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Biological patterns generated during development and regeneration often scale with organism
size. Some organisms, e.g., flatworms, can regenerate a rescaled body plan from tissue fragments of
varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is
self-organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the
reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system
size. Our model captures essential features of body plan regeneration in flatworms as observed in
experiments.
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Understanding the morphogenesis of a complex mul-
ticellular organism from a single fertilized egg poses a
fundamental challenge in biology [1, 2]. The diversity of
shapes of living organisms emerges from biological pat-
terning processes that assign cell fates depending on the
spatial position of cells [1]. Patterning processes are re-
markably precise and reproducible, despite environmen-
tal perturbations and the stochastic nature of fundamen-
tal cellular processes such as gene expression [3]. Fur-
thermore, the astonishing regeneration capabilities of cer-
tain animals, including flatworms, polyps, salamanders,
and newts, require patterning mechanisms that addition-
ally can cope with highly variable initial conditions [4–7].
Both the robust establishment and the scaling of patterns
during growth are poorly understood.

The fruit fly Drosophila melanogaster has been an im-
portant model system to study biological pattern for-
mation and body plan scaling [8–11]. There, specific
molecules, called morphogens, are secreted in localized
source regions. Morphogens establish long-range concen-
tration profiles by the interplay of transport and degra-
dation. They provide chemical signals away from the
source that can regulate patterning and growth [12–19].
Specifically, fly wing development has been extensively
studied [13, 14, 16–18, 20]. Quantification of morphogen
profiles in the developing fly wing at different stages of
development revealed that the morphogen concentration
profiles scale with the size of the growing tissue, main-
taining an approximately constant shape [16–18, 20]. In
a minimal description, the characteristic decay length
λ = (D/k)1/2 of these concentration profiles depends on
the effective diffusion coefficient D and the degradation
rate k [10, 14]. It has been proposed that the scaling of
these profiles is achieved by a dynamic regulation of the
morphogen degradation rate via a chemical signal, called
the expander, whose level varies with system size [12, 15–
18]. Different possible realizations for such mechanisms

(a) Classical Turing (b) Scaled Patterns

FIG. 1: Classical Turing patterns show more periodic repeats
in larger systems as a result of fixed intrinsic length scales (a),
instead of being a scaled-up version of the patterns in small
systems (b).

have been proposed [11, 12, 15–18, 21–23]. These mecha-
nisms rely on prepatterned tissues with specified sources
or sinks for morphogens or the expander.
Scaling and regeneration of the entire body plan in

the flatworm Schmidtea mediterranea challenges scaling
mechanisms that rely on prepatterned cues. Schmidtea

mediterranea can regenerate the complete animal from
minute tissue fragments by repatterning the fragment to
establish a proportionately scaled body plan [24]. Fur-
thermore, flatworms grow when fed and literally shrink
when starving, scaling their body plan proportionally
over more than one order of magnitude in length (≈
0.5 − 20 mm for Schmidtea mediterranea) [24]. These
experimental observations prompt the existence of pat-
terning systems with remarkable self-organizing and self-
scaling properties. Recently, chemical signals have been
identified whose perturbations have long-range effects on
body plan patterning and regeneration. In particular,
Wnt signaling, a pathway with conserved roles for devel-
opmental patterning, determines head-tail polarity dur-
ing flatworm regeneration [25–28]. Inspired by these ex-
amples of biological pattern formation, we address in this
Letter general requirements for the emergence of robust
patterns that scale with system size.
The simplest model to spontaneously generate head-

tail polarity based on graded concentration profiles of
signaling molecules is the classical reaction-diffusion
system introduced by Turing [29–31]. However, the
resulting patterns do not scale naturally as sketched
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in Fig. 1, since diffusion coefficients and reaction rates
define fixed characteristic length scales. Here, we
extend the Turing model and introduce a self-organized
feedback mediated by an expander molecule. This allows
the system to robustly scale concentration profiles and
source regions over several orders of magnitude of system
size. Our model illustrates a general mechanism that
could account for essential features of pattern scaling
and regeneration observed in biological systems.

Size dependence and multistability of Turing patterns.

We briefly recall the classical Turing framework to high-
light the size dependence of its emergent patterns and
to introduce the notation used throughout this Letter.
We consider a minimal version of the Turing mechanism,
which consists of two chemical species (with concentra-
tions A and B) that diffuse with diffusion coefficient DA

and DB and interact in a one-dimensional domain of size
L with reflecting boundary conditions

∂tA = αA P (A,B)− βA A+DA ∂2
x A

∂tB = αB P (A,B)− βB B +DB ∂2
x B . (1)

We specifically consider linear degradation with rates βA

and βB and production with rates αA and αB, and a
switch-like Hill-function typical for cooperative and com-
petitive chemical reactions in biological systems:

P (A,B) =
Ah

Ah +Bh
. (2)

Equation (2) implies that production is switched on if
the activator concentration A exceeds the inhibitor con-
centration B. The choice of Eqs. 1 and 2 is conceptually
equivalent to Turing’s original formulation [29], yet par-
ticularly suitable for analytical treatment. The diffusion
coefficients and degradation rates define two characteris-
tic length scales

λA =
√

DA/βA , λB =
√

DB/βB . (3)

The interplay between these length scales and the system
size determines the final patterns, as we show next.
Equation (1) possesses a unique homogeneous steady

state, which can become unstable with respect to in-
homogeneous perturbations [29–31]. For h→∞, corre-
sponding to a binary source switch P (A,B) = Θ(A−B),
we can analytically solve for all inhomogeneous steady-
state patterns of Eqs. (1) and (2). These are indexed by
the number m of contiguous sources, defined as regions
in which A > B, and the number n of source regions
touching the system boundaries, see Fig 2(a). In fact,
the (m,n)-pattern can be constructed as the concatena-
tion of 2m − n copies of the (1,1)-pattern, which thus
serves as a basic building block. The (m,n)-pattern ex-
ists only if L exceeds a critical size that linearly increases
with mode number 2m− n (gray region).

0 10 20 30

(a) pattern 

numbers

(0, 0)

(1, 1)

(1, 0)

(2, 2)

(2, 1)

1

0

0.5

0 10 20 30

System size

In
it
ia

l 
c
o

n
d

it
io

n
s(b)

FIG. 2: Classical Turing patterning implies that in larger sys-
tems higher-order patterns form. (a) Steady-state patterns
of Eq. (1) are classified by two pattern numbers (m,n): m
is the total number of contiguous source regions, while n is
the number of source regions touching the system boundaries.
Typical profiles of the activator concentration A(m,n)(x) for
the (m,n)-pattern are shown in red. Size ranges are shown,
where the (m,n)-pattern is linearly stable (black), or exists,
but is not stable (gray). In the blue region, the (1, 1)-pattern
is the only stable pattern. (b) Basins of attraction: final
pattern type at steady state as a function of system size
on the horizontal axis and initial conditions on the vertical
axis. Initial conditions linearly interpolate between the (1,1)-
and (1,0)-pattern, i.e., A(x, t=0)=(1−q)A(1,1)(x)+qA(1,0)(x),
and analogously for B(x, t=0). Parameters: DB/DA = 30,
αB/αA = 4, βB/βA = 2, h→∞ (a), h = 5 (b).

We numerically find that steady-state patterns become
linearly stable only above a second critical size (black re-
gion). In large systems, several stable steady states coex-
ist. However, in systems of increasing size, we observed
increasingly smaller basins of attraction of patterns with
small mode number, rendering these patterns unstable
with respect to finite-amplitude perturbations, as exem-
plified in Fig. 2(b).
The (1, 1)-pattern is globally stable only in a limited

size range, see Fig. 2(a) (blue region). Next, we show
how the introduction of a third reaction species E
stabilizes the (1,1)-pattern, irrespective of system size.

Pattern scaling by gradient scaling. We present a spe-
cific example for a general class of minimal feedback
mechanisms that yield pattern scaling by adjusting the
intrinsic pattern length scales λA and λB. A third molec-
ular species E, termed the expander, is produced homo-
geneously, diffuses, and is subject to degradation

∂tE = αE − κE BE +DE ∂2
x E . (4)
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The Turing system controls the degradation rate of the
expander via the inhibitor B. In turn, the expander shall
feedback on the Turing system, see Fig. 3(a). We choose
a regulation of the degradation rates by the expander
(with κA, κB > 0)

βA = κA E , βB = κB E . (5)

We define the relative source size ℓ/L = 〈P 〉
and expander-dependent pattern length scales λA =
(DA/〈κAE〉)1/2 and λB = (DB/〈κBE〉)1/2, analogous to
Eq. (3). Here, the brackets denote spatial averages over
the system.
We numerically find that the source size of steady-state

patterns scales with system size over several orders of
magnitude, see Figs. 3(b)-(c). Concomitantly, we obtain
a scaling of the effective Turing length scales λ∗

A ∝ L and
λ∗

B ∝ L, where the asterisk denotes steady state.
We can challenge pattern scaling by perturbations that

mimic experiments such as amputations, see Fig. 3(d).
Two example trajectories, corresponding to head and
tail fragments, respectively, converge to an appropriately
rescaled (1,1)-pattern, after a transient overshoot of the
source size. Two additional trajectories, simulating uni-
form injection of the expander, likewise converge to this
fixed point. One trajectory [labeled iv in Fig. 3(d)]
is characterized by the transient formation of a second
source.
We observe pattern scaling for a vast parameter range,

provided (i) inhibitor diffusion is sufficiently fast (a nec-
essary condition for pattern formation in any Turing sys-
tem) and (ii) the expander feedback strength falls into
an intermediate range, see Fig. 3(e).
Next, we provide insight into how and why scaling

works. First, we identify steady states, each of which
scales with system size. For the simple case of adiabat-
ically slow expander dynamics, we then show that the
(1,1)-pattern is a stable steady state.
The extended Turing system with expander feedback

generates steady states, for which the relative source
size ℓ∗/L is independent of system size L. This can be
shown from Eqs. (1) and (4) at steady state. By spa-
tial averaging, we obtain 0 = αB〈P

∗〉 − kB〈B
∗E∗〉 and

0 = αE − kE〈B
∗E∗〉 and hence

ℓ *

L
=

αE κB

αB κE
. (6)

In addition, also the pattern length scales λ∗

A and λ∗

B

scale with high precision with system size. In the limit
of large expander range [λE = (DE/〈κEB〉)1/2 ≫ L],
for which the concentration profile of E is approximately
homogeneous, scaling becomes exact. For simplicity, we
consider a binary source switch (h→∞). If the expander
level was imposed as constant E = E0, the Turing system
would reach one of the (m,n)-patterns discussed above
in the absence of expander feedback, with pattern length
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FIG. 3: Scalable pattern formation in a Turing system with
expander feedback. (a) The Turing system and the expander
mutually control their degradation rates, resulting in a stable
feedback loop. (b) Scaling corresponds to morphogen profiles
that collapse as a function of relative position x/L (normal-
ized by respective concentrations A0, B0, E0 at x = 0). (c)
The feedback self-consistently adjusts the length scales λA

and λB of the morphogen profiles and thus the source size ℓ
with system size (symbols: numerical results; lines: analytical
solution of Eqs. (1) and (4) at steady state for homogeneous

expander concentration and h→∞). Here, E0 = (αA/κA)
1/2

and λ0 = [DA/(E0κA)]
1/2 denote the characteristic concen-

tration and length scales of the system. (d) Example trajec-
tories, mimicking amputation experiments (labeled i,ii), and
uniform, one-time injection of the expander (labeled iii,iv);
all converge to the same stable fixed point, an appropriately
scaled (1,1)-pattern. (e) Parameter regions for stable, self-
scaling pattern formation (green), and regions of expander
divergence (orange, purple). Parameters of panels (a)-(d) in-
dicated by cross. (f)-(g) For adiabatically slow expander dy-
namics, the system relaxes along the nullclines of the Turing
system f(m,n) (shown for h → ∞, λE ≫ L). As each nullcline
intersects the steady-state condition of Eq. 6 twice, the system
possesses two fixed points (n,m)+ and (n,m)− for each pair
(n,m). In the blue region, the (1,1)-pattern is the only stable
steady state of the Turing system, compare to Fig. 2, imply-
ing that all trajectories must converge to this fixed point.
Parameters: DB/DA = 30, DE/DA = 10, αB/αA =
4, αE/αA = 0.4, κB/κA = 2, κE/κA = 2, h = 5,
L/λ0 = 10, unless indicated otherwise.

scales λA(E0) and λB(E0). The relative source size
f(m,n) = l/L of such a pattern depends on E0 only via the
dimensionless ratios λA(E0)/L and λB(E0)/L. Hence,
f(m,n) = f(m,n)(L

2E0) is a function of L2E0. This shows
that changing E0 has analogous effects on the relative
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source size as changing L in the classical Turing system.
The same argument also implies that a (m,n)-pattern
can only exist above a critical value of E0, corresponding
to the minimum system size for the existence of patterns
in Fig. 2(a). Below this critical value, f(m,n) is zero.
Above this value, f(m,n) displays a nonmonotonic depen-
dence on E0, which results from opposing effects of the
pattern length scales of the activator and the inhibitor
on the source size ℓ, see Fig. 3(f). The intersections of
the curves f(m,n) with the constant value ℓ∗/L given by
Eq. (6) define the steady states of the full system with
expander feedback. For each pattern type (m,n), we find
two steady-state patterns, denoted (m,n)+ and (m,n)−,
with respective expander levels E+

(m,n) < E−

(m,n), see the

black and white circles in Fig. 3(f).
The fact that f(m,n)(L

2 E∗) = ℓ∗/L is independent
of system size L by Eq. (6), implies that also L2E∗ is
independent of L for each steady state. We conclude
E∗ ∝ L−2 and thus λA(E

∗) ∝ L, λB(E
∗) ∝ L, consis-

tent with our numerical results in Fig. 3(c).
We now discuss the stability of the (1,1)-pattern in

the simple limit of adiabatically slow expander feed-
back. In this limit, the source size first relaxes to
ℓ/L = f(m,n)(L

2 E) for some (m,n), corresponding to the
fast time scale of the Turing system. Then, by Eq. (4),
the system moves slowly along this nullcline according to

∂tE = αE −
κE αB

κB
f(m,n)(L

2 E) . (7)

Stability of steady-state patterns requires ∂Ef(m,n) > 0,

which can be shown to hold only for E+
(m,n), see Fig. 3(f).

Which branch f(m,n) is selected for arbitrary initial
conditions by the fast Turing dynamics? This problem
is formally equivalent to the stability of (m,n)-patterns
in the Turing system without expander feedback as a
function of system size L. From the analysis presented
in Fig. 2(b), we deduce that the (1,1)+-pattern is the only
stable pattern in the blue region, which thus represents
a basin of attraction. Numerical analysis shows that the
basin of attraction of the (1,1)+-pattern is even larger
than the blue region and that this pattern is stable also
for nonadiabatic expander dynamics, see the trajectories
in Fig. 3(d).
In summary, the scaling mechanism for patterns and

sources presented here relies on expander molecules that
dynamically adjust the degradation rates of morphogens
in a Turing system. Thereby, the expander controls the
pattern length scales and the source size of the resulting
Turing patterns. The expander concentration is itself dy-
namic and is regulated by the concentrations of the Tur-
ing morphogens. For the feedback introduced here, the
relative source size at steady state is always independent
of system size, see Eq. (6). We showed that a head-tail
polarity pattern with a single source region scales as a
function of system size, is stable with respect to pertur-
bations, and regenerates in amputation fragments.

Regeneration of patterns after amputation can be un-
derstood as follows. For a head fragment without a
source, and hence no inhibitor production, the inhibitor
level decreases, which decreases the expander degrada-
tion rate. Hence, the expander level increases. For a tail
fragment, the inhibitor produced by the source spreads
in a smaller system. This implies higher inhibitor levels,
which in turn decreases the source size. Only when the
relative source size has fallen below its steady-state value,
does the expander level increase. For head and tail frag-
ments, the increasing expander level increases the degra-
dation rate of activator and inhibitor, and thus scales
down their pattern length scales.

For a given feedback scheme, the stability of fixed
points depends on whether the source is fixed [11, 15, 21]
or dynamic as in our case. For example, two mutually
suppressing concentration profiles (here: the inhibitor
and the expander) would not result in a stable pattern
for a fixed source size, but yield a stable scaling pattern
in our case, since the expander also effectively expands
the source.
The minimal mechanism presented above allows for

several generalizations. First, the feedback of the Turing
system on the expander level could be likewise imple-
mented via the production rate, e.g., αE ∝ B, instead of
via the degradation rate βE = κEB. Then, scaling would
require βA ∝ 1/E , βB ∝ 1/E, which yields analogous
results. As a second possibility for pattern scaling, the
feedback in Eq. (5) could also be mediated by A instead of
B, provided the expander diffuses sufficiently fast. More
generally, similar results also follow for shuttling mecha-
nisms for which E adjusts both the degradation rates and
diffusion coefficients of A and B. However, controlling
only diffusion is not compatible with self-organized pat-
tern scaling as presented here. Our mechanism relies on
a size-dependent amplitude of morphogen profiles, which
is lacking for pure diffusion control.

It is interesting to note that the flux βAA has a
size-independent amplitude. The spatial profile of this
flux could provide a read-out of the scaling morphogen
profiles independent of their amplitudes.

Conclusion. Motivated by biological examples of pat-
terns that adjust to organism size [10, 11, 16–18, 20, 21,
24], we present a minimal, self-organized patterning sys-
tem that reliably establishes a head-tail pattern, scaled
to match system size for a broad range of initial condi-
tions. We extended a classical Turing system featuring
local activation and lateral inhibition by a feedback loop,
comprising a third diffusible molecule. The kinetics of
this expander depends on the Turing patterns and feeds
back on the Turing length scales. Thereby, the expander
effectively serves as a chemical size reporter. In contrast
to earlier works on gradient scaling [12, 15–18, 21–23],
this mechanism is fully self-organized. In particular, it
does not rely on prepatterned sources or sinks.
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In size-monitoring systems, as considered here, a key
challenge relates to the simple fact that these obviously
require long-range communication across the scale of the
system. This implies a tradeoff between an upper size
limit for scaling, and the time scale of pattern formation.
Here, this time scale is set by morphogen diffusion and
system size. For example, assuming a maximum diffusion
coefficient of 100µm2/s and a maximum organism size of
20 mm, relevant for the flatworms considered, we infer a
patterning time scale of 3 − 30 days, roughly consistent
with the experimental range of 1−2 weeks for the restora-
tion of body plan proportions after amputation [24, 26].
Note that transport processes such as active mixing could
accelerate morphogen dispersal, and thus allow for faster
pattern formation [10]. In the minimal theory formulated
here, no expander degradation occurs in the absence of
the inhibitor. A basal degradation, independent of the
inhibitor, would cap the expander concentration and thus
set a lower size limit for scaling.

Our theory provides basic insight into principles of self-
organized pattern scaling and accounts for key qualitative
features of scalable patterning during flatworm regener-
ation and growth. Three important signatures can be
associated with the self-organized scaling mechanism in-
troduced here: (i) overall levels of morphogens depend on
system size, (ii) morphogen degradation rates depend on
system size, and (iii) the source size after amputation can
exhibit a nonmonotonic dynamics. These signatures pro-
vide explicit testable predictions regarding the regulatory
dynamics of candidate patterning pathways such as Wnt
signaling during regeneration and growth or degrowth in
flatworms. Interestingly, the expression of a Wnt activa-
tor (Wnt11-5) indeed displays a nonmonotonic dynamics
during regeneration [28], reminiscent of signature (iii).
In the future, it will be important to quantify spatial
profiles of signaling molecules and degradation rates as
a function of system size, which will allow us to test the
generic concepts presented here.
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