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Abstract The triple diffusive convection in an Oldroyd-B fluid-saturated porous layer
is investigated by performing linear and weakly nonlinear stability analyses. The condi-
tion for the onset of stationary and oscillatory is derived analytically. Contrary to the
observed phenomenon in Newtonian fluids, the presence of viscoelasticity of the fluid
is to degenerate the quasiperiodic bifurcation from the steady quiescent state. Under
certain conditions, it is found that disconnected closed convex oscillatory neutral curves
occur, indicating the requirement of three critical values of the thermal Darcy-Rayleigh
number to identify the linear instability criteria instead of the usual single value, which
is a novel result enunciated from the present study for an Oldroyd-B fluid saturating
a porous medium. The similarities and differences of linear instability characteristics
of Oldroyd-B, Maxwell, and Newtonian fluids are also highlighted. The stability of os-
cillatory finite amplitude convection is discussed by deriving a cubic Landau equation,
and the convective heat and mass transfer are analyzed for different values of physical
parameters.
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Nomenclature

d, depth of the porous layer;
g, gravitational acceleration;
K, permeability of the porous

medium;
k, unit vector in the vertical direc-

tion;
M , ratio of heat capacities;
p, pressure;

PrD, Darcy-Prandtl number;
q, velocity vector;
RSi, solute Darcy-Rayleigh number of

the ith-component;
RT, thermal Darcy-Rayleigh number;
t, time;
x, y, z, space coordinates.

∗ Citation: RAGHUNATHA, K. R. and SHIVAKUMARA, I. S. Stability of triple diffusive convection
in a viscoelastic fluid-saturated porous layer. Applied Mathematics and Mechanics (English Edition),
39(10), 1385–1410 (2018) https://doi.org/10.1007/s10483-018-2376-8

† Corresponding author, E-mail: shivakumarais@bub.ernet.in
Project supported by the Innovation in Science Pursuit for the Inspired Research (INSPIRE) Program
(No. DST/INSPIRE Fellowship/[IF 150253])

c©Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/210987314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1386 K. R. RAGHUNATHA and I. S. SHIVAKUMARA

Greek symbols

α, horizontal wave number;
αT, thermal expansion coefficient;
αSi, solute analogue of αT, i = 1, 2;
ε, porosity;
κT, thermal diffusivity;
κSi, solute diffusivity, i = 1, 2;
λ1, stress relaxation time;
λ2, strain retardation time;

Λ1, stress relaxation parameter;
Λ2, strain retardation parameter;
µ, dynamic viscosity;
ν, kinematic viscosity;
ρ, fluid density;
σ, growth term;
τi, ratio of diffusivities, i = 1, 2;
ψ, stream function.

Subscripts/superscripts

b, basic state;
L, lower boundary;

U, upper boundary;
∗, dimensionless variable.

1 Introduction

The study of convective instabilities is one of the central problems in porous media fluid
mechanics because of its natural occurrence and relevance in many science and engineering
applications. It is a well-established fact that, in a horizontal porous layer, thermal instability
sets in as stationary convection, and no oscillatory motion takes place[1–2]. Nonetheless, in the
case of double diffusive convection, it is intriguing to note that oscillatory convection appears
as a preferred mode of instability under some conditions. Copious literatures available on these
topics are documented in the books[3–6].

Of late, researchers have been showing an increasing attention in the study of natural convec-
tion of non-Newtonian fluids saturating porous media, and the studies are very sparse. Most
of the existing studies have focused on thermal convective instability in a viscoelastic fluid-
saturated porous layer[7–10] as applications of these fluids are found in geophysics, biorheology,
pharmaceutical and petroleum industries, polymer processing and so on. An important result
noticed that the fluid elasticity influences the preferred mode of instability from the stationary
mode to the oscillatory mode. Besides, investigations have also been carried out to investigate
the consequence of additional diffusing component (double diffusive convection) on thermal
convective instability in a viscoelastic fluid-saturated porous layer[11–13].

Convective instability in ternary fluids is a complex process, and the presence of thermal
currents and/or concentrations leads to linear and nonlinear behaviours. In a ternary fluid, the
density depends on three different stratifying agents, and one of which may be the temperature.
This leads to a competition between different diffusions of stratifying agents, and as a result,
oscillatory convection may occur. Triple diffusive convection is found to occur in many practical
applications. For example, aqueous suspensions of deoxyribonucleic acid (DNA) may contain
more than two independently diffusing components with different diffusivities. The DNA coils
are bound to be extended as they are subject to the action of shear or externally applied ten-
sion, and as a result, the viscoelastic properties of DNA are to be taken into consideration
in the study of DNA convection. Although the oscillatory convection in viscoelastic fluids is
not observed in experimental conditions[14], Perkins et al.[15–16] showed that such a convection
persists as the first convective instability in dilute suspensions of long DNA molecules. Later,
Kolodner[17] also confirmed this possibility. Another important situation stems from the study
of medical screening tool for abnormalities in lipids, containing various components such as
cholesterol (low-density lipoproteins, high-density lipoproteins) and triglycerides which possess
different diffusivities and exhibit viscoelastic properties. These proteins and fats help to gen-
erate energy in the human body, and this complex process is collectively known as cellular
respiration. In particular, the variations in these diffusivities help to determine approximate
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risks for cardiovascular and other diseases. Another area of interest is in understanding contam-
inant transport[18–19], where the chemical species that form the contaminants are non-reactive.
These observations have triggered a renewed interest in the study of linear and nonlinear con-
vective instabilities in viscoelastic triple diffusive fluid systems.

The triple diffusive convection in a Newtonian fluid layer has been studied extensively[20–27].
In particular, Pearlstein et al.[24] discussed several applications and established some novel
results which were overlooked by the previous investigators and also not found in double dif-
fusive fluid systems. Shivakumara and Naveen-Kumar[28] investigated linear and nonlinear
multi-diffusive convection in a horizontal layer of couple stress fluids. The study of triple dif-
fusive convection in porous media has also been analyzed. Rudraiah and Vortmeyer[29] and
Poulikakos[30] studied the onset of triple diffusive convection in a porous medium by following
the analysis of Griffiths[20]. Whereas Tracey[31] followed the analysis of Pearlstein et al.[24] to
study the triple diffusive convection in porous media, and Rionero[32–33] extended the study
to obtain some additional results. The linear instability of the triple diffusive Maxwell fluid-
saturated porous layer was considered by Zhao et al.[34] while a weakly nonlinear stability
analysis of the problem has been investigated recently by Raghunatha et al.[35].

The studies of convective instability in viscoelastic fluids saturating a porous medium are
mainly focused either on single or double diffusive fluid systems despite the multi-diffusive
convection is bound to occur in many practical situations mentioned above. As far as the
Newtonian fluid systems are concerned, some fundamental differences between double and triple
diffusive fluid systems in the onset and development of convective motion are unveiled. In light
of these observations, it is pragmatic that to explore the qualitatively new features found by
Tracey[31] will carry over to the case of Oldroyd-B fluids saturating a porous medium as well
since such a study sheds more light on the complex instability characteristics of the system.
The objective of the current study is to investigate linear and weakly nonlinear triple diffusive
convection in an Oldroyd-B fluid-saturated porous medium and to unveil some interesting results
that the system is capable of supporting. Also, the main purpose is to understand the stability
of oscillatory bifurcating solution by deriving a cubic Landau equation and also to understand
the influence of various physical parameters on convective heat and mass transfer.

2 Governing equations

The physical configuration is shown in Fig. 1. We consider an incompressible Oldroyd-B type
of a viscoelastic fluid-saturated horizontal layer of a Darcy porous medium of the thickness d
containing three stratifying agents with different molecular diffusivities, where all the three may
be solute concentrations, or one of the components may be the temperature T , and the other
two are solute concentrations Si (i = 1, 2). The lower impermeable boundary is kept at the
higher temperature and solute concentrations, while at the upper impermeable boundary, they
are maintained at lower values. A Cartesian coordinate system (x, y, z) is chosen such that
the origin is at the bottom of the porous layer. The gravity is acting in the negative vertical
z-direction. A condition of local thermal equilibrium between the solid phase and the fluid
phase of the porous medium is assumed.

 

   

Fig. 1 Physical configuration
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A modified Darcy-Oldroyd model relevant to the case of a Darcy porous medium has been
considered to describe the flow in a porous medium in the form[34–38] of

(

1 + λ1
∂

∂t

)(ρ0

ε

∂q

∂t
+ ∇p− ρg

)

= −
µ

K

(

1 + λ2
∂

∂t

)

q, (1)

where q = (u, v, w) is the velocity, p is the pressure, µ is the fluid viscosity, g is the acceleration
due to gravity, K is the permeability of the medium, ρ is the fluid density, ε is the porosity, λ1

is the relaxation time, and λ2 is the retardation time. It may be noted that the time derivative
term has been included in the above equation as it contributes for the convection to set in as
oscillatory motions. The viscoelastic model considered includes the classical viscous Newtonian
fluid as a special case for λ1 = λ2 = 0 and the Maxwell fluid for λ2 = 0. The conservation
equations for the stratifying agents are

M
∂T

∂t
+ (q · ∇)T = κT∇

2T, (2)

ε
∂S1

∂t
+ (q · ∇)S1 = κS1∇

2S1, (3)

ε
∂S2

∂t
+ (q · ∇)S2 = κS2∇

2S2, (4)

where M = (ρ0c)m/(ρ0c)f = ((1 − ε)(ρ0c)s + ε(ρ0c)f)/(ρ0c)f is the ratio of heat capacities, c is
the specific heat, κT is the thermal diffusivity, and κS1 and κS2 are the solute analogues of κT.
The subscripts m, f, and s refer to the porous medium, fluid, and solid, respectively. Under the
Oberbeck-Boussinesq approximation, the equation of state is

ρ = ρ0(1 − αT(T − TL) + αS1(S1 − S1L) + αS2(S2 − S2L)), (5)

where αT is the thermal expansion coefficient, αS1 and αS2 are the solute analogues of αT, and
ρ0 is the density at the reference temperature and solute concentrations.

The boundary conditions are

q · k = 0 at z = 0, d, (6)

(T, Si) = (TL, SiL) at z = 0, (7)

(T, Si) = (TU, SiU) at z = d (i = 1, 2), (8)

where SiU < SiL and TU < TL with the sign convention that ∆Si = SiL−SiU > 0 when a solute
concentration is stabilizing and ∆T = TL − TU > 0 when the temperature is destabilizing.

The above governing equations are made dimensionless using the following transformations:














∇∗ = d∇, q∗ =
d

κT
q, p∗ =

K

µκT
p, t∗ =

κT

d2ε
t,

T ∗ =
T − TL

∆T
, S∗

i =
S − SiL

∆Si

(i = 1, 2).

(9)

Substituting Eq. (9) into the governing equations, we obtain

(

1 + Λ1
∂

∂t

)( 1

PrD

∂q

∂t
+ ∇p+ (−RTT +RS1S1 +RS2S2)k

)

= −
(

1 + Λ2
∂

∂t

)

q, (10)

A
∂T

∂t
+ (q · ∇)T = ∇2T, (11)

∂S1

∂t
+ (q · ∇)S1 = τ1∇

2S1, (12)

∂S2

∂t
+ (q · ∇)S1 = τ2∇

2S1, (13)
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where Λ1 = λ1κT/(d
2ε) is the stress relaxation time parameter, Λ2 = λ2κT/(d

2ε) is the strain
retardation time parameter, RT = αTg∆TKd/(νκT) is the thermal Darcy-Rayleigh number,
RSi = αSig∆SiKd/(νκT) (i = 1, 2) is the solute Darcy-Rayleigh number of the ith-component,
PrD = νd2ε2/(κTK) is the Darcy-Prandtl number or the Vadasz number, τi = κSi/κT (i = 1, 2)
is the ratio of diffusivities, and A = M/ε. If all the components are solute concentrations, then
the value of A turns out to be unity. The basic state is quiescent, and temperature, solute
concentrations, and pressure distributions are found to be

Tb(z) = −z, Sib(z) = −z (i = 1, 2), pb(z) = p0 + (RS1 +RS2 −RT)z2/2, (14)

where p0 is the pressure at z = 0, and the subscript b denotes the basic state. To investigate
the instability of the basic state, we now superimpose infinitesimal perturbations on the basic
state of the form,

q = 0 + q′, p = pb(z) + p′, T = Tb(z) + T ′, Si = Sib(z) + S′
ib (i = 1, 2), (15)

where primes indicate the perturbed quantities. Substituting Eq. (15) into Eqs. (10)–(13), elim-
inating the pressure term from the momentum equation by operating curl and introducing a
perturbation stream function ψ′(x, y, z) with

u′ =
∂ψ′

∂z
, w′ = −

∂ψ′

∂x
, (16)

we obtain the governing nonlinear stability equations which can be written as

L









ψ
T
S1

S2









=









0
J(ψ, T )
J(ψ, S1)
J(ψ, S2)









, (17)

where J(·, ·) is the Jacobian function with respect to x and z, representing the nonlinear terms,
and L is the linear differential operator given by

L =









































1

PrD

∂

∂t
∇2 +

(

1 + Λ2
∂

∂t

)

(

1 + Λ1
∂

∂t

)∇2 RT
∂

∂x
−RS1

∂

∂x
−RS2

∂

∂x

∂

∂x
A
∂

∂t
−∇2 0 0

∂

∂x
0

∂

∂t
− τ1∇

2 0

∂

∂x
0 0

∂

∂t
− τ2∇

2









































, (18)

where ∇2 = ∂
2

∂x2 + ∂
2

∂z2 .

The boundary conditions now become

ψ = T = S1 = S2 = 0 at z = 0, 1. (19)
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3 Linear instability analysis

The linear instability analysis proceeds by ignoring the nonlinear terms in Eq. (17). Then,
we eliminate T, S1, and S2 from the momentum equation to provide one equation for ψ in the
form,

( ∂

∂t
− τ1∇

2
)( ∂

∂t
− τ2∇

2
)((

A
∂

∂t
−∇2

)( 1

PrD

∂

∂t

(

1 + Λ1
∂

∂t

)

∇2 +
(

1 + Λ2
∂

∂t

))

∇2ψ
)

−RT

(

1 + Λ1
∂

∂t

)( ∂

∂t
− τ1∇

2
)( ∂

∂t
− τ2∇

2
)∂2ψ

∂x2
+

(

1 + Λ1
∂

∂t

)(

A
∂

∂t
−∇2

)

·
(

RS1

( ∂

∂t
− τ2∇

2
)

+RS2

( ∂

∂t
− τ1∇

2
))∂2ψ

∂x2
= 0. (20)

As usual, a normal mode solution is assumed as

ψ = eσt sin(αx) sin(πz), (21)

where α and π are wave numbers in the x- and z-directions, respectively, and σ(= σr + iω) is
the growth term. Substituting Eq. (21) into Eq. (20) yields the following expression:

RT =
Aσ + δ2

σ + τ1δ2
RS1 +

Aσ + δ2

σ + τ2δ2
RS2 +

Aσ + δ2

α2

(1 + Λ2σ

1 + Λ1σ
δ2 +

σδ2

PrD

)

, (22)

where δ2 = α2 + π2. To investigate the instability of the system, the real part of σ is set to
zero, and let σ = iω in Eq. (22) and also clear the complex quantities from the denominator to
obtain

RT =
τ1δ

4 +Aω2

ω2 + τ2
1 δ

4
RS1 +

τ2δ
4 +Aω2

ω2 + τ2
2 δ

4
RS2 +

δ4

α2

(1 + ω2Λ1Λ2

1 + ω2Λ2
1

)

−
Aω2δ2

α2

( Λ2 − Λ1

1 + ω2Λ2
1

+
1

PrD

)

+ iωδ2N, (23)

where

N =
Aτ1 − 1

ω2 + τ2
1 δ

4
RS1 +

Aτ2 − 1

ω2 + τ2
2 δ

4
RS2 +

δ2

α2

( Λ2 − Λ1

1 + ω2Λ2
1

+
1

PrD

)

+
A

α2

(1 + ω2Λ1Λ2

1 + ω2Λ2
1

)

. (24)

Since RT is a physical quantity, it implies either ω = 0 or N = 0 in Eq. (23). The condition
ω = 0 corresponds to the stationary convection, and the case N = 0 (ω 6= 0) corresponds to
the oscillatory convection.
3.1 Stationary convection

The condition ω = 0 corresponds to the stationary onset, and thus

RS
T =

RS1

τ1
+
RS2

τ2
+

(α2 + π2)2

α2
(25)

is the thermal Darcy-Rayleigh number, where the layer is unstable with respect to the stationary
onset. It is observed that Eq. (25) is independent of viscoelastic parameters, indicating that the
viscoelastic effects appear only in the case of time dependent motions, and coincide with the
result obtained for ordinary viscous fluids[29]. We note that, for the stationary neutral solution,
RS

T is a single valued function of α and attains its critical value at αc = π. Therefore, the
critical thermal Darcy-Rayleigh number for the stationary onset is

RS
Tc =

RS1

τ1
+
RS2

τ2
+ 4π2. (26)

In the absence of additional diffusing components, Eq. (26) gives RS
Tc = 4π2, which is the known

exact value.
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3.2 Oscillatory convection
For the oscillatory case, ω 6= 0 and hence N = 0, which gives a dispersion relation cubic in

ω2,

a1(ω
2)3 + a2(ω

2)2 + a3ω
2 + a4 = 0, (27)

where

a1 = δ2Λ2
1 + Λ1Λ2APrD,

a2 = α2PrD(Aτ1 − 1)Λ2
1RS1 + α2PrD(Aτ2 − 1)Λ2

1RS2 + PrDδ
2(Λ2 − Λ1) + δ2

+ (τ2
1 + τ2

2 )Λ2
1δ

6 +APrD +APrDΛ1Λ2δ
4(τ2

1 + τ2
2 ),

a3 = α2PrD(Aτ1 − 1)(1 + Λ2
1τ

2
2 δ

4)RS1 + α2PrD(Aτ2 − 1)(1 + Λ2
1τ

2
1 δ

4)RS2 + (τ2
1 + τ2

2 )δ6

+ PrDδ
6(Λ2 − Λ1)(τ

2
1 + τ2

2 ) + Λ2
1τ

2
1 τ

2
2 δ

10 +APrD(τ2
1 + τ2

2 )δ4 +APrDΛ1Λ2τ
2
1 τ

2
2 δ

8,

a4 = α2PrD(Aτ1 − 1)τ2
2 δ

4RS1 + α2PrD(Aτ2 − 1)τ2
1 δ

4RS2 + PrDδ
10(Λ2 − Λ1)τ

2
1 τ

2
2

+ τ2
1 τ

2
2 δ

10 +APrDτ
2
1 τ

2
2 δ

8.

When N = 0, Eq. (23) shows that the oscillatory convection occurs at RT = R0
T, where

R0
T =RS

T−ω
2
( (1 −Aτ1)

(ω2 + τ2
1 δ

4)

RS1

τ1
+

(1 −Aτ2)

(ω2 + τ2
2 δ

4)

RS2

τ2
+

Aδ2

α2PrD
−
δ2

α2

(A− δ2Λ1)(Λ1 − Λ2)

(1 + ω2Λ2
1)

)

, (28)

and ω2 is given by Eq. (27). Equation (27) shows that, for a suitable combination of parameters
A,PrD,Λ1, Λ2, τ1, τ2, RS1, and RS2, it is possible to have more than one positive values of ω2

at the same wave number α, indicating the existence of the multiple oscillatory neutral solution
R0

T which has important implications on the nature of the instability of the system. For a single
diffusive case (RS1 = RS2 = 0), it is observed that the oscillatory convection occurs provided
that

ω2 =
δ2PrD(Λ1 − Λ2) − δ2 −APrD

δ2Λ2
1 +APrDΛ1Λ2

> 0. (29)

Thus, the necessary condition for the occurrence of oscillatory convection is

Λ1 − Λ2 >
1

PrD
+
A

δ2
. (30)

For a double diffusive case (RS2 = 0, say), we derive a dispersion relation quadratic in ω2,

b1(ω
2)2 + b2ω

2 + b3 = 0, (31)

where

b1 = δ2Λ2
1 + Λ1Λ2APrD,

b2 = α2PrD(Aτ1 − 1)Λ2
1RS1 + PrDδ

2(Λ2 − Λ1) + (1 + τ2
1 Λ2

1δ
4)δ2 + (1 + τ2

1 Λ1Λ2δ
4)APrD,

b3 = α2PrD(Aτ1 − 1)RS1 + (Λ2 − Λ1)τ
2
1 δ

6PrD + τ2
1 δ

6 + τ2
1 δ

4APrD.

Since ω2 > 0 for the occurrence of oscillatory convection, a cautious glance at Eq. (31) provides
the imminent conditions as

τ1 <
1

A
, Λ1 − Λ2 >

1

PrD
+
A

δ2
. (32)



1392 K. R. RAGHUNATHA and I. S. SHIVAKUMARA

The point at which the steady and oscillatory neutral curves meet is called the bifurcation
point which can be located in the (α,RT) plane. The bifurcation points will occur on the
steady neutral curve at α = αb for which ω = 0 satisfying Eq. (27). Thus, a4(αb) = 0, or
equivalently

̟(α2
b)3 + (3π2̟ +APrD)(α2

b)2 +
(

3π4̟ + 2π2APrD + ϕ1
RS1

τ2
1

+ ϕ2
RS2

τ2
2

)

α2
b

+̟π6 +APrDπ
2 = 0, (33)

where ϕi = PrD(Aτi − 1) (i = 1, 2) and ̟ = (Λ2 − Λ1)PrD + 1. The minimum value of R0
T

with respect to α, denoted by R0
Tc, is calculated using the procedure explained by Raghunatha

et al.[35].

4 Oscillatory nonlinear stability analysis

The linear instability theory discussed in the previous section gives us the condition for
instability. Here, we use the perturbation method to perform the nonlinear stability analysis
and derive the cubic Landau equation. Such a study helps to analyze the convective rate of
heat and mass transfer. Since the viscoelastic effects are time dependent, the study has been
restricted to the periodic convective solution that bifurcates at RT = R0

Tc. Accordingly, a small
parameter χ that indicates the deviation from the critical point is introduced. Consequently,
the stream function, temperature, and solute concentrations are expanded in terms of χ as[11]























RT = RTc + χ2RT2 + · · · , ψ =

∞
∑

n=1

ψnχ
n,

T =

∞
∑

n=1

Tnχ
n, S1 =

∞
∑

n=1

S1nχ
n, S2 =

∞
∑

n=1

S2nχ
n.

(34)

The fast time scale t and the slow time scale s are introduced in the form of s = χ2t, and
hence the operator ∂

∂t
is replaced by the operator ∂

∂t
+χ2 ∂

∂s
. Substituting Eq. (34) into Eq. (17),

we get a set of equations at each order of χ. At the leading order in χ, the coupled differential
equation is linear and homogeneous,

L









ψ1

T1

S11

S21









=









0
0
0
0









, (35)

which corresponds to the linear instability problem for the oscillatory convection discussed in
the previous section. The eigenvalue is RT = R0

Tc, and the eigenfunctions are of the form

ψ1 = (A1e
iωt +A1e

−iωt) sin(αx) sin(πz), (36)

T1 = (B1e
iωt +B1e

−iωt) cos(αx) sin(πz), (37)

S11 = (C1e
iωt + C1e

−iωt) cos(αx) sin(πz), (38)

S21 = (D1e
iωt +D1e

−iωt) cos(αx) sin(πz), (39)

where the overbar denotes the complex conjugate. The amplitudes A1 −D1 and A1 −D1 are
functions of the slow time s, whereas ω and α are taken to be the critical values associated with
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RT = R0
Tc. The undetermined amplitudes are related by

A1 = −
δ2 + iωA

α
B1, C1 =

δ2 + iωA

δ2τ1 + iω
B1, D1 =

δ2 + iωA

δ2τ2 + iω
B1. (40)

The inhomogeneous terms appearing in the equations at the order χ2 are evaluated using the
first order solutions,

J(ψ1, T1) =
πα

2
(B1A1 +B1A1 +A1B1e

2iωt +A1B1e
−2iωt) sin(2πz), (41)

J(ψ1, S11) =
πα

2
(C1A1 + C1A1 +A1C1e

2iωt +A1C1e
−2iωt) sin(2πz), (42)

J(ψ1, S21) =
πα

2
(D1A1 +D1A1 +A1D1e

2iωt +A1D1e
−2iωt) sin(2πz). (43)

From the above relations, we can deduce that the corrections to the stream function, tempera-
ture, and solute concentrations fields have terms of the frequency 2ω. Thus, the second order
stream function, temperature, and solute concentrations fields can be expressed as follows:

ψ2 = (ψ20 + ψ22e
2iωt + ψ22e

−2iωt) sin(2πz), (44)

T2 = (T20 + T22e
2iωt + T 22e

−2iωt) sin(2πz), (45)

S12 = (S120 + S122e
2iωt + S122e

−2iωt) sin(2πz), (46)

S22 = (S220 + S222e
2iωt + S222e

−2iωt) sin(2πz), (47)

where (ψ20, ψ22), (T20, T22), and (S120, S122, S220, S222) are, respectively, the stream functions,
the temperatures, and solute concentrations fields which have terms of the frequency 2ω and
independent of the fast time scale t.

At the second order in χ, the equation is

L









ψ2

T2

S12

S22









=









0
J(ψ1, T1)
J(ψ1, S11)
J(ψ1, S21)









. (48)

The above equation is now solved, and the solutions are found to be










































T20 =
α

8π
(A1B1 +A1B1), S120 =

α

8πτ1
(A1C1 +A1C1),

S220 =
α

8πτ2
(A1D1 +A1D1),

ψ20 = 0, T22 =
παA1B1

8π2 + 4iωA
,

S122 =
παA1C1

8π2τ1 + 4iω
, S222 =

παA1D1

8π2τ2 + 4iω
, ψ22 = 0.

(49)

At the third order in χ, the equation now becomes

L









ψ3

T3

S13

S23









=





















Ω

A
∂T1

∂s
+ J(ψ1, T2)

∂S11

∂s
+ J(ψ1, S12)

∂S21

∂s
+ J(ψ1, S22)





















, (50)
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where

Ω = −
Λ1

PrD

∂2

∂s∂t
(∇2ψ1) − Λ1

∂2

∂s∂x
(R0

TcT1 −RS1S11 −RS2S21)

− Λ2
∂

∂s
(∇2ψ1) −

(

1 + Λ1
∂

∂t

)( 1

PrD

∂

∂s
(∇2ψ1) +RT2

∂T1

∂x

)

.

The inhomogeneous terms appearing in Eq. (50) are evaluated using the first and second order
solutions, and the explicit expressions are given in Appendix A. The third order equations have
the solutions

ψ3 = A3e
iωt sin(αx) sin(πz) + · · · , (51)

T3 = B3e
iωt cos(αx) sin(πz) + · · · , (52)

S13 = C3e
iωt cos(αx) sin(πz) + · · · , (53)

S23 = D3e
iωt cos(αx) sin(πz) + · · · . (54)

Applying the solvability condition to Eq. (50) yields the following cubic Landau equation:

γ
dB1

ds
=
α2

δ2
(1 + iωΛ1)∆1RT2B1 − η|B1|

2B1, (55)

where

γ =A+ Λ2∆1(δ
2 + iωA) −

α2Λ1∆1

δ2
R0

Tc +
∆1(1 + 2iωΛ1)(δ

2 + iωA)

PrD

−
(α2∆1(1 + iωΛ1)

δ2(τ1δ2 + iω)2
RS1 +

α2∆1(1 + iωΛ1)

δ2(τ2δ2 + iω)2
RS2 −

α2∆1Λ1

δ2(τ1δ2 + iω)
RS1

)

(δ2 + iωA)

+
α2∆1Λ1

δ2
(δ2 + iωA)

(τ2δ2 + iω)
RS2 +

α2A∆1

δ2
(1 + iωΛ1)

(τ1δ2 + iω)
RS1 +

α2A∆1

δ2
(1 + iωΛ1)

(τ2δ2 + iω)
RS2, (56)

η =
α2∆1

δ2
(1 + iωΛ1)(δ

2 + iωA)

(τ1δ2 + iω)

(

∆2 −
(δ4 + ω2A2)(3π2δ2τ1 + iω(δ2 − π2))

4(τ2
1 δ

4 + ω2)(2π2τ1 + iω)

)

RS1

+
α2∆1

δ2
(1 + iωΛ1)(δ

2 + iωA)

(τ2δ2 + iω)

(

∆2 −
(δ4 + ω2A2)(3π2δ2τ2 + iω(δ2 − π2))

4(τ2
2 δ

4 + ω2)(2π2τ2 + iω)

)

RS2

+ (δ2 + iωA)∆2 (57)

with

∆1 =
PrD

PrD(1 + iωΛ2) + iω(1 + iωΛ1)
, ∆2 =

3π2δ2 + iωA(δ2 + π2)

8π2 + 4iωA
.

Writing B1 in the phase-amplitude form,

B1 = |B1|e
iθ, (58)

and substituting this into Eq. (55), we get the following expressions for the amplitude |B1|:

d|B1|
2

ds
= 2RT2pr|B1|

2 − 2lr|B1|
4, (59)

d(ph(B1))

ds
= RT2pi − li|B1|

2, (60)
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where (α
2

δ2 (1 + iωΛ1))∆1γ
−1 = pr + ipi, γ

−1η = lr + ili, and ph(·) represents the phase shift.
The magnitude and direction of the periodic convective solution and the frequency shift are
obtained in Eq. (55). Our curiosity is in the direction of the bifurcation, which is easily shown
to be dependent on the sign of the quantity,

Q =
lr
pr
. (61)

If Q is positive, the bifurcation is supercritical and stable, and it is subcritical and unstable if
Q is negative. For this case, the time and area-averaged thermal Nusselt number (NuT) and
Solute Nusselt numbers (NuS1, NuS2) are determined, and they are given by

NuT = 1 +
δ2

2

pr

lr
(RT −R0

Tc), (62)

NuSi = 1 +
δ2(δ4 + ω2A2)

2(δ4τ2
i

+ ω2)

pr

lr
(RT −R0

Tc), i = 1, 2. (63)

5 Results and discussion

Both linear instability and weakly nonlinear stability of an initially quiescent triply diffusive
Oldroyd-B viscoelastic fluid-saturated porous layer are investigated. There are seven nondimen-
sional parameters PrD,Λ1,Λ2, τ1, τ2, RS1, and RS2, which influence the stability characteristics
of the system, and the thermal Darcy-Rayleigh number is taken as a free parameter. The results
are presented for a wide range of the known physical parameters. The value of PrD is allowed
to vary from 10 to 200 (see Ref. [39]). The viscoelastic parameters Λ1 and Λ2 are chosen to
be either greater or less than unity[40]. In particular, the results are also presented for the
case of low-density lipoproteins, high-density lipoproteins and triglycerides system for which
the diffusion coefficients are, respectively[41], κT = 0.35× 10−3 cm2/s, κS1 = 0.46× 10−4 cm2/s,
and κS2 = 0.53 × 10−4 cm2/s. The presence of a third diffusing component supports some
unusual dynamical behaviours which are not observed in the study of single/double diffusive
viscoelastic fluid systems. Some novel results have been delineated by comparing the linear
instability characteristics of Oldroyd-B, Maxwell, and Newtonian fluids as particular cases.
5.1 Neutral stability curves

The neutral stability curves in (α,R0
T) and (α, ω2) planes for different values of the strain

retardation parameter Λ2, the Darcy-Prandtl number PrD, and the stress relaxation parameter
Λ1 are displayed in Figs. 2–5. It is observed that there exists only one positive value of ω2 for
the parametric values chosen in these figures. The oscillatory neutral stability curves in the
(α,R0

T) plane show an upward concave shape, and the region below each such curve confines
to the region of stability, while the region above it corresponds to instability. It is seen that
the oscillatory convection occurs even if the ratio of diffusivities is greater than unity, and a
reverse result is noticed compared with double diffusive fluid systems (see Fig. 3(a)). Besides,
increasing Λ2 is to increase the value of R0

T, indicating that its effect is to enhance the region of
stability and also to suppress the frequency of oscillations (see Figs. 2(b) and 3(b)). Moreover,
increasing PrD (see Fig. 4(a)) and Λ1 (see Fig. 5(a)) is to decrease the region of stability with
the tendency of increasing the frequency of oscillations (see Figs. 4(b) and 5(b)). The results
shown in Figs. 6(a) and 6(b) for the case of low-density lipoproteins, high-density lipoproteins
and triglycerides system exhibit a similar kind of behaviour as seen in Figs. 2(a) and 2(b).
The stabilizing/destabilizing influence of an additional diffusing component on neutral stability
curves is displayed in Fig. 7(a) by taking positive/negative values of RS1, respectively, for PrD =
50, A = 2,Λ1 = 0.3,Λ2 = 0.2, τ1 = 0.3, τ2 = 0.4, and RS2 = 100. It is observed that the region
of stability increases when the diffusing component is more stabilizing, and also its effect is to
suppress the frequency of oscillations (see Fig. 7(b)).
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Fig. 2 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of Λ2 when
PrD = 100, A = 1.78, τ1 = 0.208, τ2 = 0.244, Λ1 = 0.5, RS1 = −20, and RS2 = 58

Fig. 3 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of Λ2 when
PrD = 250, A = 2, τ1 = 1.2, τ2 = 1.5, Λ1 = 0.6, RS1 = −40, and RS2 = 55

Fig. 4 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of PrD when
A = 2, Λ1 = 0.6, Λ2 = 0.4, τ1 = 1.2, τ2 = 1.5, RS1 = −40, and RS2 = 55
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Fig. 5 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of Λ1 when
PrD = 200, A = 1.78, τ1 = 0.208, τ2 = 0.244, Λ2 = 0.2, RS1 = −20, and RS2 = 58

Fig. 6 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of Λ2 when
PrD = 100, A = 1, τ1 = 0.13, τ2 = 0.15, Λ1 = 0.5, RS1 = −20, and RS2 = 58

Fig. 7 Neutral stability curves of (a) (α,R0

T) and (b) (α, ω2) planes for different values of RS1 when
PrD = 50, A = 2, Λ1 = 0.3, Λ2 = 0.2, τ1 = 0.3, τ2 = 0.4, and RS2 = 100

5.2 Disconnected oscillatory neutral curves
The existence of disconnected oscillatory neutral curves under certain conditions is an inte-

gral feature of triple diffusive fluid systems which has an important consequence on the linear
instability of the system. Such a situation can be obtained by locating the bifurcation points.
For this, Eq. (33) has to be solved for any chosen parametric values, which shows that there is
a possibility of getting either zero or one/two/three bifurcation points.
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The viscoelastic parameters Λ1 and Λ2 can be greater than unity for many polymeric fluids,
and it is interesting to discern the evolution of neutral stability curves for this case as well.
Figures 8(a)–8(f) exhibit evolutions of neutral stability curves for various positive values of
RS2 ranging from 66.71 to 68 for PrD = 50, A = 1.7,Λ1 = 1.32,Λ2 = 1.2 (Λ1,Λ2 > 1), τ1 =
0.191, τ2 = 0.264, and RS1 = −30. Figure 8(a) shows that the oscillatory neutral curve is joined
to the stationary neutral curve at two bifurcation points. As the value ofRS2 goes on decreasing,
the bifurcation points move closer together and eventually detach from the stationary neutral

Fig. 8 Evolutions of neutral stability curves with PrD = 50, A = 1.7, Λ1 = 1.32, Λ2 = 1.2, τ1 = 0.191,
τ2 = 0.264, and RS1 = −30
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curve (see Figs. 8(b) and 8(c)). Figures 8(b) and 8(c) also show that the left side upper maximum
of the closed oscillatory neutral curve lies above the minimum of the steady neutral curve,
suggesting that the instability of the system can be conveniently analyzed by a single critical
value of RT. Figure 8(d) shows the complete detachment of the closed convex oscillatory neutral
curve from the stationary curve with further decrease in the value ofRS2, and whenRS2 = 66.75,
the oscillatory curve lies well below the minimum of the stationary neutral curve as shown in
Fig. 8(e). Figure 8(e) clearly demonstrates that three critical values of RT are needed to identify
the instability criteria instead of the usual single value. It is seen that the layer is linearly stable
if RT < RT1 and RT2 < RT < RT3, while for RT1 < RT < RT2 and RT > RT3, the layer
is unstable. The closed oscillatory neutral curve finally collapses to a point and disappears
leaving only the stationary neutral curve when RS2 = 66.71. It is important to note here that
the closed disconnected oscillatory neutral curve is not perfectly heart-shaped, a result that is in
contradiction to the Newtonian fluid case[31] in which the disconnected oscillatory neutral curve
has two extrema at the same thermal Darcy-Rayleigh number (i.e., quasiperiodic bifurcation).
Thus, we note that this degeneracy is broken due to the presence of viscoelastic effects which
contribute in an opposite way on the onset of oscillatory convection.

The critical thermal Darcy-Rayleigh numbers depicting the multivalued region are exhibited
in Fig. 9 for the case considered in Fig. 8. To the right of the point A of the infinite slope
(RS2 > 67.075), oscillatory instability first occurs at a lower value of RTc than the stationary
instability, and there is a single value of RTc. To the left of the point B (RS2 < 66.724 2),
instability occurs as the stationary convection, and oscillatory instability does not occur, and
again there is one value of RTc. However, for the finite range of values of RS2 lying between
the vertical lines passing through the points A and B, three critical values of the thermal
Darcy-Rayleigh number are needed to delineate the linear instability criteria.

≠

Fig. 9 Stabilities boundary for PrD = 50, A = 1.7, Λ1 = 1.32, Λ2 = 1.2, τ1 = 0.191, τ2 = 0.264, and
RS1 = −30

Figures 10(a)–10(f) represent evolutions of neutral curves for different values of RS2 when
PrD = 30, A = 1.85,Λ1 = 0.273,Λ2 = 0.173 (Λ1,Λ2 < 1), τ1 = 0.19, τ2 = 0.273, and RS1 =
−22.50. The behaviour of neutral curves is similar to that observed in the previous case, but
the range of RS2 differs in which the disconnected oscillatory neutral curves occur. In this case,
the closed convex oscillatory neutral curve goes on dwindling and eventually disappears leaving
only the stationary neutral curve at RS2 = 55.3 (see Fig. 10(f)). Moreover, in this case, the
disconnected oscillatory neutral curve is found to be not heart-shaped. The stability boundaries
correspond to this case, as shown in Fig. 11.
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Fig. 10 Evolutions of neutral stability curves with PrD = 30, A = 1.85, Λ1 = 0.273, Λ2 = 0.173,
τ1 = 0.19, τ2 = 0.273, and RS1 = −22.50

It is intriguing to note that the above observed phenomena also carry over to the case of low-
density lipoproteins, high-density lipoproteins and triglycerides system as well, and the same
phenomenon is evident from Figs. 12(a)–12(f). The results presented here are for PrD = 10, A =
1,Λ1 = 0.2,Λ2 = 0.1 (Λ1,Λ2 < 1), τ1 = 0.13, τ2 = 0.15, and RS1 = −10. These figures indicate
that the results are similar to those for the other transport property ratios. From Fig. 12(e), we
observe that, the closed convex oscillatory neutral curve has become topologically detached from
the stationary neutral curve, demonstrating the requirement of three values of critical thermal
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≠

Fig. 11 Stability boundaries for PrD = 30, A = 1.85, Λ1 = 0.273, Λ2 = 0.173, τ1 = 0.19, τ2 = 0.273,
and RS1 = −22.50

Darcy-Rayleigh number to specify the linear instability criteria under certain conditions. Fi-
nally, it is seen that the closed convex oscillatory neutral curve collapses to a point and vanishes,
leaving only the stationary neutral curve. The corresponding stability boundaries are presented
in Fig. 13.

Figures 14 and 15 accomplish the sensitivity of viscoelastic parameters Λ1 and Λ2 on the
instability characteristics of the system, respectively. Figures 14(a) and 15(a) suggest three
values of critical thermal Darcy-Rayleigh number to identify the instability of the system.
However, a minor variation in the value of either Λ1 (see Fig. 14(b)) or Λ2 (see Fig. 15(b))
completely changes the mode of instability itself. That is to say, the mode of instability switches
over from oscillatory to stationary, indicating the adequacy of a single critical thermal Darcy-
Rayleigh number to specify the linear instability criteria.

The similarities and differences of the predictions of the two viscoelastic models as well
as the Newtonian fluid are enunciated in Figs. 16(a)–16(c). Figures 16(a), 16(b), and 16(c),
respectively, display the nature of neutral stability curves for Oldroyd-B (Λ1 = 0.15,Λ2 = 0.1),
Maxwell (Λ1 = 0.15,Λ2 = 0) and Newtonian (Λ1 = Λ2 = 0) fluids with PrD = 30, A = 2, τ1 =
0.201, τ2 = 0.249, RS1 = −23, and RS2 = 48.5. In the case of an Oldroyd-B fluid, three critical
thermal Darcy-Rayleigh numbers are required to specify the linear instability criteria, while
in the case of remaining two types of fluids, a single critical thermal Darcy-Rayleigh number
is enough to describe the linear instability. Moreover, the onset of instability ceases to be
oscillatory in the case of Newtonian fluids, and it is seen that the instability sets in as only
stationary convection.

5.3 Critical condition

Analyzing the behaviour of critical thermal Darcy-Rayleigh number RTc and the corre-
sponding critical frequency of oscillations ωc for various physical parameters is important as it
provides the crucial information on the linear instability of the system. The variations of RTc

and ωc as a function of Λ2 are shown in Figs. 17(a) and 17(b), respectively, for different values
of Λ1 when A = 1.78, τ1 = 0.208, τ2 = 0.244, RS1 = −20, and RS2 = 30. Figure 17(a) clearly
exposes the dual effect of elasticity parameters on the nature of onset of instability. It is seen
that, for a fixed value of Λ1, there exists a threshold value of Λ2 below which the instability first
sets in as oscillatory convection and beyond which stationary convection is preferred. Moreover,
the threshold value of Λ2 increases with increasing Λ1. The onset of oscillatory convection gets
delayed with increasing Λ2 while the trend gets reversed with increasing Λ1. This is because the
increase in Λ2 amounts to the increase in the time taken by the fluid element to respond to the
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Fig. 12 Evolutions of neutral stability curves with PrD = 10, A = 1, Λ1 = 0.2, Λ2 = 0.1, τ1 = 0.13,
τ2 = 0.15, and RS1 = −10

applied stress. That is, during the growth of the retardation parameter, the effect of friction
will be higher, and as a result higher values of RTc are needed to instil instability on the system
with increasing Λ2. Whereas the increase in Λ1 amounts to allowing the applied stress to act
for a longer time on the fluid element which results in lesser elastic memory of the fluid. In fact,
the increase of relaxation ceases the stickiness of the fluid, and hence the effect of friction will
be lesser so that the convection sets in at lower values of RTc with increasing Λ1. The opposite
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≠

Fig. 13 Stability boundaries for PrD = 10, A = 1, Λ1 = 0.2, Λ2 = 0.1, τ1 = 0.13, τ2 = 0.15, and
RS1 = −10

≠

Fig. 14 Variations of the relaxation parameter Λ1 on evolutions of neutral stability curves for PrD =
25, A = 2, Λ2 = 0.2, τ1 = 0.2, τ2 = 0.258 8, RS1 = −22.8, and RS2 = 54.4

≠

Fig. 15 Variations of the retardation parameter Λ2 on evolutions of neutral stability curves for PrD =
30, A = 1.85, Λ1 = 0.273, τ1 = 0.19, τ2 = 0.273, RS1 = −22.50, and RS2 = 55.33
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-

≠

≠

Fig. 16 Instability characteristics in the (α,RT) plane for (a) Oldroyd-B fluid, Λ1 = 0.15,Λ2 = 0.1,
(b) Maxwell fluid, Λ1 = 0.15,Λ2 = 0, and (c) Newtonian fluid, Λ1 = Λ2 = 0, when PrD = 30,
A = 2, τ1 = 0.201, τ2 = 0.249, RS1 = −23, and RS2 = 48.5

Fig. 17 Variations of (a) RTc and (b) ωc with Λ2 for different values of Λ1 when PrD = 200, A = 1.78,
τ1 = 0.208, τ2 = 0.244, RS1 = −20, and RS2 = 30

behaviour of elasticity parameters on the onset of oscillatory convection is also seen through
the variation in ωc shown in Fig. 17(b). From this figure, it is observed that ωc increases with
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increasing Λ1 due to an increase in the elasticity of the fluid, and an opposite behaviour could
be seen with increasing Λ2. Thus, it is evident that the increase in the overstability vibration is
to advance the onset of oscillatory convection. In Fig. 18, we display the effect of Darcy-Prandtl
number PrD on the critical thermal Darcy-Rayleigh number RTc. We observe that the effect of
increasing PrD is to increase the range of threshold value of Λ2 at which the instability switches
over from oscillatory to stationary and also to hasten the onset of oscillatory convection.

Fig. 18 Variations of RTc with Λ2 for different values of PrD when A = 1.78, Λ1 = 0.6, τ1 = 0.208,
τ2 = 0.244, RS1 = −20, and RS2 = 30

It is possible to estimate RTc for both stationary and oscillatory convections which coin-
cide for some parametric values, and as a result, a codimension-two bifurcation occurs. This
behaviour is illustrated in Fig. 19 on the (Λ2/Λ1,Λ1) plane for different known values of PrD
obtained from Eqs. (26) and (28). In the figure, each curve locates the boundary separating
stationary and oscillatory solution regions. For fixed values of Λ2/Λ1 and PrD, there exists
a value of Λ1 = Λ∗

1, where RS
Tc = R0

Tc. The system is unstable under oscillatory convection
in the region above each curve, and below the curve, the system is unstable under stationary
convection. For a fixed value of Λ2/Λ1, the value of Λ1 at which a codimension-two bifurcation
occurs decreases with increasing PrD.

Fig. 19 Bifurcations of stationary and oscillatory solutions in the viscoelastic parameter plane for
different values of PrD when A = 1, τ1 = 0.2, τ2 = 0.3, RS1 = −140, and RS2 = 223

5.4 Oscillatory nonlinear stability
The stability of oscillatory bifurcating solutions is analyzed by deriving a cubic Landau

equation. The nature of oscillatory bifurcation can be determined from the sign of Q, and
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the point at which Q changes the sign is termed as the point. Figures 20–22 represent the
computed values of Q as a function of RS2 for different values of physical parameters, namely,
PrD, RS1,Λ1,Λ2, τ1, and τ2. These figures demonstrate the possibility of subcritical oscillatory
bifurcation for a range of parametric values, and indicate the occurrence of instability before
the linear threshold is reached. This is expected, because the linear instability analysis only
provides a sufficient condition for instability. Besides, the tricritical point is shifted towards
higher values of RS2 with increasing Λ1, RS1, and τ2, while an opposite trend could be seen
with increasing PrD,Λ2, and τ1.

Fig. 20 Variations of Q as a function of RS2 for different values of PrD and RS1 when A = 1,
Λ1 = 1.2, Λ2 = 1, τ1 = 0.8, and τ2 = 1.2

Fig. 21 Variations of Q as a function of RS2 for different values of Λ1 and Λ2 when A = 1, PrD = 120,
τ1 = 0.8, τ2 = 1.2, and RS1 = 50

5.5 Heat and mass transport

Heat and mass transfer are measured through thermal and solute Nusselt numbers. The
thermal Nusselt number (NuT) and solute Nusselt numbers (NuS1, NuS2) are displayed as
a function of RT for different values of PrD,Λ1, and Λ2 in Figs. 23(a), 23(b), and 23(c),
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Fig. 22 Variations of Q as a function of RS2 for different values of τ1 and τ2 when A = 1, PrD = 120,
Λ1 = 1.2, Λ2 = 1, and RS1 = 50

Fig. 23 Time and area-averaged Nusselt numbers NuT (solid lines), NuS1 (dashed lines), and NuS2

(dotted lines) for different values of PrD, Λ1, and Λ2 when A = 2, τ1 = 0.2, τ2 = 1.0,
RS1 = 50, and RS2 = −50 (color online)
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respectively. The increase in the value of Λ1 is to increase the heat and mass transfer char-
acteristics of oscillatory convection, whereas the increase in Λ2 and PrD exhibits an opposite
kind of behaviour. This may be attributed to the fact that the increase in Λ1 is to increase
the overstability vibration (see Figs. 5(b) and 17(b)), and consequently, its effect is to enhance
the heat and mass transfer, while the increase in Λ2 is to suppress the heat and mass transfer
because their effect is to decrease the overstability vibration (see Figs. 3(b) and 17(b)).

6 Conclusions

The triple diffusive convection in an Oldroyd-B fluid-saturated porous medium is investi-
gated. By performing the linear instability analysis, the condition for the onset of stationary
and oscillatory convection is established. It is found that the oscillatory convection occurs even
if the ratio of diffusivities is greater than unity. Under certain conditions, disconnected closed
convex oscillatory neutral curves are found to occur, indicating the requirement of three critical
thermal Darcy-Rayleigh numbers to specify the linear instability criteria instead of the usual
single value. This result is in contradiction to the observed phenomenon for Newtonian fluids
wherein the disconnected oscillatory neutral curve is found to be perfectly heart-shaped (i.e.,
quasiperiodic bifurcation). The effect of increasing retardation parameter is to delay the onset
of oscillatory convection, while the trend gets reversed with the increasing relaxation param-
eter. The value of retardation parameter beyond which the instability sets in as oscillatory
convection increases with the increasing relaxation parameter as well as the Darcy-Prandtl
number. The instability characteristics of the system analyzed under the same parametric val-
ues for Oldroyd-B, Maxwell, and Newtonian fluids are found to be qualitatively different. A
perturbation method is used to perform a weakly nonlinear stability analysis, and subcritical
bifurcation is found to be possible depending on the choice of physical parameters. Also, the
increase in the value of the relaxation parameter is to enhance the time and area-averaged
heat and mass transfer, while the increase in the retardation parameter and the Darcy-Prandtl
number exhibits an opposite kind of performance.
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Appendix A

The inhomogeneous terms appearing in the third order equations are calculated using the first and
second order solutions,

Ω =
““

δ
2Λ2 +

δ2(1 + 2iωΛ1)

PrD

”dA1

ds
+ α(Λ1R

0

Tc + (1 + iωΛ1)RT2)
dB1

ds

”

eiωt sin(αx) sin(πz)

−
“

αΛ1RS1

dC1

ds
+ αΛ1RS2

dD1

ds

”

eiωt sin(αx) sin(πz) + · · · ,

A
∂T1

∂s
+ J(ψ1, T2) = −π

2
α

2

“ (A1B1 + A1B1)A1

8π2
+

B1A1A1

(8π2 + 4iAω)

”

eiωt cos(αx) sin(πz) + · · · ,

∂S11

∂s
+ J(ψ1, S12) = −π

2
α

2

“ (A1C1 + A1C1)A1

8π2τ1
+

C1A1A1

(8π2τ1 + 4iω)

”

eiωt cos(αx) sin(πz) + · · · ,

∂S21

∂s
+ J(ψ1, S22) = −π

2
α

2

“ (A1D1 + A1D1)A1

8π2τ2
+

D1A1A1

(8π2τ2 + 4iω)

”

eiωt cos(αx) sin(πz) + · · · .


