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The modification of the effect of interactions of a particle as a function of its pre- and postselected
states is analyzed theoretically and experimentally. The universality property of this modification in
the case of local interactions of a spatially pre- and postselected particle has been found. It allowed
to define an operational approach for characterization of the presence of a quantum particle in a
particular place: the way it modifies the effect of local interactions. The experiment demonstrating
this universality property provides an efficient interferometric alignment method, in which the beam
on a single detector throughout one phase scan yields all misalignment parameters.

I. INTRODUCTION

Pre- and postselected systems are ubiquitous in quan-
tum mechanics. In many quantum information schemes
the intended process is only realized by the interplay of
preselection and postselection. The addition of postselec-
tion, often together with conditioned transformations, is
the basis of protocols such as universal quantum compu-
tation within the KLM scheme [1], entanglement swap-
ping [2] and heralding in general [3].

The two-state vector formalism (TSVF) [4] provides a
general framework for the description of pre- and postse-
lected systems. It introduces a state evolving backwards
in time and thereby treats the postselection on equal foot-
ing as the preselection. The key element of the TSVF is
the weak value of an observable. As long as the interac-
tion is sufficiently weak or short the observable effect on
the external system is completely characterized by the
weak value [5]. For such interactions, the state of the
external systems after the postselection can deviate sig-
nificantly from the states expected by just considering
the coupling to preselected systems [6]. The concept of
weak values became the basis of several successful appli-
cations in precision measurement techniques [7, 8]. While
there are theoretical controversies about the optimality
of the weak value-based tomography and precision mea-
surement methods [9–20] a plethora of fruitful applica-
tions continues to emerge[21–34].

We take a step back and investigate the fundamental
properties of pre- and postselected systems. We find that
there exists a general universality principle characteriz-
ing how the effects of the interactions in one location
of a spatially pre- and post-selected quantum system are
modified as a function of pre- and postselection. All these
modifications are specified by a single complex number,
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the weak value of the spatial projection operator. One of
the innovations of our approach, is that it does not rely
on an interaction given by a specific form of the Hamilto-
nian. It rather expresses the change of the state via the
complex amplitude of an orthogonal component, which
emerges due to the interaction. If the weak value is a
positive number, the size of the changes in every variable
is multiplied by this number and when it is negative, all
modifications happen in the opposite direction. If the ef-
fect originally changed a particular variable, in the case
of an imaginary weak value, the effect will occur in a
variable conjugate to the initial one, and when the weak
value is a complex number, both effects are combined to-
gether. This approach allows a formal definition of the
trace of a quantum particle’s presence.

Until now, most accounts considered the weak value
to be limited to the case of weak interactions, e.g. [35–
40]. It is another crucial innovation of our approach,
however, that we explicitly apply the formalism to the
case of much stronger interactions. We use an expression
for the weak value which takes into account changes due
to interactions of finite strength in the time interval be-
tween pre- and postselection. Besides incorporating the
stronger interactions we also account for decoherence or
imperfections in the measurement system. We show ex-
perimentally that this weak value can in fact be measured
using weakly coupled pointers.

An interferometer, especially a Mach-Zehnder type in-
terferometer, can be seen as the iconic example for pre-
and postselected systems. The reflectivity/transmittivity
of the first beamsplitter together with the phase shifter
defines the preselected state of the system. The final
beamsplitter together with detection of the particle in
one output of the interferometer sets the postselected
state. The effect of weak interactions of the particle with
external systems, which can be seen as a trace the particle
leaves inside the interferometer, is characterized by the
weak value of the projection operator on the correspond-
ing arm. Surprisingly, we also found that for Gaussian
states of the external system, the weak value character-
izes the modification of the trace for arbitrary strength
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of the interaction.
The interferometer enables straightforward experimen-

tal implementation where we consider a pre- and postse-
lected photon passing through. We experimentally char-
acterize the various effects of multiple interactions in one
of the interferometer’s arms using the mode and the po-
larization of the propagating photon as the external sys-
tems to couple with. We find that the modifications of
the weak effects on the photon can be described by the
weak value of the projection operator on the correspond-
ing arm for various types and strengths of couplings.

We can now turn the picture upside down and view
any coupling to the external degrees of freedom as being
due to misalignment of the interferometer. For example,
a tilted mirror in one of the beams now becomes an inter-
action deflecting the Gaussian mode of the beam from its
ideal direction. This analogy directly leads us to an effi-
cient alignment technique for interferometers where our
analysis provides a simple model for the image observ-
able at the output of an interferometer. More precisely,
by measuring the phase dependent trajectory of the cen-
troid of the output mode on only a single spatially resolv-
ing detector we can extract the misalignment parameters
in one go. This technique harnesses the benefits of the
weak amplification method [6] to improve precision.

II. WEAK VALUE OF LOCAL PROJECTION
AND ITS CONNECTION TO THE TRACE

Let us first consider the effect of a quantum particle
on external systems due to all kinds of local interactions
in the channel through which it passes. The interactions
might be caused by various properties of the particle,
e.g., charge, mass and magnetic moment. If the quantum
particle is not present in the channel, the state of the
external systems at a particular time is |χ〉. When the
quantum particle is localized in the channel as shown in
Fig. 1a, the interactions change the total state of the
external systems as

|χ′〉 ≡ η
(
|χ〉+ ε|χ⊥〉

)
, (1)

where |χ⊥〉 denotes the component of |χ′〉 which is or-
thogonal to |χ〉 and its phase is chosen such that ε > 0.
For simplicity, but without loss of generality we also dis-
regard the global phase and consider the coefficient η to
be positive such that η = 〈χ′|χ〉 = 1√

1+ε2
is the overlap

between the original and modified state. It is the non-
vanishing amplitude of |χ⊥〉 that quantifies the trace left
by the particle, see Section VII.

Next, let this channel be an arm of a Mach-Zehnder in-
terferometer (MZI), see Fig. 1b, without imperfections,
in particular, neglecting the interactions leading to (1).
For the creation of the preselected state inside the in-
terferometer |ψ〉 the unbalanced input beam splitter is
followed by a phase shifter resulting in

|ψ〉 = cosα|A〉+ sinαeiϕ|B〉, (2)

BS

BS

a)

b)

Phase

various
interactions

FIG. 1. Comparison between quantum particle cou-
pling in a single channel and in an arm of an inter-
ferometer. a). The particle interacts with external systems
originally in the state |χ〉. b) In a Mach-Zehnder interferom-
eter, the model of the interactions is such that in arm |A〉
the couplings are the same as in case (a), while there is no
coupling to the external systems in |B〉.

where |A〉 and |B〉 represent the eigenstates of the path
degree of freedom, and α and ϕ are the two real param-
eters of the state.

The second beam splitter is balanced, so its operation
can be modeled as

|A〉 → 1√
2

(|C〉+ |D〉), (3a)

|B〉 → 1√
2

(|C〉 − |D〉). (3b)

We collect photons in output port C, which corresponds
to a postselection of the state

|φ〉 =
1√
2

(|A〉+ |B〉) . (4)

Accounting for the interactions in arm A (see Fig. 1b)
the composite state |Ψ〉 of the particle and the external
systems before the second beam splitter is

|Ψ〉 = cosα|A〉|χ′〉+ sinαeiϕ|B〉|χ〉, (5)

where here and in the rest of the paper we employ a
shorthand notation for tensor products with |A〉|χ′〉 ≡
|A〉 ⊗ |χ′〉. After detection of the particle by a detector
in arm C, i.e., postselection of the particle in state (4),
the state of the external systems becomes

|χ̃〉 = N
(
|χ〉+

ηε

η + tanαeiϕ
|χ⊥〉

)
, (6)

where N is the normalization factor. Here and in the
rest of the paper we use the accent symbol “∼” to denote
situations with pre- and postselection.

When the interactions are sufficiently small, with ε�
1, and again considering the case of a single channel, the
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particle passing through it leads to the change of the state
of the external systems,

|χ〉 → |χ′〉 = |χ〉+ ε|χ⊥〉+O(ε2), (7)

which is just an expansion of (1) in orders of ε.
For the particle that has passed through the corre-

sponding MZI and has been detected in C we observe a
different change of the state of the external systems. The
weak effect of the interaction is modified relative to (7)
by a single parameter, the weak value of projection on
arm A,

|χ〉 → |χ̃〉 = |χ〉+ ε (PA)w |χ
⊥〉+O(ε2), (8)

where

(PA)w =
〈φ|PA|ψ〉
〈φ|ψ〉

=
1

1 + tanα eiϕ
. (9)

The design of the interferometer allows the full range
of weak values of projection onto arm A, by varying the
parameters tanα and ϕ. Note that we did not restrict
the number of interactions as long as together they have
been sufficiently weak. We want to emphasize that Eq.
(8) is fundamentally distinct from previous expressions,
as it gives a physical meaning to the weak value, i.e.
the modification of the amplitude ε, independently of the
specific form of the interaction Hamiltonian.

III. WEAK VALUE CONSIDERING FINITE
COUPLING STRENGTH AND IMPERFECTIONS

Calculating the weak value as in Eq. (9) we have im-
plicitly assumed that it only depends on the pre- and
postselection states at the boundaries of the considered
time interval. This is correct in the limit of weak cou-
pling, which is considered in most works about weak mea-
surements. Yet, sometimes even in scenarios with cou-
pling of finite strength the weak value has been treated as
if there was no coupling, i.e., using formula (9) [35–41].

To account for couplings of finite strength, we turn to
the proper definition of the weak value in the framework
of the TSVF, which refers to a single point in time t,
at which the particular forward and backward evolving
quantum states have to be evaluated [42]. All interac-
tions of finite strength and imperfections of optical de-
vices between preselection and t as well as between t and
postelection, must be considered. Thus, Eq. (2) correctly
describes the forward evolving state only immediately af-
ter the first beam splitter and Eq. (4) describes the back-
ward evolving state only immediately before the second
beam splitter. Since all evolutions due to imperfections
or interactions with the different external systems are lo-
cal, i.e, they have the common eigenstates |A〉 and |B〉,
the time ordering of the evolutions is of no consequence.
Therefore, the weak value (PA)w stays constant in time
and we are free to choose any moment in time to calculate

it. For convenience, we calculate the weak value imme-
diately before postselection on state (4) and modify only
the forward evolving state to account for the evolution
due to interactions inside the interferometer.

Due to the interactions the system becomes entangled
with the external systems as described by Eq. (5). Thus,
the particle is in the mixed state described by the density
matrix in the basis {|A〉, |B〉}:

ρ =

(
cos2 α cosα sinαe−iϕη

cosα sinαeiϕη sin2 α

)
. (10)

The weak value in the case of mixed states has been
derived in [5] (Eq. (32) therein),

Aw =
Tr (ρpostAρpre)

Tr (ρpostρpre)
. (11)

In our case the weak value of the projector PA, see also
[35, 43, 44], becomes

(PA)w =
Tr (|φ〉〈φ|PAρ)

Tr (|φ〉〈φ|ρ)
=

1 + tanαηe−iϕ

1 + tan2 α+ 2 tanαη cosϕ
.

(12)

Note that the formula for mixed states (11) can be used to
calculate the weak value immediately after the first beam
splitter and immediately before the last beam splitter.
In between, due to entanglement in both forward and
backward evolving states with the same external system,
the formula is not applicable, see Section VI of [5].

The dependence of the weak value on the parameters α,
ϕ and η given by (12) is presented in Fig. 2. Figs. 2a,b
show the dependence for an ideal interferometer, while
Fig. 2c-f illustrate the dependence for the non ideal case
with reduced overlap η.

If the interactions together are not weak anymore, (12)
can not be used to describe the external systems in a
simple way using (8). However, even in this case the
weak value can describe the change of the effect on those
external systems which have interacted weakly.

In our scenario the couplings to various systems in arm
A are independent and thus the change of each of the
systems k is of the form of (1). Therefore, the quantum
state of all systems together will change as

|χ〉 =
⊗
k

|χk〉 → |χ′〉 =
⊗
k

ηk
(
|χk〉+ εk|χ⊥k 〉

)
. (13)

When both the pre- as well as the postselection state
are superpositions of |A〉 and |B〉, several interactions
will lead to entanglement between the various external
systems. Thus, each of the systems will be described by
a mixed state ρk.

Consider again the states of the external systems in
the single channel. In the case where the coupling to the
k-th system is weak the change in the density matrix ρk
will be

ρk =

(
1 0
0 0

)
→ ρ′k =

(
1 εk
εk 0

)
+O(ε2k), (14)



4

FIG. 2. Exact parameter dependence of weak value. Real (upper row) and imaginary (lower row) parts of weak value of
the projection operator on arm A for η = 1, η = 0.990 and η = 0.936. Each plot shows the dependence on the phase ϕ and the
amplitude ratio tanα. The highlighted colored lines represent the parameter values that are set in the various measurements,
see Fig. 4 and Fig. 5 below.

in the
{
|χk〉, |χ⊥k 〉

}
basis. For the particle passing

through the MZI and pre- and postselected as described
above the state of the k-th system is modified as

ρk → ρ̃k =

(
1 (PA)

∗
w εk

(PA)w εk 0

)
+O(ε2k). (15)

Again, the modification of the effect of the weak inter-
action is characterized by the weak value (PA)w. With
this instructive expression, our result from Eq. (8) is
generalized to the case of multiple couplings of arbitrary
strength.

IV. MANIFESTATION OF THE TRACE AS
SHIFTS IN POINTER STATES

In the previous sections we described the trace a parti-
cle leaves as the appearance of an orthogonal component
in the quantum state of external systems. Another lan-
guage, frequently closer to experimental evidence is the
change in the expectation values of the external systems.
Given the small change due to interactions in Fig. 1a, ex-
pressed in (7), every observable O of the external system
changes its expectation value as

δ〈O〉 ≡ 〈χ′|O|χ′〉 − 〈χ|O|χ〉 = 2εRe
[
〈χ|O|χ⊥〉

]
+O(ε2).

(16)

Then, for the pre- and postselected particle (Fig. 1b) the
change in the expectation value of O is modified accord-
ing to

δ̃〈O〉 = 2εRe
[
〈χ|O|χ⊥〉 (PA)w

]
+O(ε2). (17)

This formula is universal - it is valid for every system
which was coupled weakly to the particle passing through
the channel.

While Eq. (17) represents a new result, it of course
also describes the familiar behavior in the less general
measurement type situation when the observable O is a
pointer variable Q and the pointer wavefunction χ(Q) is
real [42]. In this case, the interaction with the particle
in the channel shifts the wave function in the pointer
variable representation, χ(Q) → χ(Q − δQ). Obviously,
this also shifts the expectation value, δ〈Q〉 = δQ.

In this scenario χ⊥(Q) is also real, as well as 〈χ|Q|χ⊥〉.
Then, a positive weak value (PA)w just tells us how the
effect of the interaction is amplified or reduced according
to

δ̃〈Q〉 ≈ δQRe[(PA)w]. (18)

If (PA)w is negative, it tells us that the pointer will be
shifted in the opposite direction. If the weak value is
imaginary, the expectation value of the pointer position
will not be changed. However, an orthogonal component
in the quantum state of the pointer will still appear. It
will manifest itself in the shift of the expectation value
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of the momentum PQ conjugate to Q

δ̃〈PQ〉 ≈ 2δQ (∆PQ)2 Im[(PA)w], (19)

where (∆PQ)2 = 〈χ|P 2
Q|χ〉 − 〈χ|PQ|χ〉2 and ~ = 1.

Eqs. (18) and (19) were obtained from (16) and (17) on
the assumption of weak coupling. In general they are
not correct for strong interactions when higher orders of
ε can no longer be neglected.

Surprisingly and importantly, in a measurement type
situation with a Gaussian pointer, (16) and (17) can be
replaced by the exact expressions

δ〈Q〉 = 2εRe
[
〈χ|Q|χ⊥〉

]
, (20a)

δ̃〈Q〉 = 2εRe
[
〈χ|Q|χ⊥〉 (PA)w

]
. (20b)

While this property appears to be a mere technical con-
sequence of the special relations between higher order
expectation values of the Gaussian, it has the significant
practical consequence that Gaussian pointers show the
correct weak value for coupling of arbitrary strength.

If the pointer is a Gaussian in the position variable Q it
is of course also a Gaussian in the conjugate momentum
PQ representation. Therefore (18) and (19) become exact
formulas with ∆PQ = 1

2∆Q . There are analogous exact

formulas for the effect of a shift in momentum δPQ with

δ̃〈PQ〉 = δPQRe[(PA)w], (21a)

δ̃〈Q〉 = −2δPQ(∆Q)2 Im[(PA)w]. (21b)

Even more surprisingly, also in the case of combina-
tions of shifts in Q and PQ, the expressions remain cor-
rect for Gaussians in the regime of strong interactions
with

δ̃〈Q〉 = δQRe[(PA)w]− 2δPQ(∆Q)2 Im[(PA)w],

(22a)

δ̃〈PQ〉 = δPQRe[(PA)w] +
δQ

2(∆Q)2
Im[(PA)w], (22b)

where in the case of a general non Gaussian pointer
higher order terms appear. These equations are the basis
of the alignment method presented in Section VI.

V. OBSERVING THE UNIVERSALITY
PROPERTY

Here we want use an optical Mach-Zehnder interfer-
ometer to experimentally visualize our central claim,
namely, that all kinds of small effects of spatially pre-
and postselected systems taking place at a specific loca-
tion are modified in an universal manner characterized
by the weak value of spatial projection.

There are proposals and actual experiments where the
photon couples to other particles in one arm of the inter-
ferometer [45–49]. In [49] one arm of the interferometer

is a Kerr medium and the photon passing through this
arm changes the quantum state of the probe beam by
introducing a relative phase shift. As it is done in most
weak measurement experiments, instead of coupling to
external particles as in [49] we rather study different in-
teractions of the photon in an arm of the interferometer
by observing the effect on other degrees of freedom of
the photon itself. We demonstrate the universal change
for three different couplings. In every case the effect is
modified in the same manner.

The interactions in arm A are realized by introducing
controlled changes of spatial and polarization degrees of
freedom. The initial state of the position degree of free-
dom can be well approximated by a Gaussian along the
x as well as the y coordinates. The interaction is imple-
mented by shifting the center of the Gaussian intensity
distribution of the light beam going through arm A by
δx compared to the beam going through arm B,

χx(x) = e−x
2/w2

0 → χ′x(x) = e−(x−δx)2/w2
0 , (23)

where w0 denotes the waist of the beam and normaliza-
tion factors are omitted.

Another degree of freedom is the spatial state in y-
direction of the light beam, which we modified by chang-
ing the angle of the beam around the x axis, which
for small angles corresponds to the momentum shift
δpy = 2π

λ δθx. The resulting modification in arm A can
be expressed by

χy(py) = e−w
2
0p

2
y/4 → χ′y(py) = e−w

2
0(py−δpy)2/4. (24)

As a third external system we use the photon polar-
ization. The interaction parameter here is the rotation
of polarization by the angle δΘ,

|χσ〉 = |H〉 → |χ′σ〉 = cos
δΘ

2
|H〉+ sin

δΘ

2
|V 〉, (25)

where the states |H〉 and |V 〉 are defined via σz|H〉 = |H〉
and σz|V 〉 = −|V 〉 for the Pauli matrix σz.

All other properties of the photon are expressed in the
state |χO〉. Any imperfections of the interferometer can
be understood to lead to a change of the initial state of
these properties in arm A, |χO〉 → |χ′O〉 .

It is a good approximation to assume that all inter-
actions are independent, so we can express the quantum
state of the photon in arm B just before reaching the
final beam splitter of the interferometer as

|B〉|χ〉 = |B〉|χx〉|χy〉|χσ〉|χO〉, (26)

while in arm A it is

|A〉|χ′〉 = |A〉|χ′x〉|χ′y〉|χ′σ〉|χ′O〉. (27)

To test the universality of modifications of effects for
various degrees of freedom one could either perform com-
plete tomographies of the final pointer states (14) and
(15) or, more clearly, show the modification of the effects
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C
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FIG. 3. Schematic experimental setup. The preselection state |ψ〉 is set using a non-polarizing beam splitter (BS) creating
a spatial superposition between arms A and B. Two equally oriented polarizers (POL) and a half wave plate (HWPvar) are
used to define the relative amplitudes. Angle and position shifts, e.g. δθx and δx, are introduced by moving and tilting of
optical components, whereas polarization rotations are imposed using a half wave plate (HWP). The postselection is done by
considering only one of the output ports (C) of the interferometer. Analysis of the polarization degree of freedom is achieved by
means of half and quarter wave plates (HWP and QWP), polarizing beam splitters (PBS), and photodiodes (PD), allowing the
projection onto the polarization states 1/

√
2 (|H〉 ± |V 〉), 1/

√
2 (|H〉 ± i|V 〉), |H〉, and |V 〉. Position sensing detectors (PSD)

at different z-positions allow to determine position and angle, respectively, in x and in y-direction.

of the three couplings according to (18) and (19). We fol-
low the second approach. More explicitly, we test the dif-
ferences between effects of the interactions on the expec-
tation values in three degrees of freedom when the par-
ticle passes through the single arm (expressed by δ) and
when the particle passes through both arms (expressed

by δ̃)[50]. Because of the linear relation between θy and
px as well as θx and py, one obtains

δ̃〈x〉 = δ〈x〉Re[(PA)w], (28)

δ̃〈θy〉 = δ〈x〉
zR

Im[(PA)w], (29)

δ̃〈θx〉 = δ〈θx〉Re[(PA)w], (30)

δ̃〈y〉 =− zRδ〈θx〉Im[(PA)w]. (31)

Here we have used the Rayleigh range zR ≡ πw2
0

λ as the
characteristic parameter of the Gaussian beam.

The conjugate variable to the angle Θ defining polar-
ization changes in the σx-σz plane is an angle Υ describ-
ing polarization rotation in σy-σz plane relative to the
initial state |H〉. For small deviations these angles relate
linearly to 〈σx〉 and 〈σy〉, respectively, and are given by

δ̃〈Θ〉 = δ〈Θ〉Re[(PA)w], (32)

δ̃〈Υ〉 = −δ〈Θ〉Im[(PA)w]. (33)

The test was performed for the full range of ϕ and
thus a large range of values (PA)w, see violet lines on
the graphs of Fig. 2. The parameters for the calculation
of (PA)w necessary for testing of the relations (28) - (33)
were also obtained from measurements. The signals from
separate arms (when the other arm was blocked) pro-
vided tanα. The phase ϕ and the overlap η were obtained
from the intensity of the interference signal and visibility

measurements, respectively. The relation between the
visibility V and the overlap η for the phase dependent
output intensity I ∝ 〈φ|ρ|φ〉 ∝ 1+tan2 α+2 tanαη cosϕ
is given by

V ≡ Imax − Imin

Imax + Imin
= η

2 tanα

1 + tan2 α
. (34)

The experiment is shown schematically in Fig. 3. Af-
ter propagation through a single mode fiber for spatial
filtering the horizontally polarized light from a laser diode
(λ = 780 nm) is split by a non-polarizing beam splitter.
The moduli of the amplitudes of the preselection state
(2) are controlled by means of rotating the polarization
using a half wave plate in arm A followed by a horizontal
polarization filter. The relative phase between the arms
ϕ is set by an optical trombone system with retroreflect-
ing prisms moved by a piezoelectric crystal (not shown).

This setup enables to directly implement the three
desired interactions along beam A and simultaneuously
measure their effect. Fig. 3 depicts the setup. The spa-
tial displacement δx, which is schematically depicted as a
shift of the mirror, was achieved by lateral movement of
the prism from the trombone system. Instead of a verti-
cal tilt of this mirror, we incorporate the vertical rotation
δθx by tilting the second beam splitter. The polarization
rotation δΘ is controlled by rotating a half wave plate
in arm A. Detecting light only from the output port C
provides the post-selection onto state |φ〉, Eq. (4).

The photons at port C are distributed onto several de-
tectors using beam splitters for position and polarization
analysis. A position sensing detector PSD1 placed near
the interferometer and a detector PSD2 placed farther
away allows the estimation of position and angle in x and
y directions. We perform tomography of the polarization
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The blue datapoints corresponding to arm B are taken as a reference and thus show zero shift. The axes are scaled such that
the readings of A agree for the three external systems. For each of these three, the same behavior of the interference signal
(black datapoints) is observed for the shifts of the variables δ̃〈x〉, δ̃〈θx〉, and δ̃〈Θ〉: the effect seen from the measurement of the
single arm is multiplied with the phase dependent real part of the weak value. (Lower row) The analogous plots for the shift

of the respective conjugate variables represented by δ̃〈θy〉, δ̃〈y〉, and δ̃〈Υ〉 show nicely the dependence on the imaginary part of
the weak value. The violet theoretical curves represent the rescaled real and imaginary parts of the weak value (no fit).

state using half and quarter wave plates in combination
with polarizing beam splitters as shown in Fig. 3.

A measurement run consists of three steps, namely,
first a measurement of light propagating in arm A alone,
second of arm B alone, and last a measurement of the
interference signal. The six expectation values obtained
from measurements of arm B are used as a reference for
the subsequent analysis.

The measurement with only beam A shows the effect
of the interactions when the photons pass solely through
the channel as in Fig. 1a. The results are indicated in
the graphs of Fig. 4 as red dashed horizontal lines since
they exhibit no dependence on the phase.

The universality is clearly shown by the similarity of
the results for the three couplings (Fig. 4). Of course
in all graphs the observed values are different and have
different units. For demonstration purposes we arranged
the scales of the graphs in the upper row of Fig. 4 such
that the signals of all interactions, 〈x〉A, 〈θy〉A, 〈Θ〉A have
the same size. We were trying to avoid shifts in conjugate
variables as much as possible. Our measurement results,
red dashed lines in the plots from the lower row of Fig. 4,
show that the tuning was good, although not perfect.

Continuous violet lines on these graphs provide theo-
retical predictions based on the weak value (PA)w given

by (12) and the single arm interactions presented as
red dashed lines in the graphs. The intensities ob-
tained measuring arm A and arm B alone yield tanα =
1.3323 ± 0.0002. From the visibility measurement, V =
95.09 ± 0.02%, we obtained η = 0.9904 ± 0.0003. For
these parameters we observed amplifications with fac-
tors up to 4 and −3. The very good agreement between
experimental data and theoretical predictions, shown in
Fig. 4, demonstrates the universality of the modification
of several fundamentally distinct forms of interactions for
interactions with a pre- and postselected system.

To evaluate the dependence of the weak value on the
coherence between the two arms parametrized by η, we
measured the effect of the displacement in x on the out-
put beam. For this run we kept the phase fixed at ϕ = π
and varied the amplitude ratio tanα covering another
region of the parameter space from Fig. 2. We changed
the coherence by varying the polarization misalignment
leading to a smaller overlap between the photon states
passing through the two arms. The modification of the
shift in x-direction presented in Fig. 5 follows nicely the
weak value (12).
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FIG. 5. Modification of weak value due to decoherence. The colored dots represent the measured values for the
modification of the shift δx in the interference signal when varying the weak value via the relative amplitudes of the paths
A and B (tanα in Eq. (12)) and fixed ϕ = π. The four datasets correspond to four different values of the overlap η, which
quantifies the coherence between the states of the external systems from the two arms. The lines are theoretical curves as
highlighted by the colored lines in Fig. 2c,e. Respective average error bars are shown for each η on one of the first data points.
For comparison also the theoretical line with η = 1 (Fig. 2a) is shown.

VI. ALIGNMENT METHOD

In the previous sections we considered a scenario in
which the path state of a photon in an arm of an interfer-
ometer is coupled to its other degrees of freedom, in par-
ticular its spatial degrees of freedom in x- and y-direction.
This scenario exactly represents a situation encountered
in real experimental interferometric setups, namely when
the arms of the interferometer are misaligned. The differ-

ences in position δ~r ≡ (δx, δy) and angle ~δθ ≡ (δθx, δθy)
between the photons passing through distinct arms of the
interferometer can be considered as results of interactions
in one arm, which change the initially identical spatial
states of the particle.

It is well known that the picture generated by the in-
terference of the beams from a misaligned interferometer
displays a strong phase dependence. Fig. 6a shows the
centroid trajectory during the phase scan of a misaligned
interferometer. We demonstrate that it is possible to
quantitatively determine the exact misalignment param-
eters of the interferometer by analyzing this phase depen-
dent movement. In fact, the misalignment parameters δ~r

and ~δθ could be calculated from measurements described
in the previous section. Disregarding the polarization
analysis it was a measurement of the misalignment pa-
rameters based on position measurements of centroids of
the beams on two detectors at different locations. But
the method is more powerful and can be implemented
with only a single position sensitive detector as well.

The basis for our alignment method are Eqs. (22a) and

(22b) which, somewhat surprisingly, remain precise even
for large misalignment. The shift observed on the single

detector δ̃ ~R is the sum of the position shift δ̃~r and the

position shift due to the shift in direction ~δθ × ~L, where
~L = (0, 0, z) is the vector parallel to the beam with the
length equal to the distance z along the beam between
the waist and the detector. Thus, the position shift of

the centroid on the detector δ̃ ~R is given by

δ̃ ~R = (δx+ zδθy, δy − zδθx) Re[(PA)w]+(
z

zR
δx− zRδθy,

z

zR
δy + zRδθx

)
Im[(PA)w]. (35)

The weak value is given by (12). The parameters tanα,
η, z, and zR are found experimentally as in the previous
section. The function (35) corresponds to the trajectory
of the beam centroid on the detector as shown in Fig. 6a.
Even small misalignments which otherwise might be diffi-
cult to resolve become amplified due to the effect of weak
amplification.

Fig. 6b shows the x- and y-components of δ̃ ~R as func-
tions of ϕ. A least squares fit of this function provides

the four unknown misalignment parameters δ~r and ~δθ.
It is remarkable that a fit function with so few parame-
ters accurately models the experimental results. For the
data shown the fit provided δ~r = (49± 2, 7± 2)µm and
~δθ = (12.7± 0.4, 0.2± 0.4)µrad.

We have performed corrections according to these pa-
rameters and repeated our procedure, see Fig. 7. The
stability of the centroid shows excellent alignment and a
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FIG. 7. Trajectories of beam centroids after one align-
ment step. It can be clearly seen how size of the ellipse
and the distance between the centroids of the single beams A
(red) and B (blue) are significantly reduced in comparison to
Fig. 6a.

subsequent fit procedure provides the parameters δ~r =

(−1± 2, 2± 2)µm and ~δθ = (0.2± 0.4,−0.6± 0.4)µrad.

In our method to obtain the misalignment parameters

we rely on the knowledge of the beam parameters, i.e.,
Rayleigh range zR and longitudinal position of the detec-
tor relative to the waist z. In some situations the reversed
task might be of interest. If we control the misalignment
parameters, we can also use our algorithm with the fit to
obtain the beam parameters.

In fact, the general idea of alignment using weak val-
ues was already used in alignment of the interferometer
demonstrating the past of a particle in nested interfer-
ometers [51] and since then it was significantly developed
and improved [52, 53] until it reached the efficiency pre-
sented in the current work when a single scan led to a
very good alignment.

VII. TRACE AND PRESENCE

A generic property of weak measurements is the possi-
bility to perform several weak measurements on the same
system. Thus, we can interpret our experiment as multi-
ple weak measurements of the projection operator which
all yield the same result, the weak value of the projec-
tion on the arm of the interferometer. However, it also
implies a broader meaning with respect to the discussion
of the local presence of quantum particles.

A classical particle can either be in a particular loca-
tion or not. The presence of a quantum particle in a
certain location, however, is a subtle issue and its anal-
ysis strongly depends on the adopted interpretation of
quantum mechanics. To avoid controversial interpreta-
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tional issues, we do not discuss ontological aspects of the
concept of presence of a particle and instead argue within
the operational approach.

When the wavefunction of a quantum particle is well
localized in a particular location, the trace is specified in
a unique way by the local interaction in that location in
analogy to the standard presence of a classical particle,
see Eq. (1). Given that there are only local interactions in
nature, there is no trace when the wavefunction vanishes.
This corresponds to the “absence” of a classical particle.
Scenarios when the wavefunction does not vanish, but is
also not fully localized at this location, are no longer un-
derstandable from a classical perspective. The universal
relation between the trace in these scenarios and the trace
of a fully localized particle which we found in our work
can be considered as a basis of an operational concept of
presence of a particle. It goes beyond defining the par-
ticle as present when it leaves a trace and not present,
when it does not [54]. This concept provides a quan-
tification and characterization of presence by describing
the modification of effects of the particle’s interactions
with external systems. When the quantum wave of the
particle is just inside the arm of the interferometer, it
corresponds to “presence” 1. The operational meaning
are the weak changes it causes in other systems. We may
have situations in which neither the pre- nor the postse-
lection states are eigenstates of this local projection, i.e.,
of being solely inside this arm of the interferometer, and
still the particle affects the external systems in the same
way. This, in our operational meaning is also defined as
“presence 1”. But pre- and postselection might also lead
to a presence described by a different number, in fact
any complex number (PA)w. This number characterizes
modifications of effects of all weak interactions as it is
explained in this paper.

VIII. CONCLUSIONS

We have analyzed theoretically and experimentally the
modifications of the effect of weak interactions on pre-
and postselected particles. We have shown that there is
a universal description of the modification of these cou-
plings for all weak interactions given by a single complex
number, the weak value of the projection on this arm of
the interferometer.

Our approach is based on the fact that we express
states of external systems in terms of the orthogonal com-
ponents which appear due to the interactions. This al-
lows to formalize the meaning of the weak value without

reference to variables or a specific form of coupling, as
the complex number which multiplies the amplitude of
the orthogonal components. The real part of this number
showed how the effects of all interactions were increased,
decreased, or inverted. The imaginary part described the
change of a variable, conjugate to the one the particle
coupled with.

The experiment shows for three different couplings
that the effect is modified in exactly the same way. This
is shown for not just a few cases of pre- and postselected
particles, but for a continuum of parameters with a large
range of weak values of projection.

The approach also allows to apply the concept of weak
values for several couplings which are not necessarily
weak. These findings can facilitate multi-parameter pre-
cision measurements in the future.

We define an operational paradigm for the presence of
a pre- and postselected particle according to the trace it
leaves. It is more intricate than the dichotomic concept
of the presence of a classical particle which can only be
present or not present. This complexity is surprising in
light of the fact that in all scenarios the external systems
are in a superposition or a mixture of the undisturbed
state with a single particular orthogonal component.

Our demonstration of the universality of the modifi-
cation of the interactions led us to a novel alignment
method. Its effectiveness relies on the unexpected ro-
bustness of the modification of Gaussian pointers, where
the weak value expressions remain precise even for strong
couplings. In our method a single phase scan suffices to
recover all misalignment parameters from the analysis
of the position of the centroid of a single output beam,
clearly reducing the effort in an often tedious work, while
at the same time potentially harnessing the benefits of
weak value amplification.
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[2] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ek-
ert, ““Event-ready-detectors” Bell experiment via entan-
glement swapping,” Physical Review Letters 71, 4287–
4290 (1993).



11

[3] Anton Zeilinger, Michael A. Horne, Harald Weinfurter,
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