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1 Introduction

In the last ten years, a number of major international studies have attempted to assess
the potential impacts of climate change induced by increasing atmospheric concentrations of
CO, and other greenhouse gases. These studies considered impacts in a variety of sectors,
e.g. agriculture, energy and water resources, forestry, fisheries, etc. (National Academy
of Sciences, 1983; Parry et al., 1988a,b; Smith and Tirpak, 1989). To a greater or lesser
extent, such climate impact investigations have relied on output from General Circulation
Models (GCMs) in order to construct scenarios for future climate change. Other methods
are available for generating scenarios, such as the use of paleoclimatic or instrumental data
analogs (Pittock and Salinger, 1982; Lough et al., 1983; Palutikof et al., 1984). However, only
GCMs can provide the space-time resolution and richness of information required by impact
analysts.

This does not imply that a state-of-the-art GCM can supply the ‘correct’ four-dimensional
picture of the atmospheric response to doubled atmospheric CO,. There are four reasons why
we should only regard current GCMs as instruments for making intelligent guesses (and not
predictions) about the climate system’s response to specified forcings:

e Although GCMs solve the same primitive equations, each model represents a different,
highly individual solution to the problem of modelling the Earth’s climate. Each GCM
can be regarded as an individual species within the genus of climate models. There are
large inter-model differences in resolution and physics, particularly in the treatment of
clouds, sea ice and land surface processes and in the representation of the ocean. These
differences explain why there is substantial disagreement in the regional details of the
equilibrium response to doubled CO, (Schlesinger and Mitchell, 1987).

e All climate models still have systematic errors in their simulations of present-day climate
(von Storch et al., 1985; Grotch, 1988; Santer and Wigley, 1990).



e There are large uncertainties in modelling the oceans and cloud properties, in the cou-
pling of atmosphere and ocean models, and in other sub-grid scale parameterizations.
The implication of these uncertainties is that current climate models are unlikely to
incorporate all the physical processes and feedback mechanisms that are necessary to
reliably simulate the climate impact of greenhouse-gas forcing,.

e Most of our knowledge concerning the regional and seasonal details of the climate
response to greenhouse-gas forcing has been obtained from equilibrium response exper-
iments. These are experiments which consider the steady-state response of the model’s
climate to a step-function change in atmospheric CO,. In the real world, we are more
concerned with the time-dependent response to time-dependent greenhouse-gas forcing.
Recent evidence from the few GCM experiments that have been performed with time-
dependent greenhouse-gas forcing (so-called transient experiments) suggests that there
may be important differences between the equilibrium and transient responses (Hansen
et al., 1988; Bryan et al., 1988; Washington and Meehl, 1989, Stouffer et al., 1989).

Increasingly, impact analysts are requesting model data with higher spatial and temporal
resolution. The demand is for scenarios with greater ‘richness of information’ - i.e., for
variables with direct relevance for impact analysis (e.g. evapotranspiration, maximum and
minimum temperature, runoff ), and for information on changes in variances and the frequency
of extreme events. Impact studies are now being performed at the regional level, often for
individual states or countries (e.g., Pittock and Nix, 1986; Gleick, 1987; Parry et al., 1988a,b;
Smith and Tirpak, 1989) and sometimes using daily data (Wilks, 1988). These studies gen-
erally rely on results from one or several GCMs. Given the lack of regional reliability and
the fact that a scenario is not meant to be a prediction, this approach is reasonable. An
alternative approach would be to make use of all available equilibrium response results (e.g.,
from CO, experiments with comparable levels of atmosphere-ocean interaction). This allows
the impact analyst to assess uncertainty (in the sense of inter-model differences) and to easily
produce a range of scenarios.

2 Method

The scenarios which we will produce are for two seasons (DJF, JJA) and two variables (surface
air temperature and precipitation rate). Data are from equilibrium response experiments

performed with the following GCMs:

o Goddard Institute for Space Studies (GISS; Hansen et al., 1984)

National Center for Atmospheric Research (NCAR; Washington and Meehl, 1984)

Geophysical Fluid Dynamics Laboratory (GFDL; Wetherald and Manabe, 1986)
United Kingdom Meteorological Office (UKMO; Wilson and Mitchell; 1987)

Oregon State University (OSU; Schlesinger and Zhao; 1989)



The models listed above comprise all available simulations that employ mixed-layer oceans
and comparable levels of atmosphere-ocean interaction. Details of some relevant model prop-
erties are given in Table 1. The OSU GCM has the smallest horizontal resolution, 4° latitude
x 5° longitude, and this is the grid we have used for the temperature and precipitation sce-
narios. Results from the other four models were transformed to this grid using a Gaussian
filter. The domain is global; selected regional scenarios are given in Section 3.

2.1 Temperature Scenarios

The simplest temperature scenario which utilizes results from all five models is the ‘model
average’ of the 2xCO; minus 1xCO, change in surface air temperature, AT. If AT; is the
2xCO, minus 1xCO; temperature change for model ¢ at a given grid-point,

AT = LS AT (1)
n

where n = 5 is the number of models. The geographical distribution of AT (Figure 1)
shows the classical equator-to-pole amplification of the temperature change in the winter
hemisphere, a feature which is common to each of the five models used here.

However, the model average alone can be misleading, and results may be dominated by a
single model. For example, we know that the NCAR GCM has maximum values of AT;
in JJA that are displaced ca. 5° equatorward relative to the warming maxima of the other
models (Schlesinger and Mitchell, 1987). The NCAR results will dominate in this region.
Since it is probable that the NCAR GCM’s equatorward displacement of warming maxima
is erroneous!, the equatorward extension of warming maxima in the model average may be
spurious.

The model average, therefore, can mask information about the degree of model-to-model
variability. This information can be obtained by comparing the results from individual models
or by using some measure of inter-model variability. A simple measure of the uncertainty of
AT is the unbiased estimate of the model-to-model standard deviation, §;, where

# =3 (AT, - AT) J(n - 1) (2)

=1

Ideally, we would like to have a large number of independent realizations of the AT; fields
for computing 8,. Here we have only a limited sample of five models. Figure 2 shows that
the inter-model variability is largest (§; > 6°C) at high latitudes in the winter hemisphere,
particularly at sea-ice margins.

A simple measure of the signal strength (i.e., the magnitude of AT) relative to the model-
to-model noise level is given by the ratio SN1, where

SN1 = AT/4, (3)

1Due to an unrealistic control run sea-ice distribution, with the ice extent too far north.



The geographical distribution of SN1 provides spatial information on the level of agreement
between models (Figure 3). The ratio is generally larger over oceans than over land areas, and
is largest over the subtropical oceans. The smallest values of SN1, indicating poor inter-model
agreement, are located at sea-ice margins and in continental interiors. SN1 has the advantage
that the level of inter-model agreement can be compared directly for different variables (such
as temperature and precipitation).

2.2 Standardized Temperature Scenarios

The model averages for the winter and summer patterns of temperature change in Figure
1 may be biased by the different equilibrium sensitivities (AT,,) of the five models,? which
range from 2.8°C (OSU) to 5.2°C (UKMO; see Table 1). To produce temperature scenarios
which remove this bias, the seasonal temperature change at each grid-point in each model
is expressed as a fraction of the model’s equilibrium sensitivity, ATc;). These fractions are
then averaged. This ‘standardized’ model average, AT is given by

= 1L
AT =—3, (ATi/AT.) (4)
i=1
The geographical distribution of the standardized model average is given in Figure 4. Its
level of uncertainty is expressed by the model-to-model standard deviation of the fractional
changes, §,, where

(ATi/ATeyy) - AT

n—1

H=2 (5)
=1

The spatial distribution of §; (Figure 5) shows that there is considerable agreement between

models in terms of the patterns of AT;/AT,,;). For both seasons, the model-to-model stan-

dard deviation of the fractional changes is less than 25% of the model average equilibrium

sensitivity, AT, (3.94°C) over most of the globe.

As in (3), we can obtain a simple estimate of the signal strength (the magnitude of AT")
relative to the model-to-model noise level by computing the ratio SN2, where

SN2 = AT /5, (6)
(see Figure 6).

There are two reasons why the scenarios given in Figure 4 are superior to the straight model
average. First, the use of fractions of AT,, produces results which capture the patterns of
temperature change without being biased by different model equilibrium sensitivities. Second,
we can now introduce a time dimension into the scenarios (see Section 3) through the time
dependence of global mean annually-averaged temperature.

2The equilibrium or climate sensitivity is defined as the 2xCO3 minus 1xCO; change in global mean annual
average surface air temperature.



2.3 Precipitation Scenarios

The use of a model average precipitation scenario is not meaningful (Figure 7). For temper-
ature, there is reasonable qualitative agreement in the model] patterns of AT,. This is not
the case for precipitation. The patterns of 2xCO; minus 1xCO, changes in precipitation rate
(AP;) show large qualitative and quantitative differences, particularly between latitudes 30°S
to 30°N. The model-to-model standard deviation of AP; () is as large as AP, the model
average change in precipitation rate, over large areas of the tropics and subtropics (Figure
8). The ratio SN1 (not shown) is less than or equal to 1.0 over more than 50% of the global
surface.

The poor regional agreement of AP; patterns between 30°S to 30°N is partly attributable
to model differences in the parameterization of cumulus convection and to differences in the
conditions required for cloud formation (Schlesinger and Mitchell, 1987). It is also due to the
fact that the natural variability of precipitation is large relative to the CO2-induced change
in precipitation. Significance tests performed with the 1xCO; and 2xCO; precipitation data
from individual models (e.g., for the OSU model, see Schlesinger and Zhao, 1989, and Santer
et al., 1990) indicate that significant responses in the precipitation field are confined to small
areas — i.e., they are local rather than global.

We can have little confidence in a scenario based on the averaging of such disparate AP; fields,
particularly in the tropics and subtropics. The question, therefore, is whether we can use
the available equilibrium AP; results to generate precipitation scenarios that reflect model
uncertainties in the simulation of precipitation. The method used here i1s to estimate the
probability of a change in precipitation in a specific direction.

Consider a specific example (Table 2). At the grid-point 50°N, 100°W (located near Win-
nepeg) the values of AP and 8, for JJA are 0.14 mm/day and 0.38 mm/day, respectively. All
models except GFDL show an increase in precipitation. If we assume that the AP; values
for the individual models are random samples from a Gaussian distribution, the probability
that AP is less than zero can be calculated. For the values of AP and §; given in Table 2, the
probability of a decrease in precipitation is given by p = 0.36 — i.e., the most likely result is
an increase in precipitation. However, even though four of the five models agree qualitatively
in this respect, the large inter-model differences mean that there is still a significant chance
(about one in three) of a precipitation decrease.

The geographical distribution of the probability of a decrease in precipitation (py) is given in
Figure 9. This provides combined information about the direction of change (which at this
stage of model development is all that we can hope to have confidence in) and the level of
model-to-model variability. There are several obvious features. Despite the large decreases
in AP; in individual models in the tropics and subtropics (in both seasons), inter-model
variability is large, so that there are only small areas where py is 0.9 or greater (e.g., the S.E.
United States, Western Sahara and the sub-tropical N. Atlantic in winter). The values of py
in winter are generally small (0.2 or less) poleward of 30°N and 30°S. In summer, py tends
to be larger than in winter over land areas poleward of 30°N. This result primarily reflects
the GFDL summertime precipitation decreases over large areas of Northern Hemisphere land



Inasses.

3 Timing of Future Changes

Equilibrium response results provide information about the steady-state response of a model’s
climate to a given level of forcing. The forcing in equilibrium response experiments is con-
stant with time. As we have seen in the previous section, the 2xCO; minus 1xCO, change
in global mean annually-averaged temperature (AT¢,) is the yardstick used for measuring
the equilibrium sensitivity of different models. AT,., depends critically on a variety of feed-
back processes which exist within the climate system. The feedback mechanisms likely to
be important in determining AT, involve clouds, water vapor, sea ice, snow cover, ocean
circulation, etc. Since the quantitative effects of these feedbacks are uncertain, the magnitude
of AT, is also uncertain. The best estimate that we have for AT, is that it lies within the
range 1.5 to 4.5°C (MacCracken and Luther, 1985; Bolin et al., 1986).

In the real world, however, we are concerned with the time-dependent response of the climate
system to time-varying forcing by greenhouse gases. This is the transient response. The
critical problem here is to account for the damping or lag effect of oceanic thermal inertia.
Previous attempts to estimate the magnitude of such lag effects have used relatively simple
one-dimensional models (see Hoffert and Flannery, 1985, for a review), or have used GCMs
with mixed-layer oceans in which oceanic horizontal heat transport is prescribed and vertical
transport out of the mixed-layer is approximated by diffusion (Hansen et al., 1988). To obtain
better estimates of ocean lag effects we require transient experiments in which AGCMs are
coupled with dynamic oceans with realistic horizontal and vertical transport of heat.

The lag between the equilibrium response and the transient response is determined by three
factors:

e The climate sensitivity (model-dependent)
o Oceanic thermal inertia effects (model-dependent)

e The future rate of change of greenhouse gas concentrations

Present levels of uncertainty for the climate sensitivity, ocean lag effects and the greenhouse
gas forcing have been summarized by Wigley (1989a,b). Based on these uncertainties, the
global mean warming over the next 40 years is expected to be between 0.5°C and 2.5°C,
with a best estimate of 1.5°C (Figure 10). We can use such estimates of the expected global
mean warming to introduce a time dimension (including uncertainties) into the AT scenarios
presented in Section 2 (see Figure 4). Recall that in these scenarios, the different equilibrium
sensitivities of the five individual models have been factored out.

The assumption on which this approach is based is that the spatial patterns of temperature
change (which we have derived from GCM equilibrium response results) are stable in the



transition from 1xCQO; to 2xCQ,. This is unlikely to be the case. Such scenarios represent a
compromise pending the availability of model output from GCM transient experiments with
dynamic oceans.

4 Regional Scenarios

The scenarios presented in Section 2 were global. Here, we provide scenarios for a North
American study area (10°N-70°N; 50°W-140°W) and a European study area (30°N-70°N;
20°W-40°E). The results are derived as in Section 2 and are for:

e AT Model average temperature change (Figures 11 and 15)

o AT Standardized model average temperature change (Figures 12 and 16)

e SN2 Ratio of AT /8;; Figures 13 and 17)

py (probability of a decrease in precipitation; Figures 14 and 18)

Such scenarios can be easily produced for other regions and for the monthly time scale.
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Table 1

Major Features of the Five GCMs

| | GFDL | GISS | NCAR | 0OSU | UKMO |
Horizontal resolution | 4.44° x 7.5° | 7.83° x 10.0° | 4.44° x 7.5° | 4.0° x 5.0° | 5.0° x 7.5°
(lat. x long.)
Vertical resolution (no. 9 9 9 2 11
of layers)
Geography realistic realistic realistic realistic realistic
Clouds computed computed computed | computed | computed
Diurnal cycle no yes no no yes
Base 1xCO, (ppm) 300 315 330 326 323
Solar constant (W/m?) 1443.7 1367 1370 1354 1373
Maximum mixed layer 68 65 50 60 50
depth (m)
AT, (°C) 4.0 4.2 3.5% 2.8 5.2
AP (%) 8.7 11.0 7.1 7.8 15.0

¢ For the NCAR result, the control climate did not attain equilibrium (Washington and Meehl, 1984). An
integration performed with a revised snow/sea-ice/albedo formulation attained equilibrium. The AT, from

the latter experiment was 4.04°C (Meehl and Washington, 1989).

b For the UKMO case, recent experiments performed with different cloud prediction schemes have given AT,
values of 1.9°C and 2.9°C (Mitchell et al., 1989).

Table 2

Precipitation Changes (JJA) at Grid-Point 50°N, 100°W

| Model | AP; (mm/day) |
GFDL -0.52
GISS +0.45
NCAR +0.18
OSU +0.38
UKMO +0.19
AP +0.14
5 0.38




Figure 1: Model average of the 2xCO, minus 1xCO, change in surface air temperature
(AT). Results are for DJF (a) and JJA (b), and are computed using equilibrium response
data from five GCMs (GFDL, GISS, NCAR, OSU and UKMO). The contour interval is 1°C.
Shading denotes areas where AT is greater than or equal to 5°C.
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Figure 2: Model-to-model standard deviation (§;) of the 2xCO, minus 1xCO; change in
surface air temperature. §; is a measure of the uncertainty of AT. Results are for DJF
(a) and JJA (b), and are computed using equilibrium response data from five GCMs. The
contour interval is 1°C. Shading denotes areas where §; is greater than or equal to 3°C.
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Figure 3: Signal-to-noise ratio SN1. SN1 is a measure of the magnitude of the model
average temperature change (AT) relative to the model-to-model noise level (§;). Results
are for DJF (a) and JJA (b), and are computed using equilibrium response data from five
GCMs. The contour interval is 1. Shading denotes areas where SN1 is greater than or equal
to 3. Note that SN1 is generally larger over oceans than over land areas, and is largest over

the subtropical oceans.
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Figure 4: Standardized model average of the 2xCO, minus 1xCO, change in surface air
temperature (AT*). The seasonal temperature change at each grid-point in each model is
expressed as a fraction of the model’s equilibrium sensitivity, AT ). AT is the average
of the fractional changes (see Section 2.2). Results are for DJF (a) and JJA (b), and are
computed using equilibrium response data from five GCMs. The contour interval is 0.5.
Shading denotes areas where AT is greater than or equal to 1.5. AT captures the patterns
of temperature change without being biased by different model equilibrium sensitivities.
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Figure 5: Model-to-model standard deviation (§;) of the fractional changes in surface air
temperature (AT;/ATe ) 82 is a measure of the uncertainty of AT . Results are for DJF
(a) and JJA (b), and are computed using equilibrium response data from five GCMs. The
contour interval is 0.25. Shading denotes areas where §; is greater than or equal to 0.5.
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Figure 6: Signal-to-noise ratio SN2. SN2 is a measure of the magnitude of the standardized
model average temperature change (AT") relative to the model-to-model noise level (8;).
Results are for DJF (a) and JJA (b), and are computed using equilibrium response data
from five GCMs. The contour interval is 5. Shading denotes areas where SN2 is greater than
or equal to 5. SN2 is generally larger over oceans than over land areas, and is largest over

subtropical oceans.
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Figure 7: Model average of the 2xCO, minus 1xCO, change in precipitation rate (AP).
Results are for DJF (a) and JJA (b), and are computed using equilibrium response data from
five GCMs. The contour interval is 0.5 mm/day. Shading denotes areas where AP is less
than or equal to zero. The largest changes in AP occur between 30°S to 30°N.
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The contour interval is 0.5 mm/day. Shading

precipitation rate (AP;). Results are for DJF (a) and JJA (b), and are computed using
denotes areas where §; is greater than or equal to 1.0.

Figure 8: Model-to-model standard deviation (§;) of the 2xCO, minus 1xCO; change in

equilibrium response data from five GCMs.
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Figure 9: Probability of a decrease in precipitation rate (py). For explanation, see Section
2.3. Results are for DJF (a) and JJA (b), and are computed using equilibrium response data
from five GCMs. The contour interval is 0.25. Shading denotes areas where py is greater
than or equal to 0.5, i.e., where the probability of a precipitation decrease is greater than or

equal to one in two.
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Figure 10: Model projections of global warming (from Wigley, 1989b). Results account for
present levels of uncertainty for the climate sensitivity, ocean lag effects and the greenhouse

gas forcing.
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Figure 11: Model average of the 2xCO; minus 1xCQO, change in surface air temperature
(AT). Results are for DJF (a) and JJA (b) for a North American study area. The contour
interval is 1°C. Shading denotes areas where AT is greater than or equal to 4°C.
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Figure 12: Standardized model average temperature change (AT ) for DJF (a) and JJA
(b). As for Figure 4 but for a North American study area. The contour interval is 0.25.
Shading denotes areas where AT is greater than or equal to 1.0.
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Figure 13: Signal-to-noise ratio SN2 for DJF (a) and JJA (b). As for Figure 6 but for a
North American study area. The contour interval is 1.0. Shading denotes areas where SN2
is greater than or equal to 5.0.
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Figure 14: Probability of a decrease in precipitation rate (py) for DJF (a) and JJA (b). As
for Figure 9 but for a North American study area. The contour intervalis 0.1. Shading denotes
areas where py is greater than or equal to 0.5, i.e., where the probability of a precipitation
decrease is greater than or equal to one in two.
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Figure 15: Model average of the 2xCO; minus 1xCO, change in surface air temperature
(AT). Results are for DJF (a) and JJA (b) for a European study area. The contour interval
is 1°C. Shading denotes areas where AT is greater than or equal to 4°C.
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Figure 16: Standardized model average temperature change (AT ) for DJF (a) and JJA
(b). As for Figure 4 but for a European study area. The contour interval is 0.25. Shading

denotes areas where AT is greater than or equal to 1.0.
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Figure 17: Signal-to-noise ratio SN2 for DJF (a) and JJA (b). As for Figure 6 but for
a European study area. The contour interval is 1.0. Shading denotes areas where SN2 is
greater than or equal to 5.0.
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Figure 18: Probability of a decrease in precipitation rate (py) for DJF (a) and JJA (b). As
for Figure 9 but for a European study area. The contour interval is 0.1. Shading denotes
areas where py is greater than or equal to 0.5, i.e., where the probability of a precipitation
decrease is greater than or equal to one in two.
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