 by 7 0.824± 0.024 −1.122± 0.006 −1.107± 0.209 0.840

Windy Cliff-walking training 0.663± 0.377 0.649± 0.558 −1.129± 0.135 0.769± 0.162
top left 0.726± 0.075 0.836± 0.008 −1.376± 0.320 0.837± 0.068
top right 0.834± 0.061 0.919± 0.004 −1.089± 0.266 0.920± 0.000
center 0.672± 0.579 0.859± 0.277 −1.082± 0.230 0.868± 0.303
6 by 6 0.345± 0.736 −1.110± 0.335 −0.907± 0.478 0.748± 0.135
7 by 7 0.506± 0.528 −1.161± 0.036 −1.077± 0.129 0.716± 0.181

Neural Logic Reinforcement Learning

exactly 1, which will be seen in the rules interpretations.
When the top 2 blocks are swapped, the performance of
NLRL agent is not affected. When the initial blocks are
divided into 2 columns, it can still achieve 0.958 average
return, very close to the optimal performance (0.960). The
increase in the number of blocks gradually brings a larger
difference between the return of the induced policy and the
optimal one, whereas the difference is still less than 0.02.

The neural network agents learn optimal policy in the train-
ing environment of 3 block manipulation tasks and learn
near-optimal policy in cliff-walking. However, the neural
network agent appears to only remember the best routes
in the training environment rather than learn the general
approaches to solving the problems. The overwhelming
trend is, in varied environments, the neural networks per-
form even worse than a random player.

5.2.2. INTERPRETATION OF THE POLICIES

In all of five substasks we tested, the NLRL agent can in-
duce human readable rules. We present the induced rules
for two of them here, and these for other tasks can be found
in the appendix.

Induced policies for STACK: The policies induced by the
NLRL agent in the STACK task are:

0.964 : pred1(X,Y)← on(X,Z), top(Y)

0.970 : pred2(X)← on(X,Y), isF loor(Y)

0.923 : pred4(X,Y)← pred2(X), pred1(Y,X)

0.960 : pred3(X)← on(X,Y), pred1(Y,X)

0.903 : move(X,Y)← pred3(Y), pred4(X,Y)

(5)

In the learned policies, the agent uses several invented pred-
icates, labelled as pred1, pred2, pred3 and pred4, to rep-
resent auxiliary concepts regarding the property of blocks.
The clause of move is then constructed based on these
concepts. The learned policies are interpreted in the for-
ward chaining manner: the low level invented predicates
are first interpreted whose body only contains existential
predicates, following the predicates based on lower level
predicates, and eventually the final clause of move. All
the clauses are interpreted as follows. pred1(X,Y): X
is a block and Y is the top block in a column, where no
meaningful interpretation exists; pred2(X): X is a block
directly on the floor; pred4(X,Y): X is a block directly
on the floor and there is no other blocks above it, and Y
is a block; pred3(X): X is the top block in a column
that is of at least two blocks in height, which in this task
states where the block should be moved to. The meaning
of move(X,Y) is then clear: it moves the movable blocks
on the floor to the top of a column that is at least two blocks
high.

It is noticeable that the learned policies are sensible but not

perfect. A flaw of this policy is that it does not tell what
to do when all blocks are on the floor or when there are no
movable blocks on the floor, in which case the agent must
rely on random moves. In addition, the construction of the
policy is not the most concise. The main functionality of
pred4 is to label the block to be moved, equivalent to the
more concise clause: pred4(X)← pred2(X), top(X).

Induced policies for Cliff-walking: The policies induced
by the NLRL agent in the cliff-walking experiment are:

0.990 : right()← current(X,Y), succ(Z, Y)

0.561 : down()← pred(X), last(X)

0.411 : down()← current(X,Y), last(X)

0.988 : pred(X)← zero(Y), current(X,Z)

0.653 : left()← current(X,Y), succ(X,X)

0.982 : up()← current(X,Y), zero(Y)

(6)

The agent goes upwards if it is at the bottom row of the
whole field. Actually, the only position the agent needs
to move up in the optimal route is the bottom left corner.
However, it does not matter here as all other positions in the
bottom row are absorbing states. The agent moves to right
if the Y coordinate is larger than 0. And when the agent
reaches the right edge, it will move downwards. The clause
associated to the predicate left() shows that the agent has
learned not to move left since there is not a number whose
successor is itself. There are many other definitions with
lower confidence which basically will never be activated.

Such a policy is a sub-optimal one since it has the chance
to bump into the right wall of the field. Though such
a flaw is not serious in the training environment, shift-
ing the initial position of the agent to the top left or top
right makes it deviate from the optimal policy obviously.
Also, the clause of down can be simplified as down() ←
current(X,Y), last(X), which means move down if the
current position is in the rightmost edge.

6. Conclusion and Future Work
In this paper, we propose a novel reinforcement learn-
ing method named Neural Logic Reinforcement Learn-
ing (NLRL) that is compatible with policy gradient algo-
rithms in deep reinforcement learning. Empirical evalua-
tions show NLRL can learn near-optimal policies in train-
ing environments while having superior interpretability and
generalizability. In the future work, we will investigate
knowledge transfer in the NLRL framework that may be
helpful when the optimal policy is quite complex and can-
not be learned in one shot. Another direction is to use a
hybrid architecture of DILP and neural networks, i.e., to
replace pS with neural networks so that the agent can make
decisions using raw sensory data.

Neural Logic Reinforcement Learning

Acknowledgements
The authors would like to thank Dr Tim Rocktäschel, Dr
Frans A. Oliehoek and Gregory Palmer for the helpful dis-
cussions, the reviewers for the insightful comments, and
Neng Zhang for the proofreading. This work was supported
by the EPSRC project “Robotics and Artificial Intelligence
for Nuclear (RAIN)” (EP/R026084/1).

References
Boutilier, C., Reiter, R., and Price, B. Symbolic Dynamic

Programming for First-order MDPs. In International
Joint Conference on Artificial Intelligence, 2001.

Cohen, W. W., Yang, F., and Mazaitis, K. R. TensorLog:
Deep Learning Meets Probabilistic DBs. arXiv preprint,
abs/1707.05390, 2017.

Collins, J., Howard, D., and Leitner, J. Quantifying the
reality gap in robotic manipulation tasks. arXiv preprint,
abs/1811.01484, 2018.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines. In International Conference on
Learning Representations, 2019.

Doshi-Velez, F. and Kim, B. Towards a rigorous sci-
ence of interpretable machine learning. arXiv prepint,
abs/1702.08608, 2017.

Driessens, K. and Džeroski, S. Integrating guidance into
relational reinforcement learning. Machine Learning, 57
(3):271–304, 2004.

Driessens, K. and Ramon, J. Relational instance based re-
gression for relational reinforcement learning. In Inter-
national Conference on Machine Learning, 2003.

Džeroski, S., De Raedt, L., and Driessens, K. Relational
reinforcement learning. Machine Learning, 43(1-2):7–
52, 2001.

Evans, R. and Grefenstette, E. Learning Explanatory Rules
from Noisy Data. Journal of Artificial Intelligence Re-
search, 61:1–64, 2018.

Fikes, R. E. and Nilsson, N. J. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solv-
ing. In Proceedings of the 2nd International Joint Con-
ference on Artificial Intelligence, pp. 608–620, 1971.

Getoor, L. and Taskar, B. Introduction to Statistical Rela-
tional Learning. The MIT Press, 2007.

Gretton, C. Gradient-based relational reinforcement learn-
ing of temporally extended policies. In International
Conference on Automated Planning and Scheduling,
2007.

Guestrin, C., Koller, D., Gearhart, C., and Kanodia, N.
Generalizing Plans to New Environments in Relational
MDPs. In International Joint Conference on Artificial
Intelligence, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level con-
trol through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T.,
Lillicrap, T. P., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on International Conference
on Machine Learning, 2016.

Montavon, G., Samek, W., and Müller, K.-R. Methods
for interpreting and understanding deep neural networks.
Digital Signal Processing.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In International Confer-
ence on International Conference on Machine Learning,
2010.

Rocktäschel, T. and Riedel, S. End-to-end differentiable
proving. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems. 2017.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and
Abbeel, P. Trust region policy optimization. In Inter-
national Conference on on Machine Learning, 2015a.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional continuous control us-
ing generalized advantage estimation. arXiv preprint,
abs/1506.02438, 2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint, abs/1707.06347, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van
Den Driessche, G., Graepel, T., and Hassabis, D. Master-
ing the game of Go without human knowledge. Nature,
550(7676):354–359, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

Neural Logic Reinforcement Learning

Sutton, R. S. and Barto, A. G. Introduction to Reinforce-
ment Learning. MIT Press, 1998.

Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learn-
ing structured policy with graph neural networks. In
International Conference on Learning Representations,
2018.

Willia, R. J. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Ma-
chine Learning, 8(3):229–256, 1992.

Wulfmeier, M., Posner, I., and Abbeel, P. Mutual align-
ment transfer learning. In Conference on Robot Learn-
ing, 2017.

Yoon, S., Fern, A., and Givan, R. Inductive Policy Selec-
tion for First-order MDPs. In Conference on Uncertainty
in Artificial Intelligence, 2002.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T.,
Lockhart, E., Shanahan, M., Langston, V., Pascanu, R.,
Botvinick, M., Vinyals, O., and Battaglia, P. Rela-
tional Deep Reinforcement Learning. arXiv preprint,
abs/1806.01830, June 2018.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A Study
on Overfitting in Deep Reinforcement Learning. arXiv
preprint, abs/1804.06893, 2018.

	Introduction
	Related Work
	Preliminary
	First-Order Logic Programming
	ILP

	Neural Logic Reinforcement Learning
	Differentiable Recurrent Logic Machine
	Markov Decision Process with Logic Interpretation

	Experiments and Analysis
	Experiment Setup
	Block Manipulation
	Cliff-walking
	Hyperparameters
	Benchmark Neural Network Agent

	Results and Analysis
	Performance and Generalization Test
	Interpretation of the policies

	Conclusion and Future Work

