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Abstract. Methane flux measurements by the eddy-
covariance technique are subject to large uncertainties, par-
ticularly linked to the partly highly intermittent nature of
methane emissions. Outbursts of high methane emissions,
termed event fluxes, hold the potential to introduce system-
atic biases into derived methane budgets, since under such
conditions the assumption of stationarity of the flow is vio-
lated. In this study, we investigate the net impact of this ef-
fect by comparing eddy-covariance fluxes against a wavelet-
derived reference that is not negatively influenced by non-
stationarity. Our results demonstrate that methane emission
events influenced 3 %–4 % of the flux measurements and did
not lead to systematic biases in methane budgets for the an-
alyzed summer season; however, the presence of events sub-
stantially increased uncertainties in short-term flux rates. The
wavelet results provided an excellent reference to evaluate
the performance of three different gap-filling approaches for
eddy-covariance methane fluxes, and we show that none of
them could reproduce the range of observed flux rates. The
integrated performance of the gap-filling methods for the
longer-term dataset varied between the two eddy-covariance
towers involved in this study, and we show that gap-filling re-
mains a large source of uncertainty linked to limited insights
into the mechanisms governing the short-term variability in
methane emissions. With the capability for broadening our
observational methane flux database to a wider range of con-
ditions, including the direct resolution of short-term variabil-
ity on the order of minutes, wavelet-derived fluxes hold the
potential to generate new insight into methane exchange pro-
cesses with the atmosphere and therefore also improve our
understanding of the underlying processes.

1 Introduction

The eddy-covariance (EC) technique, a well-established
method for the direct quantification of turbulent surface–
atmosphere exchange processes (Aubinet et al., 2012), can
provide valuable information on current CH4 flux rates be-
tween various types of ecosystems and the atmosphere (e.g.,
Taylor et al., 2018; Rößger et al., 2019; Tuovinen et al.,
2019), including insights into processes and controls (e.g.,
Pirk et al., 2016; Kittler et al., 2017b; Neumann et al., 2019)
that can be used to improve future projections. However, the
data quality of EC measurements depends strongly on the ad-
herence to several theoretical assumptions, e.g., steady-state
conditions and horizontal homogeneity (Foken, 2017), which
frequently limits data availability. In case of methane fluxes,
particularly a potential violation of the required steady-state
conditions linked to episodic outbursts from wetland sources
(Schaller et al., 2019) may lead to low flux data quality and
therefore can substantially increase the gap fraction in qual-
ity filtered EC time series.

One potential mechanism for such high-methane-emission
events is so-called ebullition (e.g., Kwon et al., 2017; Pel-
tola et al., 2018; Männistö et al., 2019), i.e., periodic bub-
ble outgassing with a typical length of seconds to minutes.
Even though such emissions are part of the natural flux sig-
nal and should therefore be accounted for when accumulat-
ing longer-term budgets of methane exchange, in the context
of EC data processing and quality assessment, these events
are likely to be discarded during the quality screening of raw
data, or they may be incorrectly handled by the data pro-
cessing algorithms. In both cases, the natural high flux event
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would be incorrectly accounted for, potentially introducing
systematic biases into methane fluxes and budgets (Baldoc-
chi et al., 2012).

Spatial heterogeneity in the emission patterns of methane
surrounding the flux tower (e.g., Rey-Sanchez et al., 2019)
may also lead to pronounced variability in the observed
CH4 flux time series (Tuovinen et al., 2019). Particularly
for wetland ecosystems, ecosystem characteristics such as
inundation level or vegetation composition may vary at the
finest spatial scales (Muster et al., 2012; McEwing et al.,
2015), creating microsite variability with strong gradients in
methane emissions. Also at landscape (Peltola et al., 2015)
to regional scales (Davidson et al., 2016), spatial variabil-
ity in landscape characteristics may have a strong influence
on the captured flux signal. For flux towers situated in such
structured areas, an emission spike in the CH4 flux time se-
ries can also be created by a temporary shift of the field of
view of the sensors from a low flux region into a high flux
region and back (e.g., Korrensalo et al., 2018). As outlined
for the ebullition fluxes above, depending on the exact na-
ture of the spike, the flux signal may be misinterpreted by
the eddy-covariance processing software.

Since “outburst events” in methane fluxes are in many
cases flagged as non-stationary conditions, and are therefore
discarded as low-quality data, the assessment of the net im-
pact of this effect needs to consider what will happen to the
resulting gaps in the quality-filtered EC time series. Gaps are
a common feature in eddy-covariance time series, resulting,
for example, from power failures, instrument malfunction-
ing or low data quality linked to the violation of the above-
mentioned theoretical assumptions (e.g., Foken et al., 2004).
If they can be filled with a reliable, unbiased algorithm, ad-
ditional gaps would not pose a major problem. For CO2, sev-
eral of such well-established frameworks are available (e.g.,
Reichstein et al., 2005; Moffat et al., 2007), allowing for
the generation of continuous time series for the assessment
of long-term flux budgets. In contrast, for CH4 fluxes, no
consensus on a gap-filling method has yet emerged within
the EC community. Several studies succeeded in establish-
ing data-driven links between CH4 fluxes and environmental
conditions such as peat or soil temperature, friction veloc-
ity, or the water table (e.g., Wille et al., 2008; Zona et al.,
2009; Jackowicz-Korczynski et al., 2010) using both linear
and nonlinear functional relationships. Other approaches in-
clude gap interpolation (e.g., Rinne et al., 2007; Tagesson
et al., 2012), process-based modeling (Forbrich et al., 2011)
or artificial neural networks (e.g., Dengel et al., 2013). Even
though these different approaches have been shown to per-
form well in case studies, a solution that has been proven to
be uniformly applicable is lacking; therefore large uncertain-
ties are still associated with CH4 gap filling.

As an alternative to the regular eddy-covariance raw data
processing, the flux calculations can also be performed based
on the wavelet method by analyzing frequency patterns in
the underlying time series of winds and scalars (Collineau

and Brunet, 1993b, a). In contrast to the eddy-covariance
method, the wavelet method is not restricted by the same set
of theoretical assumptions, and in particular no steady-state
conditions are required (e.g., Daubechies, 1990). Wavelets
have been shown to be a powerful tool for quantifying turbu-
lent fluxes (Mauder et al., 2007; Thomas and Foken, 2007).
The ability to calculate turbulent fluxes for periods as short
as 1 min has been proven to be very valuable for attributing
flux variability to environmental controls, both being based
on aircraft campaigns (Metzger et al., 2013) and station-
ary tower measurements within a heterogeneous landscape
(Xu et al., 2017). Moreover, wavelet techniques have been
applied to improve the frequency correction with the eddy-
covariance method (Nordbo and Katul, 2013). A direct com-
parison between fluxes processed with the wavelet and eddy-
covariance method found an excellent agreement between
both methods for EC data of the highest quality (Schaller et
al., 2017).

Here, we quantify the net impact of failing to resolve
methane outburst events with the EC method, comparing
both short-term emission patterns and longer-term flux bud-
gets to a reference flux product derived with wavelet meth-
ods. The presented study is closely linked to two recently
published papers (Schaller et al., 2017, 2019) that demon-
strate that fluxes during such outburst events, with timescales
on the order of only a few minutes, can be precisely quan-
tified using the wavelet method, while the coarser tempo-
ral resolution of the EC method normally fails to resolve
these details while aggregating over 30 min. In this follow-
up study, we determine systematic offsets between both
methods and the specific role that different types of short-
term outburst events play in this context. Since many non-
stationary events were leading to data gaps in the EC-flux
time series, we placed a specific focus on evaluating the
performance of different gap-filling algorithms to fill these
gaps. Overall, our study aims at evaluating the effect of non-
stationary conditions on the long-term methane flux bud-
gets, with a special focus placed on systematic biases in-
troduced by either flux processing approach or chosen gap-
filling method.

2 Material and methods

2.1 Site description

The Ambolikha research site (Göckede et al., 2017), lo-
cated on a floodplain of the Kolyma River approximately
18 km south of the town of Chersky, in northeastern Rus-
sia, is underlain by continuous permafrost and characterized
as wet tussock tundra dominated by tussock-forming Carex
appendiculata and Carex lugens and Eriophorum angusti-
folium (Corradi et al., 2005; Kwon et al., 2016). Alluvial
mineral soils (silty clay) are topped by an organic peat layer
(0.15–0.20 m), with some of the organic material also be-
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ing present in deeper layers following cryoturbation (Corradi
et al., 2005; Merbold et al., 2009). Averaged for the period
1960–2009, the mean annual air temperature was −11 ◦C
and the average annual precipitation summed up to 197 mm
(Göckede et al., 2017). Vegetation height was∼ 0.7 m during
the peak of the growing season, reached around the begin-
ning of August.

Data were collected from two eddy-covariance towers sit-
uated about 600 m apart, both elevated∼ 6 m above sea level.
While one measurement system was placed within a drainage
ditch system (tower 1; 68.61◦ N and 161.34◦ E; FLUXNET
code RU-Che), therefore capturing fluxes that represent a
patch of tundra affected by a lowered water table, the sec-
ond control measurement system (tower 2; 68.62◦ N and
161.35◦ E; RU-Ch2) measures natural exchange conditions
unaffected by the hydrological disturbance. For this study, a
dataset covering the period 1 June to 18 September 2014 was
used.

2.2 Instrument setup

Both flux towers mentioned above in Sect. 2.1 were equipped
with the same instrumentation, including a sonic anemome-
ter (uSonic-3 Scientific, 5 W heating, METEK GmbH,
Elmshorn, Germany) at the tower top (at heights of 4.9 and
5.1 m for the drained and control tower, respectively) and
a closed-path greenhouse gas analyzer for CH4/CO2/H2O
(FGGA, Los Gatos Research, Inc., CA, USA). Ambient air
was drawn by an external vacuum pump (membrane pump,
N940, KNF Neuberger GmbH, 13 L min−1 under ambient
pressure) from an inlet placed next to the sonic anemometer
(vertical sensor separation: 0.30 m) through a heated and in-
sulated sampling line (Eaton Synflex Dekabon with 6.2 mm
inner diameter and a length of 16 and 13 m for the drained
and control tower, respectively). The acquisition of high-
frequency (20 Hz) raw data was handled by the software
package EDDYMEAS (Kolle and Rebmann, 2007) on a local
computer at the field site.

Ancillary meteorological data were collected at 10 s inter-
vals from both towers and stored as 10 min averages on a data
logger (CR3000, Campbell Scientific, UT, USA). Acquired
parameters include, for example, air temperature and hu-
midity, air pressure, precipitation or soil temperatures. Low-
frequency meteorological data underwent a thorough data
quality control screening and subsequently were averaged to
30 min (see Kittler et al., 2016, for details).

2.3 Raw data processing

We based the raw data processing to obtain fluxes from the
collected high-frequency data on two different methods:

1. The eddy-covariance raw data processing uses the soft-
ware package TK3 (Mauder and Foken, 2015). When
applied in stand-alone mode, this tool implements all re-
quired conversions, corrections and quality assessment

procedures (Foken et al., 2012; Fratini and Mauder,
2014). Details on the TK3 implementation on the Am-
bolikha datasets are provided by Kittler et al. (2016,
2017a).

2. The second flux processing method (Schaller et al.,
2017, 2019) is based on wavelet analysis and uses the
sinusoidal and complex-valued Morlet wavelet trans-
form for flux quantification. The Morlet wavelet pro-
vides an excellent resolution in the frequency domain
and can be used to analyze atmospheric turbulence
(e.g., Strunin and Hiyama, 2004; Thomas and Foken,
2005). Since this study focused on comparing eddy-
covariance-derived and wavelet-derived fluxes, the tem-
poral integration of the wavelet method was chosen
to closely match the eddy-covariance method (30 min);
however, due to the decomposition in time and fre-
quency domain the averaging intervals could not match
perfectly, and an averaging interval of 33 min for the
wavelet method was used. A detailed description of
the wavelet method, the wavelet transform and the cor-
responding flux data processing can be found in Ap-
pendix A1 and in Schaller et al. (2017).

In the context of the presented study, in a first processing
step, both methods were applied to produce continuous time
series of uncorrected half-hour fluxes of methane. In a subse-
quent processing stage, the results provided by both methods
underwent the same flux correction procedure by the TK3
software package, including 2-D coordinate rotation of the
wind field, cross-wind correction (Liu et al., 2001) and cor-
rection for losses in the high-frequency range (Moore, 1986).

The eddy-covariance post-processing quality control is
commonly based on the analysis of stationary and well-
developed turbulence conditions (e.g., Foken et al., 2004,
2012). When applied for wavelet fluxes, the test for station-
arity can be dropped, since wavelet flux data quality is not
compromised by non-stationary conditions (see above). The
development of the turbulence is investigated based on the
concept of flux-variance similarity (Wyngaard et al., 1971)
via the so-called integral turbulence characteristics (ITC; Fo-
ken and Wichura, 1996). A low data quality rating by the ITC
can, for example, be caused by stable atmospheric stratifica-
tion that suppresses turbulent motions. Data stationarity is
tested by comparing signal covariance at different averaging
intervals (e.g., 5 min vs. 30 min; Foken and Wichura, 1996).
In this context, effects such as, for example, spikes in the
signal, abrupt changes of the signal level or intermittent tur-
bulence may trigger low flux data quality. We grouped eddy-
covariance fluxes into different categories (Table 1) based on
their stationarity flag (SF) ratings. Fluxes outside the range
−10 nmol m−2 s−1<CH4 flux< 150 nmol m−2 s−1 (based
on the 2.5 % and 97.5 % quantiles for high- and medium-
quality CH4 fluxes from tower 2) were sorted out during the
post-processing.
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Table 1. Quality flag categories based on the stationarity rating of
the eddy-covariance flux data. The definition of quality categories
follows the scheme proposed by Sabbatini et al. (2018), which is
based on stationarity tests developed by Foken et al. (2004, 2012)
but uses stricter thresholds to separate categories.

Stationarity Range of
Quality flag (SF) differences (%)∗

High < 3 0–30
Medium 3–5 31–100
Low > 5 > 100

∗ Difference (%) between the covariances calculated over
30 min and calculated as a average of six 5 min covariances
(for details, please refer to Foken and Wichura, 1996).

Gaps of the eddy-covariance time series were filled with
three different methods. A linear interpolation (LI) represents
the simplest method. The mean of a 10 d moving window
(MW) centered to the gap was used for a better representation
of the seasonality. These two methods were chosen, since
they do not require a sophisticated tool and can thus be easily
applied. Finally, a neuronal network approach (NN; Dengel
et al., 2013) represents a more sophisticated gap-filling algo-
rithm, filling gaps based on prevailing environmental condi-
tions.

To assess the agreement between EC and wavelet fluxes, a
regression analysis was applied. With flux data of both meth-
ods being subject to uncertainties, no independent variable
could be identified. Thus, in place of ordinary least-square
regression, an orthogonal regression (OR; linear model II re-
gression) was used with the R package “lmodel2” (Legendre,
2014), and Pearson’s correlation coefficients (r) are given.
OR is particularly suited for the comparison of time series
that are both subject to errors of about the same order of mag-
nitude (e.g., Foken, 2017).

2.4 Event characterization

The characterization of high-methane-emission event types
differentiated within the context of this study is based on a
wavelet approach using the Mexican hat wavelet. In contrast
to the Morlet wavelet, which we used to precisely quantify
flux rates due to its excellent localization in the frequency
domain, the Mexican hat wavelet has a very good localization
in the time domain, therefore facilitating an exact localization
of single events. Event periods resolved at minute intervals
were identified by the median absolute deviation (MAD; e.g.,
Hoaglin et al., 2000) test followed by an additional manual
adjustment. Events were separated into the three categories
introduced by Schaller et al. (2019):

1. Peak events. This simple event starts from a baseline
flux level, monotonically changes towards a peak or
plateau, and subsequently monotonically changes back
to the baseline level again.

2. Up–down/down–up events. Similar to two connected
peak events with the opposite sign, after reaching a first
peak the fluxes overshoot the baseline level to reach a
second peak in the opposite direction before approach-
ing the baseline again. An up–down event indicates a
positive peak followed by a negative one; for a down–
up event, the sequence would be vice versa.

3. Cluster events. Prolonged periods containing numerous
high-methane-emission events were labeled as cluster
events. Such periods showed a distinctive pattern of
high emissions compared to the baseline fluxes before
and after the event but did not display the clearly de-
fined peak structures as defined above.

3 Results

3.1 Data coverage and overall quality flags

Of the 5280 half-hourly flux values that would provide con-
tinuous data coverage within the study period 1 June to
18 September 2014, about 3.4 % or 6 % of the eddy fluxes
were either missing or discarded as lowest data quality for
tower 1 and tower 2, respectively (Table 2). For the wavelet
datasets, missing flux values had a slightly higher percent-
age compared to the EC dataset, since a required 3 h window
of continuous data focusing on the current timestamp broad-
ened the window of missing fluxes around every gap in the
raw data. From the remaining data, a further 11.8 % (tower 1)
or 6.6 % (tower 2) were discarded during the EC quality
control procedure as low quality, in all cases linked to non-
stationary flow conditions. Since the wavelet method does
not require stationarity, no additional gaps due to low data
quality occurred. For both methods, the subsequent range test
(see Sect. 2.3 for details) filtered out another 2 %–5 % of data
that were assigned as having high to medium quality. Taken
together, for each combination of the tower and processing
method, more than 80 % of the fluxes remained after quality
screening. Compared to the wavelets, this percentage is lower
by about 7 % for the EC method, linked to the requirement
of stationary flow conditions.

Regarding the distribution of gaps over time, no seasonal
patterns were found for both towers and both flux process-
ing methods, so each part of the study period received about
equal data coverage. With respect to diurnal patterns in gap
distribution, EC data display a higher gap fraction during
the night compared to daytime data coverage. This imbal-
ance is most pronounced for tower 1 (see also Appendix A2,
Figs. A1 and A2). No such diurnal patterns in gap distribu-
tion were found within the wavelet flux time series, and also
no systematic differences between both towers were found
for this method. Taken together, wavelet flux data processing
provides better overall data coverage, i.e., fewer data gaps
have to be filled to replace unreliable measurements flagged
as low quality. Also, the equal distribution of gaps between
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Table 2. Gap fraction within the dataset used for this study, separated by flux processing method and tower position.

Tower 1 Tower 2

Gaps (%) EC Wavelet EC Wavelet

Missing data or lowest quality in raw dataset 3.43 4.13 5.95 6.93
Low-quality flag during post-processing 11.80 – 6.59 –
Range test flag for remaining medium-quality data to high-quality data 3.39 5.09 2.22 2.52

Total sum 18.62 9.22 14.75 9.45

day and night supports an improved performance of gap-
filling algorithms. Since gap-filled fluxes are associated with
higher uncertainties than measured fluxes, this indicates that
wavelet data processing holds the potential to produce more
robust flux budgets.

3.2 Flux data quality analysis

3.2.1 Comparison of non-gap-filled methane fluxes
under different stationarity conditions

In this section, we compare measured methane flux rates be-
tween EC and wavelet methods, with the intention of deriv-
ing the dependence of differences between methods on the
stationarity of the underlying flow conditions. This analysis
excludes gap-filled results. A comparison between methods
focusing on the derivation of long-term flux budgets, which
include also the gap-filled values, will be presented in the fol-
lowing section (Sect. 3.2.2). For both flux processing meth-
ods, higher methane emissions under all quality and station-
arity conditions are observed at tower 2 (see also Fig. 1),
which features a higher fraction of inundated areas in its foot-
print in comparison to tower 1. At tower 2, for both flux pro-
cessing methods, flux rates display a pronounced increase
in mid-July, leading to a peak in August and a subsequent
decrease at the beginning of September, a pattern that fol-
lows the general seasonal trends in soil temperatures. During
these times of increased methane emissions, a diurnal cycle
with higher flux rates during daytime is observed (see also
Fig. A1), while at tower 1, for both flux processing methods,
no seasonal or diurnal cycle was observed.

High stationarity (SF < 3)

Under highly stationary flow conditions, we found an excel-
lent agreement between half-hourly flux rates derived with
EC and wavelet flux processing, respectively. A direct com-
parison shows that both methods produce highly correlated
CH4 fluxes throughout the spectrum of absolute values, a
fact that is confirmed by a orthogonal regression analysis
(wavelet = intercept + slope × EC) that produces slopes
close to 1, intercepts close to 0 nmol m−2 s−1 and correla-
tion coefficients of 0.98 for both towers (Table 3). Averaging
data under high stationarity for the entire study period yield

Figure 1. Median and variability of non-gap-filled methane fluxes
based on the EC (pink) and wavelet (green) flux processing meth-
ods for different stationarity classes at tower 1 (a) and tower 2 (b).
Black horizontal bars give the median and colored boxes indicate
the interquartile range covered by the 2nd and 3rd quartile, while
whiskers show the minimum and maximum flux rates.

flux rates that are only marginally higher for the EC method
compared to the wavelet reference (Table 3; Fig. 1).

Medium stationarity (SF 3–5)

The correlation between half-hourly flux rates derived
with both processing methods is reduced under medium-
stationary flow conditions compared to the high stationarity.
This observation is confirmed by the OR analysis, which pro-
duces coefficients that deviate stronger from the ideal targets,
as shown above for high stationarity (Table 3). Mean flux
rates are reduced in comparison to highly stationary condi-
tions, and positive offsets between fluxes derived by the EC
method and the wavelet method are higher for both towers
(Table 3; Fig. 1).

Low stationarity (SF > 5)

For this evaluation of fluxes under low-stationarity condi-
tions, measured EC fluxes with low-quality flags had to be
used. Please note that such data would normally have been
filtered out during the EC quality control procedure, leaving
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Table 3. Statistical coefficients of an orthogonal regression analysis (wavelet= intercept+ slope×EC) and mean flux rates for the two
processing methods separated by stationarity classes (SF< 3 as high, SF 3–5 as medium and SF> 5 as low stationarity).

Data N Intercept Slope r Mean flux rate (nmol m−2 s−1)

(nmol m−2 s−1) Wavelet EC
To

w
er

1 SF < 3 2728 0.13 0.98 0.98 18.7± 12.4 19.0± 12.7
SF –5 1486 0.80 0.82 0.82 15.4± 17.9 17.5± 20.4
SF> 5 474 8.87 1.48 0.81 30.0± 31.7 14.2± 23.0

To
w

er
2 SF< 3 3847 0.30 0.98 0.98 46.5± 25.1 47.0± 25.6

SF 3–5 569 1.38 0.85 0.72 30.3± 25.5 34.0± 28.6
SF> 5 212 7.94 1.60 0.76 35.6± 32.5 17.3± 22.7

gaps that would subsequently be filled by gap-filling algo-
rithms. A comparison of methods including such gap-filled
data will be presented in the following section, while here
the low EC data quality influences the findings. As to be ex-
pected, under these circumstances the flux processing meth-
ods agree less than under medium- or high-stationarity con-
ditions, with both the slopes and intercepts derived through
the OR analysis increasing considerably (Table 3). Also aver-
aged flux rates for the entire study period deviate strongly be-
tween methods, with the EC fluxes strongly underestimating
the wavelet reference. In comparison to high- and medium-
stationarity conditions, also a wider range of wavelet-based
fluxes is found at both towers. These results indicate that
non-stationarity flow conditions cause a low bias in the EC-
derived methane fluxes in comparison to the wavelet method
(Table 3; Fig. 1).

3.2.2 Influence of flux processing method and gap
filling on flux budgets

To evaluate the impact of discarding portions of an EC
dataset due to low stationarity (SF> 5) in flow conditions, in
this section we only used original EC data of medium to high
quality and subsequently filled all gaps with the three differ-
ent gap-filling algorithms: linear interpolation (LI), moving
window (MW) and neural network (NN). Since a strong fo-
cus is placed on the evaluation of the gap-filling methods,
timestamps with gaps in the wavelet time series, linked to
missing data and the range test filter, were subsequently re-
moved also from the gap-filled EC time series to facilitate a
direct intercomparison between both methods without having
to compare gap-filled values to other gap-filled values. Ac-
cordingly, the resulting flux budgets discussed in the method
intercomparison below are not equal to the total methane
emissions during the study period; however, with more than
90 % wavelet data coverage for both towers (Table 2), de-
viations should be moderate and overall patterns should be
representative. As a reference, filling all gaps in the EC-flux
time series, at tower 1 seasonal budgets sum up to 2.26, 2.09
and 2.08 g C m−2 for LI, MW and ANN respectively, while

at tower 2, seasonal budgets are 5.03, 5.09 and 5.02 g C m−2

across these three methods.
When integrating the entire dataset, the direct intercom-

parison of half-hourly fluxes between EC and wavelet meth-
ods based on OR analyses yields good agreement for tower 2
across gap-filling methods (slope: 1.01–1.05; r: 0.88–0.89),
while at tower 1, a weaker agreement between both flux pro-
cessing methods after the gap filling of the EC time series
was found (slope: 1.14–1.32; r: 0.69–0.74). Plotting the fre-
quency distribution of gap-filled flux rates against wavelet re-
sults (Fig. 2) reveals the important role of the gap-filling per-
formance in this context: for both towers, the reference fluxes
provided by the wavelet processing are positively skewed,
with a long tail indicating a prominent role of occasional high
to very high methane emissions. The gap-filling algorithms,
all of which display comparatively restricted flux ranges,
cannot reproduce this distribution, and individual half-hourly
flux rates show a poor correlation with the wavelet refer-
ence (see also Fig. A3 in Appendix A4). This applies par-
ticularly to the MW and NN approaches, while the flux dis-
tribution of the rather simple linear interpolation (LI) at least
approximates the positive skewness of the reference. The ex-
ample of tower 1 demonstrates that this systematic deviation
may lead to biases in average flux values produced by the
gap-filling methods: in this case, while wavelet results fea-
ture an average methane flux of 30.9± 33.4 nmol m−2 s−1

for those timestamps where EC fluxes were filtered out due
to low stationarity, the corresponding gap-filled values in the
EC time series had mean flux rates of 24.4± 21.2 (−20 %,
LI), 18.4± 8.6 (−41 %, MW) and 18.4± 9.3 nmol m−2 s−1

(−41 %; NN). On the other hand, at tower 2, in spite of the
differences in frequency distributions (Fig. 2), smaller shifts
in mean flux rates were found, and gap-filled fluxes tended
to slightly overestimate the wavelet reference fluxes (see also
Fig. 4).

For the calculation of long-term methane budgets, the
above-mentioned biases in gap-filling results become more
important at tower 1, in part also because of the overall higher
percentage of gaps compared to tower 2 (Table 2). This is
reflected in the fraction of the cumulative methane budget
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Figure 2. Frequency distribution of flux rates (a, tower 1; b, tower 2) produced by the three gap-filling approaches (red: linear interpolation
– LI; blue: moving window – MW; orange: neural network – NN) compared against the reference flux values derived from the wavelet raw
data processing method (WV; green).

Figure 3. Stationarity flag frequency distribution of half-hourly
timestamps, separating between fluxes that were influenced by
events (a) and those where no events were detected (b). Station-
arity flags were grouped into the three classes: high (dark blue),
medium (light blue) and low (light brown) stationarity. The total
count of timestamps is slightly above the sum of timestamps avail-
able during the study period (5280) due to an occasional occurrence
of several events in a single half-hour window.

contributed by gap-filled values, which makes up 12 %–15 %
at tower 1 but only 6 %–8 % at tower 2 (Table 4). In spite
of these deviations, accumulated fluxes for the entire study
period are in very good agreement between flux process-
ing methods and also between gap-filling methods: flux bud-
gets based on wavelets sum up to 1.96 and 4.56 g C m−2 for
tower 1 and 2, respectively. Across the three gap-filling ap-
proaches, deviations to these reference flux budgets ranged
between −0.07 and 0.01 g C (−3.5–0.5 %) for tower 1 and
between 0.06 and 0.14 g C (1.5 %–3.1 %) for tower 2.

3.3 Analysis of methane emission events

3.3.1 Distribution of stationarity classes for different
event types

We restricted this analysis to flux data from tower 2, since
here the overall higher methane fluxes were measured (see

also Sect. 3.2.1). Similar patterns were found at tower 1 (not
shown). The vast majority of 30 min flux values (5123 cases,
or 97 %) were categorized as “no events”; i.e., none of the
three event types could be detected (Fig. 3). This category
differs substantially from the event categories regarding the
frequency distribution of stability filter (SF) classes: 76 %
of cases fell into the high-stationarity range (classes 1 and
2), and only 12 % were labeled as low stationarity. The “de-
tected event” statistics combine 26 half-hourly fluxes from
the category “peak events”, 9 “up–down/down–up events”
and 123 “cluster events”. Across these categories, the per-
centage of high-stationarity data only makes up about 17 %
of the dataset, while the percentage of low-stationarity data
has been more than doubled to 32 % compared to the no-
event category. The majority of cases (∼ 51 %), however, are
classified as medium stationarity.

3.3.2 Methane flux rates during different types of
events

Our dataset from tower 2 demonstrates that mean
methane flux rates differed between event types (see
also Fig. 4; similar trends observed at tower 1). Across
stationarity categories, average fluxes, where wavelet
fluxes were available, were highest during cluster events
(wavelet: 52.8 nmol m−2 s−1; gap-filled EC fluxes rang-
ing between 49.8–57.2 nmol m−2 s−1). In comparison,
during peak events flux rates were lower by about
26 % (wavelet: 39.0 nmol m−2 s−1; gap-filled EC: 36.6–
41.5 nmol m−2 s−1), while up–down/down–up events feature
the lowest emissions (wavelet: 21.3 nmol m−2 s−1; gap-filled
EC: 22.4 nmol m−2 s−1). At times where no events had been
detected, wavelet emissions averaged at 44.0 nmol m−2 s−1,
while gap-filled EC fluxes were slightly higher at around
44.7–45.4 nmol m−2 s−1.

Comparing the three different stationarity classes, similar
patterns emerge across event types, confirming the overall
results displayed in Fig. 1: during high stationarity, the high-
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Table 4. Methane fluxes (FCH4) summed up for the wavelet method and EC method by applying the three different gap-filling approaches:
linear interpolation (LI), moving window (MW) and neural network (NN). Note that the same gaps as for the fluxes based on the wavelet
method are used for the EC-flux time series.

Budget Wavelet EC_LI EC_MW EC_NN

To
w

er
1

∑
FCH4 (g C m−2) 1.96 1.97 1.90 1.90∑
FCH4_EC−

∑
FCH4_wavelet (g C m−2) – 0.01 −0.07 −0.07∑

gap-filled FCH4 (g C m−2) 0 0.31 0.23 0.23∑
gap-filled FCH4 /

∑
FCH4_EC (%) 0 15.59 12.13 12.11

To
w

er
2

∑
FCH4 (g C m−2) 4.56 4.65 4.70 4.62∑
FCH4_EC−

∑
FCH4_wavelet (g C m−2) – 0.09 0.14 0.06∑

gap-filled FCH4 (g C m−2) 0 0.32 0.37 0.30∑
gap-filled FCH4 /

∑
FCH4_EC (%) 0 6.95 7.96 6.45

Figure 4. Methane fluxes based on the EC (pink) and wavelet (green) flux processing method for three stationarity flag (SF) categories
during different event types at tower 2. For SF> 5, where methane fluxes based on the EC method would be excluded during the regular
post-processing quality control, in addition the values for the three gap-filling methods (red: LI; blue: MW; orange: NN) are shown. For
details on graph features, please refer to Fig. 2.

est median (Fig. 4) and mean flux rates were found across
event categories, with wavelet flux rates during peak events
being the single exception. Results agree well between pro-
cessing methods, with no systematic difference observed in
either median or mean flux rates. At medium stationarity,
mean flux rates are consistently lower than at high stationar-
ity, and the differences in medians as shown in Fig. 4 indicate
a minor positive offset in flux rates between EC and wavelet
methods. At low stationarity, wavelet-derived flux rates are
slightly higher again, compared to medium stationarity. EC-
based mean fluxes severely underestimate this reference by
fractions ranging between −26 % and 53 %. Replacing these

low-quality measurement data with gap-filled values clearly
improves the agreement between wavelet and EC-based time
series, albeit with a large scatter across methods. For all event
types, using any of the three gap-filling algorithms reduces
the net offsets to the wavelet-derived fluxes, compared to
the original EC data, with results tending to overestimate the
wavelet reference. For LI and MW gap-filling methods, all
mean fluxes are higher compared to the wavelets, while NN
produces event fluxes lower than this reference and no-event
fluxes that are slightly higher. Detailed results are listed in
Table A1, Appendix A3.

Biogeosciences, 16, 3113–3131, 2019 www.biogeosciences.net/16/3113/2019/



M. Göckede et al.: Impact of emission outbursts and non-stationary flow 3121

Table 5. Methane fluxes summed up for the wavelet and EC meth-
ods (mg C m−2) for tower 2. For EC fluxes, gaps resulting from
sorting out low-stationarity cases were filled using three different
gap-filling approaches (LI: linear interpolation; MW: moving win-
dow; NN: neural network). Please note that gaps in the wavelet
method were projected to the EC-flux time series to ensure a ho-
mogeneous database for this method intercomparison.

Event type Stationarity Wavelet EC_LI EC_MW EC_NN

Peak All 16.9 17.3 17.9 15.8
Up–down/ All 1.8 1.9 1.9 1.9
down–up
Cluster All 102.7 111.3 106.8 96.8

Sum 121.4 130.5 126.7 114.6

All events SF< 3 29.9 24.0 25.0 24.4
SF 3–5 53.5 61.2 59.1 58.3
SF> 5 37.9 45.3 42.4 31.7

Sum 121.4 130.5 126.6 114.5

No. events SF< 3 3847 3893 3891 3891
SF 3–5 381 401 408 400
SF> 5 207 224 274 218

Sum 4435 4518 4573 4509

3.3.3 Event contribution to methane flux budgets

As to be expected from the low fraction of half-hourly
timestamps containing detected events (∼ 3 % at tower 2;
see also Fig. 3), the total flux budgets are dominated by
methane emissions from the no-event category. Summed up
for tower 2 (Table 5), across the four processing versions
(wavelet; EC with three gap-filling approaches), the contribu-
tions from events to the total methane budget ranged between
2.5 % and 2.8 %. Owing to the dominant fraction of cluster
events in those timestamps where events were detected, this
event category makes up about 85 % of fluxes influenced by
events.

Regarding the role of flow stationarity, the budgets reflect
the distribution of stationarity flags shown above in Fig. 3
well; for the fluxes during “events”, 44 %–51 % of the budget
was emitted during medium stationarity, with the remaining
flux portions being about equally distributed between high
and low stationarity. For the no-event cases, on the other
hand, about 85 % of the total methane emissions can be at-
tributed to high-stationarity cases, and only 9 % of the fluxes
belong into the medium-stationarity category.

Regarding the intercomparison of wavelet and EC-based
flux budgets, including the influence of the gap-filling ap-
proaches, it needs to be considered that the range test filtered
out values at different timestamps between flux processing
methods, and the resulting gaps can occur within any sta-
tionarity category. Accordingly, the performance of the gap-
filling algorithm slightly influenced also the flux budgets for
high and medium stationarity, while the biggest impact is
found under low stationarity, where results are exclusively

based on gap-filling output. Sorting by event type, gap-filled
EC flux sums tend to be slightly higher than the wavelet ref-
erence, with the exception of NN budgets for peak and cluster
events. Sorting events by stationarity, results summarized in
Table 5 indicate that events at high stationarity tend to be un-
derestimated by∼ 18 %, while medium- and low-stationarity
cases have a high bias (11 % and 5 %, respectively). For no-
event cases, the gap-filled EC methane budgets have a high
bias across stationarity categories and gap-filling algorithms,
with only minor flux increases for high stationarity (∼ 1 %)
that increase gradually towards low stationarity. Total flux
sums for both event and no-event cases are on average over-
estimated by 2.2 % by the gap-filled EC time series, although
with different variability across methods (events: −5.6 %–
7.5 %; no events: 1.7 %–3.1 %).

4 Discussion

4.1 Deviations in absolute flux rates between event
types and stationarity classes

Mean absolute methane flux rates showed a uniform pattern
with respect to the stationarity of the flow (e.g., Fig. 1), with
fluxes within the highest stationarity class (SF< 3) display-
ing the highest flux rates. The flux rates under medium sta-
tionarity were clearly lowest, while low stationarity ranged
somewhere in between the other two classes. Also averaged
flux rates for event types (Fig. 4) showed some distinctive
differences, ranking event types in the order of cluster events,
no events, peak events and up–down/down–up events from
high to low average flux rates. These patterns in absolute flux
rates, however, strongly depend on the distribution of events
and/or stability classes over season and time of day. There-
fore, it cannot be ruled out that at least some of the differ-
ences between these averaged flux rates have to be attributed
to seasonal and/or diurnal variability in methane emissions.

Diurnal variability in flux rates, as, for example, observed
at tower 2 within the peak summer season, may particularly
alter the comparison of mean flux rates between events and
no events. With the majority of events being detected dur-
ing nighttime (Schaller et al., 2019), higher overall flux rates
during the day would mostly raise the no-event flux rates.
Accordingly, the slightly lower averaged fluxes during peak
events (wavelet: 39.0 nmol m−2 s−1) compared to no events
(wavelet: 44.0 nmol m−2 s−1) may in large part reflect the
time of sampling rather than an impact of the mechanism
of flux release in form of an event on the amount of emitted
methane.

4.2 Comparison between wavelet- and EC-derived
fluxes under different stationarity classes

Excluding gap-filled values from the analysis, we achieved
an excellent correlation between wavelet- and EC-derived
methane flux rates at high stationarity of the flow. This agree-
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ment across processing methods under well-developed at-
mospheric turbulence, which has been reported before by
Schaller et al. (2017, 2019), applies to both the regression
analysis of half-hourly fluxes (Table 3) and the statistics on
averaged flux rates integrated over the study period (see, e.g.,
Fig. 1). Given that the assumptions for the application of
wavelet flux processing are more relaxed compared to the EC
method, mainly because there is no requirement for station-
arity of the flow, wavelet-derived fluxes therefore provide a
solid reference for constraining potential biases in EC fluxes
under non-ideal conditions.

Under medium stationarity, mean EC-flux rates are
slightly higher than the wavelet reference fluxes at
both towers (tower 1: +1.99 nmol m−2 s−1; tower 2:
+0.63 nmol m−2 s−1). This offset may be linked to the com-
paratively high flux contribution from half-hourly fluxes in-
fluenced by events under this category, which is more than
1 order of magnitude higher than under high stationarity (see,
e.g., Table 5, which also includes gap-filled values, however).
Disregarding the possible influence of events, even though
the differences between flux processing methods are not sig-
nificant due to the high scatter of flux rates across the entire
summer season, a persistent offset in this category will affect
the computation of net methane flux budgets, since the over-
all data quality is still considered to be high enough that val-
ues will not be filtered out during the EC data quality screen-
ing.

Our flux processing method intercomparison under low
stationarity clearly indicates that EC-derived methane fluxes
under such conditions are unreliable and should be sorted
out to ensure plausible results. Mean flux rates for both tow-
ers only amounted to slightly more than 50 % of the wavelet
reference fluxes; therefore the inclusion of such data into the
computation of long-term methane flux budgets would lead
to a systematic and potentially severe underestimation of the
actual emissions. Since a reliable direct measurement with
the EC method is not reliable, and also gap filling is asso-
ciated with considerable uncertainties (see below), wavelet
processing holds the potential to provide novel insights into
methane exchange processes also under difficult measure-
ment conditions.

4.3 Role of gap filling for EC-derived methane budgets

As demonstrated by the frequency distributions of methane
flux rates derived by wavelet processing and three different
gap-filling methods (Fig. 2), all EC gap-filling approaches
tested here cannot capture the full range of natural variability
of the methane emissions observed by the reference wavelet
fluxes. The wavelet flux distribution indicates that the occur-
rence of high flux rates, or emission outbursts that may be
related to events as further discussed below, are an impor-
tant element of the methane release dynamics at our study
site. These high flux rates, which cause the positive skewness
and the long positive tail in the wavelet flux frequency distri-

bution, are at best coarsely approximated by the gap-filling
algorithms. The fact that the simplest gap-filling algorithm,
linear interpolation, gets closest to a positively skewed flux
distribution as provided by the wavelet reference indicates
that even sophisticated algorithms such as neural networks
have limitations when it comes to capturing the mechanisms
that control episodic high methane emissions from wetland
ecosystems.

While the uncertainty associated with methane gap fill-
ing produces partly large offsets when comparing individ-
ual 30 min flux rates to the wavelet results, we found that
the integrated flux over a longer-term study period is rather
stable across gap-filling approaches and that mean flux rates
still agree well with the reference for parts of the dataset.
At our tower 2, the gap-filled mean fluxes ranging between
37.2 and 41.3 nmol m−2 s−1 agree well with the wavelet
mean flux of 37.7 nmol m−2 s−1, while at tower 1 the wavelet
reference of 30.9 nmol m−2 s−1 was clearly underestimated
(18.4–24.6 nmol m−2 s−1). Based on this finding, we specu-
late that the decisive factor for the performance of gap-filling
algorithms is the mean EC flux during high and medium sta-
tionarity, which forms the basis to inform gap-filling algo-
rithms, and the diurnal and seasonal gap distributions.

As any other type of model, gap-filling approaches need
to be based on reliable statistical and/or process-based al-
gorithms, and in addition they need representative training
data to produce reliable results. In the tests conducted within
the context of this study, none of the three gap-filling algo-
rithms could fully hold up to these standards. For the two
simple approaches, linear interpolation and moving window
averaging, with no mechanisms available that link fluxes to
controls these methods can only rely on the available range
of measured fluxes under high to medium stationarity to base
their output on. As a consequence, in the absence of process-
based algorithms all gap-filling methods are dependent on
the distribution of gaps to be filled, and therefore their per-
formance is subject to a certain level of randomness. Re-
garding the neural network approach, since our example at
tower 1 demonstrates that this sophisticated algorithm can
produce offsets as large as found for the MW method, the es-
tablished links between environmental controls and methane
fluxes, which again are based on observations during high or
medium stationarity, are not necessarily representative un-
der poorly developed turbulence. This caveat can only be
improved through reliable, process-based gap-filling algo-
rithms that do not exclusively focus on biogeochemical as-
pects but also incorporate biogeophysical elements such as
atmospheric pressure or turbulence conditions into the calcu-
lations.

With only up to 11 % of flux values to be filled as gaps
resulting from low data quality during our study (Table 2),
even a systematic underestimation of reference fluxes by the
gap-filling methods of −20 %–41 % at tower 1 did not re-
sult in substantial offsets in net methane emissions budgets
integrated over the study period (Table 4). This good agree-
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ment in net flux budgets may also be linked to the fact that
the underestimation of gap-filled values is at least partly bal-
anced by the overestimation of fluxes by the EC method
during medium stationarity. In general, however, it can be
expected that the agreement between the gap-filled product
and reference will significantly deteriorate with an increas-
ing gap fraction within the study dataset. To reduce the as-
sociated high uncertainties, wavelet tools as presented herein
hold the potential to produce reference datasets under var-
ious environmental conditions that can be used to develop,
calibrate and test new process-based gap-filling algorithms
that are capable of producing reliable results also under low-
stationarity conditions, i.e., when they are needed most.

4.4 Impact of event emissions on methane observations

Our datasets demonstrate that event emissions make up a
small but noticeable part of the methane flux time series ob-
served at our Ambolikha observation sites in northeastern
Siberia. At tower 2, summed up over the study period of
108 d in summer 2014, about 3 % (158 cases) of half-hourly
flux values were affected by events, contributing 2.5 %–
2.8 % of the total methane budget emitted during this period.
At tower 1 (data not shown), the event fraction was slightly
higher (3.7 %; 193 cases), and also the fraction of the total
flux affected by events increased in comparison to tower 2
(3.7 %–5.3 %). Differences between towers are associated
with the higher fraction of extreme outliers, as detected by
the MAD test at tower 1 (Schaller et al., 2019), which may
be linked to the fact that mean flux rates at this site are lower
so that emission peaks differ more strongly from the base-
line emissions. Overall, these results indicate that, even when
completely ignoring the potential presence of such events,
regular EC data processing and gap-filling algorithms on av-
erage can produce flux rates that are reasonably close to the
wavelet fluxes that resolve events (see detailed discussion be-
low). Consequently, for the case study presented herein, the
presence of non-stationary methane outburst events did not
lead to systematic biases in the EC-based long-term methane
budget that go beyond the regular measurement uncertainty.

At tower 2, at times without event occurrence, the EC-
derived fluxes overestimated the wavelet reference by 1.2 %
under high stationarity and 5.8 % under medium stationarity.
Similar offsets were observed at tower 1 (not shown). During
events, the overestimation of fluxes under medium stationar-
ity (11 %) approximately matched these biases, while under
high stationarity, fluxes tended to be underestimated by 18 %.
At tower 1, on the other hand, event fluxes under both station-
arity categories were underestimated by 9 %–13 %. With the
contributions of total fluxes per stationarity category ranging
between 0.7 % and 2.8 % across towers, this minor tendency
towards underestimating event fluxes did not influence the
EC-computed flux budgets considerably.

During low-stationarity conditions, all fluxes based on EC
processing will be sorted out and will subsequently be re-

placed by gap-filling values, independent of whether or not
an event was contained in the specific half-hourly window.
Therefore, the correspondence between gap-filling results
and wavelet reference fluxes was largely identical between
event and no-event cases at both towers. The influence of
events under such circumstances is therefore restricted to
the question whether or not event occurrences increase the
fraction of detected low-stationarity cases, which will be fil-
tered out during quality screening and therefore create gaps.
Data summarized in Table 5 show that, for our dataset from
tower 2, the relative fraction of cases with low stationarity
was ∼ 31 % across half-hourly fluxes that were influenced
by events compared to only 4.7 % for no-event cases. This
observation indicates that, in general, more events hold the
potential to cause more gaps in the flux time series; therefore
with more events the gap filling becomes more important.

Regarding the impact of events on the short-term vari-
ability of fluxes, the range of differences between wavelet-
and EC-derived 30 min flux rates is similar for event and no-
event cases (see Appendix A4, Fig. A3); however, while dur-
ing no-event cases a large number of values still show good
correspondence; those cases with substantial deviations from
the 1 : 1 line dominate the method intercomparison for fluxes
influenced by events. This is clearly indicated by the root-
mean-square errors (Table A2), which under all stability cat-
egories are higher for the events cases. Under high to medium
stationarity, the offsets produced by EC processing appear to
be random; therefore the number of events does not seem to
introduce a systematic bias into the long-term budget. Still,
Fig. A3 demonstrates that, particularly for medium stationar-
ity, the EC-derived flux rates influenced by events have poor
quality overall, with RMSE values> 40 nmol m−2 s−1 found
for both towers.

Our findings demonstrate that regular eddy-covariance
flux processing yields highly reliable results under high-
stationarity conditions, while for medium to low stationarity,
the half-hourly averaged flux rates by the wavelet method
should be preferred instead when investigating methane
emission dynamics at high temporal resolution. Particularly
in the presence of events, individual EC-flux rates are associ-
ated with a very high uncertainty and should only be used for
the computation of long-term flux budgets. With events often
occurring at timescales of only a few minutes, the wavelet
flux processing holds the potential to provide new insights
into the characteristics of these important elements of the
methane cycle, since it facilitates flux computation down to
time steps of 1 min without violating underlying theoretical
assumptions. As demonstrated already for the decomposition
of flux signals from spatially varying source areas (Metzger
et al., 2013; Xu et al., 2017), wavelets provide a valuable
tool for investigating the statistics of highly irregular emis-
sions and how they can be correlated with environmental
conditions and potentially be resolved by process-based al-
gorithms for gap filling and/or extrapolation purposes.
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5 Conclusions

Our study investigated the impact of short-term episodic
emission outbursts, so-called event fluxes, on the overall
data quality of methane fluxes observed by eddy-covariance
towers over a wet tussock tundra ecosystem in northeast-
ern Siberia. We evaluated the EC-flux dataset against refer-
ence fluxes based on wavelet processing, which are not re-
stricted to stationary flow conditions and can resolve flux
patterns down to time steps of 1 min. The wavelet analysis
demonstrates that high-methane-emission events influenced
3 %–4 % of the flux observations during our study period,
with integrated event emissions contributing 3 %–6 % to the
net methane budget. EC-flux data processing tended towards
slightly underestimating the wavelet fluxes while events were
present, but the net impact on long-term flux budgets is mi-
nor in relation to other uncertainties associated with eddy-
covariance measurements. For the intercomparison of flux
rates at 30 min time steps, however, our results demonstrate
that the presence of events substantially increases the scat-
ter between wavelet- and EC-derived fluxes, indicating that
events introduce additional uncertainty into the EC results.

A second focus of this study was placed on the evaluation
of common gap-filling approaches for EC-derived methane
fluxes. Our wavelet-derived fluxes provided an observation-
based reference for the fraction of gaps in the EC time series
that was created because measurements under low stationar-
ity were filtered out by the data quality assessment protocol.
None of the three gap-filling approaches tested herein could
reproduce the range of values provided by the wavelet refer-
ence, but resulting biases in long-term flux budgets were still
minor because of the comparatively small fraction of gaps
that needed to be filled in our datasets. The performance of
the gap-filling methods appeared to be dependent on the gap
distribution and the ratio of flux rates between the gaps and
the remaining dataset. With a profound mechanistic under-
standing on processes and controls that govern the short-term
variability in methane emissions still lacking, the quality of
gap-filling products retains a certain level of randomness;
therefore systematic biases even over longer timeframes can-
not be ruled out, particularly for datasets that contain a higher
gap fraction than the ones used in our study.

Our findings demonstrate that wavelet analyses hold the
potential to enhance our understanding in methane ex-
change processes between terrestrial ecosystems and the at-
mosphere. With excellent agreement between wavelet- and
EC-derived fluxes demonstrated under ideal turbulence con-
ditions, wavelet fluxes facilitate quantifying biases in EC
datasets linked to non-ideal conditions, for example, medium
to low stationarity of the flow. Moreover, the provision of
observationally based reference fluxes at times when the EC
method produces data gaps can support the development of
novel process-based modeling algorithms that are represen-
tative for a wider range of environmental conditions, which
can be employed, for example, in the improvement of gap-

filling algorithms. Finally, the option to resolve fluxes down
to temporal resolutions of 1 min facilitates new insights into
the intermittent nature of methane emissions and its impact
on the quality of methane flux observations.

Code availability. The software scripts that execute the wavelet-
based flux data processing can be made available by the authors
upon request.
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Appendix A

A1 Wavelet approach to calculate turbulent fluxes

The following description of the wavelet method is a slightly
shortened version of the description provided by Schaller et
al. (2017), which is the companion paper introducing the
methodology that the presented study is based upon. It has
been included here again to facilitate an easier overview on
the procedure without having to read other papers. For more
details, please refer to Schaller et al. (2017).

A continuous wavelet transform of a discrete time series
x(t) can be written as convolution of x(t),

T (a,b)=

∞∫
−∞

x(t) ·ψ∗a,b(t)dt, (A1)

where T (a,b) is the wavelet coefficient and 9a,b(t) is re-
ferred to as the wavelet function,

9a,b(t)=
1
√
a
·9

(
t − b

a

)
. (A2)

The wavelet9 requires a dilation parameter a, which con-
trols the scale of the wavelet and thus the current frequency
of interest and a translation parameter b that indicates the
temporal position of the wavelet in the time series. For the
complex-valued wavelet, the conjugate 9∗a,b(t) denoted by a
star sign is used.

As mentioned in the main text above, this study used
the complex-valued Morlet wavelet for quantification of flux
rates and the Mexican hat wavelet for the exactly localiza-
tion of CH4 emission events (see Schaller et al., 2017, for
more details). The expression T 2(a,b) across all times and
scales provides the total energy of the time series. The aver-
age of the wavelet scalogram

∣∣T 2(a,b)
∣∣ is used to obtain the

wavelet spectrum (Torrence and Compo, 1998),

Ex(j)=
δt

Cδ
·

1
N
·

N−1∑
n=0

∣∣∣T 2(a,b)

∣∣∣ , (A3)

over a given numberN of values in the time series, taking the
time step δt and a wavelet-specific reconstruction factor Cδ
into account. From this it is now possible to obtain the global
variance of the time series, σ 2

x , by integrating over all scales
j = 0 to J :

σ 2
x =

δt

Cδ
·
δj

N
·

N−1∑
n=0

J∑
j=0

∣∣T 2(a,b)
∣∣

a(j)
, (A4)

with δj referring to the spacing between discrete scales and
J being the maximum number of scales.

For two simultaneously recorded time series x(t) and y(t)
the wavelet cross spectrum can now be obtained in analogy
to Eq. (A3) as

Exy(j)=
δt

Cδ
·

1
N
·

N−1∑
n=0

[
Tx(a,b) · T

∗
y (a,b)

]
, (A5)

where T ∗y (a,b) denotes the complex conjugate of the wavelet
transform of the second time series y(t) (Hudgins et al.,
1993). Summing up over all scales yields the covariance
(Stull, 1988)

x′y′ =
δt

Cδ
·
δj

N
·

N−1∑
n=0

J∑
j=0

[
Tx(a,b) · T

∗
y (a,b)

]
a(j)

, (A6)

for the chosen averaging interval. If the chosen time series x
and y are the vertical wind velocity w and a corresponding
gas concentration c, the fluxw′c′ can be calculated now using
Eq. (A6).
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A2 Seasonal and diurnal pattern of flux rates and data
gaps

Figure A1. Fingerprint plots showing the diurnal distribution of flux
rates and gaps (white) for both towers and processing methods.

Figure A2. Seasonal (a, c) and diurnal (b, d) distribution of data
availability for wavelet-derived (green lines) and EC-derived (pur-
ple lines) methane fluxes.
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A3 Mean methane flux rates for different event
categories

Table A1. Mean methane fluxes for the wavelet method and EC method, split into three stationarity categories. For the lowest stationarity, in
addition to measured EC values, model results by the three different gap-filling approaches, linear interpolation (LI), moving window (MW)
and neuronal network (NN), are given. Absolute flux values are given in usual font, while italic font indicates flux differences between EC
and wavelet processing; numbers in brackets give the percentage deviation. NA stands for not available.

Flux calculation Peak Up–down/down–up Cluster No. event
method (nmol m−2 s−1) (nmol m−2 s−1) (nmol m−2 s−1) (nmol m−2 s−1)

High stationarity Wavelet 40.97 32.83 68.94 46.52
EC 34.87 35.71 55.16 47.03
EC wavelet −6.1(−14 %) 2.88 (8.8 %) −13.78(−20 %) 0.51 (1.1 %)

Medium stationarity Wavelet 34.2 9.81 47.22 31.67
EC 31.87 9.07 50.06 33.1
EC wavelet −2.33(−6.8 %) −0.74(−7.5 %) 2.84 (6.0 %) 1.43 (4.5 %)

Low stationarity Wavelet 42.42 NA 53.59 34.05
EC measured 31.5 NA 32.71 16.07
EC gap-filled LI 45.34 NA 65.17 36.8
EC gap-filled MW 50.28 NA 59.43 45.02
EC gap-filled NN 33.75 NA 45.22 35.72
EC-measured wavelet −10.92(−26 %) NA −20.88(−39 %) −17.98(−53 %)
EC gap-filled LI wavelet 2.92 (6.9 %) NA 11.58 (22 %) 2.75 (8.1%)
EC gap-filled MW wavelet 7.86 (19 %) NA 5.84 (11 %) 10.97 (32 %)
EC gap-filled NN wavelet −8.67(−20 %) NA −8.37(−16 %) 1.67 (4.9 %)

A4 Comparison of methane flux rates at half-hourly
resolution between methods

Table A2. Deviations between 30 min averaged fluxes based on
wavelet and EC processing, expressed as the root-mean-square error
(nmol m−2 s−1). Time series include gap-filled values from linear
interpolation for the EC time series.

Tower 1 Tower 2

Stationarity No. events Events No. events Events

High (SF< 3) 2.64 11.89 4.54 34.04
Medium (SF 3–5) 12.11 40.75 21.97 48.61
Low (SF> 5) 27.67 42.06 28.12 60.76
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Figure A3. Impact of events on the direct intercomparison of half-hourly flux rates between wavelet and eddy-covariance processing methods,
sorted by tower and stationarity flag (SF) category. The displayed dataset includes gap-filled data, where linear interpolation was used to fill
gaps for the EC method under low stationarity. Fluxes influenced by events are plotted in red, while no-event cases are black. The thin grey
line gives the 1 : 1 line, and the black line gives the fit of the orthogonal regression (OR) analysis.
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