
ar
X

iv
:1

90
2.

11
04

7v
1

 [
cs

.D
S]

 2
8

Fe
b

20
19

Ratio-Balanced Maximum Flows

Hannaneh Akrami∗ Kurt Mehlhorn† Tommy Odland‡

March 1, 2019

Abstract

When a loan is approved for a person or company, the bank is subject to credit risk ; the risk that

the lender defaults. To mitigate this risk, a bank will require some form of security, which will be

collected if the lender defaults. Accounts can be secured by several securities and a security can be

used for several accounts. The goal is to fractionally assign the securities to the accounts so as to

balance the risk.

This situation can be modelled by a bipartite graph. We have a set S of securities and a set A of

accounts. Each security has a value vi and each account has an exposure ej . If a security i can be

used to secure an account j, we have an edge from i to j. Let fij be part of security i’s value used

to secure account j. We are searching for a maximum flow that send at most vi units out of node

i ∈ S and at most ej units into node j ∈ A. Then sj = ej −
∑

i
fij is the unsecured part of account

j. We are searching for the maximum flow that minimizes
∑

j
s2j/ej .

1 Introduction

When a loan is approved for a person or company, the bank is subject to credit risk ; the risk that the
lender defaults. To mitigate this risk, a bank will require some form of security, which will be collected
if the lender defaults. The bank opens a financial account for the loan, and one or more securities may
be connected to it. It is also possible that a security object is connected to more than one account.
Many-to-many relationships between securities and accounts rarely occur in the private market, but in
the corporate market they are not uncommon.

We can model this situation by a bipartite graph. We have a set S of securities and a set A of
accounts. Each security has a value vi and each account has an exposure ej. If a security i can be used
to secure an account j, we have an edge from i to j. Let E be the set of edges. The question is then
how much of security i’s value should be used to secure account j. Let us use fij to denote this value.
Clearly, we cannot use a security to more than its value and we do not want to secure an account to
more than its amount, i.e.,1

∑

j

fij ≤ vi for all securities i ∈ S (1)

∑

i

fij ≤ ej for all accounts j ∈ A. (2)

The unsecured part of the accounts is then
∑

j∈A(ej −
∑

i fij) =
∑

j ej −
∑

ij fij . Clearly, we want to
make the unsecured part as small as possible, i.e., we want

∑

ij

fij to be maximum. (3)

In other words, we want a maximum flow from securities to accounts obeying the capacity constraints (1)
and (2).

∗Sharif University of Technology, Iran
†Max Planck Institute for Informatics, Germany
‡Sparebanken Vest, Norway
1All summations (except if a summation range is explicitly specified) with summation index i are over i ∈ S, all

summations with summation index j are over j ∈ A and all summations with summation indices i, j are over ij ∈ E.

1

http://arxiv.org/abs/1902.11047v1

The surplus (unsecured part) of an account j is equal to sj = ej −
∑

i fij and the unsecured fraction
or risk ratio of an account j is equal to rj = sj/ej . It is desirable that all accounts are secured to the
same fraction as much as possible. Formally, if security i is used for account j (fij > 0) and could be
used for account ℓ (iℓ ∈ E), then the unsecured fraction of account ℓ is at most the unsecured fraction
of account j (rℓ ≤ rj). Otherwise, we could divert some of the flow fij onto the edge iℓ and make the
secured fractions more equal. Formally,

if fij > 0 and iℓ ∈ E then rj ≥ rℓ. (4)

We have now defined the ratio-balanced maximum flow problem: among the maximum flows satisfying
the capacity constraints (1) and (2), find the one that satisfies the ratio-constraint (4). The following
example illustrates the concept.

v1 = 3 e1 = 4, s1 = 4− 3

v2 = 3 e2 = 6, s2 = 6− 4

v3 = 5 e3 = 6, s3 = 6− 4

3

3

0

4

1

In the ratio-balanced maximum flow f11 = 3, f21 = 0, f22 = 3, f32 = 1 and f33 = 4, and the ratios are
r1 = 1/4 and r2 = r3 = 1/3.

A related problem is to compute the flow that minimizes the squared 2-norm
∑

j s
2
j of the unsecured

parts. This problem is known as balanced flows [DPSV08] and can be solved in polynomial time. The
papers [DPSV08, DM16] suggested to us that ratio-balanced flows can be computed efficiently.

This paper is structured as follows. In Section 2, we give an alternative characterization for ratio-
balanced maximum flows and show that they are the flows minimizing

∑

j r
2
j ej subject to the capacity

constraints (1) and (2). In Section 3 we give a combinatorial algorithm and show that a ratio-balanced
flow can be computed by at most n log(nM) maximum flow computation. This assumes that all values
and exposures are integers bounded by M . In Section 4 we give a quadratic program for ratio-balanced
flows and in Section 5 we discuss generalizations.

2 Alternative Characterization

We call a flow minimizing
∑

j r
2
j ej an MWSR (minimum weighted sum of squared risk ratios) flow. Let

f and g be two flows. We call f and g equivalent if the risk ratios of all accounts with respect to f and
g are equal, i.e., for all j ∈ A, rfj = (ej −

∑

i fij)/ej = (ej −
∑

i gij)/ej = rgj .

Theorem 1. A flow f is a ratio-balanced maximum flow if and only if it is MWSR. All ratio-balanced
flows are equivalent.

Proof. We first show that an MWSR flow is maximum and satisfies the ratio-constraint (4). Thus an
MWSR flow is ratio-balanced. We then go on to show that any two ratio-balanced flows are equivalent.

Claim 1. An MWSR flow subject to the capacity constraints is a maximum flow.

Proof. Assume otherwise and let f be an MWSR flow. If f is not a maximum flow then there is an
augmenting path with respect to it, i.e., a sequence i1, j1, i2, j2, . . . , ik, jk such that iℓ ∈ S and jℓ ∈ A for
all ℓ,

∑

j∈δ(i1)
fi1j < vi1 ,

∑

i∈δ(jk)
fijk < ejk and fjℓiℓ+1

> 0 for all ℓ. We increase the flow on all edges

(iℓ, jℓ) by a small amount, decrease the flow on the edges (jℓ, iℓ+1) by the same amount. We obtain a
flow that obeys the capacity constraints and for which rjk is smaller.

Claim 2. An MWSR flow subject to the capacity constraints satisfies the ratio-constraint (4).

2

Proof. The derivative of the objective with respect to fij is equal to

−2ejrj
1

ej
= −2rj.

Therefore decreasing the flow on (i, j) by an infinitesimal amount ε and increasing the flow on (i, ℓ) by
the same amount, will change the objective by

(2rj − 2rℓ)ε = 2(rj − rℓ)ε.

If rj < rℓ, the change would be negative, a contradiction.

We have shown that a MWSR flow is ratio-balanced. Now we prove that all ratio-balanced flows are
equivalent. We may assume that every security node can be used for some account. Otherwise, we may
simply remove the security. Let f and g be two ratio-balanced flows.

Our proof is by induction on the number of nodes in S. If |S| = 0 then f and g are equivalent.
Assume |S| > 0 and for every graph in which the number of security nodes is less than |S|, f and g are

equivalent. For any j ∈ A, let rfj and rgj be the risk-ratio of node j under f and g respectively. For any
j ∈ A and i ∈ S, let fij and gij be the flow from i to j under f and g respectively.

Without loss of generality we assume that the maximum risk ratio under the flow f is no smaller than
the maximum risk ratio under the flow g, i.e., R := maxj r

f
j ≥ maxj r

g
j .

If R = 0 then rfj = rgj = 0 for all j ∈ A and f and g are equivalent.

Now assume that R > 0. Let A′ = {j; rfj = R} be the least secured nodes under f . Let S′ be the
set of nodes is S which send positive flow to nodes in A′ under f . Since f is ratio-balanced, there is no
edge from S\S′ to nodes in A′ and fij = 0 for i ∈ S′ and j ∈ A \ A′. Moreover, since any security node

i ∈ S′ is connected to a j such that rfj = R > 0,
∑

j fij = vi. Otherwise, more flow can be sent through
ij contradicting f being a maximum flow.

With respect to f , the total outflow of the nodes in S′ is equal to the total inflow of the nodes in A′:

∑

i∈S′

vi = (1−R)
∑

j∈A′

ej .

With respect to g, the total inflow of the nodes in A′ is at most the total outflow of the nodes in S′

(there might be flow from S′ to A \A′):

∑

j∈A′

(1 − rgj)ej ≤
∑

i∈S′

vi.

Therefore,

(1−R)
∑

j∈A′

ej ≥
∑

j∈A′

(1− rgj)ej

and hence

∑

j∈A′

rgj · ej ≥
∑

j∈A′

R · ej.

By definition of R we have R ≥ rgj that for all j ∈ A. So for every j ∈ A′, rgj = R and also

∑

j∈A′

(1 − rgj)ej =
∑

i∈S′

vi,

which means that also in g, all flow from S′ goes into A′.
Now remove A′ ∪ S′ from the graph. The number of security nodes is reduced and according to the

induction assumption, f and g are equivalent in the reduced graph.

3

3 Combinatorial Algorithm

We now give the algorithm for computing a ratio-balanced flow f . The algorithm works in phases. In
each phase, it finds a maximum flow and subsets of S and A. We denote the flow determined in the k-th
phase by f (k) and the subsets by S′

k and A′
k. The flow f agrees with f (k) on all edges from S′

k to A′
k

and has flow zero on all edges from S′
k to A \ ∪i≤kA

′
i.

Let λ be a rational number in [0, 1] and consider the following flow problem Pλ. We add a source
node s and an edge (s, i) of capacity vi for every i ∈ S. We add a sink node t and an edge (j, t) of
capacity λej for every j ∈ A. We set the capacity to +∞ for all edges from S to A.

Let λ1 be the maximum λ such that Pλ has a feasible solution. We discuss below how to find λ1.
Consider the residual network with respect to the maximum flow f (1) in Pλ1 and let S′

1 and A′
1 be the

nodes that cannot be reached from s by a path in the residual network. Remove S′
1 and A′

1 from the
graph and recurse until either S or A is empty.

Theorem 2. The flow f is a maximum ratio-balanced flow.

Proof. Let Sk and Ak be the set of remaining securities and accounts in the beginning of k-th step
respectively; S1 = S and A1 = A. In the k-th phase, the flow network has vertices S \ ∪i<kS

′
i on the

S-side and vertices A \ ∪i<kA
′
i on the A-side. Let λk be the maximum λ such that Pλ has a feasible

solution in the k-th phase, let fk) be the maximum flow in the k-th phase and let S′
k ∈ Sk and A′

k ∈ Ak

be the nodes that cannot be reached from s by a path in the residual network with respect to f (k).

Clearly f
(k)
ij = 0 for i ∈ S′

k and j ∈ Ak \ A′
k and (i, j) 6∈ E for i ∈ Sk \ S′

k and j ∈ A′
k because of

non-reachability in the residual network.
Also for j ∈ Ak \ A′

k, the security ratio is larger than λk because the residual network certifies that
we can send more flow. Which means that if ℓ > k, λℓ > λk.

So if fij > 0 then there exists k such that i ∈ S′
k and j ∈ A′

k. There is no edge from i to S′
ℓ such that

ℓ < k and for any j ∈ S′
ℓ such that ℓ > k, fij = 0. Therefore, f satisfies the ratio-constraint (4).

Next we prove that f is a maximum flow.
If λk < 1, then for all i ∈ S′

k,
∑

j fij = vi. Otherwise i would be reachable from s.
Let h be the number of steps. If λh < 1, then the total flow under f is

∑

i∈S vi. The total flow in a
maximum flow cannot exceed this amount. So, f is a maximum flow.

Now assume that λh = 1. It means for every j ∈ A′
h,
∑

i fij = ej. Hence, the total flow in f is

∑

i/∈S′

h

vi +
∑

j∈A′

h

ej .

Now let the total flow in a maximum flow be F . Then

F =
∑

i∈S

∑

j∈A

Fij =
∑

i/∈S′

h

∑

j∈A

Fij +
∑

i∈S′

h

∑

j∈A

Fij ≤
∑

i/∈S′

h

vi +
∑

j∈A′

h

ej .

The last inequality holds because there is no edge from S′
h to A\A′

h. So any outflow from S′
h is inflow

for A′
h. Therefore, f is a maximum flow.

We next show how to find λi efficiently. For this we assume that the vi and ej are integers and use

M to the denote their maximum. For any j ∈ A, let rfj be the risk-ratio of node j under f .

Lemma 1. For every j ∈ A, rfj is a rational number with numerator and denominator bounded by nM .

Proof. If rfj = 0, the claim is obvious. So assume rfj > 0. Consider the k such that j ∈ A′
k. All flow into

the nodes in A′
k comes from the nodes in S′

k and the total flow from S′
k to A′

k is equal to
∑

i∈S′

k
vi. All

nodes in A′
k have the same risk-ratio. This ratio is equal to 1−

∑
i∈S′

k
vi

∑
ℓ∈A′

k
eℓ
.

Theorem 3. [Pap79] Let x be a fraction, both numerator and denominator of which are bounded by
M . Then x can be determined by O(log(M)) queries of form ”is x ≤ p/q?”, where p, q ≤ 2M , and
O(log(M)) arithmetic operations on integers of size not greater than 2M .

4

v1 = 8 e1 = 12

e2 = 8

v2 = 8 e3 = 16

x2

x1

x5

x4

x3 x =







x1

x2

x3

x4

x5







K =

(
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

)

V =
(
1 1 0 0 0
0 0 1 1 1

)

Figure 1: An example with three securities and two accounts.

Instead of finding λi, we find 1 − λi which is also a fraction with both numerator and denominator
bounded by nM . In order to answer each query, we check if P1−p/q has a feasible solution or not. If it
does, then λi ≥ 1− p/q which means 1− λi ≤ p/q. Otherwise, λi > 1− p/q or 1− λi > p/q.

We need to find at most n λ-values. For each one we need to answer log(nM) queries. Each query is
a maxflow-computation.

Theorem 4. Let the vi’s and ej’s be integer and let M be their maximum. A ratio-balanced flow can be
computed with n log(nM) maxflow-computations.

For balanced flows (definition given in the introduction), the number of maxflow-computations can be
reduced to a single parameterized flow computation [DM16]. The same improvement might be possible
here.

4 Solution by Formulation as a Quadratic Program

The task “minimize
∑

j ejr
2
j subject to (1) and (2)” is a quadratic program. As such it can be (approx-

imately) solved by any QP-package, e.g., CVXOPT[cvx]. For concreteness, we give the formulation as a
standard QP problem in the notation used in CVXOPT.

minimize
x

1

2
xTPx+ qTx

subject to Gx ≤ h (5)

Ax = b

We use 1 for the all-ones column vector and êj for the j-th unit vector. We number the edges of the
graph arbitrarily and use x for the vector of flows. The matrices K and V connect the flow variables to
the securities and accounts:

Kij =

{

1 if xj is incident to ei

0 else
Vij =

{

1 if xj is incident to vi

0 else

Figure 1 shows an example. We are now ready to formulate the objective function and the constraints
as a QP.

Lemma 2. In standard form, the exposure-weighted sum-of-squares error function can be written as
follows:

∑

j

ejr
2
j =

∑

j

(
ej − êTj Kx

)2

ej
=
∑

j

ej +
1

2
xT
(
2KT diag

(
(ej)

−1
)
K
)
x− 2 · 1Tx,

so that P = 2KT diag
(
(ej)

−1
)
K and q = −2 · 1 in Equation (5).

Proof. The goal is to write
∑

j ejr
2
j in the form 1

2x
TPx + qTx. To do so, we expand the square by

5

writing

∑

j

(ej)
−1
(
ej − êTj Kx

)2
=
∑

j

(ej)
−1
(
e2j − 2eTj ê

T
j Kx+ xTKT êj ê

T
j Kx

)

=
∑

j

ej −
n∑

j=1

2êTj Kx+ xTKT




∑

j

(ej)
−1êj ê

T
j



Kx

= −21T

︸ ︷︷ ︸

qT

x+ xT KT diag
(
(ej)

−1
)
K

︸ ︷︷ ︸
1
2P

x+
n∑

j=1

ej .

We used the fact that 1TK = 1T since
∑

iKij = 1 for every column j. The diagonal matrix diag(e−1
j)

has e−1
j in position (j, j).

In matrix notation, the constraints are −Ix ≤ 0 and V x ≤ v and Kx ≤ e.
For the example in Figure 1, the CVXOPT package solves the QP in 10 milliseconds and the algorithm

uses 5 iterations. The reported solution is

x = (x1, x2, x3, x4, x5) = (4.88, 3.12, 0.46, 0.43, 7.11) ,

which gives (almost) equal risk ratios

4.88 + 0.46

12
≈

3.12 + 0.43

8
≈

7.11

16
≈ 0.444.

5 Extensions

We discuss some extensions.

Over-Coverage: Some accounts will be fully covered, meaning that their rj ’s will be zero. Let A′ be
the set of accounts that are fully covered and let S′ be the securities sending flow to them. We restrict
the flow problem Pλ to these accounts and securities and then proceed as in Section 3. Let λ1 be the
maximum λ ≥ 1 such that Pλ has a feasible solution. Consider the residual network with respect to the
maximum flow f (1) in Pλ1 and let S′

1 and A′
1 be the nodes that cannot be reached from s by a path in

the residual network. Remove S′
1 and A′

1 from the graph and recurse until either S′ and A′ are empty. In
the example below, λ1 = 1, S′

1 = {1}, A′
1 = {1}, f11 = 1 and f12 = 0. Next, we have λ2 = 5, S′

2 = {2, 3},
A′

2 = 2, and f22 = 2 and f32 = 3.

v1 = 1 e1 = 1, λ1 = 1

v2 = 2

v3 = 3 e2 = 1, λ2 = 5

0

1

2

3

Limits to a Claim: An account might contractually only have claim to parts of the security value.
This is easily modeled by introducing an upper bound on the flow from a security to an account. The
QP-algorithm and the combinatorial algorithm can handle such bounds.

Priorities: In the real world, accounts are often arranged by their priority to a security object. If two
accounts have prioritized claims to a security object, the account with highest priority (lowest priority
number) gets its demand covered first. Remaining value goes to lower priority accounts. In the following

6

example, we use parenthesized superscripts to denote priorities; account 2 has a lower priority (higher
priority number) than account 3 on security 2. In other words, account 3 has “first rights.”

v1 = 20 e1 = 20

v2 = 20 e2 = 20

e3 = 5

x
(1)
2

x
(1)
1

x
(2)
3

x
(1)
4

Assume we have P different priority classes. The desired solution is a maximum flow on the edges of
priority 1. Subject to this, it should be a maximum flow on the edges of priority 2, and so on. Subject
to this, it should be a maximum flow on the edges of priority P . Subject to this, the flow should be
ratio-balanced.

In the example above, the desired solution is x = (17.5, 2.5, 15, 5). The flow on the edges of priority
1 is 25 and the flow on the edges of priority 2 is 15. Subject to this the flow balances the uncovered
fractions of accounts 1 and 2.

Frederic Dorn (Sparebanken Vest) suggested the use of minimum cost flows for modeling the priorities
in combination with the objective for a balanced flow. Let p = 1, 2, . . . , P be the priorities, let E(p) be
the set of edges with priority p and ǫ a small number. Consider now the following optimization problem,
which is a QP.

minimize
f

−
P∑

p=1

ǫp
∑

(i,j)∈E(p)

fij + ǫP+1
∑

j

ejr
2
j (6)

subject to f ≥ 0 and (1) and (2). The first term in the objective sends as much flow as possible through
the graph, but prioritizing first priority much stronger than second, the second much stronger than third,
and so forth. The second term states that everything else being equal, a ratio-balanced flow is preferable.

The combinatorial approach of Section 3 works too. We only have to replace the use of a maximum
flow algorithm by the use of a minimum cost flow algorithm which minimizes the linear part of the
objective in (6).

References

[cvx] CVXOPT: Python software for convex optimization.

[DM16] Omar Darwish and Kurt Mehlhorn. Improved Balanced Flow Computation Using Parametric
Flow. Information Processing Letters, pages 560–563, 2016.

[DPSV08] Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani. Market
equilibrium via a primal–dual algorithm for a convex program. J. ACM, 55(5):22:1–22:18,
November 2008.

[Pap79] Christos H. Papadimitriou. Efficient search for rationals. Information Processing Letters,
8(1):1 – 4, 1979.

7

