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ABSTRACT
In this article an optimal sensor placement problem for a thermo-elastic
solid body model is considered. Temperature sensors are placed in a near-
optimal way so that their measurements allow an accurate prediction
of the thermally induced displacement of a point of interest (POI). Low-
dimensional approximations of the transient thermal field are used which
allows for efficient calculations. Four model order reduction (MOR) meth-
ods are applied and subsequently compared with respect to the accuracy
of the estimatedPOI displacement and the locationof the sensors obtained.
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1. Introduction

This article is concerned with an optimal sensor placement problem for thermo-elastic solid body
models. The goal is to place temperature sensors in a near-optimal way so that their measurements
allow an accurate prediction of the thermally induced deformation at a particular point of interest
(POI) in real time. The main motivation and example used throughout the article is the prediction of
the deflection of the tool centre point (TCP) of a machine tool under thermal loading.

Sensor placement problems for partial differential equations (PDEs) are difficult optimization
problems due to their large scale, as well as the intricate structure of the objective, which normally
involves the estimator covariance matrix of the quantity estimated, or its asymptotic inverse, the
Fisher information matrix. The present approach exploits the particular structure of thermo-elastic
models. While the evolution of the temperature, T, is relatively slow, the deformation, u, is instanta-
neous. Moreover, mechanically induced heat sources are neglected, so that the coupling is T �→ u is
uni-directional.

In the optimal sensor placement problem, the objective is to choose sensor locations in such a way
that the measurements contain the maximum amount of information with regard to the subsequent
prediction of the thermally induced displacement at a POI, as opposed to the reconstruction of the
temperature field itself. In order to reduce the complexity of the placement problem, model order
reduction (MOR) for the temperature field is applied. In this article four model order reduction tech-
niques are compared, namely proper orthogonal decomposition (POD), balanced truncation (BT),
and two different moment matching (MM) approaches. The focus of this article is the application of
modernmodel order reductionmethods to the sensor placement procedure. Furthermore, the results
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of the sensor placement for these different MOR methods for the underlying temperature dynamics
are compared.

To put this work into perspective, model order reduction techniques are frequently used in
sensor placement problems involving PDEs, e.g. reaction–diffusion or convection–diffusion prob-
lems (Alonso, Frouzakis, and Kevrikidis 2004; Alonso et al. 2004; Armaou and Demetriou 2006;
Green 2006; García et al. 2007) as well as fluid dynamics applications (Mokhasi and Rempfer 2004;
Cohen, Siegel, and McLaughlin 2006; Willcox 2006; Yildirim, Chryssostomidis, and Karni-
adakis 2009), where POD is often the method of choice. In another class of applications involv-
ing mechanical deformation of large structures (Kammer 1991; Yi, Li, and Gu 2011; Meo and
Zumpano 2005; Sun and Büyüköztürk 2015), modal analysis is employed as a reduction technique.

The references above fall into three categories concerning the actual placement strategy: for-
ward, backward and simultaneous placement procedures. In the forward sequential setting, which
is adopted in this article, sensors are placed one by one such that a maximal gain of information is
obtained for each sensor. In the backward approach, a full set of possible sensor locations is chosen
and those contributing the least amount of information are removed in a sequential fashion. Both are
greedy algorithms. Simultaneous placement procedures can only be used, due to the combinatorial
complexity, when the number of potential locations is relatively small.

The goal in all of the above references is to reconstruct the respective field of the underlying PDE
from a limited number of measurements. In the setting under consideration, this would correspond
to recovering the entire temperature field from a number of temperature measurements. By contrast,
the objective in this article is to predict the mechanical displacement induced by that temperature
field. This approach changes the metric with respect to which the gain of information is measured;
seeKörkel et al. (2008), Koevoets et al. (2007), andHerzog andRiedel (2015). InKoevoets et al. (2007),
thermally induced displacements are estimated using temperature measurements as well. However,
in contrast to the present work, only a small number of potential sensor locations is considered, and
modal analysis is used. In Herzog and Riedel (2015), a sensor placement approach based on PODwas
presented. One drawback of this simulation based MOR technique is its dependence on the thermal
load cycle used to obtain the snapshots. The present article is an extension of this work in which four
different MOR techniques are compared, three of which do not depend on simulations and are thus
more widely applicable.

The article is organized as follows. In the remainder of this section the thermo-elastic model is
stated. The sequential placement strategy is described in detail in Section 3. The model order reduc-
tion techniques under consideration are presented in Section 4. Numerous numerical experiments
are provided in Section 5, which allows a comparison of theMOR techniques in the context of sensor
placement problems.

2. Thermo-elastic forwardmodel

Before the sensor placement and model order reduction procedures are described, the model prob-
lem to be considered is introduced. The solid body whose thermo-mechanical displacement is to be
considered will be denoted by �, and its surface by �. In the application at hand, � is the column of
a machine tool shown in Figure 1(a). Consider the linear heat equation,

ρcpṪ − div(λ∇T) = 0 in � × (0, tend)

λ
∂

∂n
T + α(x)(T − Tref ) = r(x, t) on � × (0, tend)

T(·, 0) = T0 in �

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1)

The boundary conditions represent a simple model for the free convection occurring at the surface
�, and the heat transfer coefficient may vary across the surface. The right hand side r(x, t) represents
thermal loads, e.g. due to electric drives. All symbols occurring in (1) are summarized in Table 1.
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Figure 1. Auerbach ACW 630 machine column. (a) Photograph of the machine column, (b) CADmodel of the machine column.

Table 1. Table of symbols occurring in the thermal (1) and the elasticity model (4).

Symbol Meaning Value Units

T Temperature K
T0 Initial temperature K
r Thermal surface load Wm−2

ρ Density 7 250 kg m−3

cp Specific heat at constant pressure 500 J kg−1 K−1

λ Thermal conductivity 46.8 W K−1 m−1

Tref Ambient temperature 20 ◦C
α Heat transfer coefficient 0 to 12 W K−1 m−2

u Displacement m
σ Stress N m−2

ε Strain 1
ν Poisson’s ratio 0.3 1
E Modulus of elasticity 114 · 109 N m−2

β Thermal volumetric expansion coefficient 1.1 · 10−5 K−1

Applying a standard linear Lagrangian finite element discretization in space, see e.g. Braess (2007)
and Grossmann, Roos, and Stynes (2007), the thermal boundary value problem (1) can be written in
terms of a linear time-invariant (LTI) control system

EthṪ = AthT + Bthz

T(·, 0) = T0
(2)

Here T ∈ R
nth represents the temperature field in the nodal Lagrangian basis. The so-called system

inputs z ∈ R
m represent all external influences to the system such as the temperatures Tref of the

surroundingmedia and the thermal loads r(x, t). Thematrices Eth,Ath ∈ R
nth×nth , and Bth ∈ R

nth×m

denote the mass matrix, the stiffness matrix, and the input matrix, respectively.
The linear elasticity model is based on the balance of forces,

− div σ (ε(u),T) = f in � (3)
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An additive split of the stress tensor σ into its mechanically and thermally induced components
is employed. Together with the usual homogeneous and isotropic stress–strain relationship, the fol-
lowing constitutive law is obtained, see Boley and Weiner (1960, Sec. 1.12) and Eslami et al. (2013,
Sec. 2.8):

σ (ε(u),T) = σ el(ε(u)) + σ th(T)

σ el(ε(u)) = E
1 + ν

ε(u) + Eν

(1 + ν)(1 − 2ν)
trace(ε(u)) I

σ th(T) = − E
1 − 2ν

β (T − Tref ) I

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

Herein, ε denotes the linearized strain tensor,

ε(u) = 1
2 (∇u + ∇u�)

and I the 3 × 3 identity tensor. Moreover, E and ν denote Young’s modulus and Poisson’s ratio; see
Table 1.

In order to simplify the notation, consider from now on the temperature relative to the constant
Tref , i.e. T − Tref is replaced by T. Using the same finite element discretization as for the thermal
model (1) and noting that there are no further external forces in the system, i.e. f = 0, system (3)
becomes

Aelu − AthelT = 0 (5)

where u ∈ R
nel is the coefficient vector representing the spatially discretized displacement field and

the matrices Ael ∈ R
nel×nel and Athel ∈ R

nel×nth denote the elasticity stiffness matrix and the thermo-
elastic coupling matrix, respectively. Note that since the same piecewise linear finite element (FE)
discretization for both the thermal and elasticity equations is used, nel = 3nth holds. Since the ther-
mally induced deformations of the machine column are the quantity of interest, the coupling of
the thermal model (2) with the elasticity equation (5) is considered, which leads to the coupled
thermo-elastic system[

Eth 0
0 0

] [
Ṫ
u̇

]
=

[
Ath 0
Athel −Ael

] [
T
u

]
+

[
Bth
0

]
z ⇔ Eẋ = Ax + Bz (6)

for the combined state x = (T, u) which is of dimension n = nth + nel = 4nth. Note that the cou-
pled thermo-elastic model (6) and the thermal model (2) are basically of the same form. Moreover,
the coupled system is a so-called differential algebraic equation (DAE) of index 1. However, since
the displacement u specifically at the TCP is the quantity of interestin the application at hand, the
additional output equation

y = Cx (7)

is defined, where C ∈ R
q×n maps the state vector x to the points of interest, the so-called system

outputs y. Finally, the thermo-elastic model is described by the LTI control system (6)–(7).
In the following section, the sensor placement procedure based on this model is presented.

3. Sequentially optimal sensor placement

With the sensor placement problem, optimal positions of temperature sensors on the surface � are
sought. The goal is to reconstruct from thesemeasurements the temperature fieldT as an intermediate
quantity, and subsequently to predict the displacement u(xTCP) at the point of interest, i.e. at the
TCP. As was mentioned in the introduction, such placement problems are challenging for a number
of reasons. In the following subsections, the complexity of the problem is reduced step by step so that
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it becomes tractable. The material in this section closely follows (Herzog and Riedel 2015, Sec. 2),
where a sequential placement approach was proposed in the context of POD-reduced temperature
dynamics. Major parts of this technique can be used in combination with other MOR methods as
well. In the interests of keeping this article self-contained, however, themain steps are briefly recalled.

3.1. Displacement estimation

The first step to make the problem tractable is to apply model order reduction to the temperature
state space. The temperature T is replaced by an approximation

T ≈ VT̂

where V ∈ R
n×r with r � n. The particular choice of the matrix V depends on the model order

reduction technique; see Section 4. Exploiting the linearity of the elasticity equation (5), the elasticity
field can be expressed in terms of the reduced temperature T̂,

u = ST ≈ SVT̂

Herein, S = A−1
el Athel is the solution operator for the elasticity equation. Then the displacement at

the point of interest is

u(xTCP) = Celu ≈ Cel SV T̂ ∈ R
3 (8)

with an observation matrix Cel ∈ R
3×nel which is related to the output equation y=Cx in (7) by

C =
[
Cth 0
0 Cel

]

with Cth ∈ R
qth×nth . Since in the present application only the displacement of the TCP is observed,

qth = 0 and C = [0,Cel] holds.
To estimate the TCP displacement (8) from temperature measurements, the reduced temperature

T̂ is estimated first. This estimation is instantaneous, i.e. at any givenmoment in time the temperature
field is estimated using only measurements from that time instance. Therefore the dependence on
time is suppressed in the notation. The estimation of the reduced temperature field is achieved by
solving the least squares problem

Minimize
T̂∈Rr

1
2

nsensors∑
i=1

⎛
⎝ r∑

j=1
T̂jvj(xi) − T̃i

⎞
⎠ (9)

Here T̃i denotes the ith temperature measurement, acquired at location xi on the surface �, where
i = 1, . . . , nsensors. These locations are restricted to the vertices of the finite element mesh on the
surface.Noticemoreover that each rowof the reduced basismatrixV corresponds to one nodal degree
of freedom in the temperature finite element space. Hence the jth column of V can be identified with
a function vj. This justifies the notation vj(xi) = Vij.

Next let X = [x1, . . . , xnsensors ] be the vector of all sensor positions selected. Then the solution of
the linear least-squares problem (9) is given by the normal equation

J(X)�J(X)T̂ = J(X)�T̃ (10)

Here J(X) denotes the Jacobian of the residuals with respect to the unknowns (the components of the
reduced temperature T̂), i.e.

J(X) =

⎡
⎢⎣

v1(x1) · · · vr(x1)
...

...
v1(xnsensors) · · · vr(xnsensors)

⎤
⎥⎦ ∈ R

nsensors×r
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The vector of measurements is

T̃ = [T̃1, . . . , T̃nsensors ]
�

The solution of (10) is unique if J(X) has full rank, which is assumed. To ensure this, it is necessary
to have nsensors ≥ r. The solution of (10) provides an estimator for the reduced temperature,

θT̂(X) = (J(X)�J(X))−1J(X)�T̃

Using the relation (8), an estimator for the TCP displacement u(xTCP) is given by

θu(xTCP)(X) = CelSVθT̂(X) = CelSV
(
J(X)�J(X)

)−1J(X)�T̃ (11)

3.2. Covariance of the estimator

In order to assess the quality of the estimator, the covariance matrix of θu(xTCP)(X) is considered. The
measurement errors are assumed to be independent and identically distributed random variables
with normal distribution N (0,μ2), i.e. with zero mean and the variance μ2. This means that the
measurements T̃ are normally distributed with associated covariance matrix

CovT̃ = μ2I

The estimator θT̂(X) for the reduced temperature field is a linear transformation of themeasurements
T̃. Thus, its covariance can be written as

CovT̂(X) = (J(X)�J(X))−1J(X)�CovT̃ J(X)(J(X)�J(X))−1

= μ2(J(X)�J(X))−1 ∈ R
r×r

Analogously the covariance of the estimator θu(xTCP)(X) for the TCP displacement is obtained from

Covu(xTCP)(X) = μ2CelSV(J(X)�J(X))−1(CelSV)� ∈ R
3×3 (12)

Note that the covariance Covu(xTCP)(X) does not depend on the current thermal state of the machine.
However, it does depend on the sensor positions selected (encoded in X) as well as on the choice of
the reduced-order basis matrix V .

3.3. Sensor placement strategy

The precision of a linear least-squares estimator can be inferred from the eigenvalues of its covariance
matrix; see for instance (Fedorov and Hackl 1997, Ch. 1) or (Seber and Wild 2005, Ch. 3). Large
eigenvalues of Covu(xTCP)(X) indicate a high sensitivity of u(xTCP) with respect to perturbations in
the temperature measurements. For this reason the goal is to choose sensor positions X such that the
covariance becomes small. This results in the optimal sensor placement problem

Minimize �(Covu(xTCP)(X))

subject to X = [x1, . . . , xnsensors ] ⊂ �
(13)

Common optimality criteria used in experimental design include the following,

�A(Cov) = trace(Cov) �D(Cov) = ln(det(Cov)) �E(Cov) = λmax(Cov) (14)

where λmax denotes the maximal eigenvalue; see for instance Uciński (2005). Different optimality
criteria may produce different solutions of (13). The criteria above can be interpreted in terms of
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the uncertainty ellipsoid for the estimates u(xTCP). WhileD-optimal designs minimize the ellipsoid’s
volume, A-optimal designs minimize the mean squared lengths of its axes, while E-optimal designs
minimize the length of its largest axis. In the rest of the article the D-optimality criterion will be
considered.

Due to the fact that problem (13) is in general hard to solve, the complexity of the problem will be
reduced in the following sections. On the one hand, taking the constraints x1, . . . , xnsensors ∈ � literally
would require a parametrization of a complicated surface such as the one depicted in Figure 1(b). As
mentioned previously, the potential sensor positions are restricted to the FE nodes to overcome this
difficulty. This amounts to the selection of a finite but possibly large set �finite ⊂ � of feasible sensor
locations.

Finding globally optimal solutions of (13) with the constraints x1, . . . , xnsensors ∈ �finite would
require the solution of a large combinatorial problem. While in principle this can be achieved for
sizeable problems using sophisticated branch-and-bound algorithms, see for instance Uciński and
Patan (2007), the approach pursued here is different and the simultaneous placement is replaced by
a sequential (greedy) placement of one sensor at a time. As observed in Herzog and Riedel (2015)
this will lead to slightly suboptimal solutions but it makes the overall problem tractable. In addition,
the sequential placement strategy allows determination of the total number of sensors required for a
desired target precision on the fly.

In view of the sequential placement approach, a series of subproblems of the form

Minimize
xi∈�finite

�(Covu(xTCP)(x1, . . . , xi−1; xi)) (15)

needs to be solved. Here x1, . . . , xi−1 are the locations of the sensors already placed and xi is the cur-
rently sought position of the ith temperature sensor. Care needs to be taken here when i< r, i.e. when
the number of sensors is not yet sufficient to estimate the entire temperature field in the reduced basis
which has dimension r. The approach proposed in Herzog and Riedel (2015) is adopted and the esti-
mation problem is restricted to the leading min{i, r} components of the reduced basis. To this end
the columns of the reduced basis matrix V are sorted in decreasing order of significance, which is a
natural side product of the model order reduction techniques under consideration.

Altogether, the approach just described amounts to using the restricted basis matrix

Vi = [v1, . . . , vmin{i,r}]

and the restricted Jacobian

Ji(xi) =

⎡
⎢⎢⎢⎣

v1(x1) · · · vmin{i,r}(x1)
...

...
v1(xi−1) · · · vmin{i,r}(xi−1)

v1(xi) · · · vmin{i,r}(xi)

⎤
⎥⎥⎥⎦

where only the sensor location xi associatedwith the last row is subject to optimization in (15). Finally,
the covariance matrix appearing in the objective in (15) is given by

Covu(xTCP)(x1, . . . , xi−1; xi) = μ2CelSVi(Ji(xi)�Ji(xi))−1(CelSVi)
� (16)

as opposed to (12). The reader is referred to Herzog and Riedel (2015) for further details.

4. MOR techniques

Within the sensor placement procedure, the temperature field T ∈ R
nth of the machine column is

replaced by a low-dimensional approximation T̂ ∈ R
r , r � nth. The transformation is described by
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the basis matrix V ∈ R
nth×r such that T ≈ VT̂ holds (in a sense to be made precise). In order to find

an appropriate low-dimensional subspace, spanned by the columns ofV , for the approximation of the
temperature field T, various MOR techniques are applied to the state-space models (2) and (6)–(7),
respectively.

A sophisticated overview of the following MOR methods can be found in e.g. Antoulas (2005).
In general, modern projection based MOR is concerned with the dimension reduction of dynamical
systems of the form

Eẋ = Ax + Bz y = Cx (17)

That is, projection based MOR aims to find projection matrices V , W ∈ R
n×r with r � n defining

the reduced-order model (ROM)

Ê ˙̂x = Âx̂ + B̂z ŷ = Ĉx̂ (18)

where

Ê = W�EV ∈ R
r×r B̂ = W�B ∈ R

r×m

Â = W�AV ∈ R
r×r Ĉ = CV ∈ R

q×r

The requirement ŷ ≈ y is interpreted differently for each MOR technique. In the following section,
brief introductions to POD, BT, and two moment matching procedures are given, namely Padé
approximation (Padé) and the iterative rational Krylov algorithm (IRKA). Note that the POD and
Padé methods simply use one-sided projections with V =W. The MOR techniques considered
also differ with respect to whether they are applied to the temperature equation (2) only, or to the
thermo-mechanically coupled control system (6)–(7). The latter also contains information about the
low-dimensional output y=Cx, the TCP displacement that is the ultimate quantity of interest.

4.1. Proper orthogonal decomposition (POD)

POD is a simulation based MOR technique for linear or nonlinear time-dependent problems. As in
Herzog and Riedel (2015), it is only applied to the thermal system (2). System (2) is simulated using
a typical loading cycle z(t) and snapshots T(t1), . . . ,T(tnsnapshots) are stored. Following standard POD
procedure, see e.g. Kunisch and Volkwein (2001), the Gramian matrix

G = T�EthT

is set up, where T = [T(t1), . . . ,T(tnsnapshots)] is the matrix of snapshots and Eth denotes the mass
matrix representing the L2(�) inner product. Moreover, let D = diag(dj) be the diagonal weight
matrix with entries

d21 = δt1
2

d2j = δtj + δtj+1

2
d2nsnapshots = δtnsnapshots−1

2
depending on the time steps δtj = tj+1 − tj. Now let λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λr+1 ≥ · · · ≥
λnsnapshots ≥ 0 be the eigenvalues of the generalized eigenvalue problem

DGDx = λEthx

with associated eigenvectors {vi}, i = 1, . . . , nsnapshots, which are orthonormal with respect to the
Eth-inner product, i.e. v�

i Ethvj = δij holds. Then the projection matrix V defining the POD MOR
technique is chosen as

V = [v1, . . . , vr]

It is well known that the eigenvalues ofDGD typically decay exponentially for snapshots drawn from
the heat equation. Therefore a few eigenvectors usually suffice. Commonly, the truncation threshold
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r is chosen such that the ratio of the energies contained in the bases of the reduced and full models is
near 1, i.e. ∑r

i=1 λi∑nsnapshots
i=1 λi

=
∑r

i=1 λi

trace(E−1DGD)
≈ 1

Clearly, one drawback of POD in the context of the problem at hand is that the snapshots, and thus
the reduced basis, cover only temperature states present in the set of snapshots. Temperature states
obtained from a simulation with different inputs are not necessarily well represented in span(V).

4.2. Balanced truncation (BT)

In contrast to POD, BT is based on the input/output behaviour of the system under consideration
and does not depend on simulations of the system. The question arises which system BT should
be applied to, since an output equation is always required. Normally, BT relies on the dimension of
both the input as well as the output to be significantly smaller than the state dimension; see however
Benner and Schneider (2013) for recent advances to overcome this limitation. Since the output of
the temperature equation (2) is defined by the temperature sensors, whose locations are sought, BT
cannot be directly applied solely to the temperature equation with all possible sensor locations as
output. However the thermally induced displacement at the TCP (8) can be used as the output of (2).
Thus, instead of the full thermo-mechanical model (6)–(7), the equivalent control system

EthṪ = AthT + Bthz, y = CelA−1
el AthelT =: C̃T (19)

is considered, which describes the thermo-elastic behaviour, and which is of the same structure
as (6)–(7), but of dimension nth instead of n = 4nth. Note that the information of the elasticity model
is entirely contained in the modified output matrix C̃.

The idea of BTMOR is to identify those states that require the least energy to be controlled, and at
the same time yield the most energy through observation; see Enns (1984) and Moore (1981). These
states will be preserved within the low-dimensional approximation T̂. The states which are difficult
to excite and/or difficult to observe are neglected.

The determination of the projection subspaces, represented by V and W, is based on the con-
trollability and observability of the underlying control system (19). Therefore, in order to identify the
dominant states, the controllability and observabilityGramiansP andQ have to be computed. In prac-
tice, the Gramians can be found as the solutions of the generalized controllability and observability
algebraic Lyapunov equations (ALEs)

AthPE�
th + EthPA�

th + BthB�
th = 0

A�
thQEth + E�

thQAth + C�C = 0
(20)

respectively. As in the case of POD, Eth represents the L2(�) inner product. Then P = Q =
diag(λ1, . . . , λn) is referred to as a balanced realization, where the λi are the so-calledHankel singular
values (HSVs). Such a realization can be obtained by the application of a certain state transformation.
Given such a balanced realization, theHSVs reveal the dominant states of the system and can be com-
puted as the positive square roots of the eigenvalues of the product PE�

thQEth. Note that in general
the solutions P and Q of the ALEs (20) are neither equal nor in diagonal form. Still, computing the
projection matrices V , W by using e.g. the square-root method (SRM), see Glover (1984) and Laub
et al. (1987), the balancing transformation is carried out implicitly. Often Cholesky-like factorizations
of the Gramians P, Q are computed within the SRM. For large-scale problems, i.e. models with large
state dimensions as in the case under consideration here, low-rank approximations of the Gramians
should be used in order to efficiently solve the large-scale ALEs (20); see Benner, Kürschner, and
Saak (2013a, 2013b, 2014/15) and Kürschner (2016). In other words, the Gramians are computed in
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the form P = RR� and Q = SS� with rank(R), rank(S) � n. Then, a singular value decomposition
(SVD)

S�EthR = X
Y� = [X1,X2]diag(
1,
2)[Y1,Y2]�

with decreasingly ordered singular values λ1, . . . , λn, reveals the r � n dominant singular values
λ1 ≥ · · · ≥ λr > 0 contained in the leading block matrix 
1 ∈ R

r×r . Given the SVD, the projection
matrices V , W are computed in the form

V = RY1

−1/2
1 W = SX1


−1/2
1

Themost important advantages of BT are the guaranteed preservation of stability of the dynamical
system and the easily computable error bound

‖y − ŷ‖2
‖u‖2 ≤ 2

n∑
j=r+1

λj

with λj, j = r + 1, . . . , n, denoting the truncated singular values contained in 
2, and the L2-norm
‖u‖22 = ∫ ∞

0 u(t)�u(t) dt.
It should be emphasized that, in contrast to the PODapproach, the elasticity equation plays a role in

the MOR process through the output equation (8). Moreover, although only the matrix V is needed
for the sensor placement procedure, the BT method essentially needs to compute both projection
matrices V andW.

4.3. Momentmatching (MM)

In the context of MOR by MM, the starting point is the transfer function (TF)

G(s) = C̃(sEth − Ath)
−1Bth (21)

of the thermo-mechanical system (19). Note that, again, the system formulation (19) of dimension
nth is used. The TF (21) represents the input–output mapping of the underlying linear dynamical
system evaluated in the frequency domain. In other words, the input–output behaviour with respect
to a certain excitation frequency s is described. Under the assumption that s0 ∈ C is not an eigenvalue
of the matrix pencil (E,A), the TF (21) can be written as

G(s) = C̃(sEth − Ath)
−1Bth = C̃(sEth − s0Eth + s0Eth − Ath)

−1Bth

= C̃[(s0Eth − Ath)((s − s0)(s0Eth − Ath)
−1Eth + I)]−1Bth

= C̃[I − (−1)(s − s0)(s0Eth − Ath)
−1Eth]−1(s0Eth − Ath)

−1Bth

If s is sufficiently close to s0, the inverse [·]−1 can in fact be treated as a Neumann series and therefore

G(s) =
∞∑
j=0

C̃(−(s0Eth − Ath)
−1Eth)j(s0Eth − Ath)

−1Bth(s − s0)j =
∞∑
j=0

mj(s − s0)j

is obtained where

mj = C̃(−(s0Eth − Ath)
−1Eth)j(s0Eth − Ath)

−1Bth (22)

are said to be the moments of the transfer function around s0.
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MMMORmethods aim at finding a ROM (18) such that a certain number of moments

m̂j = Ĉ(−(s0Ê − Â)−1Ê)j(s0Ê − Â)−1B̂

of the TF Ĝ(s) associated with the reduced-order model (18) match the moments mj of the original
TF G(s). For large-scale problems, the application of Krylov subspace based methods has proven to
be very effective. Computing the projection matrix V in such a way that

span(V) = Kp((s0Eth − Ath)
−1Eth, (s0Eth − Ath)

−1Bth) (23)

holds, it turns out that the first pmoments are matched. The same holds forW with

span(W) = Kp((s0Eth − Ath)
−TE�

th, (s0Eth − Ath)
−TC̃�) (24)

Here,K� is a Krylov subspace defined as

K�(Y ,Z) = span(Z, YZ, Y2Z, . . . ,Y�−1Z).

If both conditions, (23) and (24), are fulfilled, matching of 2p moments is achieved. For the choice
s0 = 0, the resulting problem is known as Padé approximation. In case s0 = ∞, the moments are
calledMarkov parameters. In the general case 0 < s0 < ∞ the problem is widely known as a rational
interpolation problem. The computation of the matrices V ,W can be easily achieved by Arnoldi or
Lanczos methods; see e.g. (Saad 2003, Ch. 6). A detailed description of MOR by MM, using Krylov
subspace methods, can be found, in e.g. (Antoulas 2005, Ch. 11).

In the application under consideration, the heat equation is characterized by a rather slow evolu-
tion. Therefore, the Padé approach, approximating the system related TF at the frequency s0 = 0, is
a natural choice for a first representation of the moment matching procedures.

In addition, the application of the iterative rational Krylov algorithm (IRKA) is investigated;
seeGugercin, Antoulas, andBeattie (2008). The latter describes the rational interpolation usingmulti-
ple prescribed expansion points si, i = 1, 2, . . . , r. Note that the number of expansion points coincides
with the dimension of the reduced-order model being generated by IRKA. Moreover, the expansion
points are automatically determined in anH2 optimal sense. The IRKA is developed in order to find
aHermite interpolant of the TF,G(·), such that the first twomoments are matched at every expansion
point. To summarize, MM approaches based onmatching multiple moments (> 2) at a single expan-
sion point s0 = 0 (Padé) will be compared to matching the first two moments at several expansion
points (IRKA).

Note that the optimal sensor placement strategy only requires the projectionmatrixV . Therefore,
using the Padé approximation, it suffices to compute the input Krylov subspace span(V) based on
the system and input matrices Ath and Bth, respectively, given by the thermal model equation (2).
In contrast, similarly to BT, the IRKA based approach additionally requires the specification of an
output matrix in order to automatically compute optimal expansion points in theH2 sense and thus,
the system (19) has to be considered. For a detailed derivation and explanation of the procedure the
reader is referred to Gugercin, Antoulas, and Beattie (2008).

5. Numerical results and comparison

5.1. Description of problem data

The following numerical experiments are based on the geometry of the prototypical Auerbach
ACW 630 machine column shown in Figure 1(b). The material constants are given in Table 1. Notice
that the heat transfer coefficient varies over different parts of the boundary, classified according to the
orientation of the outer surface normal; see Figure 2(a). The machine column experiences the influ-
ence of two heat sources, see again Figure 2(a). One source originates from an electric drive mounted
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Figure 2. Heat sources, values of heat transfer coefficient and TCP location. (a) Heat sources and heat transfer coefficient.
(b) Mounting points determining the TCP location.

on the top of the machine column (surface part �r1), while the other source represents the spindle
driving the horizontal movement of the column (�r2).

The location of the heat sources enters the matrix Bth in (2) and (6) and thus it has an impact on
all reduced-order models. Note that the number of inputs ism= 3, because the ambient temperature
Tref is considered as an input in order to achieve a linear (as opposed to affine) control system (2).
For the generation of the snapshots needed for the simulation based PODMOR technique, a typical
thermal load cycle has to be specified in addition to the initial temperature. In (1) the load profile

r(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6700Wm−2 if x ∈ �r1 and 0 s ≤ t ≤ 1800 s,
2700Wm−2 if x ∈ �r2 and 0 s ≤ t ≤ 1800 s,
2700Wm−2 if x ∈ �r2 and 3600 s ≤ t ≤ 5400 s,
6700Wm−2 if x ∈ �r1 and 5400 s < t ≤ 7200 s,
0 else

(25)

is used, which represents a realistic machining scenario. This heat source gives rise to a time-
dependent control input z(t) in the semi-discretized models (2) and (6). The simulation of the
temperature equation (2) was carried out in a time interval t ∈ [0 s, 9000 s] with uniform step length
δt = 60 s using the implicit Euler scheme. The initial temperature for these simulations was choosen
as T0 ≡ Tref .

The quantity of interestu(xTCP) in the estimation problemonwhich the sensor placement problem
is based is the displacement at the so-called TCP. The tip of the main spindle (holding the tool) seen
in the left of Figure 1(a) is defined as the TCP. The main spindle assembly is considered as a rigid
body which is thermally insulated from the machine column. Consequently, the TCP displacement
is determined by the four mounting points of the sledge holding the main spindle, see Figure 2(b).
The dependence of u(xTCP) on the deflection in the four mounting points is actually nonlinear, but
it is replaced by its linearization; see Herzog and Riedel (2015) for details.
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5.2. Comparison ofMOR techniques for sensor placement

In this section the results of the sensor placement procedure described in Section 3 are presented
and compared, using the MOR techniques under consideration. Recall that POD, BT as well as two
variants of MM (Padé and IRKA) are considered, as described in Section 4. In each case, the respec-
tive reduced basis V was obtained, following which the sequential sensor placement procedure as
described in Section 3.3 was carried out, which amounts to solving a sequence of problems (15). The
size of the reduced-order model was r= 20 and nsensors = 30 sensors were placed in each case.

Figure 3 shows the sensor locations obtained. In the case of POD most of the sensors are placed
near to the heat sources, see Figure 3(a). The reason for this phenomenon is that the projection sub-
space associated with the basis matrix V is based solely on simulations of the thermal model (2). In
particular, the relative intensities and locations of the heat sources will strongly influence the com-
puted subspace. Due to the properties of the heat equation and the heat loss through the boundary,
the simulation snapshots are almost zero at a certain distance from the heat sources. Therefore the
POD basis also shares this property and thus the information gain for temperature measurements far
away from the heat sources is negligible.

By contrast, the projection matrices V computed from the BT and the two MM procedures are
set up independent of the thermal loads and initial condition. Therefore the final sensor locations
are spread out more evenly across the machine column’s surface, see Figure 3(b–d), to account for
all possible heat source trajectories in the image space of Bth. Despite its smaller physical extension,
it can be observed that the heat source located at the lower part of the machine column attracts a
significant amount of sensors. This is quite intuitive since even small deformations at the base of the
machine column will naturally be transferred up along the height of the column and thus may have
a sizeable influence on the displacement of the TCP.

Recall that BT and IRKA are applied to the reformulation (19) of the full thermo-elastic
model (6)–(7) and thus the displacement information about the quantity of interest (QOI) is
contained in the ROM. In contrast, the POD and Padé procedures solely consider the thermal
model (2).

Figure 4 shows the values of the objective function (15) for the different test cases as a function
of the number of sensors placed. Smaller values of the objective function indicate less influence of
measurement errors on the TCP displacement estimation and thus better estimation precision.More-
over, Figur 4(a–d) shows the influence of the size r of the ROM. For the Padé method, the number
p of moments to be matched was chosen as p ∈ {5, 6, 7}. Based on the number of inputs m= 3 and
the relation r= pm this results in reduced dimensions r ∈ {15, 18, 21} for the Padé based estimations.
Regarding the evolution of the objective function, the qualitative behaviour is very similar for all

Figure 3. Optimal sensor locations for the different MORmethods. (a) POD, (b) BT, (c) Padé, (d) IRKA.
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Figure 4. Values of the optimal experimental design objective �(Cov) for each MOR technique according to the ROM size r and
the number of sensors placed. (a) POD, (b) BT, (c) Padé, (d) IRKA, (e) Comparison for r = 20.

MOR methods. That is, the best performance in the sense of the experimental design criterion (14)
is achieved for small model sizes. This result was to be expected since smaller models lead to fewer
coefficients to be estimated. On the other hand, smaller models lead to larger approximation errors of
the ROM compared to the full state model. This is not accounted for in the experimental design cri-
terion. Depending on the needs of the application or the user, a good balance between the two goals
has to be found. Figure 4(e) shows a comparison of the different MORmethods for a fixed dimension
(r= 20) of the reduced systems. Here, the POD based approach shows the best performance with
respect to the optimization objective.

Note that the sequence of optimal sensor placement problems (15) operates under the assumption
that only temperature states in the range of the respective basisV can occur. To achieve amoremean-
ingful comparison of the four MOR variants, measurements were created from a simulation of the
full model. The thermal loads in this simulation differ from those in (25), which were used to create
the POD snapshots. The simulation spans the time interval t ∈ [0 s, 7200 s] and the thermal loads

r(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
6700Wm−2 if x ∈ �r1 and 0 s ≤ t ≤ 2400 s,
2700Wm−2 if x ∈ �r2 and 0 s ≤ t ≤ 4800 s,
6700Wm−2 if x ∈ �r1 and 4800 s < t ≤ 7200 s,
0 else

(26)

and an initial temperature of T0 ≡ Tref were applied. Figure 5(a,b) show the evolution of the simu-
lated TCP deflection compared to its estimated position based on the nsensors = 30 optimally placed
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Figure 5. Comparison of the exact (simulated by the fullmodel) TCP displacementwith the estimates (11)with simulatedmeasure-
ments at the respectivemeasurement locations (left) with heat sources (26). Relative errors are shown in the right plot. (a) Estimated
and simulated displacements at the TCP. (b) Relative errors.

sensors (in the sense of the approach in Section 3.3) with reduced bases of dimension r= 20. The
simulated temperature values were evaluated for each ROM at the relevant sensor locations. The TCP
displacement estimate was then obtained from solving the least-squares problem (11).

Again, according to the relative errors between simulated and estimated TCP displacements, the
POD approach yields the best results in this exercise. The estimation of the TCP displacement associ-
ated to the subspace spanned by the Padé procedure shows significant inaccuracies at times t = 120 s
and t = 4800 s. This may be due to the fact that the matching of p= 7 moments of the transfer func-
tion at a single expansion point s0 = 0 and a resulting reduced dimension r= 21, restricted to r= 20,
cannot sufficiently approximate the actual model behaviour of the original full-order model at those
points. Apart from these peaks, the BT, Padé and IRKA based estimates are roughly of the same order
of accuracy. Note that the large relative errors at the beginning of the time interval are mainly caused
by the fact that the trajectories evolve closely around zero and therefore the relative error is violated
by divisions of values that are close to zero. However, it is a well known fact that the ROMs based
on POD are, in general, only reliable for operating conditions near those used to generate the POD
snapshots. Therefore the experiment was repeated with thermal loads

rmod(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3000Wm−2 if x ∈ �r1 and 0 s ≤ t ≤ 2400 s,
5000Wm−2 if x ∈ �r2 and 0 s ≤ t ≤ 4800 s,
3000Wm−2 if x ∈ �r1 and 4800 s < t ≤ 7200 s,
0 else

(27)

which differ more significantly from the nominal loads (25) than (26). Figure 6(a,b) show the esti-
mation quality in this case. Here, it was observed that the change of the intensity of the heat sources
does not considerably influence the estimations compared to the previous scenario. Only the POD
approach performs slightly worse, producing similar error levels to the other MOR methods in this
case.
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Figure 6. As for Figure 5 using alternative heat sources (27). (a) Estimated and simulated displacements at the TCP. (b) Relative
errors.

Figure 7. As for Figure 5 with heat sources (26) using noisy measurements. (a) Estimated and simulated displacements at the TCP.
(b) Relative errors.

In a final experiment the robustness of the TCP displacement estimation with respect to noisy
measurements using a standard deviation of σ = 0.1 is analysed in Figure 7(a,b). The heat sources
were chosen as in (26). The TCP evolution trajectories and the corresponding relative errors again
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reveal the superiority of the POD approach applied to the optimal experimental design framework,
while the other strategies are of the same order of accuracy as before.

6. Discussion

In this article, an optimal sequential placement strategy for temperature sensors in order to predict
thermally inducedmechanical deformations from temperaturemeasurements was revisited. Tomake
the sensor placement procedure tractable,MORwas applied either to the temperature equation alone,
or to the full thermo-mechanical model. The main focus of this article was to compare the perfor-
mance of different MOR methods with respect to the sensor placement objective and the prediction
quality of the induced displacement estimation using simulated measurements at the optimized
sensor positions.

Comparing the simulation results based on the data used as the POD training scenario and a fixed
model size of r= 20, the POD approach showed the best performance with respect to the experimen-
tal design objective as well as the estimation accuracy of the TCP displacement. Considering thermal
loads outside the POD training set, as well as for noisy measurement data, the POD, BT, and IRKA
based MOR approaches basically show the same behaviour with respect to the estimation accuracy.
POD, as a simulation based MOR approach, depends on the snapshot ensemble being sufficiently
rich to yield a reliable ROM. Nevertheless, POD was found to work well compared to the other MOR
schemes, even under significant perturbations of the heating profile used during the training phase.
Interestingly, POD shows best performance with respect to to the prescribed reduced order/number
of sensors and the comparison criteria even though it targets only the temperature field and no infor-
mation about the trueQOI (the TCP displacement) is included. POD especially takes into account the
explicit influence of the actual acting loads and, according to that, clusters the sensors corresponding
to the regions of dominant thermal interest.

The three other MOR methods which were considered do not depend on simulations. Moreover,
the BT and IRKA approaches operate on an equivalent reformulation of the full thermo-mechanical
model and thus include QOI information. On the other hand, these methods do not consider the
actualmachining process. Therefore, they are less specialized such that the correspondingROMsneed
to be significantly larger in order to achieve comparable performance. Still, for drastically changed
machining processes, e.g. with no action on the lower heat source, they are expected to givemuch bet-
ter results than the PODprior tomodification, i.e. regeneration of the PODbasis by new trainingwith
the changed input situation. However, quantification of the degeneration of the PODmodel requires
further investigation. Out of these methods, the BT and the IRKA MM approaches performed best,
and very similarly.
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