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Why use a joint model? %/ LIVERPOOL

Interest lies with

@ adjustment of inferences about longitudinal measurements for

possibly outcome-dependent drop-out

@ adjustment of inferences about the time-to-event distribution
conditional on intermediate and/or error prone longitudinal

measurements
@ the joint evolution of the measurement and event time processes
@ biomarker surrogacy

@ dynamic prediction
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Motivation for multivariate joint models ® LIVERPOOL

@ Clinical studies often repeatedly measure multiple biomarkers or

other measurements and an event time

@ Research has predominantly focused on a single event time and

single measurement outcome

@ Ignoring correlation leads to bias and reduced efficiency in

estimation

@ Harnessing all available information in a single model is

advantageous and should lead to improved model predictions
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Clinical example % LIVERPOOL

Primary biliary cirrhosis

Bile ducts in liver

Primary biliary cirrhosis (PBC)
is a chronic liver disease char-

o acterized by inflammatory de-
Gallbladder

struction of the small bile ducts,

Normal bile
ducts in liver

which eventually leads to cirrho-

sis of the liver and death

Inflammation and [
scar tissue destroy
bile ducts in liver [EEEETE

Figure source: https://www.medgadget.com
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Clinical example % LIVERPOOL

@ Consider a subset of 154 patients randomized to placebo
treatment from Mayo Clinic trial (Murtaugh et al. 1994)

@ Multiple biomarkers repeatedly measured at intermittent times,
of which we consider 3 clinically relevant ones:
@ serum bilirunbin (mg/dl)
@ serum albumin (mg/dl)
© prothrombin time (seconds)
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with death
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Introduction

Objective 1

© Determine if longitudinal biomarker trajectories are associated
with death

Objective 2

© Dynamically predict the biomarker trajectories and time to death

for a new patient

© Wrap it all up into a freely available software package
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Introduction

Survival probability

©
~
|

o
[N
I

o
o
L

Nevents = 09, 44.8%

o

T T T T T T 1
2 4 6 8 10 12 14

Time from registration (years)

GL. Hickey Joint modelling of multivariate data 9/48



¢/ UNIVERSITY OF

% LIVERPOOL

For each subject i = 1,...,n, we observe

® yi = (¥il,---, Vi) is a K-variate continuous outcome vector,
where each yj denotes an (nj x 1)-vector of observed
longitudinal measurements for the k-th outcome type:
Yik = (Vitks - - - Yinyk) -

@ Observation times tj for j = 1,..., ny, which can differ

between subjects and outcomes

o (T;,0;), where T; = min(T;, C;), where T/ is the true event
time, C; corresponds to a potential right-censoring time, and §;
is the failure indicator equal to 1 if the failure is observed

(T < G) and 0 otherwise
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Longitudinal sub-model ¥ LIVERPOOL

Following Henderson et al. (2000) for the univariate case
yi(t) = pi(t) + Wai(t) + &i(2),

where
o £(t) is the model error term, which is i.i.d. N(0,0?) and

independent of W;(t)
o 11;(t) = x;' (t)B is the mean response

@ x;(t) is a p-vector of (possibly) time-varying covariates with

corresponding fixed effect terms 5

e Wi;(t) is a zero-mean latent Gaussian process
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Longitudinal sub-model ¥ LIVERPOOL

We can extend it to K-separate sub-models (with k =1,..., K)
yi(t) = (1) + W (8) + (),

where
o c;x(t) is the model error term, which is i.i.d. N(0,0?) and
independent of Wl(,-k)(t)
o 11ik(t) = x;.(t)B is the mean response

@ x;.(t) is a p-vector of (possibly) time-varying covariates with

corresponding fixed effect terms [

° Wl(,-k)(t) is a zero-mean /atent Gaussian process
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Time-to-event sub-model ¥ LIVERPOOL

<T: >
M) = lim Pt<Ti<t+dt|T;>1)
dt—0 dt

= No(t)exp {v (£} + Wai(t)}

where
@ \o(-) is an unspecified baseline hazard function

@ v;(t) is a g-vector of (possibly) time-varying covariates with

corresponding fixed effect terms ~,

o Wh(t) is a zero-mean latent Gaussian process, independent of

the censoring process
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Correlation ¥ LIVERPOOL

Following Laird and Ware (1982):

W(t) = zj (t)by for k=1,..., K
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Correlation %/ LIVERPOOL

Following Laird and Ware (1982):
W (8) = 2] (t)by for k=1,...,K
1i — 4k ik or — yee ey

Three sources of correlation:

@ Within-subject correlation between longitudinal measurements:
bix ~ N(0, Dyx)

@ Between longitudinal outcomes correlation: cov(bj, bj) = Dy
for k # 1

@ Correlation between sub-models': Wh;(t) = Zle Yyk Wl(,-k)(t)

!Extends model proposed Henderson et al. (2000)
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Association structure: alternatives ¥ LIVERPOOL

Many other proposals for association structures in the literature:
o Current value parameterisation: Wh;(t) =, {pi(t) + Whi(t)}
e Random effects parameterisation: Wh;(t) = fnylb,-

@ Bivariate distribution: (Ws;, Wa;) ~ N(0, Q)

Random-slopes parameterisation:
Wai(t) = y1 {i(t) + Wai(t)} + vy {mit) + Wai(t)}

GL. Hickey Joint modelling of multivariate data 14 /48
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Likelihood w LIVERPOOL

We can re-write the longitudinal sub-model as
yilbi, B,Zi ~ N(Xi + Zib;, X;), with b;| D ~ N(0, D),

where 8 = (BIT, ... ,ﬁ;), (b,l, e b,-T()T, and

Xi -+ 0 D1 -+ Dik
X — o - D — 5 .

0 Xik Dy Dkk

Zi 0 2l 0
Z = o, % o= :

0 Zik 0 O Iy
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Likelihood w LIVERPOOL

The observed data likelihood is given by

1 (/_o:o F(yi | bi, 0)F(T;, 5 | by, 0)F (b | 6)db,->

i=1

where 6 = (87, vech(D), 0%, ..., o%, )\o(t),’va,’ny)
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The observed data likelihood is given by
1T (/ f(yi | bi,0)f(Ti, 6i | bi,0)f(b;| H)db,)

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

f(yil bi,0) = <H(27T)> Pl

k=1

exp {—

N =

(i — Xif — Ziby) TS (s — Xib — Z,-b,-)}
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Likelihood w LIVERPOOL

The observed data likelihood is given by

n

11 (/_O:O fyi | bi, 0)F(T;, 01| b, 0)f(bi| 9)db,->

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

F(T6:1 b5 0) = [Mo(T) exp {7 + War(Ti, ) }]”

T
eXP{/O )\O(U)eXP{V;T’Yer Wai(u, bi)}du}
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Likelihood w LIVERPOOL

The observed data likelihood is given by

1 (/_O; F(yi | b, 0)F (T, 1 | by, 0)F (b | 0)db,->

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

r 1
f(b:16) = @) 51D F exp {367 Db}

with r = dim(b;)
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Estimation

Estimation

Multiple approaches have been considered over the years:

@ Markov chain Monte Carlo (MCMC)

Direct likelihood maximisation (e.g. Newton-methods)

Generalised estimating equations

EM algorithm (treating the random effects as missing data)

GL. Hickey Joint modelling of multivariate data 17 /48
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EM algorithm (Dempster et al. 1977) ¥ LIVERPOOL

E-step. At the m-th iteration, we compute the expected
log-likelihood of the complete data conditional on the observed data

and the current estimate of the parameters.
R n
Qo0 = S E{logf(yi, Ti,o, b [0) },
i=1

n 00 R
= 3 [ {108 (v T i by )} £y | Ti iy 0l
j=177%°

GL. Hickey Joint modelling of multivariate data 18 /48



Estimation

’?\ UNIVERSITY OF

EM algorithm (Dempster et al. 1977) ¥ LIVERPOOL

E-step. At the m-th iteration, we compute the expected
log-likelihood of the complete data conditional on the observed data

and the current estimate of the parameters.
R n

Qo0 = S E{logf(yi, Ti,o, b [0) },
i=1
n 00 R

= 3 [ {108 (v T i by )} £y | Ti iy 0l

i=17 7>

M-step. We maximise Q(0|A(™) with respect to 6. namely,

6(m+1) = arg max Q(A]6(™)
0

GL. Hickey Joint modelling of multivariate data 18 /48
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closed form estimators ¥/ LIVERPOOL

7:1 (5,/( T,' = t)
S E exp {vi v + Wai(t, i)} I(T; > t)

n -1 n
- <Z X,-TX,-> <Z X" (y; — Z,-JE[b,-]))
i=1 i=1

1 n
= S > {(yik — XieBi) " (vik — XueBrk — 2ZiE[bi])
=17k =1

+trace (Z;IZikE[bikb;lz )}

= LyE[be]
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M-step: non-closed form estimators ¥ LIVERPOOL

There is no closed form update for v = (7, Yy 7, so use a one-step

Newton-Raphson iteration

Amt1) — 4(m) | (ﬁ(m))‘l s (5m).

with %(t) = (v, z1(t)bi, ..., zk(t)bixc ) a (g + K)-vector

GL. Hickey Joint modelling of multivariate data 20/48
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MCEM algorithm ¥ LIVERPOOL

@ E-step requires calculating several multidimensional integrals of
form E [h(b;) ’ T,-,5,-,y,-; é}
e Gauss-quadrature can be slow if dim(b;) is large = might not

scale well as K increases

@ Instead, we use the Monte Carlo Expectation-Maximization
(MCEM; Wei and Tanner 1990)

@ M-step updates remain the same

GL. Hickey Joint modelling of multivariate data 21 /48
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Monte Carlo E-step ¥ LIVERPOOL

Conventional EM algorithm: use quadrature to compute

I, h(bi)f(bi | yii O)F (T;,6: | by; 6)db;
250 £(bi | yii B)F(T;, 6| bj; 6)dbi

9

E [h(by) | Ti. 61, i 0] =
where

h(-) = any known fuction,
bilyi,0 ~ N(A{Z I '(yi-XB)} Aj), and

Ai (z'=*z+ D‘1)71

GL. Hickey Joint modelling of multivariate data 22 /48
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Monte Carlo E-step ¥ LIVERPOOL

MCEM algorithm E-step: use Monte Carlo integration to compute

o AN h (B (T b8
E |:h(bl) ‘ Ti,éi?yi;9:| N ) Z/ég—(l f <>Ti;<5i ’ bl(d)x é) )

where

h(-) = any known fuction,
bilyi,0 ~ N(A{Z 5y —XB)},Ar), and
A= (Z's7'z+ D‘l)_l
bgl), b@./ ..., b ~ b;i|yi, 0 a Monte Carlo draw

GL. Hickey Joint modelling of multivariate data 22 /48



Estimation

Speeding up convergence

@ Monte Carlo integration converges at a rate of O(N~1/2), which
is independent of K and r = dim(b;)

@ EM algorithm convergences linearly

@ Can we speed this up?
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Speeding up convergence

@ Monte Carlo integration converges at a rate of O(N~1/2), which
is independent of K and r = dim(b;)

@ EM algorithm convergences linearly

@ Can we speed this up?

@ Antithetic variates
@ Quasi-Monte Carlo
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Variance reduction w LIVERPOOL

Instead of directly sampling from the MVN distribution for b; | y;; 0,

we apply a variance reduction technique

Antithetic simulation

Sample Q ~ N(0, /,) and obtain the pairs
A{ZTE i - XiB)} + GO,

where C; is the Cholesky decomposition of A; such that C,-C,-T = A;

Negative correlation between the N /2 pairs = smaller variance in the
sample means than would be obtained from N independent

simulations

GL. Hickey Joint modelling of multivariate data 24 /48
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Convergence %/ LIVERPOOL

In standard EM, convergence usually declared at (m + 1)-th iteration

if one of the following criteria satisfied

. L) _ o [y
® Relative change: A} = Max\ e < €

@ Absolute change: Agg’jl) = max {|é(m+1) - é(m)‘} < €

for some choice of ¢p, €1, and e

GL. Hickey Joint modelling of multivariate data 25 /48
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In MCEM framework, there are 2 complications to account for
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In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance

= Solution: require convergence for 3 iterations in succession

@ estimators swamped by Monte Carlo error, thus precluding

convergence
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Convergence % LIVERPOOL

In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance

= Solution: require convergence for 3 iterations in succession

@ estimators swamped by Monte Carlo error, thus precluding
convergence
= Solution: increase Monte Carlo size N as algorithm moves

closer towards maximizer

GL. Hickey Joint modelling of multivariate data 26 /48
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Dynamic MC size

@ Using large N when far from maximizer = computationally
inefficient

@ Using small N when close to maximizer = unlikely to detect
convergence

Solution (proposed by Ripatti et al. 2002): after a ‘burn-in’ phase,

calculate the coefficient of variation statistic

-1 +1
(A sd(Bpg ", A, AY)

e mean(Afgl'_ N A(m+1))

rel rel

and increase N to N+ |N/d] if cv(A Eel+ )) > cv(AEeI)) for some

small positive integer ¢

GL. Hickey Joint modelling of multivariate data 27 /48
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Quasi-Monte Carlo % LIVERPOOL

Replaces the (pseudo-)random sequence by a deterministic one

Quasi-random sequences yield smaller errors than standard

Monte Carlo integration methods
(logN)"
N

Convergence is O(

@ Research on-going. ..

GL. Hickey Joint modelling of multivariate data 28 /48
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Quasi-Monte Carlo

woyun

000 025 050 075 100000 025 050 075 100000 025 050 075 100

Z;
°
Jewion

Key: OMC = ordinary Monte Carlo; AMC = antithetic Monte Carlo; QMC = quasi-Monte Carlo
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Standard error estimation ¥ LIVERPOOL

Method 1: Bootstrap

Conceptually simple + theoretically superior (Hsieh et al. 2006). . .

but computationally slow!
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Standard error estimation LIVERPOOL

Method 1: Bootstrap

Conceptually simple + theoretically superior (Hsieh et al. 2006). . .

but computationally slow!

Method 2: Empirical information matrix approximation

Following McLachlan and Krishnan (2008), SE(6) ~ l;l/z(é), where
u 1
l(6) =>_si(0)s; (0) — —S(0)S"(9),

i=1

S(0) = >>11 si(0) is the score vector for 6_y ;) (baseline hazards a
profiled out of the likelihood)

GL. Hickey Joint modelling of multivariate data 30/48



Software & Example revisited

joineRML
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Version 0.3.0 available on CRAN
https://cran.r-project.org/web/packages/joineRML

Developmental version available on
GitHub
https://github.com/graemeleehickey/joineRML

downloads 3495

ﬁ_n
mjoipt()

GL. Hickey

Rich collection of associated methods

getVarCovQ)
vcov()
fixef()
ranef()*
AICO

BICO
confint()
formula()
sampleData()
dynSurv()*
dynLong()*

print(Q)
summary()
plot()
sigma()
coef()
update()
baseHaz()
residualsQ)
fittedQO
logLik()
bootSEQ)

” Armadillo
C++ linear algebra library
+ Parallel
R + Computing

Joint modelling of multivariate data

31/48
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Alternative options LIVERPOOL

@ Pre-2017: none!
@ 2017-onwards:

joineRML: discussed today

stjm: a new extension to the Stata package? written by Michael
Crowther

megenreg: similar to stjm, but can handle other models
rstanarm: development branch that absorbs package written by
Sam Brilleman®

JMbayes: a new extension* to the R package written by Dimitris

Rizopoulos

2Crowther MJ. Joint Statistical Meeting. Seattle; 2015.

3github .com/sambrilleman/rstanjm

4github .com/drizopoulos/JMbayes
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Proposed model for PBC data % LIVERPOOL

Longitudinal sub-model

log(serBilir) = (Bo,1 + boi,1) + (Bi,1 + bii1)year + €1,
albumin = (o2 + boi2) + (P12 + bii2)year + €ip2,
(0.1 x prothrombin) ™" = (Bo;s + boi3) + (Br3 + bui3)year + g3,

bi ~ Ne(0,D), and g ~ N(0,0%) for k =1,2,3;
Time-to-event sub-model

Ai(t) Ao(t) exp {yvage + Wai(t)},
Wai(t) = Aia(boin + briit) + Yaww(boi2 + bri2t) + Ypro(boi,3 + bri3t).

GL. Hickey Joint modelling of multivariate data 33/48
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Example code % LIVERPOOL

data(pbc2)
placebo <- subset(pbc2, drug == "placebo")
fit.pbc <- mjoint(
formLongFixed = list(
"pil" = log(serBilir) ~ year,
"alb" = albumin ~ year,
"pro" = (0.1 * prothrombin) -4 ~ year),

formLongRandom = list(

"pil" = ~ year | id,
"alb" = ~ year | id,
"pro" = ~ year | id),

formSurv = Surv(years, status2) ~ age,
data = placebo,

timeVar = "year",

control = list(tol0 = 0.001, burin = 400))

GL. Hickey Joint modelling of multivariate data 34 /48
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Results w LIVERPOOL

Parameter Estimate SE 95% CI
Bo,1 0.5541 0.0858 (0.3859, 0.7223)
B11 0.2009 0.0201 (0.1616, 0.2402)
Bo,2 3.5549 0.0356 (3.4850, 3.6248)
B1,2 -0.1245 0.0101 (-0.1444, -0.1047)
Bo3 0.8304 0.0212  (0.7888, 0.8719)
B3 -0.0577 0.0062 (-0.0699, -0.0456)
Yv 0.0462 0.0151 (0.0166, 0.0759)
Yoil 0.8181 0.2046  (0.4171, 1.2191)
~alb -1.7060 0.6181 (-2.9173, -0.4946)
Yoro 22085 1.6070 (-5.3582, 0.9412)
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Results w LIVERPOOL

Effect of multivariate inference over univariate joint model:

Parameter Model Estimate 95% CI
Toil uv 12182  (0.9789, 1.6130)
Yoil MV 0.8181 (0.4171, 1.2191)
b uv 30770 (-4.4865, -2.3466)
Yalb MV 17060 (-2.9173, -0.4946)
Yoro uv 7.2078 (-10.5410, -5.3917)
Yoro MV 22085  (-5.3582, 0.9412)

UV = univariate joint model (fitted with joineR package); MV =

multivariate joint model
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Dynamic prediction %/ LIVERPOOL

@ So far we have only discussed inference from joint models

@ How we can use them for prediction?
@ Predict what?

@ Failure probability at time u > t given longitudinal data observed
up until time t

@ Longitudinal trajectories at time u > t given longitudinal data
observed up until time t

GL. Hickey Joint modelling of multivariate data 37/48



Prediction

Dynamic prediction: example

Bivariate joint model

We will consider the PBC data again (as above) with K = 2
biomarkers only: serurm bilirubin (log-transformed) and albumin
(untransformed), since prothrombin time was non-significant in the

trivariate model

GL. Hickey Joint modelling of multivariate data 38/48
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Dynamic prediction: survival ¥ LIVERPOOL

For a new subject i = n+ 1, we want to calculate

5n+1 (u[Wa ny1(u, by1;0);0)
Snt1 (EIWani1(t, bpy1; 0); 0)

P[To1 2 ul Thpy > toyni1: 0] =

where Wh;(t, b;; 0) = {Wai(s, v;; 6);0 < s < t} and the expectation is

taken with respect to the distribution

p(bnt1| Thy1 > t, Ynr1:0)
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Dynamic prediction: survival %/ LIVERPOOL

Rizopoulos (2011) proposed two estimators for this:
© A first-order approximation

5n+1 (U | W2,n+1(u, Bn+1; é\mle); é\mle)

P[Ti > u| o > t, Yo 0] = z A A
" " Sn+1 (t | W2,n+l(t, bn+l; emlc); emlc)

)

where b1 is the mode of p(bn1 | Ty > t, Yai1;0)
@ A simulated scheme

© Draw 00) ~ N(Opie, V(Oine))

® Draw b,g/ll ~ p(bnt1 | Typy > t, ¥ns1; 0) [Metropolis-Hastings]
Sora (| Wania (u,b):0)6)

Snt1 (f | Wa ni1(£,60) '9('))?0(”)

n+1'

O Repeat Steps 1-3 /=2,..., L times

® Calculate
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Example code % LIVERPOOL

# New patient
nd <- subset(placebo, id == "11") # patient 11

# First-order prediction (default)
predl <- dynSurv(fit.pbc, nd[1:5, 1)
predil

plot(predl)

# Simulated prediction

pred2 <- dynSurv(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2

plot(pred2)
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Dynamic predicton: survival LI\/ERPOOL
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Dynamic prediction: longitudinal ¥ LIVERPOOL

For a new subject i = n+ 1, we want to calculate

E [ynr1(u) | T, nt1 >t Yt 0] = n+1( u)B + n+1( u)E[bnt1],
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Dynamic prediction: longitudinal @ LIVERPOOL

Again, we can use the same estimation proposals:

@ A first-order approximation
E[yn+1(u) | Toya > t, a1 6] = XnT+1(“)B + ZnT+1(U)Z7n+17

where b, 1 is the mode of p(bn1 | Tivq > t, ¥ni1;0)
@ A simulated scheme
@ Draw 00 ~ N(Omie, V(6me))
® Draw b,(,lll ~ p(bny1| Tyt > t, ¥Yny1;0) [Metropolis-Hastings]
@ Calculate X1, ()8 + Z 1 (u)b),

O Repeat Steps 1-3 /=2,..., L times
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Example code %‘ LIVERPOOL

# First-order prediction (default)
predl <- dynLong(fit.pbc, nd[1:5, 1)
predil

plot(predl)

# Simulated prediction

pred2 <- dynLong(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2

plot (pred2)
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Dynamic predicton: longitudinal @ LIVERPOOL
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Open challenges % LIVERPOOL

@ How can we incorporate high-dimensional K7 E.g. K =107
@ Data reduction techniques: can we project high-dimensional K
onto a lower order plane?

@ Speed-up calculations using approximations (e.g. Laplace

approximations)

Hickey et al. BMC Medical Research Methodology (2016) 16:117 "
DOI10.1186/512874-016.0212:5 BMC Med&zgltﬁgéeo?gg

Wt

Joint modelling of time-to-event and
multivariate longitudinal outcomes: recent
developments and issues

Graeme L. Hickey"", Pete Philipson?, Andrea Jorgensen' and Ruwanthi Kolamunnage-Dona
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