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Abstract 

Timely crop information, i.e. well before harvesting time and at first stages of crop 

development, can benefit farmers and producer organizations. The current case study 

documents the procedure to deliver early data on planted tomato to users, showing the 

potential of Sentinel 2 to map tomato at the very beginning of the crop season, which is a 

challenging task. Using satellite data, integrated with ground and aerial data, an initial 

estimate of area planted with tomato and early tomato maps were generated in seven main 

production areas in Italy. Estimates of the amount of area planted with tomato provided 

similar results either when derived from field surveys or from remote sensing-based 

classification. Tomato early maps showed a producer accuracy > 80% in seven cases out of 

nine, and a user accuracy > 80% in five cases out of nine, with differences attributed to the 

varying agricultural characteristics and environmental heterogeneity of the study areas. The 

additional use of aerial data improved producer accuracy moderately. The ability to identify 



abrupt growth changes, such as those caused by natural hazards, was also analysed: Sentinel 

2 detected significant changes in tomato growth between a hailstorm-affected area and a 

control area. The study suggests that Sentinel 2, with enhanced spectral capabilities and open 

data policy, represents very valuable data, allowing crop monitoring at an early development 

stage. 

 

KEYWORDS LIST: Tomato mapping; Remote sensing; Early classification; Tomato damage 

assessment 

 

Introduction 

Accurate and up-to-date information on agricultural land use is essential to improve land 

management and food production, as well as to control impacts of farming on the 

environment. Crop area extent estimates and crop type maps are considered crucial 

information in agriculture (Inglada et al. 2016). These data are equally useful for farmers’ 

associations, local land use planners, and regional and governmental agencies, as well as for 

industrial food groups, and were requested for the specific case of the tomato crop by the 

Italian Association of Industrial Food Preserve (ANICAV) for the year 2016. 

 An example of a crop type for which timely information is especially valuable is tomato 

(Solanum lycopersicum). During the spring and summer seasons, central and southern Italian 

regions are concerned with activities related to industrial tomato horticulture. At the 

beginning of the crop season, farmers’ associations and organizations require estimates about 

the tomatoes that will be produced, which are presently derived from annual voluntary reports 

on areas with transplanted tomatoes submitted by farmers. The total tomato cultivation area is 

variable, due to seasonal and annual turnover of cultivation, and it is also influenced by 

spring commercial agreements between the production and the agro-industrial sectors. The 



amount of planted tomato can be used by producer associations to receive economic support 

from governmental agencies; precise tomato estimates allow improvements in organization of 

the industrial transformation cycle; early data on tomato production may stabilize the market 

price, as uncertainty about expected production may cause speculation. The extent of tomato 

cultivation areas, as well as of other seasonal crops, is traditionally obtained through field 

assessments conducted by local agents; these data are limited and cannot be used to produce 

accurate estimates.  

 Remote sensing supports agricultural monitoring in different ways: hyperspectral and 

multispectral very high spatial resolution data are preferred, thanks to their ability to detect 

differences in reflectance found among crops, vegetation growing stages, or health 

conditions. Examples range from the classification of different crops (De Wit & Clevers 

2004; Fisette et al. 2005; Turker & Arikan 2005; Conrad et al. 2010; Förster et al. 2012; 

Inglada et al. 2015), to the detection of crop diseases (Hillnhütter et al. 2011; Mahlein et al. 

2012), the assessment of health and support to precision farming (Seelan et al. 2003; Zhang 

et al. 2003; Pan et al. 2015), and to estimates of productivity (Mosleh et al. 2015; Geipel et 

al. 2016). Integration of multispectral and Synthetic Aperture Radar (SAR) data was also 

experimented with successfully in crop mapping research by Forkuor et al. (2014) and 

Inglada et al. (2016).  

 Remote sensing provides data needed in horticulture (Usha & Singh 2013). Tomato 

mapping has previously been conducted successfully, but with data at very high resolution: 

by Ozdarici-Ok et al. (2015) using single multispectral satellite images with spatial resolution 

< 4 m, and by Senthilnath et al. (2016) using Unmanned Aerial Vehicle (UAV) data. Other 

tomato-specific studies include the detection of stress induced by late blight disease using 

hyperspectral data by Zhang et al. (2003), the correlation between vegetation indices and 

tomato yield, together with an analysis of spatial crop variability, done with proximal sensing 



by Marino & Alvino (2014) and ground-based tomato remote sensing carried out by 

Mastrorilli et al. (2010) to evaluate crop water status dynamics. With on-demand airborne 

surveys, the ability to choose different on-board sensors allows specific data requirements to 

be met, in terms of spatial and spectral resolutions. Airborne surveys are an excellent option 

when resources are available, but the high data acquisition and processing costs, as well as 

the limited area coverage, hamper their operational and routine use in agriculture monitoring.  

 Among satellite platforms, hyperspectral sensors are best suited for crop characterization 

(Thenkabail et al. 2013) and provide better results than multispectral ones for single crop 

monitoring (Mariotto et al. 2013). However, the current absence of hyperspectral satellite 

data, and the high costs associated with hyperspectral airborne surveys, limit their 

applicability. Advancements in spatial and spectral resolutions of recent multispectral 

sensors, together with the large area covered by a satellite image and the possibility of close 

multitemporal acquisitions, allows new possibilities in crop monitoring. For instance, the 

RapidEye sensor has been used frequently and successfully in agricultural monitoring, thanks 

also to the availability of a red-edge band, which allows discrimination of very fine 

differences in the reflectance of vegetation (Conrad et al. 2014; Shang et al. 2014; Gerstmann 

et al. 2016). Satellite data at very high resolution are available through commercial services 

that perform on-demand acquisitions, but their high cost limits an operational use in crop 

monitoring. 

The advent of an open data satellite mission specifically tailored to agricultural 

monitoring, such as Sentinel 2 (S2) by the European Space Agency (ESA), broaden the 

opportunities of agricultural monitoring (Drusch et al. 2012; Immitzer et al. 2016). At full 

operability, S2 has a 2-5 day revisiting time according to latitude, an enhanced spectral 

resolution with 13 bands from 490 to 2190 nm, and a spatial resolution variable between 10 

and 60 m according to band.  



Considering the very high resolution needed to cope with the limited extent of tomato 

fields, the variability in transplanting dates in Italy, as well as the spectral similarity of 

tomato with other vegetable crops, tomato mapping at an early crop development stage can 

be considered a challenging task, unless very high-resolution data from optimal dates are 

used. Tomato information is requested by users very early in the cropping season, when crops 

are not yet mature and discrimination from other crops is difficult; with the limited time 

between transplanting dates and early estimate requests, the availability of cloud-free satellite 

images is also reduced.  

The current study documents the results obtained for early tomato field detection and 

mapping using data from ground surveys, airborne data and remote sensing imagery, in seven 

areas previously identified in Central and Southern Italy. Additionally, an analysis of damage 

caused by a hailstorm during the growing season in one sub-area was also carried out. The 

main questions were related to the suitability of S2 to estimate tomato accurately at an early 

stage of crop development, and to identify abrupt growth changes in this crop.  

 

Materials and Methods 

Study areas  

The seven study areas (Fig. 1) are located in four Italian regions. The areas are characterized 

by different climatic conditions (temperature, precipitation), soils (according to pedo-climatic 

characteristics) and by variable transplanting dates, according to the seasonal climate and 

farming habits. Usually, transplants occur from the beginning of April to mid-June, with 

earlier dates in southern areas. Tomato is cultivated annually and has a life-cycle of 

approximately 100 days; seeds are planted in greenhouses, seedlings are then transplanted, 

and take about 20-30 days to cover the soil.  

In three of the seven areas an early estimate of tomato planted surface was obtained by 



the first half of June: Campania Piana del Sele (CPS), Puglia nord-Molise-Basilicata (PMB), 

and Campania Casertano (CC), the areas responsible for most of the production. Tomato field 

maps were realized by 30 June in 2016 in all the areas. 

  

Ground data 

Extensive ground data surveys were carried out in the study areas between May and early 

June 2016 with the aim of providing ground truthing for satellite data classification, 

collecting information for all the different crop types occurring. To exclude non-agricultural 

zones inside the study areas, Corine Land Cover (CLC) 2012 IV level and thematic data 

extracted from OpenStreetMap (OSM) and Google Earth were used; the latter two include 

linear features such as narrow roads, railways, water courses and agricultural service areas. 

All the non-agricultural zones were masked out to produce the effectively cultivated 

agricultural surface (Table 1), which was used in subsequent analysis. 

Previously prepared Geographical Information System (GIS) layers, including roads and 

cadastral maps (‘cadastre’ is a technical term for a set of records showing the extent, value 

and ownership [or other basis for use or occupancy] of land) were uploaded onto laptops (Fig. 

2), to allow visualization of the information collected during field operations. Local roads 

were treated as transects for collecting observations; these transects were selected randomly 

in a number sufficient to homogeneously cover each area. Crop information (geolocation, 

crop type, growing stage identified as initial, intermediate or full development of plants) was 

recorded at points along the transects spaced at least 900 m apart, for crops occurring on both 

sides of the road. Considering the limits in field survey design, imposed by private property 

and accessibility problems, this strategy was selected to ensure as much random observation 

of different crop types as possible. The number of observed crops per area is reported in 

Table 1. 



The minimum number of crops per area, and therefore of points and transects to survey, 

was established prior to field operations, with the objective to collect information for > 2% of 

the cultivated surface in each area. However, the mean size of fields is different in each area, 

according to topography, urbanization, agricultural practices and other local factors. A 

preliminary analysis of the cadastral maps allowed calculation of the mean size of 

agricultural fields in each area (approximately 2–4 ha). On the basis of the mean field size per 

area, the number of crops for which data had to be collected was established for each area to 

survey > 2% of the cultivated surface. This by-area stratified random sampling approach was 

selected considering the main aim of tomato detection, the inaccessibility of certain zones, 

the need of collecting ground truthing homogeneously over the areas of interest, and the 

uneven distribution of certain crop types. A minimum of 25 validation samples per crop type 

was required for these infrequent crop types. 

Subsequently to ground truth data collection, polygons for the identified crop types were 

delineated on satellite imagery. Pixels included in these polygons were extracted and used as 

ground truth (training and validation) in the classification process, after excluding a buffer 

(internally and externally to the field perimeter) to minimize inclusion of non-cultivated 

pixels or pixels from adjacent non-identified crops. 

A second ground truth survey was performed in late June 2016 in study area CC over 

599 fields, using the previously described procedure. This second ground survey, carried out 

after the aerial survey in mid-June, was done to refine the tomato classification by means of 

aerial data photointerpretation; it targeted fields not used for satellite data training and 

validation and aimed to evaluate the improvement in accuracy of tomato maps after 

refinement based on photointerpretation.  

 

Remote sensing data 



In four of the study areas, namely TN, CC, CPS and PMB (Fig. 3), an aerial survey was 

conducted between 10–22 June in 2016 using a Sky Arrow 650 TC/TCNS aircraft equipped 

with the Terrasystem DFR system (http://www.terrasystem.it/en/dfr.htm), a modular system 

dedicated to agricultural monitoring. For the current study the instruments included were: a 

multispectral 4 Charged-Coupled Device (CCD) camera in the visible to near-infrared (VIS-

NIR) spectral range, a Hasselblad H3dII-31 digital camera, an Ashtech DG14 and Novatel 

OEM4 global positioning system (GPS) unit and a Systron Donner C MIGITS III INS/GPS 

unit. All the sensors were integrated in a single and flexible acquisition system, the 

parameters of which can be configured according to acquisition needs. Data acquisition 

software allowed simultaneous recording of different data and the position and asset of the 

aircraft, and association with the acquired imagery. Synchronization among global 

positioning systems (GPS) and sensors was managed by trigger transistor-transistor logic 

(TTL) signals. The strips of aerial data were acquired along pre-established transects at 1675 

m above ground level, with 0.60 longitudinal overlap and 0.20 lateral overlap. The following 

bands were acquired: red (R; centred at 680 nm), green (G; centred at 550 nm) and blue (B; 

centred at 500 nm) at 0.3 m; and the same R and G bands plus Near-InfraRed (NIR; centred 

at 780 nm) bands at 0.8m spatial resolution, all bands having 20 nm band width (Fig. 4). Raw 

aerial images were converted to standard image format using Hasselblad Phocus 2.5.2 

software and then linked visually to ortho-corrected satellite imagery using the flight plan and 

the log data recorded during the aerial survey.  

A total of six S2 mostly cloud-free images were acquired to cover the study areas (Fig. 5, 

Table 2) and processed in the ESA Sentinal Application Platform (SNAP) tool to obtain 

orthorectified and atmospherically corrected imagery, with 10 bands at 10 and 20 m spatial 

resolution in the visible shortwave infrared (VIS-SWIR) spectral range, including two bands 

at the red edge. Images were masked out for cloud presence and to retain only the cultivated 

http://www.terrasystem.it/en/dfr.htm


surfaces. All bands were resampled to 10-m spatial resolution using the nearest neighbour 

procedure, and the normalized difference vegetation index (NDVI; Rouse et al. 1974) and red 

edge normalized difference vegetation index (RENDVI; Sims & Gamon 2002) computed, 

being the indices that preliminary crop separability analysis indicated as most relevant for 

crop discrimination. In classification, stacked bands and the two vegetation indices were 

tested as input to the classification algorithm, separately and together. 

 To evaluate the S2-based statistics of tomato growth in a hailstorm-affected area, a 

RapidEye image (five spectral bands including Red, Green, Blue, Red Edge and Near 

Infrared, at 5-m spatial resolution) dated 17 June 2016 was also employed. 

 

Data analysis  

The first activity was the very early estimate of tomato-cultivated surface based on 

quantitative ground data: this is a numerical estimate, producing timely information on the 

number of hectares planted with tomato, conducted when the development of plants is too 

limited to allow remote sensing use.  

 For the first activity, the Tomato planted Surface (TS) was calculated in each study area 

according to the following formula:  

TS = p × TA/c 

where p is tomato frequency among crops observed in the ground survey, TA is the cultivated 

surface and c is a correction factor equal to the mean of the ratio between early estimated 

tomato surface and final mapped tomato surface as recorded in previous years (2013 and 

2014, unpublished data from Associazione Nazionale Industriali Conserve Alimentari 

Vegetali [ANICAV]). Coefficient c was introduced to compensate for the error caused by 

annual variability in sample distribution, tomato field size, TA and TS. Until now, only two 



years were available for c calculation; however, the factor was introduced in view of future 

tomato estimates. It is area-specific and ranged between 0.97 and 1.58. 

 The second activity was tomato mapping at the beginning of crop season based on S2 

stacked bands and vegetation indices, used separately or together as input in the classification 

algorithm. The first ground truth dataset, divided per crop type and area, was partitioned into 

training (0.65) and validation (0.35) sets, and used in Maximum Likelihood (ML) supervised 

classification of S2 images. The results were evaluated using confusion matrices and k 

coefficients. In one area (PMB), three S2 images were needed for full area coverage; they 

were classified separately. A total of nine classifications were generated and non-tomato 

crops were aggregated to produce binary maps of tomato and non-tomato fields. Overall 

accuracy, Kappa coefficient (K), and user and producer accuracies were reported to help 

evaluation of the results. Overall accuracy provides an overall evaluation of the mapping 

effort and reveals what proportion of the validation sites were mapped correctly. The Kappa 

coefficient is a statistic that evaluates how well the classification performs compared to 

assigning values randomly and ranges from –1 to 1. User accuracy corresponds to errors of 

commission (inclusion) and producer accuracy to errors of omission (exclusion). To support 

interpretation of the results, the Pearson correlation coefficient was computed between tomato 

user/producer accuracies and number of classes; similarly, the correlation between number of 

pixels employed in validation and tomato users/producer accuracy was calculated. Aerial 

surveys were also conducted in TN, CC, CPS and PMB areas and tomato classification 

results were refined using additional validation data derived from on-screen 

photointerpretation of the aerial data. 

 To evaluate the role of photointerpretation, implying a consistent use of additional 

resources, the refined tomato maps in CC area were re-validated with additional data derived 

from the second field assessment, not previously used for satellite data training or validation. 



All tomato maps were edited to correct imprecisions in field boundaries generated during the 

supervised classification process and, where more than one classification was present, the 

resulting maps were mosaicked to obtain a single map per area.  

 The third activity concerned the ability of satellite data to detect abrupt changes in tomato 

growth due to a hailstorm that occurred on 19 June 2016 in the Lesina area, in the northern 

range of the PMB area. This task was conducted comparing pre- and post-event imagery. The 

pre-event image was from S2, dated 23 May, while the post-event image was from S2, dated 

22 June. Differences in tomato growth rate between the area affected by the hailstorm (360 

km2) and a neighbouring area of similar extent (320 km2) were evaluated (Fig. 6). The NDVI 

variation related to tomato growth (TG), measuring the relative growth of NDVI in tomato 

fields and based on the NDVI value computed over these fields in the different dates, was 

calculated as follows: 

TG = (NDVI22/06 – NDVI23/05)/NDVI23/05.  

 The statistics of the affected and control areas were compared, hypothesizing the 

presence of damage in those tomato fields having TG values below those of the control area. 

An analysis of TG statistics was also performed between the S2 dated 23 May and a 

RapidEye image dated 17 June 2016, both pre-event, to better evaluate the TG trend. The 

results were tested using Student’s t-test. 

 Analyses were conducted using ENVI software (Exelis Visual Information Solutions, 

Boulder, Colorado), and MATLAB and Statistics Toolbox (The MathWorks, Inc., Natick, 

Massachusetts, USA). 

 

Results 

The early quantitative estimate of tomato surface was 2500 ha in CC, 1300 ha in CPS and 

20300 in PMB. The comparison of these values with tomato surfaces estimated per area by 



classification (illustrated in Table 1) for these specific three areas reveals that larger 

differences in surface between early estimates and final tomato classifications are found in 

CPS (+29.8%), compared to CC (+6.9%), with only minor differences found for PMB area 

(+2.3%).  

The overall accuracies of the ML classifications for each area, with details for tomato 

class producer and user accuracies, number of crop types and number of tomato validation 

pixels, are presented in Table 3. The tomato class results showed producer accuracy ranging 

from 0.684 to 0.990, with values > 0.80 in seven cases out of nine, and user accuracy ranging 

from 0.564 to 0.999, with values > 0.80% in five cases out of nine. With regard to inputs 

used, vegetation indices alone were not able to provide satisfactory results; classification 

results were obtained using stacked bands in four areas (CPS, LS, PS, TN), stacked bands 

plus NDVI in one area (PMB), and bands plus both vegetation indices in two areas (CC, TL).  

The Pearson coefficient of correlation between tomato user/producer accuracies and 

number of classes was calculated: moderate negative correlations for both producer (r = –

0.45) and user (r = –0.50) accuracies were found. The correlation between number of pixels 

employed in validation and tomato users/producer accuracy was also calculated: results 

indicate moderate negative correlations with user (r = –0.62) and producer (r = –0.57) 

accuracies.  

The second tomato validation was carried out in CC only, after refinement by 

photointerpretation of aerial data. Table 4 compares tomato producer and user accuracies, 

over the same fields, obtained before (at first classification of satellite data) and after 

refinement (after using aerial information).  

For evaluation of damage caused by a hailstorm in the Lesina area, the statistics for 

tomato growth calculated using pre- and post-event S2 images are illustrated in the upper part 

of Table 5. Results indicate that in the control area, the NDVI of the post-event image is 



approximately 1.5 times higher than that of the pre-event image. The Student’s t-test revealed 

significant (P < 0.01) results in Lesina and the control areas. 

With respect to damage extent and evaluation, it was considered that fields were 

damaged when TG in the affected areas was lower than ‘mean – (2 × standard deviation)’ of 

TG in the control area. According to this, 179 ha was identified as damaged, equal to 0.10 of 

the hectares of tomato in the control area, a value similar to that (approximately 200 ha) 

informally reported by a local producer organization. 

The pre-event tomato growth statistic based on S2 and RapidEye images, computed to 

evaluate the similarity of the NDVI response between two different imagery types, is 

illustrated in the lower part of Table 5: it shows that values from the two sensors are very 

similar, in accordance with the hypothesis that the observed decrease in tomato growth can be 

attributed to the hailstorm event. The Student’s t-test result for tomato growth in Lesina and 

the control area was significant (P < 0.01). 

The original classifications are shown at the end of the manuscript in Tables 6 to 14. 

Figure 7 illustrates a tomato final map for PMB area. 

 

Discussion 

The early quantitative estimate of tomato-cultivated surfaces, realized in mid-June (about 1 to 

8 weeks from transplanting), was based on the frequency of occurrence of tomato in the field 

survey; it did not exploit remote sensing data because in most cases crop development is too 

limited for remote detection at that stage. The comparison of these early quantitative 

estimates with the surfaces derived from the ML classifications (obtained a few weeks later) 

indicates differences, which are variable according to the study site. The lowest difference, 

hence best result, was found in PMB: this result was attributed in part to the early 

transplanting dates caused by warmer climate, and also to the larger size of agricultural fields 



and better road network. Both factors facilitate the collection of evenly distributed and 

representative tomato ground truth and thus may lead to more accurate early estimates. 

Conversely, the highest differences between early estimated and classified tomato surface are 

found in CPS, an area characterized by landscape fragmentation, topographic heterogeneity, 

limited mean field size and less diffuse road network. These early results must be viewed 

with caution: the early quantitative estimate method did not allow validation, surveys were 

carried out when tomato recognition is most difficult and when some transplanting remained 

to be done, and the sampled surface was limited. In addition, the limits imposed to sampling 

design – due to field accessibility problems – and ground truth data collection may have 

played a role in the obtained results. Nevertheless, this procedure can be still valuable for 

stakeholders interested in very early indications on the total amount of cultivated tomato for 

the season.  

The ML classifications for all crops were obtained in mid-July, a time when most of the 

crops are at an early stage of development, especially in central-northern regions. The ML 

algorithm was selected to keep the procedure simple and replicable by users. Despite the 

early date, two thirds of the classifications were > 0.80 Overall Accuracy (OA) threshold, 

with values included in the 0.60–0.87 range. Overall, the obtained OAs are lower than those 

found in agricultural studies employing very-high-resolution satellite data, which often record 

OAs > 0.80 (Conrad et al. 2010, 2011; Hoberg & Müller 2011; Kim et al. 2011; Löw et al. 

2012). However, those studies are usually based on multitemporal very high-resolution 

images, are realized at full stage of crop development and include a very limited number of 

classes. The results obtained by the few available classification studies based on real or 

simulated S2 data (Hale Topaloglu et al. 2016; Immitzer et al. 2016; Sibanda et al. 2016; 

Vaglio Laurin et al. 2016), are comparable in OA to those obtained in the present study. The 

current paper included the overall classification of the study areas in the results, including all 



crops, even though the primary focus was tomato mapping. This choice was motivated by the 

scarcity of this type of information in Italy and the information content on heterogeneity, 

class number and crop types per area (crops have different spectral similarity with tomato). In 

addition, overall the results prove that, even at an early stage of crop development and in the 

presence of a high number of crop types, S2 is capable of providing reasonable accuracy in 

crop mapping. 

The accuracies obtained with S2 possibly indicate that its spectral characteristics are very 

important: S2 10–20 m spatial resolution may not be optimal with respect to the smaller 

tomato fields still found in the study areas (even though the average field area was found to 

be in the 2-4 ha range). In fact, the very irregular shape of some fields and mixed crop 

practices may lead to the inclusion in pixels of information coming from other crops, even 

though a buffer to the external field perimeter was applied. Possibly, the S2 10–20 m spatial 

resolution limit was compensated for by the increased spectral information content. Lower 

spectral information can lead to higher misclassification of spectrally similar crops; enhanced 

spectral resolution is thus especially useful when crop discrimination is performed at the 

beginning of vegetation development. 

User/producer accuracy for tomato class was over the 0.80 threshold in most cases. Still, 

variability in accuracy results was observed: correlation analysis indicates that accuracy is 

partly affected by the increase in number of classes. It is reasonable to argue that the 

heterogeneity of agricultural areas has an impact on the ability to correctly classify tomato 

fields, and the task becomes more challenging when more species and spectral variability are 

present. The presence of different soil types and moisture levels can have an important role in 

shaping the observed area heterogeneity and variability in the results. The amount of exposed 

soil can be relevant at early stages of vegetation development, producing confounding effects 



in classification, as previously observed in other studies (Belgiu & Csillik 2018; Montandon 

& Small 2008).  

The second validation results, performed after improving tomato maps by means of 

photointerpretation of aerial data and collected over part of the CC area, showed an increase 

in producer accuracy (+7%) and a minor decrease in user accuracy (–2.5%). This reduction in 

omission errors, at similar rate of commission errors, suggests the usefulness of aerial data in 

tomato classification efforts as additional surrogate ground truth. It is worth noting that the 

second validation showed accuracy values slightly lower than the those obtained in S2 

classifications. A possible interpretation is that the limited number of samples used for 

training and validation of classifications, due to the chance of sampling only a minor 

percentage of the study areas, led to an overestimation of tomato accuracy, especially in those 

areas validated with fewer pixels. This interpretation is also supported by the moderate 

negative correlation between tomato accuracies and number of validation pixels observed. In 

addition, the second validation was conducted on a field basis, while the classifications were 

produced with a pixel-based approach; this difference may have introduced additional 

variability. Even if the second validation campaign was conducted in a single area only, the 

use of aerial information is recommended in selected sub-areas having complex topography 

or high crop heterogeneity.  

The results of tomato damage evaluation indicate that S2 is valuable for monitoring crop 

growth; the similarity in response between S2 and RapidEye in pre-damage conditions also 

confirms the optimal spectral calibration of S2 data. The damage detection capability is 

clearly linked to the date of damage occurrence; in this specific case the hailstorm happened 

in the second half of June, in an area of early transplanting dates and therefore at a medium 

stage of tomato development. If damage occurs soon after transplanting, detection ability may 

decrease consistently. Even if there is no availability of proper validation data to confirm the 



accuracy of estimated damaged surface, the clear change in NDVI supports the use of S2 for 

damage detection and growth changes in crops.  

 

Conclusions 

The current study documents the procedure to obtain early information on tomato-planted 

areas and maps, a task which is considered not trivial due to the limited development of 

plants at the time of information production and due to environmental heterogeneity of the 

agricultural areas. Ground data, Sentinel 2 satellite data, and very high resolution airborne 

multispectral data were all used to deliver the timely tomato information requested by the 

users.  

In general, the results indicate that early quantitative estimate of tomato cultivated 

surfaces are possible in these study areas, but their accuracy depended on the heterogeneity of 

the environment and the agricultural practices, with better results obtained in homogeneous 

and southern areas, where early transplants take place. The S2 data classified tomato with 

satisfactory accuracy, even in the presence of multiple crop types, thanks to its enhanced 

spectral features. However, the number of crop types impacted the accuracy of the results, 

and the use of aerial data as surrogate ground truth is recommended in sub-areas having high 

heterogeneity or complex topography. Sentinel 2 was also demonstrated to be a valuable tool 

for crop growth monitoring and crop damage assessment.  

At full operating parameters S2 provides very frequent acquisitions, increasing the 

chance of cloud-free data at no cost – cloud cover being one of the major limitations for 

production of information for users’ needs. The possibility to integrate S2 with other satellite 

data, such as free all-weather Sentinel 1 SAR, is another feature in favour of the use of S2 for 

species-level crop monitoring. On-demand satellite data are acquired in the absence of 

clouds: however, not only are these data expensive, but acquisition dates cannot be controlled 



completely, as a sufficient temporal window (usually > 20 days) is requested by data 

provider. It may be that acquisitions are performed at the very beginning of the temporal 

window, thus in an early stage of crop development in which crop distinction is unfeasible. 

These considerations, together with the presented results, indicate that Sentinel 2 can be 

successfully employed to provide users with early information on specific crops.  
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Table 1. Agriculture surface, tomato surface, and ground observations per study area in 2015 

and 2016, from north to south 

Area 

Total 
cultivated 
surface in 

ha 

Number of 
sampled 
fields in 

first survey 

Sampled 
fields in 
second 
survey 

Tomato 
surface 
in ha  

% tomato 
over total 
cultivated 

area 
Toscana Nord (TN) 50318 967 - 804 1.6 
Toscana sud- Lazio 
nord (TL) 

 
78549 905 

 
- 

1089 1.4 

Lazio sud (LS) 55411 1069 - 636 0.11 
Campania Casertano 
(CC) 

42423 
982 

599 2337 5.5 

Campania Piana del 
Sele (CPS) 

 
36785 655 

 
- 

1002 2.7 

Puglia nord, Molise, 
Basilicata (PMB) 

 
540907 2872 

 
- 

19839 3.7 

Puglia sud (PS) 38276 851 - 311 0.08 
 
 
 
  



Table 2. Sentinel 2 imagery. Study areas: TN = Toscana nord; TL = Toscana sud - Lazio 

nord; LS = Lazio sud; CC = Campania casertano; CPS = Campania Piana del Sele; PMB = 

Puglia nord, Molise, Basilicata; PS = Puglia sud 

Sentinel2 image code 
Acquisition 
date 

Study 
area 

S2A_OPER_PRD_MSIL1C_PDMC_20160523T144655_R079_
V20160523T095404_20160523T095404 23 May 2016 

PMB, 
CC, CPS 

S2A_OPER_PRD_MSIL1C_PDMC_20160530T184456_R036_
V20160530T094036_20160530T094036 31 May 2016 PS 
S2A_OPER_PRD_MSIL1C_PDMC_20160608T212310_R022_
V20160608T101220_20160608T101220 08 Jun 2016 TL 
S2A_OPER_PRD_MSIL1C_PDMC_20160616T121518_R122_
V20160615T100608_20160615T100608 15 Jun 2016 LS, CC 
S2A_OPER_PRD_MSIL1C_PDMC_20160622T171217_R079_
V20160622T095030_20160622T095030 22/ Jun 2016 CPS 
S2A_OPER_PRD_MSIL1C_PDMC_20160628T191634_R022_
V20160628T101826_20160628T101826 28 Jun 2016 TN 

 
  



Table 3. Summary data for the classification of the 7 study areas: OA = overall accuracy; K 

= k coefficient; and total number of crop types. Data for tomato, extracted from areas 

classifications: PA = Producer Accuracy; UA = User Accuracy; and validation pixels. Study 

areas: TN = Toscana nord; TL = Toscana sud - Lazio nord; LS = Lazio sud; CC = Campania 

casertano; CPS = Campania Piana del Sele; PMB = Puglia nord, Molise, Basilicata; PS = 

Puglia sud 

Area OA % K Total no. 
of crop 
types  

Tomato 
PA % 

Tomato 
UA % 

Tomato 
Validation 
pixels 

TN 86.6 0.85 16 92.44 88.71 372 
TL 60.3 0.58 16 79.34 78.90 706 
LS 80.0 0.78 14 86.03 89.66 261 
CC 62.4 0.58 11 99.04 99.52 208 
CPS 81.1 0.78 9 98.62 99.89 285 
PMB1 79.3 0.78 16 86.05 64.88 561 
PMB2 81.3 0.80 15 68.38 56.35 449 
PMB3 81.1 0.79 12 88.86 76.06 472 
PS 84.4 0.83 12 89.69 91.50 447 
  



Table 4. Comparison of results obtained pre and post refinement with aerial data, for field 

surveyed in rapid field assessment. CC = Campania casertano; PMB = Puglia nord, Molise, 

Basilicata 

  Producer 
Accuracy 
% 

User 
Accuracy 
% 

Validation 
fields 

CC after refinement 87.47 89.81 599 CC before refinement 80.50 91.18 
 

  



Table 5. Tomato growth statistics in the hailstorm and control area computed using pre and 

post event S2 images (upper part) and pre-event S2 and RapidEye images Tomato Growth 

rate: TG = (NDVI22/06 – NDVI23/05)/NDVI23/05 

 TG computed from pre and post event S2  
 mean median standard 

deviation 
min max 

Hailstorm area (Lesina)  1.10 0.79 1.26 -0.83 11.12 
Control area 1.48 1.27 1.18 -0.77 8.97 
 TG computed from pre-event S2 (May 22) and 

pre-event (June 17) RapidEye  
Hailstorm area (Lesina) 2.36 2.11 1.72 -0.86 27.03 
Control area 2.28 1.97 1.48 -0.77 24.04 
 

  



Table 6. Toscana nord ML classification 

Toscana nord (TN)  
 Overall Accuracy 86.6% 
Kappa Coefficient 0.86 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Alfalfa 78.86 77.97 276/350 276/354 
Artichoke 92.58 90.59 337/364 337/372 
Cereals 93.42 87.65 355/380 355/405 
Chickpea 87.74 97.21 279/318 279/287 
Courgette 86.99 84.31 301/346 301/357 
Fallow dry 73.78 74.85 256/347 256/342 
Fallow green 81.21 75.13 281/346 281/374 
Fava beans 85.83 81.47 321/374 321/394 
Maize 96.71 99.69 323/334 323/324 
Melon 88.66 84.72 305/344 305/360 
Olive trees 80.83 83.03 274/339 274/330 
Ploughed land 87.18 97.76 306/351 306/313 
Potato 89.39 93.06 295/330 295/317 
Sunflower 87.06 87.32 296/340 296/339 
Tomato 92.44 88.71 330/357 330/372 
Grape vines 83.38 88.45 291/349 291/329 
 

  



Table 7. Toscana sud Lazio nord ML classification 

Toscana sud - Lazio nord (TL)  
 Overall Accuracy 60.3% 
Kappa Coefficient 0.58 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Alfalfa 92.48 33.94 541/585 541/1594 
Artichoke 17.29 35.69 106/613 106/297 
Asparagus 8.47 64.77 57/673 57/88 
Cereals 85.06 76.56 575/676 575/751 
Chickpea 88.29 92.45 588/666 588/636 
Fallow dry 16.39 74.66 109/665 109/146 
Fallow green 7.98 44.74 51/639 51/114 
Fava beans 76.7 92.98 530/691 530/570 
Maize 85.88 69.24 529/616 529/764 
Melon 47.53 74.41 317/667 317/426 
Olive trees 83.25 40.76 512/615 512/1256 
Ploughed land 6.7 84.91 45/672 45/53 
Sunflower 94.36 83.57 636/674 636/761 
Tomato 79.34 78.9 557/702 557/706 
Watermelon 91.47 68.6 579/633 579/844 
Grape vines 87.88 39.13 551/627 551/1408 
 

  



Table 8. Lazio sud ML classification 

Lazio sud (LS)  
 Overall Accuracy 80.0% 
Kappa Coefficient 0.78 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Alfalfa 92.94 96.9 250/269 250/258 
Artichoke 55.86 76.07 124/222 124/163 
Cereals 76.07 68.05 213/280 213/313 
Fallow dry 64.16 66.05 179/279 179/271 
Courgette 88.84 89.25 191/215 191/214 
Fallow green 83.14 44.35 212/255 212/478 
Fava beans 84.64 97.41 226/267 226/232 
Greenhouses 100 93.26 249/249 249/267 
Kiwi 0.78 22.22 2/255 2\9 
Maize 97.77 87.67 263/269 263/300 
Ploughed land 92.58 72.26 237/256 237/328 
Sunflower 98.13 100 262/267 262/262 
Tomato 86.03 89.66 234/272 234/261 
Watermelon 95.51 95.86 255/267 255/266 
 

  



Table 9. Campania casertano ML classification 

Campania casertano (CC)  
 Overall Accuracy 62.4% 
Kappa Coefficient 0.59 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Alfalfa 95.74 97.83 180/188 180/184 
Cereals 4.19 72.73 8/191 8\11 
Fallow dry 71.86 28.85 120/167 120/416 
Fallow green 2.53 100 5/198 5\5 
Fruit trees 94.78 34.7 127/134 127/366 
Maize 90.31 58.8 177/196 177/301 
Ploughed land 0.57 50 1/174 1 \2 
Rural buildings 62.89 76.25 61/97 61/80 
Tobacco 94.81 98.65 146/154 146/148 
Tomato 99.04 99.52 207/209 207/208 
Greenhouses 83.23 90.26 139/167 139/154 
 

  



Table 10. Campania Piana del Sele ML classification 

Campania Piana del Sele (CPS)  
 Overall Accuracy 81.1% 
Kappa Coefficient 0.79 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Artichoke 92.27 65.41 191/207 191/292 
Cereals 71.65 86.67 182/254 182/210 
Fallow dry 65.71 67.9 184/280 184/271 
Fallow green 49.21 68.89 124/252 124/180 
Greenhouses 99.63 93.45 271/272 271/290 
Maize 75.71 84.62 187/247 187/221 
Ploughed land 80.17 69.97 275/343 275/393 
Tomato 98.62 100 285/289 285/285 
Watermelon 97.59 96.81 243/249 243/251 
 

  



Table 11. Puglia, Molise, Basilicata 1 ML classification 

Puglia, Molise, Basilicata (PMB1)  
 Overall Accuracy 79.3% 
Kappa Coefficient 0.78 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Asparagus 82.42 71.02 272/330 272/383 
Cabbage 79.45 86.83 290/365 290/334 
Cereals 97.76 99.71 349/357 349/350 
Chickpea 93.23 85.11 303/325 303/356 
Coriander 95.37 97.02 391/410 391/403 
Fallow dry 92.33 83.55 325/352 325/389 
Fallow green 61.18 75.19 197/322 197/262 
Fava beans 96.66 96.66 318/329 318/329 
Fennel 71.39 79.26 237/332 237/299 
Onion 84.62 92.91 275/325 275/296 
Maize 84.81 58.64 268/316 268/457 
Olive trees 75.94 83.71 262/345 262/313 
Ploughed land 11.93 91.3 42/352 42/46 
Sunflower 59.89 51.03 224/374 224/439 
Tomato 86.05 64.88 364/423 364/561 
Grape vines 92.18 84.2 389/422 389/462 
 

  



Table 12. Puglia, Molise, Basilicata 2 ML classification 

Puglia, Molise, Basilicata (PMB2)  
 Overall Accuracy 81.3% 
Kappa Coefficient 0.78 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Artichoke 98.12 99.18 365/372 365/368 
Asparagus 82.27 63.4 246/299 246/388 
Cabbage 92.77 95.65 308/332 308/322 
Cereals 96.97 99.72 352/363 352/353 
Chickpea 98.37 100 363/369 363/363 
Courgette 81.79 82.51 283/346 283/343 
Fallow (dry) 81.29 68.48 252/310 252/368 
Fallow (wet) 46.61 76.44 172/369 172/225 
Fava beans 97.33 90.36 328/337 328/363 
Olive trees 81.02 79.74 303/374 303/380 
Pepper 20.62 94.81 73/354 73/77 
Ploughed land 83.78 64.29 315/376 315/490 
Sunflower 93.52 76.97 361/386 361/469 
Tomato 68.38 56.35 253/370 253/449 
Grape vines 96.03 96.29 363/378 363/377 
  

  



Table 13. Puglia, Molise, Basilicata 3 ML classification 

Puglia, Molise, Basilicata (PMB3)  
 Overall Accuracy 81.1% 
Kappa Coefficient 0.79 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (%) (%) (Pixels) (Pixels) 
Alfalfa 77.36 93.18 246/318 246/264 
Artichoke 99.69 100 325/326 325/325 
Cereals 93.84 81.84 320/341 320/391 
Chickpea 93.3 87.21 334/358 334/383 
Fallow dry 40.32 93.28 125/310 125/134 
Fallow green 72.05 51.26 183/254 183/357 
Fava beans 96.78 86.99 301/311 301/346 
Flax 98.44 99.21 378/384 378/381 
Olive trees 79.44 59.58 255/321 255/428 
Ploughed land 33.99 79.84 103/303 103/129 
Tomato 88.86 76.06 359/404 359/472 
Grape vines 86.97 81.25 247/284 247/304 
 

  



Table 14. Puglia sud ML classification 

Puglia sud (PS) 2016 
 Overall Accuracy 84.4% 
Kappa Coefficient 0.83 
  Prod. 

Acc. 
User 
Acc. 

Prod. 
Acc. 

User 
Acc. 

Class (Percent) (Percent) (Pixels) (Pixels) 
Artichoke 75.97 83.57 351/462 351/420 
Cereals 96.54 93.49 474/491 474/507 
Chickpea 95.27 95.89 443/465 443/462 
Fallow dry 64.63 71.73 307/475 307/428 
Fallow green 70.59 57.75 324/459 324/561 
Fava beans 73.4 97.53 276/376 276/283 
Olive trees 81.74 85.84 376/460 376/438 
Ploughed land 91.67 80.79 429/468 429/531 
Potato 93.83 95.95 426/454 426/444 
Tomato 89.69 91.5 409/456 409/447 
Watermelon 89.59 95.42 396/442 396/415 
Grape vines 87.6 86.37 431/492 431/499 
 

  



Fig. 1. The tomato study areas: Toscana Nord (TN); Toscana sud- Lazio nord (TL); Lazio 

sud (LS); Campania Casertano (CC); Campania Piana del Sele (CPS); Puglia nord, Molise, 

Basilicata (PMB); Puglia sud (PS). 

 

Fig. 2. Detail of a layer supporting the field work in Campania Casertano (CC) area: in light 

blue the agriculture areas, in white the masked areas, in red the transects, in yellow the 

established observation points, in blue the connection roads among transects. Colour online. 

 

Fig. 3. Example of the aerial survey data strips over Campania Casertano (CC), Campania 

Piana del Sele (CPS), and Puglia nord, Molise, Basilicata (PMB) areas. 

 

Fig. 4. (a) A false colour composite made by aerial data in Red, Green and Near-InfraRed 

bands at 0.8m; (b) A real colour image made by aerial data in Red, Green, Blue bands at 0.3m 

spatial resolution. Images are from Puglia nord, Molise, Basilicata (PMB) area, and show 

general agriculture fields. Colour online. 

 

Fig. 5. Sentinel 2 footprints covering the study areas (in blue). Each S2 image is divided into 

granules (in red) according to the Universal Transverse Mercator (UTM) grid. Colour online. 

 

Fig. 6. Lesina area affected by a hailstorm in June 2016 (in red), and the neighbouring control 

area (in blue); in the background Google imagery is shown, with affected areas under tomato 

(as indicated by local producers’ association) highlighted in light blue. Colour online. 

 



Fig. 7. Tomato map for Puglia nord, Molise, Basilicata (PMB) area, visualized over a real 

colour Landsat imagery (in Google Earth Pro); in red the tomato fields and the area boundary. 

Colour online. 
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