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ARTICLE INFO ABSTRACT

Keywords: Functional neuroimaging studies have led to understanding the brain as a collection of spatially segregated
Parcellation functional networks. It is thought that each of these networks is in turn composed of a set of distinct sub-regions
Resting state that together support each network's function. Considering the sub-regions to be an essential part of the brain's
;[I\g?olr cortex functional architecture, several strategies have been put forward that aim at identifying the functional sub-units of
Thalamus the brain by means of functional parcellations. Current parcellation strategies typically employ a bottom-up
Subcortex strategy, creating a parcellation by clustering smaller units. We propose a novel top-down parcellation strat-

egy, using time courses of instantaneous connectivity to subdivide an initial region of interest into sub-regions.
We use split-half reproducibility to choose the optimal number of sub-regions.

We apply our Instantaneous Connectivity Parcellation (ICP) strategy on high-quality resting-state FMRI data, and
demonstrate the ability to generate parcellations for thalamus, entorhinal cortex, motor cortex, and subcortex
including brainstem and striatum. We evaluate the subdivisions against available cytoarchitecture maps to show
that our parcellation strategy recovers biologically valid subdivisions that adhere to known cytoarchitectural

Entorhinal cortex

features.

1. Introduction

Macroscopically observable brain function is hypothesized to rely on
interactions within and between hierarchically organized sets of brain
regions (Bellec et al., 2006; Sporns, 2011). Within this framework,
smaller, functionally specialised units interact in the context of large-
scale networks that connect distant regions within the brain (Sporns,
2011). Such subunits are believed to follow topographic organisational
principles with representations at multiple scales within a full functional
hierarchy (Smith et al., 2012).

Support for this view on brain function comes from critical advances
in imaging neuroscience that exploit structural and functional connec-
tivity analyses. In order to enable inferences about the intrinsic organi-
sation of a functional network, connectivity analyses typically proceed by
defining a selection of regions of interest (ROIs) hypothesized to repre-
sent key area within the larger network under investigation.
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Understanding the structural and functional properties of these ROIs is
key to describe total network function, yet the selection of ROIs can
greatly influence the accuracy of the inferred network organisation
(Smith et al., 2011). Inaccurate ROI location or outlines will lead to a
mixing of signal from different sub-regions, yielding inaccurate charac-
terization of the underlying functional biology. Here we introduce a
novel, principled method for top-down in-vivo functional brain parcel-
lation and demonstrate that network organisation can be characterised in
terms of a hierarchy of functional sub-regions. Further, we demonstrate
that these sub-regions closely correspond to known subdivisions (e.g. on
the basis of cytoarchitectonics) across a number of model systems.
Current descriptions of the brain's functional architecture typically
start with the identification of a large number of (small) functional units,
regions or atoms (de Reus and van den Heuvel, 2013). Subsequently,
these regions are grouped together into larger networks, e.g., by means of
employing clustering approaches. As grouping can occur at multiple
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levels, the initially defined units will be combined into a multi-level
functional hierarchy. The idea of grouping smaller units into larger
networks is commonly referred to as a bottom-up parcellation strategy and
has been successfully demonstrated (e.g. on the basis of random parcel-
lation (Hagmann et al., 2008), k-means clustering (Craddock et al., 2012;
Thirion et al., 2014; van den Heuvel et al., 2008), or region growing
(Blumensath et al., 2013)). Alternatively, a decomposition strategy
incorporating independent component analysis (ICA; Beckmann, 2012;
Beckmann and Smith, 2004; Kiviniemi et al., 2009) can be used in
combination with a subsequent thresholding step (e.g. winner takes all
selection) to create a parcellation. This subsequent step is needed to
resolve any spatial overlap between components if a hard parcellation is
sought. Parcellations from such bottom-up strategies are fully dependent
on their initial definition of the smallest functional entities within their
parcellation. Ideally, these directly relate to valid neurobiological
quantities, such as functionally defined areas or cytoarchitectonically
homogeneous patches of cortex. In absence of such biological validity,
any inaccuracies or ambiguities in the initial parcellation can propagate
through the ensuing hierarchical characterisation of the brain's func-
tional organisation. Note, that in MRI data the smallest possible entities
are effectively individual voxels convolved with the spatial smoothing
kernel. Yet, single voxels have no inherent biological validity and might
therefore not be the ideal starting point for a parcellation.

Defining the elementary building blocks of a parcellation brings
substantial challenges. First, cortical areas of homogeneous function are
believed to vary in size by several orders of magnitude (Van Essen et al.,
2012a, b). Any parcellation strategy that gravitates towards areas of
uniform size such as ‘random parcellations’ (de Reus and van den Heuvel,
2013) will therefore inherently be inadequate to accurately model the
underlying biology. Second, while several areas of the primate brain are
clearly separable from adjacent areas in terms of their functional prop-
erties, other adjacent areas show more subtle differences (Van Essen
et al., 2012a, b). Both overlapping organisations (e.g. within the visual
system) and gradual transitions between functionally homogeneous
patches (e.g. within multimodal association cortices) remain a modelling
challenge for classic parcellation strategies and limit the granularity of
any population-level result. Finally, as a result of inter-subject variability
in the brain's functional and structural architecture, any ensuing regis-
tration inaccuracies will impose limitations on the size of the smallest
subunits that can robustly be detected at the population level, even in
light of advanced techniques for aligning multiple participants’ brains
(e.g. using multi-modal surface matching, Robinson et al., 2014). Jointly
these challenges complicate the question of size, locality, topography and
number of identifiable areas in existing brain parcellations (Thirion
et al., 2006).

In this work, we demonstrate a principled approach to define func-
tional parcellations in a top-down manner called Instantaneous Connec-
tivity Parcellation, or ICP. With ICP, we transform data within a ROI to
make it more sensitive to spatial differences in temporal dynamics within
that ROL To illustrate our approach we applied ICP to resting state data
available in the Human Connectome Project and 7T FMRI data of a
spatial navigation task available locally. We illustrate our approach by
deriving parcellations for several key brain areas, i.e., sensory-motor
cortex, subcortex (brainstem and striatum), thalamus, and entorhinal
cortex. To assess the biological validity of the obtained parcellations we
compare the obtained regions with histological atlases, a currently
available parcellation (Craddock et al., 2012), and parcellations obtained
by ICA without prior temporal unfolding using Dice's overlap
(Dice, 1945).

2. Material and methods
2.1. Data

To illustrate and evaluate ICP we used resting state data from two
groups of 100 subjects each of the Human Connectome Project (Van
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Essen et al., 2012a, b) as well as task data acquired at 7T (Navarro
Schroder et al., 2015). The publically available Human Connectome
Project data consists of a extensive list of MRI modalities as well as
behavioural measures. The resting state FMRI (R-FMRI) data consists of
two sessions, with two scans of fifteen minutes each, for a total of one
hour scanning time for each subject. A multiband protocol with a very
rapid TR of 720 ms resulted in a total of 4800 time points for each sub-
ject. This provides a large number of temporal degrees of freedom,
making it ideal for the exploitation of R-FMRI dynamics. Data quality was
further improved using an automated ICA-based denoising technique
called FSL-FIX, removing a wide range of artefacts (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). Two groups of subjects were used, the first
for dimension estimation, the second for the generation of the final
parcellation. The first group of subjects were selected semi-randomly
from the s500 release, for which the HCP subject ID's are available in
the Supplementary material. The second group was selected based on the
restricted access data to include only unrelated subjects, with equal
numbers of males and females, no QC issues, and identical software
versions. The HCP subject ID's for the second group are available
upon request.

The 7T dataset used for the entorhinal cortex included task FMRI data
collected for 26 participants (11 female, age 19-36, mean age 23), 4 of
which were excluded because of excessive movement. BOLD data were
acquired using a 3D EPI sequence and a 0.92 mm isotropic voxel size (TR
2.7s, TE 20 ms). During this experiment, participants performed different
variations of a spatial navigation task, designed to activate different
substructures of the entorhinal cortex. This enables us to demonstrate
that ICP is not limited to resting state data, and that it can identify
meaningful fine grained parcellations in small structures like the ento-
rhinal cortex. This data was collected as part of another study, for a more
detailed description we refer to Navarro Schroder et al., 2015.

2.2. Instantaneous Connectivity Parcellation

Our proposed parcellation strategy consists of multiple steps. First, to
provide a robust basis for the parcellation we start from an initial large-
scale ROI that is well grounded on prior anatomical or functional
knowledge, and ideally is selected in light of maximal population-level
reproducibility and biological validity (e.g., a resting state network,
anatomical ROI, region determined by functional localizer, whole-brain
mask, etc.). We aim to divide the large-scale ROI into smaller, func-
tionally homogenous sub-regions based on their temporal signature. In
order to define such sub-regions we need to identify sub-region-
dependent changes in the connectivity profile. The differences between
these temporal signatures may be subtle, as can be observed in Fig. 1. In
order to increase sensitivity for such differences, we analyse the dy-
namics of the ‘instantaneous’ modes of connectivity, reflecting the voxel-
to-region differences in functional connectivity. In essence, we amplify
the differences in (groups of) voxel time series by comparing them to a
shared reference. In the case of time series correlations being used as a
primary measure of ‘connectivity’, this amounts to transforming the
FMRI time series into an approximation of the ‘instantaneous connec-
tivity’ values at every time point, in order to amplify the differences
between the time series of various sub-regions present within the ROL
This approach can be used with other definitions of connectivity (i.e.
other than correlation) as long as these are time-averaged values.

Basic Pearson correlations are most widely used to quantify degrees of
connectivity and have seen extensive use both in defining RSN maps, and
estimating functional connectivity between ROIs (Biswal et al., 1995;
Cole et al., 2010). In such types of analysis the ensuing quantities are
based on temporal averages. This averaging hides the rich dynamic in-
formation present in resting BOLD data. With our ICP strategy we expand
upon the basic Pearson correlation by considering the sequence of events
across time, which ultimately averaged across the length of the experi-
ment result in a time-averaged correlation map. The Pearson correlation
between time courses x and y is defined as
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Fig. 1. Simulated time courses for an example ROI and its potential subdivisions. The time courses were made using a simple sinusoid, a transient event, and additive Gaussian noise. Each
time course represents a voxel from a subdivision within the larger ROI The transient events are spatially structured across these subdivisions. A Pearson correlation analysis cannot
distinguish between them, as they have the exact same correlation coefficient with each other and with the mean time course. The instantaneous connectivity time courses are shown on
the right. It is clear that the temporal unfolding increases the SNR of the transient events making them more detectable for subsequent grouping e.g., using ICA.

E[(x(n) = 1) (v(n) = 1,)]

6.0,

px‘y =

with p the mean and o the standard deviation of each time course. In this
example x can be the time course of a seed voxel, and y the time course of
a target voxel. For normalised time series (mean zero and unit standard
deviation) this changes to

poy =7 S x()y(n)

n=1

where T is equal to the number of time points in the measurement. In
other words, the Pearson correlation is equal to the (temporal) mean of
the element-wise (or Hadamard) product between two normalised time
courses, i.e.

Pry(1) = x(1)y(1)
Pey(2) = x(2)y(2)
Pry(3) = x(3)y(3)

Pey(T) = x(T)y(T))

can be considered as the time series of instantaneous connectivity be-
tween the reference time course x and target time course y. This vector is
the result of temporal unfolding of the Pearson correlation and contains
all the dynamic temporal information that on average results in a single
correlation value. It should be noted that as ICP is based on Pearson
correlation, it shares several of its assumptions. It emphasizes time points
where both x and y have high amplitude, as this results in a higher p for
this time point. The same is true for Pearson correlation, with time points
of high magnitude contributing more to the final correlation coefficient
(see e.g., Liu and Duyn, 2013).

With the ICP method we use the average time course of the original
region selected for parcellation as the reference time course x and analyse
the time-resolved instantaneous connectivity between this regionally-
specific reference time series and all voxels’ time series within the
same region. For regions that at a coarse scale appear functionally ho-
mogeneous a simple seed-based correlation map would simply recover
the selected region. This implies that the dynamic, non-averaged tem-
poral information depicted by the instantaneous connectivity between
this reference and all voxels of the selected region on average reflects that
aspect of the data, which contributes to the spatial delineation of this
region relative to other coarsely defined areas (possible starting ROIs).
The instantaneous connectivity transformation of all voxels’ data on the
basis of this one reference time series x therefore acts as a filter. This filter
is adaptive, selectively up- and down-regulating different aspects of the
data within the ROI, emphasizing subtle differences relative to the
average dynamics within this specific region, and deemphasizing outside

influences, enhancing SNR within the ROI. To illustrate this effect
consider the example in Fig. 1: the example shows a simplified situation
where there is a single region of interest (black outline) with four distinct
substructures that are yet to be identified. These sub-structures neces-
sarily have sub-region specific temporal dynamics that are nearly iden-
tical, with transient events at different time points. We assume that each
of the four substructures show spatially structured temporal events,
represented in this example by transient ‘events’ (here, the different sub-
regions show small, yet identifiable peaks). A simple correlation analysis
cannot distinguish between the time courses, as they have near identical
correlation coefficients (in the case of this example: 0.88) between them.
The correlations between the average time course and the four region-
specific time courses are also identical (0.954). Transforming the orig-
inal data by means of temporal unfolding to the instantaneous connec-
tivity values, it is immediately apparent that the transient events of the
original time series become selectively amplified and time periods where
a specific sub-region is effectively driving the overall ROI reference time
course feature more strongly. This is also reflected in the SNR of these
events, which goes up from 1.06 in the original time series to 1.18 (11%
increase) in the instantaneous connectivity time series. Assuming these
transient events do appear in a spatially structured fashion (i.e. give rise
to sub-regions within the ROI), we can use a multivariate method like ICA
to delineate the corresponding spatial maps. Here, we used ICA as
implemented in FSL MELODIC (Jenkinson et al., 2012). In order to turn
this decomposition into a parcellation, and resolve any spatial overlap
between components, a winner takes all approach was used to determine
for each voxel which component had the highest probability. To deter-
mine the parcellation scale (i.e., the number of subregions), we con-
ducted multiple ICA runs extracting a fixed number of components
(see below).

An alternative approach to temporal unfolding would be to effectively
remove the average ROI time course by means of time-series regression
(see Supplementary material). While this would also emphasize the sub-
region specific periods in the data, the resulting transformed time series
data would have reduced variance in cases where transient events
are sparse.

2.3. Split-half reproducibility

A strategy is required to decide which parcellation is best supported
by the data and the underlying functional organisation of the network of
interest. We address this issue by using split-half reproducibility to
decide on the scale (i.e., number of parcels) that is most reproducible
given the data, and use this scale for the final parcellation. Normally this
can be done using the same group of subjects. However, in order to
further assure the robustness of our results, we here estimated the scale
and final parcellation using separate selections of 100 HCP subjects.
More specifically, we estimated the scale using one group of subjects and
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subsequently obtained the final parcellation at that scale using a second
group of subjects. In order to estimate the optimal scale of the parcella-
tion, we randomly split the group of subjects into two equal size groups.
For each group, ICA in combination with winner takes all thresholding
was applied across a range of ICA dimensionalities to create parcellations
across a range of granularities. This results in two parcellations at each
dimensionality (e.g. containing 10 parcels), one for each group of sub-
jects. Split-half reproducibility was then estimated by comparing the
similarity between each of these parcellation pairs by means of Dice's
overlap between parcels. As the components of these pairs are not
necessarily ordered identically, they were reordered to find the best
matching pairs. If the parcellations closely resembled each other this
would result in a strong on- and weak off-diagonal in the resulting
overlap matrix. This indicates a strong one-to-one match between the
parcellations of each split. The reliability at each scale (ICA dimension-
ality) was estimated by taking the average of the on-diagonal of this Dice
overlap matrix. This process was iterated multiple times (20 iterations in
this work) to get reliable averages at each scale. The resulting number
was used to generate the final parcellation using the second set of 100
HCP subjects. Fig. 2 illustrates the full ICP pipeline including the split-
half reproducibility.

2.4. Regions of interest

We demonstrate the potential of ICP by creating parcellations of
sensory-motor cortex and subcortex including brainstem and striatum.
Further, to evaluate the ability to delineate functional sub-regions within
small and confined ROIs we illustrate the ability to parcellate thalamus
and entorhinal cortex. For the sensory-motor system, we defined the
initial region of interest by first applying ICP to a full brain mask,
resulting in nine large-scale parcellations that corresponded to well-
known resting state networks. Supplementary Fig. 2 provides an over-
view of these large-scale parcels. Subsequently we applied ICP to the
parcellation that represented the sensory-motor system, including both
pre- and post-central gyrus, as well as supplementary motor area (SMA)
across both hemispheres. For the subcortex parcellation we based our
ROI on the Harvard-Oxford atlas (Desikan et al., 2006; Frazier et al.,
2005; Goldstein et al., 2007; Makris et al., 2006). For the thalamus
parcellation applied ICP to a bilateral anatomical mask of the thalamus as
defined by the Morel histological atlas (Morel et al., 1997). Similarly, we
used a manually delineated anatomical starting mask (Navarro Schroder
et al., 2015) for the parcellation of entorhinal cortex.

Initialization
mask

rfMRI Data

mean time course extraction

Mean
time course

temporal split-half reproducibility
unfolding v (——
GICA ¥
Instantaneous i g
»| connectivity p| Parcellation Q’é\
8
%

Fig. 2. ICP pipeline: first, each individual participant's data is combined with the ROI
initialization mask in order to obtain the mean time course within the ROI. Both the voxel-
wise data and the mean time course are normalized and combined (element-wise multi-
plication) to generate temporally unfolded measures of instantaneous connectivity for
each voxel and each participant. All processing up to this point is performed at the single
subject level. Each participant's transformed data is fed into a group ICA to generate a
parcellation of the initial ROI The group ICA is performed multiple times across random
splits of participants and increasing dimensionality (i.e., the number of returned compo-
nents) in order to determine the parcellation that is most reproducible across participants.
The complete analysis pipeline is fully data-driven, and requires little user input, only
preprocessed R-FMRI data along with a region of interest mask needs to be supplied.
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2.5. Evaluating resulting parcels

To evaluate the validity of the resulting parcels we compared our
results against already available information in the form of cytoarchi-
tectonic atlases (where available). The parcels obtained in the sensory-
motor system were compared against the Jiilich histological atlas
(Amunts et al., 1999) as provided by FSL (FMRIB Software Library,
(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009)).
Similarly we evaluated the thalamus parcellation against subdivisions
available in the Morel atlas that was used to derive the initial ROI for the
Thalamus (Morel et al., 1997). For the entorhinal cortex parcellation we
compared the ensuing results qualitatively to a 2D visual diagram of
entorhinal organisation given by Krimer et al. (1997). Finally, for the
subcortical regions we had no cytoarchitectonic atlas available, instead
we compared our results against the sub-regions as available in the
Harvard-Oxford atlas provided by FSL.

To evaluate how IC-parcellations compared to alternative parcella-
tion strategies we also compared an existing parcellation obtained using
NCUT clustering (Craddock et al., 2012) to the atlases. For each initial
structure we used the NCUT parcellation that yielded a similar number of
clusters as obtained using our ICP parcellation in our region of interest.
Similarly, we compared the available atlases against parcels obtained by
applying ICA to data without temporal unfolding. For each initial struc-
ture we obtained an ICA parcellation with a dimensionality that matched
the ICP scale of choice.

All comparisons were conducted by means of calculating Dice's
overlap between atlas regions and the closest matching parcels (Dice,
1945). Dice's overlap is calculated as twice the intersection between re-
gions divided by the union of both regions.

3. Results
3.1. Sensory-motor system

We obtained a 6 and a 12-sub-region functional parcellation of the
sensory-motor system (see Fig. 3), as these scales showed a peak in the
reproducibility score (see Supplementary Fig. 4). The overall structure of
both parcellations showed a high degree of left-right symmetry, and
distinguished primary somato-sensory cortex, primary motor cortex, and
pre-motor cortex.

The obtained ICP parcellations recovered two major principles of
motor cortex organisation. First, sensory-motor cortex includes anatomi-
cally defined (e.g. by the Jiilich atlas (Amunts et al., 1999)) sub-regions
(e.g., primary motor cortex) which are typically arranged along the
anterior-posterior axis. Fig. 3 illustrates this for our parcellations in a direct
comparison with the Jiilich histological atlas. This comparison was ach-
ieved by projecting both our parcellation as well as the atlas to a flat
cortical surface using the Caret software package (Van Essen et al., 2001).
Next to the anterior-posterior organisation, the sensory-motor system can
also be organized according to function. This organisation is typically
illustrated by means of a homunculus referring to the relative mapping of
the human sensory-motor system (hands, feet, lips ...) to areas in the
brain's sensory motor cortex (Penfield and Boldrey, 1937). This organi-
zation lies along the central sulcus from the medial to the lateral wall and
can also be observed in our parcellation solution. Interestingly, the 6 and
12 sub-region parcellations are highly similar in overall structure. The
more fine-grained 12 sub-regions parcellation does share a lot of its bor-
ders with the 6 sub-region parcellation. This suggests that these two levels
of parcellation granularity represent two different levels within the hier-
archy of the sensory-motor system, with sub-regions further subdividing
into smaller elements when moving towards finer grained parcellations.

Table 1 lists Dice's overlap scores between the Jiilich atlas and
selected parcels obtained from the 12 sub-region ICP and ICA-based
parcellations, as well as through NCUT clustering and the multi-modal
Glasser atlas (Glasser et al., 2016). We chose scale 50 from the NCUT
parcellation of Craddock et al. (2012) as its number of parcels within the
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Jilich Atlas

Prim. motor cortex (BA4a)
Premotor cortex (BA6)

Sup. parietal lobule

Sec. somatosensory cortex

Fig. 3. IC-Parcellations of the Sensory-Motor system yielding 6 and 12 sub-regions. A and C show the coronal slice (y = —27) that displays the obtained sub-regions for both parcellations.
B and D show the flattened cortical surfaces, and for the 12-region parcellation D illustrates the correspondence with the Jiilich atlas. Several regions closely matched between the 12-
region parcellation and the Jiilich atlas. Yet, the IC parcellation also adhered to a medial-lateral organization that resembled the functional organization of the human homunculus.

Table 1
Dice overlap between the Jiilich atlas and the Sensory-Motor system parcellation obtained
using ICP, ICA, the Craddock parcellation, and the Glasser atlas.

Anatomical region ICP  ICA Craddock scale Glasser 2016
Dice Dice 50 Dice Dice
Secondary somatosensory cortex/ 0.9 0.9 0.75 0.24
Parietal operculum
Premotor cortex BA6 0.64 0.62 0.44 0.51
Superior parietal lobule 5L 0.62 0.68 0.53 0.63
Primary motor cortex BA4p 0.50 0.42 03 0.41
Primary motor cortex BA4a 0.46 0.61 0.60 0.57
Primary somatosensory cortex BA3a 0.36 0.33 0 0.22
Superior parietal lobule 7A 0.33 0.31 0.56 0.72

motor cortex (n = 14) most closely matched the number of parcels we
retrieved in the motor system using ICP (n = 12), thus forming the closest
match in the level of granularity of the parcellation. Alternative parcel-
lations such as those in the Automatic Anatomical Labelling Atlas (AAL)
(Landeau et al., 2002) would not compare well as the overall number of
parcels within sensory-motor cortex already differs substantially both
from the Jiilich histological parcellation and our ICP.

The comparison with the atlas shows that the IC parcellation was able
to retrieve several regions that exhibited a good match in shape, size and
location between the atlas and the parcels, especially for parcels that
corresponded to the medial regions of the motor system, including pri-
mary motor cortex, premotor cortex superior parietal lobule and sec-
ondary somatosensory cortex. These regions are all relatively confined
along the primary motor strip. In contrast, for the lateral elements of the
motor system where the organization is focussed on the split across the
central sulcus, the IC parcellation and Jiilich atlas start to differ. Inter-
estingly, this is where the functional parcellation more closely follows the
functional organization of the homunculus. Compared to the IC parcel-
lation, the ICA parcellation resulted in similar overlap scores, while the
Craddock parcellation did not match well with the Jiilich atlas regions.
The atlas from Glasser yielded mixed results regarding its overlap with
the Jiilich atlas and our ICP parcellation. However, the large mismatch in
granularity between Glasser (54 parcels within motor cortex) and ICP (12
parcels within motor cortex), makes it difficult to interpret observed
differences in performance.

3.2. Subcortical structures

The subcortical structures of the brain include several key areas of the

human connectome. Yet, their size and location in the brain make them a
challenging target to investigate their potential parcellation structure. To
further demonstrate the utility of ICP, we parcellated a subcortical ROI
that included brainstem as well as the striatal regions.

Using ICP we obtained two different parcellations (Fig. 4), as exami-
nation of the split-half reproducibility revealed a clear maximum at scale 8
and a more local maximum at scale 27 (see Supplementary Fig. 4). Fig. 4
illustrates both parcellation solutions where the difference between the
lower and the higher scale parcellation can be interpreted in a hierarchical
manner: at the lower scale larger, structures such as the hippocampal
formation are observed as single parcel, while at the higher scale these
areas break down into biologically meaningful sub-divisions, with e.g., the
hippocampal formation being parcellated into the hippocampus proper
and amygdala. In the case of the brainstem the higher order parcellations
resulted in a granular subdivision with high left-right symmetry. Especially
in the brainstem the mesencephalon, anterior and posterior parts of the
pons and the cerebellar peduncles can now be differentiated.

The Dice overlap between the IC-parcellation containing 27 sub-
regions and the Harvard-Oxford atlas representation of the brainstem
and sub-cortical regions is shown in Table 2. This table also shows the
overlap between the atlas regions and the parcellation of Craddock et al.
(2012) at scale 50, as well as with a parcellation obtained using ICA with
a dimensionality of 27 on data that were not temporally unfolded (as in
ICP). However, overlap calculations are potentially adversely influenced
when there is a large degree of difference in the granularity between the
parcellation and its corresponding atlas region. Even at scale 8, we
observed distinct subdivisions in the brainstem, corresponding to
midbrain, medulla and pons, where the Harvard-Oxford atlas only con-
tains a single brainstem region. This mismatch is even greater at scale 27,
where the parcellation shows multiple nuclei-like regions in the brain-
stem. For this reason, we combined parcels for regions such as brainstem,
in order to match the higher degree of granularity of the ICP and ICA
parcellation to the coarser granularity of the atlas region. In the case of
brainstem, parcels overlapping brainstem were combined until an
optimal fit was found. Table 2 illustrates how ICP reaches a 19% higher
degree of overlap (average Dice 0.64) when compared to ICA (average
Dice 0.54), and a 121% higher degree of overlap with the atlas regions
compared to the Craddock parcellation (average Dice 0.29).

3.3. Thalamus

Due to its projections to the entire cortex, the human thalamus is an
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27 region ICP

Fig. 4. IC-parcellation of the subcortical regions at scale 8 and scale 27. The lower scale parcellation (scale 8) shows recognizable larger structures, including the thalamus, hippocampal
formation, midbrain, medulla, and pons. For the higher scale parcellation (scale 27) these larger structures break down into their smaller sub-components (e.g. hippocampal formation into

hippocampus proper and amygdala).

Table 2

Dice's overlap between the Harvard-Oxford atlas and parcellations based on ICP and ICA.
The IC-parcellation shows a higher degree of overlap compared to the ICA-based
parcellation.

Anatomical region ICP Dice ICA Dice Craddock scale 50 Dice
Brainstem 0.93 0.86 0.76

Thalamus 0.89 0.58 0.75

Caudate 0.79 0.62 0.17

Putamen 0.72 0.74 0.29

Amygdala 0.63 0.47 0.12

Hippocampus 0.58 0.63 0.26

Pallidum 0.35 0.27 0

Nucleus Accumbens 0.23 0.17 0

essential node in any analysis to understand the brain as a complex
network of interacting nodes. It is known from in- and ex-vivo studies
that the thalamus contains several subdivisions and internal nuclei, each
substructure exhibiting different connectivity profiles to the rest of cortex
(Morel et al., 1997).

We applied ICP to a bilateral anatomical mask of the thalamus as
defined by the Morel histological atlas (Morel et al., 1997), obtaining a
parcellation containing 30 sub-regions (Fig. 5). Validating this parcella-
tion against the 32 cytoarchitectonic sub-regions delineated within the

30 region ICP

PulL

Morel atlas

Morel atlas revealed large overlap (Fig. 5). We confirmed the visual
similarity by calculating Dice's overlap between the obtained parcellation
and the regions defined by the atlas (Table 3). The pulvinar, lateral
geniculate (LGN), sub-thalamic, and red nuclei exhibit excellent overlap
above 0.74. Note that while they are not considered to be part of thal-
amus proper, the sub-thalamic and red nucleus are part of the Morel atlas,
and are therefore also contained in the parcellation. In contrast, overlap
between ICP and the Morel atlas was lower in the internal lamina
structure, which is part of the central-lateral nucleus. While the internal
lamina structure is regarded as a homogenous structure in the Morel
atlas, ICP did not fully differentiate this structure from its surrounding
nuclei. For further comparison, the Morel atlas was also compared with a
parcellation based on masked ICA of the same data (Table 3). When ICA
and ICP are compared it becomes clear that ICP shows a 20% higher
degree of overlap (average Dice 0.47) when compared to ICA (average
Dice 0.39) for the Morel regions. The thalamus parcellation was also
compared with the Craddock parcellation at scale 900, with this scale
yielding the closest mach (n = 28) to the number of sub-regions ICP
retrieved (n = 30) within thalamus. The difference here is even larger,
with a 38% higher degree of overlap for ICP compared to the Craddock
regions (average Dice 0.34).

Dice overlap

PuA PuM

Fig. 5. IC-Parcellation of human thalamus (left) compared to Morel atlas (middle). Several atlas nuclei are labelled. These are: Lateral Pulvinar (PuL), Medial Pulvinar (PuM), Ventral
Anterior (VA), Ventral Lateral (VL), Medial Dorsal (MD), Ventral Posterior Lateral (VPL), and Anterior Pulvinar (PuA). The internal lamina structure was masked out, as this is a pre-
dominantly white-matter structure. Dice overlap between the IC-Parcellation and Morel atlas is shown on the right.
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Table 3
Dice's overlap between the selected nuclei of the Morel Atlas and the parcellation obtained
using ICP, ICA, and the Craddock parcellation at scale 900.

Nuclei ICP Dice ICA Dice Craddock parcellation scale 900 Dice
Red Nucleus 0.8 0.69 0.34
Sub-Thalamic 0.7 0.6 0.11
Ventral Anterior 0.7 0.42 0.65
Lateral Pulvinar 0.65 0.53 0.31
Medial Dorsal 0.59 0.64 0.32
Medial Pulvinar 0.58 0.54 0.55
Ventral Lateral 0.58 0.54 0.61
Lateral Posterior 0.53 0.35 0.31
Lateral Geniculate 0.49 0.34 0.18
Medial Geniculate 0.43 0.44 0.51
Central Lateral 0.4 0.28 0.48
Central Medial 0.31 0.17 0.37
Parafasicular 0.31 0.22 0.23
Anterior Pulvinar 0.20 0.17 0.09
Ventral Posterior Lateral 0.16 0.17 0.26
Ventral Posterior Inferior 0.09 0.11 0.10

3.4. Entorhinal cortex

The Entorhinal Cortex (EC) is commonly perceived as a major input
and output structure of the hippocampal formation, functioning as a node
within cortico-hippocampal circuits (Canto et al.,, 2008). Cytoarchi-
tectonically, up to nine subdivisions of the human EC have been distin-
guished (Krimer et al., 1997). Starting from a manually defined
anatomical mask, we created a parcellation of EC using high resolution
FMRI data (0.9 mm isotropic voxels) acquired at 7 Tesla in participants
performing a spatial navigation task. (Navarro Schroder et al., 2015).

Fig. 6 illustrates the EC parcellation obtained with ICP. Similar to
what we observed for thalamus, the ensuing parcellation corresponds
well with the size, location and shape of known cytoarchitectonic sub-
divisions (Krimer et al., 1997). Note that the parcellation is not identical
to available images from cytoarchitectonics. Notable differences are the
location of the prorhinal area (Pr) and the apparent absence of the
intermediate-caudal area (Ic) in our parcellation. These differences might
be related to inter-individual variability, as the cytoarchitectonic 2D
drawing was derived post-mortem based on eight participants, whereas
the ICP parcellation is based on in-vivo FMRI data from 22 participants.
As for the other systems discussed in this work we aim to compare par-
cellation results against known underlying histology. However, because
there is to our knowledge no established histological atlas for the EC, we
restrict ourselves to a qualitative comparison against the work by Krimer
et al. (1997). Notably, despite a wealth of data on the function of EC in
animals, little is known about the function of the sub-regions in EC in
humans where investigations are mainly complicated by cortical folding
patterns that obscure how animal homologue areas map to the human
brain. The ability of ICP to obtain biologically plausible results in this
difficult to map area highlights the potential of our parcellation strategy.

9 region ICP
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4. Discussion

In order to parcel larger brain regions into functionally specific sub-
regions we propose to use intrinsic functional dynamics present in
BOLD FMRI recordings. To this end we apply independent component
analysis to FMRI data that were transformed to amplify minor temporal
differences between individual voxels within the larger brain region.
Results of our strategy obtained for sensory-motor cortex and subcortex,
as well as thalamus and enthorinal cortex showed that the boundaries of
the ensuing, group-level, parcellations closely corresponded to the
topographic organization observed in available cytoarchitectonic atlases
and that the obtained subdivisions reflect biologically known areas of
the brain.

4.1. Sensory-motor ICP

The motor cortex has been the focus of a large number of studies.
Early work by Penfield already demonstrated that there is a somatotopic
organisation within the motor cortex, identifying separate regions con-
trolling different parts of the body (Penfield and Boldrey, 1937). More
recent work, both in non-human primates and in humans, has furthered
our understanding of this somatotopic mapping, and introduced the
concept of the homunculus (Rao et al., 1995; Schott, 1993), forming a
detailed functional topography within the motor cortex that has previ-
ously been demonstrated to be identifiable in R-FMRI (van den Heuvel
and Hulshoff Pol, 2010). Here, we were able to retrieve a parcellation of
the sensory-motor system that followed the organization of the homun-
culus along the central sulcus, while at the same time also adhering to an
anterior-posterior organization as present in the Jiilich histological atlas.

It should be noted that the alternative parcellations, i.e., ICA and
Craddock (scale 50) also showed considerable overlap with the Jiilich
Atlas, with moderate to high Dice's overlap comparable to the results
obtained for ICP. This is in contrast to the results obtained for other re-
gions where ICP showed considerably larger overlap with the atlas re-
gions. We believe this difference is due to the generally larger functional
regions present in motor cortex that are accordingly easier to pick-up on
by different parcellation techniques.

4.2. Subcortical structures ICP

Subcortical areas present a substantial challenge for FMRI analyses,
including parcellation strategies, as the sensitivity profiles of modern 32-
channel MRI head coils distinctly favour the surface of the brain, leading
to lower SNR in regions deeper in the brain. This is further complicated
by the small volume and high functional differentiation of the subcortical
areas. However, despite their small size, they form key nodes in the
human connectome. Here we were able to accurately recover both coarse
(8 sub-regions) and fine-grained (27 sub-regions) parcellations of the
subcortical areas. The fine-grained parcellation showed a high degree of

Krimer histology

Fig. 6. Volumetric representation of the IC-Parcellation of the human entorhinal cortex (left) compared to known cytoarchitectonic organization (right) based on a 2D drawing from
Krimer et al. (1997). Shown here are the Prorhinal (Pr), Lateral (L), Sulcal rostral (Sr), Sulcal central (Sc), Intermediate superior (Is), Intermediate rostral (Ir), Intermediate central (Ic),

Medial rostral (Mr) and Medial caudal (Mc) regions of entorhinal cortex.
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overlap with the known sub-regions in subcortex. This degree of overlap
was not achieved by ICA without temporal unfolding or in the Craddock
parcellation. Interestingly, the two levels of reproducible IC-parcellation
accurately reflected two levels of granularity in subcortex. At the coarser
level, we observe larger biologically meaningful substructures (e.g. pons,
medulla, midbrain, and hippocampal formation), which further subdi-
vide into smaller regions (e.g. hippocampus proper and amygdala.

4.3. Thalamus ICP

Previous studies have demonstrated how thalamus has a wide range
of connections to all of cortex (Behrens et al., 2003; Johansen-Berg et al.,
2005), with thalamus acting as a major functional hub, routing infor-
mation between various parts of the brain (Achard et al., 2006; Gili et al.,
2013). Internally the thalamus is divided into several cytoarchitectoni-
cally identifiable nuclei, each with their own distinct patterns of con-
nectivity (Behrens et al., 2003; Johansen-Berg et al., 2005; Morel et al.,
1997; Zhang et al., 2008). Using FMRI data we were able to retrieve a
plausible functional subdivision of thalamus. For example, we were able
to accurately identify important nuclei including LGN and subdivisions of
the pulvinar region. Similar to the results for the subcortical areas, the IC-
parcellation was found to have a higher overlap with known histology (in
the form of the Morel atlas) compared to a parcellation obtained using
standard ICA or NCUT clustering.

4.4. Entorhinal ICP

Compared to thalamus, entorhinal cortex is a more specialized
structure. Studies on rodents and non-human primates suggest that the
EC projects to a wide range of structures, with portions of the medial EC
projecting to the hippocampus, thalamus (specifically dorsolateral and
dorsocaudal thalamic nuclei), amygdala, olfactory structures, visual,
parietal, cingulate and retrosplenial cortices; while lateral EC portions
connect to the septal hippocampus, basal ganglia, claustrum, amygdala,
thalamus, as well as frontal, insular, and cingulate cortices (Canto et al.,
2008; Kerr et al., 2007; O'Reilly et al., 2013). While the organization of
EC is well known in the rodent, there is an ongoing debate as to how this
translates to the human EC. Using the potential of ICP to obtain biolog-
ically plausible parcellations in small structures, our results provide
further evidence for the inferior-superior and lateral-medial organiza-
tion. It thereby replicates earlier work, where such an organisation was
established on the basis of connectivity gradients (Navarro Schroder
et al., 2015). Importantly, a fine-grained parcellation of the EC obtained
non-invasively and in-vivo opens the door to study EC involvement in
cognitive processing or their vulnerability to pathophysiology (Braak and
Braak, 1992).

4.5. Alternative parcellation strategies

When comparing currently available parcellation strategies we pro-
pose to look at several key criteria that describe what a good parcellation
strategy should adhere to in the context of systems neuroscience
research. First and foremost, subdivisions should reflect underlying
neuro-biological principles and should closely follow underlying func-
tional segregations (Blumensath et al., 2013). Inaccurate parcels span-
ning multiple underlying functional regions significantly reduce
performance in the estimation of network topology (Smith et al., 2011).
Second, the parcellation needs to be able to produce viable results across
the entire brain, to prevent incomplete network representations. Third,
the obtained parcellation should allow group-level analyses, assessment
of group differences, or the generation of a parcellation that is specif-
ically tailored to a group of interest. Finally, to ensure usability and user
friendliness the parcellation strategy should be fully automated.

While existing parcellation strategies (e.g., random parcellation
(Hagmann et al., 2008), NCUT (Craddock et al., 2012; van den Heuvel
et al., 2008), or region growing (Bellec et al., 2006; Bellec et al., 2010;
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Blumensath et al., 2013)) include extensive automation and can be
applied to the entire brain, they typically do not satisfy the other criteria
of an ideal parcellation. A random parcellation for example, generates
ROIs using an algorithm based on a random process. Subsequently,
network measures are calculated over several iterations of the parcella-
tion to obtain a robust set of metrics. This makes it highly likely that each
parcel contains contributions of several underlying functional segrega-
tions. Accordingly, random parcellations do not follow underlying
functional divisions, nor do they employ biological information. In
contrast, region growing, and to a lesser extent NCUT methods, employ
various clustering algorithms to parcel the brain, exploiting underlying
functional information. It is possible for region growing algorithms to
intelligently specify initial seeds reflecting underlying anatomical and/or
functional brain organizational principles. To obtain parcellations that
are independent of brain state, these algorithms are commonly used on
metrics derived from unconstrained resting state FMRI scans. As an
example, NCUT spectral clustering can be used to create clusters by
maximizing internal similarity while minimizing the similarity between
clusters (Craddock et al., 2012; van den Heuvel et al., 2008). In contrast,
region growing approaches start from initial seeds to subsequently create
a hierarchical clustering tree (Bellec et al., 2006, 2010; Blumensath et al.,
2013). Common to these parcellation strategies is that they tend to
generate clusters of uniform size (and to a lesser extent, shape (Glasser
et al., 2016)). It is doubtful that this forms an accurate reflection of un-
derlying biology (Van Essen et al., 2012a, b). This is also evident from the
results presented here, showing that the Craddock NCUT-based parcel-
lation did not overlap well with the known histological atlases.

Finally, it is often particularly challenging to generalize obtained
parcellation schemes across participants to investigate group-level ef-
fects. As there is no underlying biological basis for a random parcellation,
it cannot be generalised across participants to generate biologically
meaningful results. This makes it for instance impossible to assess volu-
metric differences between a control and a patient group. NCUT and
region growing techniques often operate at the single subject level. While
bringing individual parcellation schemes to the group-level could be
achieved through averaging or group-level clustering, such approaches
typically fail to preserve the detailed parcellation obtained for each
participant. This seems to be an inherent problem to the clustering
methods, as (Yeo and Krienen, 2011) using 500 participants could at
most distinguish 17 separate clusters. In ICP parcels are generated
immediately at the group level (although ICP can also be applied to in-
dividual data). This has the benefit of generating results that are valid at
the group level and that can be used to directly compare two groups, for
instance with respect to the size of the obtained regions.

4.6. ICP considerations & limitations

We want to highlight the potential of ICP to obtain parcellations of
structures that are hard to parcel due to their location in the brain or their
very convoluted folding patterns. As an example the recent multi-modal
brain parcellation proposed by Glasser et al. (2016) concentrates on
cortical parcellations. The ICP strategy presented here only relies on the
availability of R-FMRI data and is thereby able to resolve sub-regions
within smaller, deep brain structures, especially when incorporating
high-resolution imaging. It is however dependent on having a initial
starting region with at least a moderate degree of biological validity.
Otherwise the reference time series will contain too much of a mixture of
different major structures, reducing its effectiveness.

The split-half reproducibility step we use to determine the final par-
cellation scale and optimise for biological validity forms an integral part
of ICP. The use of ICA-denoised data is crucial to this step, as this will
remove structured artefacts from the data. Under ideal conditions this
leaves correspondences of underlying biology as the only signal source to
modulate split-half reproducibility when a range of scales are considered.
Split-half reproducibility does however have some caveats to consider. As
it requires a group ICA run for every split and every iteration, the
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computational demands can be relatively high, especially for datasets
encompassing a large number of subjects, with high (temporal) resolu-
tion data. On the modest compute cluster used to develop and evaluate
ICP this can range from a couple of hours for 100 subjects with the
classical 2 s TR, 5 min scan time EPI data, up to a week on HCP quality
data. A second caveat is the behaviour of reproducibility across scales.
Most ICP split-half reproducibility results show a downward slope with
increasing number of sub-regions. This bias is caused by the method used
to calculate the match between parcellations. As the number of sub-
regions increases, the size of these sub-regions decreases. Two large
sub-regions which are shifted by one voxel with respect to each other will
still show a high Dice overlap. Two small sub-regions shifted by one voxel
will show a substantially lower Dice overlap. Final scale selection should
therefore be based on local maxima in split-half reproducibility.

A third issue to be considered in the context of the split-half repro-
ducibility in ICP is the occurrence of peaks at multiple scales. Each of
these parcellations might be equally valid, and can represent splits at
different levels of the hierarchy of the investigated structure, as can be
seen in the subcortex results presented in this work. In this parcellation,
the hippocampal formation is found as one single structure at a coarser
level, where it splits up into the hippocampus proper and amygdala. This
can considered to be a limitation of ICP, as it prevents the processing
pipeline from being fully automatic. However, it is also a feature of ICP,
as it does enable one to investigate both coarse and the fine-grained
parcellations, as they are both biologically valid, their usefulness
depending on the specific research question at hand. The underlying
hierarchy together with data quality and quantity will determine up to
what level of detail parcellations can be reliably estimated. SNR will be a
limiting factor in finding reproducible parcellations in a given dataset.
Here we maximize SNR by using a large, high quality dataset in the form
of the Human Connectome Project.

Finally, it should be noted that currently available atlases vary widely in
the number of sub-regions they define, which hampers comparison between
results. In this work we see this for example with the comparison between
ICP results, and the Glasser and Jiilich atlases available for the sensory-
motor system. The Glasser atlas seems to perform poorly in its similarity
with Jiilich when compared against ICP. However, a direct comparison of
both atlases is not necessarily fair, as the Glasser atlas has many more
smaller parcels within this system (54 parcels for Glasser, 12 for ICP vs. 13
for Jiilich), affecting the DICE overlap scores. In comparison, the Craddock
atlas has been made available across a wide range of granularities, enabling
the researcher to pick the version with the closest match in the number of
sub-regions. While a difference in granularity might hamper a direct com-
parison of obtained parcellations it does allow researchers to choose the
atlas that is most suited for their investigations, using the parcellation
strategy that fits best with their underlying biological question.

4.7. Conclusion

We have introduced a novel approach for parcellating the brain in a
top-down fashion on the basis of instantaneous connectivity between
voxels of a region and the region-specific average temporal dynamics in a
top-down fashion, which will become available for public use in a future
release of FSL. Our technique allows for the gradual refinement of the
ensuing characterisation of the region and its sub-components. By
exploiting small differences in the temporal dynamics of sub-regions
within larger ROIs the ICP strategy is able to retrieve biologically plau-
sible parcellations. Not pinpointing one-self to a specific scale of par-
cellation, ICP will allow researchers to investigate ROIs in a hierarchical
manner, even in areas of the brain that can only be resolved with high-
resolution imaging. For future work we will use ICP to generate a hier-
archical, full brain parcellation.
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