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Abstract

Aggregation and breakup of small particles in stirred suspensions often shows
an overshoot in the time evolution of the mean cluster size: Starting from
a suspension of primary particles the mean cluster size first increases before
going through a maximum beyond which a slow relaxation sets in. Such be-
havior was observed in various systems, including polymeric latices, inorganic
colloids, asphaltenes, proteins, and, as shown by independent experiments in
this work, in the flocculation of microalgae. This work aims at investigating
possible mechanism to explain this phenomenon using detailed population
balance modeling that incorporates refined rate models for aggregation and
breakup of small particles in turbulence. Four mechanisms are considered:
(1) restructuring, (2) decay of aggregate strength, (3) deposition of large
clusters, and (4) primary particle aggregation where only aggregation events
between clusters and primary particles are permitted. We show that all four
mechanisms can lead to an overshoot in the mean size profile, while in con-
trast, aggregation and breakup alone lead to a monotonic, ”S”-shaped size
evolution profile. In order to distinguish between the different mechanisms
simple protocols based on variations of the shear rate during the aggregation-
breakup process are proposed.
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1. Introduction

Aggregation of particles in the nano and micrometer size range is a com-
mon unit operation that finds application in many industrial [1] and envi-
ronmental processes [2, 3]. Major applications are found in the processing
of colloidal materials, e.g. latex coagulation in the polymer industry [4];
nanoparticle synthesis in flame reactors [5, 6]; flocculation in (waste)water
treatment [7] or in the production of microalgae [8, 9], and manufacturing
of composites or electrodes [10]. In most of these applications the fluid in
which the particles are suspended in is vigorously stirred or in the state of
turbulence. Fluid flow in the suspending medium has a distinct influence
on the aggregation process. On the one hand, it enhances the rate at which
particles collide which results in an increase of the aggregation rate. On
the other hand, it also creates hydrodynamic stress acting on the aggregates
which causes aggregate breakup and affects the aggregate structure.

The interplay between flow induced aggregation and hydrodynamic breakup
can lead to atypical dynamics in the time evolution of the aggregate size dis-
tribution. In particular, in certain cases one observes an overshoot in the
time evolution of the mean aggregate size, i.e. starting from a suspension of
primary particles the mean particle size first increases before passing through
a maximum beyond which a slow relaxation is observed. Such behavior was
observed in the aggregation of fully destabilized polystyrene colloids in stirred
tank [11] and Taylor-Couette reactors [12]; in the flocculation of precipitated
calcium carbonate in stirred tank [13, 14] and tubular reactors [15]; in the
flocculation of suspended solids from raw waters [16]; in the aggregation of
asphaltenes in Taylor-Couette reactors [17]; and in the aggregation of amy-
loid fibrils [18]. In addition, in the appendix we present independent exper-
imental data that shows that overshooting also occurs in the flocculation of
microalgae in stirred jars. Notably, while most of these studies used light
scattering for measuring the particle size, the phenomenon is also seen when
using FBRM [15] or image analysis [16, 17].

The occurrence of a maximum in the time evolution of the mean ag-
gregate size is an intriguing phenomenon whose origins are only partially
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understood [12, 11]. Naively, the observed maximum may be explained by
aggregate breakup that ”kicks in” once the aggregates have reached a cer-
tain size. Aggregate breakup is clearly an important phenomenon in stirred
environments, as it controls the stationary size distribution that establishes
after a long time. However, breakup alone cannot explain the occurrence
of a maximum in the mean aggregate size. Analysis of the time scales of
the involved processes reveals that aggregation and breakup are relatively
fast with respect to the time scale of the relaxation process that occurs later
in the process, which suggest that the aggregate sizes observed during the
slow relaxation are the outcome of a balance between fast aggregation and
breakup rather than breakup alone.

A refined interpretation relates the overshoot to the restructuring of the
aggregates [12, 19, 20]. Restructuring clearly is a valid explanation for the
observed overshoot that also received experimental support through the mea-
surement of the scattered light intensity in time [12, 13, 19]. A recent study
[21] also provides theoretical support for restructuring, arguing that open
aggregates in flows undergo restructuring without any energy costs. How-
ever, restructuring is not the only mechanism that leads to an overshoot
and other mechanisms might apply too. One such mechanism was proposed
by Moussa et al. [11] and corroborated by Caimi et al. [22]. These studies
argue that the aggregates get weaker as the stirring proceeds, i.e. due to
the repeated breakup and re-aggregation the surfaces of the primary parti-
cles that constitute the aggregates get more rough. This results in weaker
bonds among the primary particles which translates into weaker aggregates
and higher breakup rates. This weakening of the aggregates gives breakup
a small gain over aggregation such that in effect, the size resulting from the
balance between aggregation and breakup slowly decreases in time.

The two mechanisms mentioned above assign the overshoot to either a
gradual decrease in the aggregation rate in the case of restructuring, or to a
gradual increase of the breakup rate in case of surface deterioration. However,
it is conceivable to also have mechanisms that lead to an overshoot and
that rely on aggregation and breakup functions that are constant-in-time.
Specifically, one can think of a scenario where aggregates are excluded from
the aggregation-breakup dynamics upon reaching a certain size, e.g. they
might be removed from the system due to settling, deposition or floatation
when becoming large. The removal of aggregates of a certain size disturbs
the balance between aggregation and breakup, i.e. in shear aggregation,
the large aggregates act as ”collectors” of smaller aggregates and primary
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particles. Hence, removing the large aggregates leads to a reduction of the
aggregation rate which gives breakup a small gain in controlling the evolution
of the aggregate size distribution, which eventually results in a decrease of
the mean aggregate size.

Another scenario is the case where aggregation is dominated by reac-
tions with primary particles. The extreme case of such dynamics where only
reactions between aggregates and primary particles are permitted was con-
sidered by Nicoud et al. [18] to model the aggregation of amyloid fibrils. It
was shown that such mechanism indeed leads to a maximum in the evolution
of the mean size. The maximum occurred when all primary particles are con-
sumed and the slow relaxation in the later stage of the process was controlled
by breakup. However, in the system studied by Nicoud et al. [18] aggregation
and breakup was controlled by the Brownian motion of particles. Exploring
the dominance of primary particle aggregation in a shear controlled system
of colloidal aggregates undergoing aggregation and breakup, to the best of
our knowledge, has not been done.

The aim of this work is to explore the four mechanisms mentioned above
through detailed numerical simulations based on population balance equa-
tions (PBE). The four mechanisms considered are (1) restructuring, (2) decay
of aggregate strength, (3) deposition of large aggregates, and (4) dominance
of primary particle aggregation. Investigating the four mechanisms using the
same PBE model allows for identifying the specific characteristics of each
mechanism. We show that all four mechanisms lead to maximum in the time
evolution of the mean radius of gyration, while some mechanisms also show
a maximum in the evolution of the number-mean aggregate mass. Moreover,
we propose simple protocols how to identify the controlling mechanism in
lab experiment that only measure the mean aggregate size. The proposed
protocols rely on step changes of the stirring speed during the aggregation
experiment and measure the response of the system. Step changes in the
stirring speed are relatively easy to implement in lab experiments [23, 24]
making the proposed protocols readily available. Being able to identify the
controlling mechanism that causes the overshoot is important for optimizing
aggregation processes and tailoring the produced flocks to fit the require-
ments of the specific application.
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2. PBE Modeling

We consider a spatially homogeneous suspension initially containing pri-
mary particles of radius Rp at a number concentration of Np, resulting in a
solid volume fraction of φ = 4

3
πR3

pNp. The suspension is subject to turbulent
stirring which creates a mean shear rate G within the suspension. Turbulent
fluctuations, which mainly affect breakup [25, 26], are assumed to be spatially
homogeneous around the mean shear rate, i.e. homogeneous turbulence is
assumed. Moreover, the suspension is assumed to be fully destabilized such
that particles aggregate upon collision. Within this framework, the size evo-
lution of cluster mass distribution is described by a PBE which with the
cluster mass taken as a continuous variable reads as:

dn(m, t)

dt
=

1

2

∫ m

0

KA(m−m′,m′)n(m′, t)n(m−m′, t)dm′

− n(m, t)

∫ ∞
0

KA(m,m′)n(m′, t)dm′

+

∫ ∞
m

KB(m′)g(m,m′)n(m′, t)dm′ −KB(m)n(m, t) (1)

where n(m, t) is the cluster mass distribution with m being the cluster mass
expressed as a multiple of the primary particle mass, KA(m,m′) is the ag-
gregation rate function, KB(m) is the breakup rate function, and g(m,m′)
is the fragment distribution function. The first two terms on the right hand
side of Eq. (1) refer to birth, respectively, death of clusters of mass m due
to aggregation, while the last two terms refer to birth, respectively, death of
cluster of mass m due to breakup.

In the absence of coalescence or sintering, fractals or fractal-like structures
are formed when small particles stick together. Here, we use the fractal
concept in the common form to relate the aggregate size (expressed through
the radius of gyration) to the aggregate mass (expressed as a multiple of the
primary particle mass) as:

m = kg(Rg/Rp)
df (2)

where df is the aggregate fractal dimension, Rg is the radius of gyration and
kg is a prefactor that is commonly taken as kg = 1.
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2.1. Aggregation rate

In this work, we consider the case where aggregation is induced by Brow-
nian motion and fluid shear. For fully destabilized particles these two mech-
anisms add up linearly [1, 27], resulting in:

KA(m,m′) =
2kBT

3µ

(
m1/df +m′1/df

)2
(mm′)1/df

+ k0f(m,m′; df )GR
3
p

(
m1/df +m′1/df

)3
(3)

where the two terms on the right hand side represents Brownian aggregation
and shear aggregation, respectively, with µ being the viscosity, k0 being a
numerical prefactor set to k0 = 1.3 [28] if not specified otherwise. Moreover,
f(m,m′; df ) is the collision efficiency which in the present work is described
through the porous sphere model of Babler [29]. The latter takes into account
the hydrodynamic and colloidal interactions of the colliding clusters which
results in a significant correction of the classical Saffman-Turner expression
(given by the second term of Eq. (3)). The collision efficiency model requires
two parameters to quantify the colloidal interactions, namely a dimensionless
Hamaker constant, NF = 0.15AH/µR

3
pG, and a dimensionless retardation

length, NL = λL/Rp, which were calculated assuming a London wave length
of λL = 100 nm and a Hamaker constant of AH = 3 × 10−21 J, typical for
polystyrene in water [30]. Fig. S1 in the Supplementary Materials shows a
contour plot of the collision efficiency f(m,m′; df ). From this figure it is seen
that the collision efficiency exhibits a maximum for the collision of triplets
followed by a slow decreases as the aggregate size increases or when the size
difference between the colliding aggregates increases.

2.2. Breakup rate

Describing breakup within the framework of PBEs is an intriguing and
long-standing problem [31, 32, 33, 34]. The often applied power law model
provides an adequate phenomenological description [35, 36] but fails in cap-
turing the physical mechanism that controls breakup. On the other hand, the
semi-empirical exponential model [37] is based on oversimplified assumptions
and may cause stability issues when integrating the PBE [38]. A mechanistic
model for breakup in turbulent flow was proposed by Babler et al. [39, 40].
These authors argue that (i) the hydrodynamic stress experienced by an ag-
gregate is highly intermittent due to the turbulence that creates the stress,
and that (ii) breakup occurs very fast when the instantaneous hydrodynamic
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stress applied on an aggregate exceeds a critical threshold [41, 42, 43]. The
latter assumptions implies that the aggregates behave as brittle materials
which holds for particles aggregated in the primary minimum of the attrac-
tion potential, i.e. for fully destabilized systems [44].

For small non-inertial aggregates the hydrodynamic stress experienced by
an aggregate is proportional to the local energy dissipation rate ε. Hence,
the occurrence of breakup is controlled by time it takes for an aggregate to
experience a local dissipation that exceeds a threshold dissipation εcr, repre-
senting the aggregate strength. Denoting this time lag by τεcr , the breakup
rate follows as KB

εcr = 〈τεcr〉−1. In [39] the τεcr was measured by following the
trajectories of tracer-like aggregates in a direct numerical simulation of the
Navier-Stokes equation in a periodic box. The resulting breakup rate as a
function of the critical dissipation is shown in Fig. 1-a. The symbols refer
to the numerical experiments while the solid line shows a statistical model
that, within the model assumptions, is exact for εcr � 〈ε〉. An empirical
parametrization of the latter reads as:

ln(KB
εcr/G) =


−0.457x− 2.8775, x ≤ −2

−0.00104x4 − 0.02284x3 − 0.1494x2

−0.8138x− 3.160
x > −2

(4)

where x = ln(εcr/〈ε〉) is the log of the dimensionless aggregate strength.
To use Eq. (4) within the PBE model we need to establish a relation

between the threshold dissipation εcr and the aggregate mass m. Sonntag
and Russel [42] and others [45, 46, 31, 47] measured the maximum aggregate
size that can withstand a certain hydrodynamic stress in various flow devices.
It was found that the aggregate size that can withstand a given hydrodynamic
stress decreases as a power law, i.e.

Rg ∼ σ−p (5)

where σ is the hydrodynamic stress. The exponent p varied in between
0.35 [31] and 0.60 [47], depending on the aggregate fractal dimension [48].
Recalling that the hydrodynamic stress is related to the local dissipation
through σ ∼ µ(εcr/ν)1/2 while the aggregate mass is related to the aggregate
size as Rg ∼ m1/df , we can re-write Eq. (5) as:

εcr ∼ ν m−2/(dfp) (6)
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respectively,

εcr
〈ε〉
∼ G−2m−2/(dfp), (7)

where G = (〈ε〉/ν)1/2 is the mean shear rate. Eq. (7) provides the basic
strength relation that gives the critical dissipation required to break an ag-
gregate of mass m. Introducing a proportionality factor C ∼ G−2 puts Eq.
(7) in a convenient form to be used in combination with Eq. (4):

εcr/〈ε〉 = Cm−2/(dfp) (8)

where the dimensionless aggregate strength parameter C is inversely propor-
tional to the mean shear rate squared. With reference to Soos et al. [45] who
in their experiments found 〈Rg〉/µm ≈ 25.2(σ/Pa)−0.5 for aggregates with
df ≈ 2.7 and Rp ≈ 0.405 µm, a typical value for the strength parameter is
C ≈ (1.5× 1013 s−2)G−2. However, since the aggregate strength is very sen-
sitive to the material and surface chemistry of the primary particles and the
coagulant, in the following we use the strength factor C as a free parameter,
while the strength exponent is taken as p = 0.5. The latter presents the
average strength exponent for fractals in range df = 2.4 to 2.9 [44].

Fig. 1-bc shows the breakup rate function obtained from Eqs. (4) and
(8) in the form suitable to use within the PBE given in Eq. (1). As can
be seen, the breakup rate is virtually zero for small aggregates but kicks in
sharply once the aggregates reach a certain mass. The aggregate mass where
breakup kicks in depends strongly on the shear rate, represented through
the dimensionless strength parameter C ∼ G−2. Specifically, Fig. 1-b shows
that decreasing the strength parameter (which correspond to increasing the
shear rate) results in an increase of the breakup rate and an earlier onset of
breakup. Fig. 1-c shows the influence of the aggregate fractal dimension on
the breakup rate. Increasing df decreases the breakup rate which is in-line
with the notion that more open aggregates are more prone to breakup. For
very large aggregates the breakup rate follows a power law KB(m) ∼ m1.83/df .

2.3. Fragment distribution

The fragment distribution describes the outcome of breakup, i.e. g(m,m′)dm
gives the number of fragments with mass in the interval (m, m + dm) that
results from the breakup of a cluster of mass m′. Motivated by the exper-
imental findings of Saha et al. [25], we consider symmetric binary breakup
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Figure 1: Breakup rate employed in this work. (a) Breakup rate as a function of the
critical dissipation εcr representing the aggregate strength [39]. Symbols: numerical ex-
periments, solid line: statistical model. (b, c) Breakup rate as a function of aggregate
mass, with panel (b) and (c) showing the influence of the aggregate strength parameter
an the fractal dimension, respectively. 〈ε〉 is the mean energy dissipation rate and G is
the mean shear rate.

with the fragment distribution expressed as:

g(m,m′) = (b+ 1)
2

m′

(
−
∣∣∣∣2mm′ − 1

∣∣∣∣+ 1

)b
(9)

where b is a precision exponent. Fig. S2 in the Supplementary Materials
shows the fragment distribution for different values of b. For b → ∞ the
fragment distribution reduces to a peak, i.e. two fragments exactly half the
size of the original cluster. In the calculations run here we arbitrarily set
b = 8, resulting in two fragments that differ by less than 25% in two out of
three cases.

2.4. Numerical Implementation

Eq. (1) is solved using the fixed pivot method of Kumar and Ramkrishna
[49]. In this method, the continuous variable of the system (m) is discretized
on a geometric grid with mi+1 = 2qmi, where the grid parameter q > 0. In
our simulations, q = 1/3 was used as the fined grid while q = 1 was used in
the case of coarse grid. The upper limit of the size grid in all simulations
is mmax ≈ 1012, except for the case primary particle aggregation and sys-
tems with deposition of large clusters where we considered mmax ≈ 109 and
mmax ≈ 8× 103 respectively.

Solving Eq. (1) gives the cluster mass distribution n(m, t), from which
the average aggregate size is obtained. In this work, we consider the mean
radius of gyration as our principle quantity to evaluate the dynamics of the
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system. In experiments, the latter is readily accessible from light scattering
measurements [12, 42, 50], while its relation to the cluster mass distribution
is [27, 50]:

〈Rg〉 =


∫ ∞
0

n(m, t)m2[Rg(m)]2 dm∫ ∞
0

n(m, t)m2 dm


1/2

(10)

where Rg(m) is the radius of gyration of an aggregate of mass m, which
is expressed through the strict definition Rg(m) = Rg,0m

1/df , with Rg,0 =√
3/5Rp being the radius of gyration of the primary particle. In one of

the cases considered in this work, we compared our simulations with the
experimental data from the literature where the average cluster size was
reported as the volume mean cluster sized[4,3] which is defined as:

d[4,3] =

∫ ∞
0

n(m, t)[Rg(m)]4 dm∫ ∞
0

n(m, t)[Rg(m)]3 dm

(11)

If not specified otherwise, in the numerical calculations performed in this
work we consider colloidal particles with a primary particle radius of Rp =
100 nm. The shear rate was set to G = 100 s−1 which is a typical value found
in stirred tank (cf. Tab. 1 in [51]) or Taylor-Couette [52] reactors used in
aggregation studies.

2.5. Aggregation-breakup dynamics without secondary effects

We first investigate the case where the aggregates are not affected by
the secondary effects discussed in the introduction, i.e. we consider an
aggregation-breakup process where the aggregate structure and the aggre-
gate strength, characterised by the fractal dimension df and the strength
parameter C, respectively, remain constant in time.

Fig. 2 shows the time evolution of the mean radius of gyration plotted
versus a dimensionless time τ = t/τc, where τc is the characteristic time of
aggregation defined as:

τc = 4π/(3Gφ) (12)
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The normalization by τc eliminates the direct effect of the shear rate and the
particle number concentration on the aggregate growth. The three panels in
Fig. 2 show the influence of the fractal dimension (panel a), the strength
parameter that is inversely proportional to the shear rate (panel b), and the
solid volume fraction (panel c). In all cases the mean radius of gyration
increases with time due to the dominance of aggregation and then relaxes to
a plateau. As established in previous works using different rate models [53],
the plateau is a result of an equilibrium between aggregation and breakup.
In none of the cases an overshoot is observed, i.e. a similar growth pattern
is observed under all conditions.

Closer inspection of Fig. 2-a shows that more open aggregates (small df )
grow faster than more compact aggregates (large df ) and reach higher steady-
state values. The strong influence of the fractal dimension on the aggregate
growth rate is a distinct feature of shear aggregation [54] that can be exploited
to infer the aggregate structure from growth rate measurements [27]. The
observation that the plateau aggregate size increases with decreasing fractal
dimension is due to the stronger influence of df on the aggregation rate than
on the breakup rate.

Fig. 2-b shows the influence of the aggregate strength parameter. The
aggregate strength affects mainly the plateau value, and increasing the ag-
gregate strength leads to an increase in the plateau aggregate size. The
aggregate growth that takes place at the beginning of the process is not af-
fected by the aggregate strength, and the early evolution of the mean radius
of gyration for different values of C coincides up to almost before the steady-
state. Also, the time to reach steady-state stays almost unchanged when
changing C.

The influence of the solid volume fraction is shown in Fig. 2-c. Increas-
ing φ leads to higher plateau values which is in agreement with experiments
[51]. The observed increase of the steady state aggregate size with increasing
the solid volume fraction is a direct consequence of the competition between
aggregation (that is of order two with respect to the aggregate number con-
centration) and breakup (that is of order one with respect to the aggregate
number concentration). Hence, increasing the aggregate number concentra-
tion (by increasing φ) strongly enhances the aggregation rate with respect
to the breakup rate, which can be exploited to infer characteristics of the
breakup rate [53]. Similar to C, changing φ does not change the growth rate
of the mean size at the beginning of the process.

Fig. S3 in the Supplementary Material shows the influence of the three
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parameters discussed in Fig. 2 on the steady state aggregate size. Analysis
of the steady state aggregate size was conducted in an earlier study [53] using
simpler rate expressions for aggregation and breakup. In particular, using a
power law model for breakup lead to scaling of the steady state aggregate size
with the shear rate G and the solid volume fraction φ. While the former was
in good agreement, experiments did not support the scaling with φ. Indeed,
keeping G constant and letting φ → 0 lead to minimum aggregate size [51].
As shown in Fig. S3, using the more realistic rate functions introduced above
qualitatively recovers this behavior.

The analysis presented in Fig. 2 shows that the system parameters affect
the steady-state aggregate size, while df also affects the rate of growth and
the time to reach steady-state. More importantly, if the system parameters
remain constant in time the aggregate size distribution exhibits no overshoot
but instead displays a smooth relaxation to the steady state.

3. Overshoot in the mean size profile

3.1. Restructuring of clusters

Restructuring is associated with a change in the aggregate fractal dimen-
sion (df ) in time. Specifically, using the scaling of the scattered light intensity
as a proxy for df , it was shown experimentally that in certain aggregation-
breakup processes df increases monotonically from an initially low value to
a constant plateau value [12, 13, 19]. In the PBE model, df affects the
aggregation rate, the collision efficiency and the breakup rate.

To include the time evolution of the fractal dimension into our PBE model
we adopt an approach in which df (t) follows a predefined function instead of
evolving df (t) with a differential equation as often done in the literature [55,
20, 13, 50]. The advantage of this approach is that it provides the flexibility to
study different restructuring scenarios at a reasonable computational effort.
The empirical model for df (t) is taken as the extended sigmoid function
outlined in Fig. S4 in the Supplementary Material. It evolves df (t) from
an initial value df,0 to a final value df,∞ following an ”S”-shaped curve.
The latter consists of two branches, namely a first branch where df grows
exponentially followed by a second branch where df relaxes exponentially.
While the second branch is in accord with the often adopted linear model, i.e.
ddf
dt
∼ (df,∞ − df ) [55], the first branch reflects the notion that aggregates

first have to grow to a certain size before restructuring sets in [50, 56, 57,
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Figure 2: Time evolution of the mean radius of gyration in the absence of secondary effects.
The three panels show the influence of the (a) fractal dimension, (b) aggregate strength,
and (c) solid volume fraction.
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21]. The model for df (t) is parametrized by two parameters, namely the
restructuring rate α′ characterizing the exponential relaxation to the plateau
value, and the inflection point τ ′a that specifies the time when restructuring
takes place, i.e. df (t) ∼ e−α

′(t−τ ′2) [see Fig. S4 for a full description of df (t); a
sensitivity analysis [58] is presented in the Supplementary Material]. Below,
the parameters are reported in dimensionless form as α = α′τc and τa = τ ′a/τc
where τc is the aggregation time given in Eq. (12).

In the following we assume that the aggregates are initially open with
df,0 = 1.8, which is the typical value for diffusion limited aggregation [59].
Due to breakup and re-aggregation and interactions with the flow [52] [57, 56],
the aggregate become more compact and reach a final fractal dimension of
df,∞ = 2.6, which is the value found by Ehrl et al. [60] for shear aggregation.

Fig. 3 shows the time evolution of the mean radius of gyration (panel a)
together with the fractal dimension (panel b). Solid lines show simulations
where the fractal dimension is evolving from df,0 to df,∞ while dashed lines
show simulations with the fractal dimension kept constant at either df,0 or
df,∞. In the former, we kept constant the restructuring rate (α = 5) and
varied the time when restructuring occurs, i.e. we considered the cases of
early restructuring (τa = 0.01), intermediate restructuring (τa = 0.1), and
late restructuring (τa = 0.25). In the case where restructuring occurs at an
early time the mean radius of gyration evolves very slowly and the profile
exhibits no overshoot. On the other hand, when restructuring occurs at an
intermediate or late time, the growth of 〈Rg〉 is substantially faster and an
overshoot is observed. In all cases the mean radius of gyration relaxes to a
plateau 〈Rg〉∞/Rg,0 ≈ 94 that is controlled by the final fractal dimension, as
indicated by the dashed line that shows the case where df is constant at df,∞.
The simulations suggest that there is no overshoot when the mean radius of
gyration during the restructuring is still smaller than the final plateau value,
while on the other hand, if the mean radius of gyration exceeds the final
plateau value during the restructuring an overshoot occurs.

In Fig. 4 we explore the evolution of the cluster mass distribution for the
case of late restructuring. The three curves show the cluster mass distribution
before the peak of the mean size (t = 8 min, indicated by the blue marker
in Fig. 3), at the peak (t = 12 min, orange marker) and at the steady state
(t = 50 min, red marker), with panel (a) showing the mass distribution while
panel (b) shows the size distribution. Fig. 4-a shows that heavier clusters
are gradually formed as time proceeds, i.e. the mean mass of clusters is
monotonically increasing until steady-state is reached. This means that there
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Figure 3: Time evolution of the mean aggregate size in the case of restructuring. (a)
Mean radius of gyration and (b) fractal dimension. Solid lines refer to simulations with
the fractal dimension evolving from df,0 = 1.8 to df,∞ = 2.6, while dashed lines refer
to simulations with the fractal dimension kept constant at either df,0 or df,∞. Here and
below, the shear rate is G = 100 s−1 and Rp = 100 nm. Markers in panel (a) indicate the
times at which the cluster mass distribution is plotted in Fig. 4.
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Figure 4: Cluster mass distribution at different times for the case of late restructuring.
(a) Cluster mass distribution, (b) cluster size distribution. The latter is readily derived
from the mass distribution as ñ(R, t) = (df/Rp)m(df−1)/df × n(m, t), where we made use
of R = Rpm

1/df .

is no overshoot in the profile of the mean cluster mass versus time. On the
contrary, Fig. 4-b shows that the aggregates at the peak are larger than the
aggregates at steady state. This confirms that the clusters grow in size up
to a point where they start to restructure while the cluster mass constantly
increases until reaching a steady state.

To show the feasibility of the proposed mechanism in Fig. 5 we compare
our model to the experimental data of Selomulya et al. [55]. The latter con-
ducted aggregation-breakup experiments in a Taylor-Couette reactor using
a fully destabilized polystyrene latex. Fig. 5 shows the mean aggregate size
and the fractal dimension obtained from the experiments (symbols) together
with the model (solid lines). The data suggests that the experiments ex-
hibit late restructuring where the decay of the mean aggregate size in the
later stage of the process represents the equilibria between aggregation and
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Figure 5: Time evolution of (a) the mean aggregate size and (b) the fractal dimension
as measured by Selomulya et al. [55]. Symbols: experimental data, lines: simulations.
Experiments were run in a Taylor-Couette reactor at G = 64 s−1 using a fully destabi-
lized polystyrene latex with Rp = 190 nm at a solid volume fraction of φ = 3.7 × 10−5.
Simulation parameters are listed in the figure.

breakup at the given fractal dimension.

3.2. Decay of aggregate strength

Repeated breakup and re-aggregation can cause surface alterations of
the primary particles contained in the aggregates, which lowers the bond
strength between primary particles, making the aggregates weaker [11, 22].
In our model, the decay of the aggregate strength translates into a decrease of
the strength parameter C that enters the breakup rate through Eq. (8). To
model the decrease of the strength parameter C in time we adapt a similar
approach as in the case of restructuring, i.e. we use the sigmoid function
outlined in Fig. S4 to evolve C(t) from an initial value C0 to a final plateau
value C∞. Using a sigmoid evolution of C(t) instead of, e.g. a monotone
relaxation [11] gives us the flexibility to study different scenarios and adds
to the numerical stability of the simulation. In the numerical simulations
that follow we consider compact aggregates with df = 2.6 whose strength
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parameter decreases from C0 = 108 to C∞ = 107.
Fig. 6 shows the time evolution of the mean radius of gyration (panel a)

together with the aggregate strength parameter (panel b). The solid lines
refer to simulations where the strength parameter is evolving from C0 to C∞
while the dashed lines show simulations with the strength parameter kept
constant at either C0 or C∞. Three cases for the evolution of C(t) are con-
sidered, namely fast decay (α = 5), intermediate decay (α = 2.5), and slow
decay (α = 1). In all cases the decay sets in at τa = 0.5. Starting the
decay of C(t) at earlier times (and at higher values of C0) does not affect
the results, as breakup is insignificant in the early stages of the aggregation
process. However, evolving C(t) with the sigmoid function makes the simu-
lation more stable. As can be seen there is no overshoot in the case of fast
decay of C(t) while an overshoot is observed for the cases with intermediate
and slow decay. In all cases the mean radius of gyration relaxes to a plateau
〈Rg〉/Rg,0 ≈ 46 that is controlled by the aggregate strength at the end (C∞)
as indicated by the dashed line in Fig. 6-a. The simulations suggests that
there is no overshoot when the mean aggregate size at the end of the decay
of C(t) is still smaller than the final plateau size, as is the case for the fast
decay. Inspection of the cluster mass distribution shows that the mean mass
of clusters is the largest in the peak. This means that, unlike the case of
restructuring, the overshoot is also present in the profile of the mean cluster
mass versus time.

To show the applicability of the proposed mechanism, in Fig. 7 we com-
pare our model to the experimental data of Moussa et al. [11]. The latter
studied the aggregation of a carboxyl polystyrene latex in a stirred tank re-
actor and showed that the overshoot is caused by a decay in the aggregate
strength. Fig. 7 shows the evolution of the mean radius of gyration from one
of their experiments (see figure caption for details). For simulating their data
we assumed a constant fractal dimension of df = 2.6 and set the collision effi-
ciency f(m,m′; df ) = 1, in accord with Moussa et al. [11]. Also, since there is
no experimental data on the evolution of the aggregate strength in time, the
strength decay was fitted to the measured aggregate size assuming the decay
starts at the beginning of the experiment (τa = 0) [11]. This leaves us with
three parameters (C0, C∞, α) to be adjusted. As can be seen from the main
panel of Fig. 7 the model describes the experimental data reasonably well.
The inset shows the evolution of the strength parameter obtained from the
fitted parameters. The strength parameter shows a slow exponential decay,
in agreement with Moussa et al. [11]. The decay of C(t) is relatively slow
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Figure 6: Time evolution of the mean aggregate size for the case of a decaying aggregate
strength. (a) Mean radius of gyration and (b) aggregate strength parameter. Solid lines
refer to simulations where the aggregate strength parameter decreases from C0 = 108

to C∞ = 107, while dashed lines refer to simulations with the aggregate strength kept
constant at C0 and C∞. In all simulations, the fractal dimension is constant at df = 2.6.
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Figure 7: Time evolution of the mean radius of gyration as measured by Moussa et al.
[11]. Symbols: experiments, solid lines: simulations. The experiments used a carboxyl
polystyrene latex with a primary particle size of Rp = 300 nm at a solid volume fraction of
φ = 2× 10−5; the shear rate was G = 176 s−1. Inset: Evolution of the aggregate strength
parameter C(t) obtained by fitting the model to the data in the main panel. The strength
parameter evolved from C0 = 2.5× 109 to C∞ = 2.5× 108.

compared to the time scales of aggregate growth.

3.3. Deposition of large aggregates

As the size of aggregates increases, some aggregates may settle, float or
stick to the walls of the reactor due to, e.g. gravitational or inertial effects.
This leads to zones with much higher solid volume fractions compared to the
bulk of the system. Assuming that the interaction of these zones with the
rest of the system is negligible, we can exclude the large aggregates that are
in these zones from the aggregation-breakup dynamics that take place in the
bulk of the system. To simulate this case, we consider a critical aggregate
mass, mc, above which the aggregates enter the high density zones and are
therefore excluded from the system. In the following the critical aggregate
mass is taken as mc = 8 × 103 which, for df = 1.8, corresponds to a di-
mensionless aggregate size of Rg/Rp ≈ 147. The value for mc was chosen
such that the characteristic time for aggregation and breakup of clusters of
mass mc (τagg = [KA(mc)Np/mc]

−1 and τbreak = [KB(mc)]
−1) are of simi-

lar magnitude, such that the aggregates deposit before suffering extensive
breakup.

Fig. 8 shows the time evolution of the mean radius of gyration (panel
a) together with the bulk solid volume fraction (panel b). Solid lines refer
to the case where there is deposition of large aggregates while dashed lines
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refer to the case without deposition, i.e. the large aggregates stay in the
system. The fractal dimension and the aggregate strength are kept constant
at df = 1.8 and C = 108, respectively. As can be seen, the mean radius of
gyration increases up to t ≈ 8 min at which point some of the aggregates
are large enough to pass the critical size. Excluding these aggregates from
the system results in a decrease in the solid volume fraction as shown in Fig.
8-b. This loss of aggregates disturbs the balance between aggregation and
breakup and leads to an overshoot in the mean radius of gyration. The slow
decay of 〈Rg〉 in the second stage of the process is controlled by the rate at
which aggregates grow larger than the critical size.

Fig. 9 shows the cluster mass distribution at t = 10 min for both the
case where there is deposition (solid line) and where there is no deposition,
i.e. all aggregates stay in the system (dashed line). The two distribution
look similar with the peak at m ≈ 4× 103 reflecting breakup (The breakup
rate is shown by the red curve in Fig. Fig. 9). In the case where there is
deposition the distribution has a sharp cut-off at the critical mass, while if
there is no deposition aggregates can grow larger. The behavior of the cluster
mass distribution shown in Fig. 9 implies that for this mechanism there is
also an overshoot in the mean aggregate mass.

3.4. Primary particle aggregation

Discrete processes where the growth of an entity (or particle) proceeds
through the reaction with another entity (or particle) may show a strong
dependency on the size of one of the reacting entities. A key example is
radical polymerization where the growth of a polymer chain is dominated
by reactions with monomers, while in the colloidal domain aggregation of
charged particles may show similar characteristics [61, 18]. Other particulate
systems that show a strong dominance of reactions that involve monomers
may be found in hetero-aggregation or in wet agglomeration processes [61].

An aggregation-breakup process where aggregation is dominated by reac-
tions with primary particles may exhibit an overshoot in the mean aggregate
size, i.e. once the primary particles are consumed (or their concentration
gets very low) aggregate growth ceases and the evolution of the aggregate
size distribution is controlled by breakup, resulting in a decrease of the ag-
gregate size. In the Supplementary Materials we explore such a mechanism
for a simplified situation that assumes linearly size-dependent aggregation
and breakup rates. It is shown analytically that an aggregation rate that is
restricted to reactions with primary particles indeed leads to a maximum in
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Figure 8: Time evolution of the mean aggregate size for the case of large aggregate
deposition. (a) Mean radius of gyration and (b) bulk solid volume fraction. Solid lines
refer to simulations with large aggregate deposition while dashed lines refer to simulations
where all aggregates remain in the system. The markers in (a) indicate the times at which
the cluster mass distribution is shown in Fig. 9.
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Figure 9: Cluster mass distribution at t = 10 min with (black solid line) and without (blue
dashed line) large aggregate deposition. The red curve on the right shows the breakup
rate KB(m)/G.

the time evolution of the mean aggregate size. The overshoot is due to a
reduction of the aggregate growth caused by the fading monomer concentra-
tion.

In the calculations that follow we aim at exploring the effect of restricted
aggregation on a sheared system where aggregation and breakup show a
strong size dependency. Restricted aggregation is readily implemented in
our PBE model by an aggregation efficiency that reads as:

f(m,m′; df ) =

{
finite m or m′ = 1

0 otherwise
(13)

where the finite value is obtained from the collision efficiency model used
above [29]. Futhermore, in order to observe a pronounced overshoot we set
the primary particle radius equal to Rp = 500 nm (as opposed to 100 nm in
other cases considered in this work) and use a coarse grid for the numerical
integration of the PBE model.

Fig. 10 shows the time evolution of the mean radius of gyration (panel
a) together with the corresponding evolution of the number of primary par-
ticles (panel b). The three cases considered refer to aggregates with different
strength, as characterized by the strength parameter C that is kept constant
in each simulation. For all cases the collision efficiency is given by Eq. (13)
while the fractal dimension is kept constant at df = 1.8. Increasing the
aggregate strength leads to a more pronounced overshoot in the mean size.
Stronger aggregates experience lower breakup rates so large clusters have a
higher chance of formation. Since large clusters aggregate faster, they con-
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Figure 10: Time evolution of (a) the mean radius of gyration and (b) the number of
primary particles for a system governed by primary particle aggregation. The three sets
of data refer to different aggregate strength as characterized by the strength parameter C.

sume more primary particles. That is why we observe a faster decrease of
primary particles in the cases with higher values of C, as shown in Fig. 10-b.

To explore the influence of aggregation on the decay of the mean aggregate
size in the second stage of the process, in Fig. 11 we present simulations where
aggregation is turned off at a specific moment in time. The solid line in Fig.
11 is identical to the case C = 108 from Fig. 10, i.e. aggregation is active
throughout the process, while the dashed and the dashed-dotted line refer
to the cases where aggregation is turned off at the maximum (at 58 min,
indicated by the red marker) or at towards the end of the relaxation phase
(i.e. at 140 min), respectively. As can be seen, when aggregation is turned off
at the maximum, the obtained mean size deviates from that of the base case,
while when it is turned off towards the end of the relaxation phase the mean
sizes almost coincide. This implies that aggregation is only weakly influencing
the apparent plateau in the mean size, while it significantly influences the
decay after the maximum. Projecting these results to the plot of np shown
in Fig. 11-b, we can conclude that the aggregation rate is negligible when
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Figure 11: Influence of aggregation on the decay of the mean aggregate size after the
maximum for a system governed by primary particle aggregation. The solid line is identical
to the case C = 108 from Fig. 10, while the dashed line (blue) and the dashed-dotted
line (red) refer to the cases where aggregation is turned off at the maximum, respectively,
towards the end of the relaxation phase as indicated by the markers.

the number of primary particles goes below 0.1% of the initial value for
the considered system here. Inspection of the cluster mass distribution for
primary particle aggregation shows that the mean mass of clusters experience
a maximum as well.

4. Distinguishing among different mechanisms

Identification of the mechanism that controls the overshoot through direct
experimental investigation can be demanding and also may require sophisti-
cated instrumentation [12, 11, 60], especially in the case of complex systems
such as wastewaters [16] or microalgae [8]. However, indications from which
the controlling mechanism can be deduced can be obtained from measuring
the response of the mean aggregate size upon a step change in the shear
rate, a technique frequently applied to study the dynamics of aggregation
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and breakup processes [24, 23]. In the following we propose a simple proto-
col how a step change in the shear rate at a specific moment in time allows
for distinguishing among the four mechanisms discussed in this work. The
basic principle of the proposed protocol is to compare the time evolution of
the mean aggregate size in the case where the shear rate is kept constant
with the case where the shear is lowered before and after the maximum in
the mean size profile in the original experiment.

Fig. 12 shows the time evolution of the mean aggregate size for the case
where the overshoot is controlled by restructuring (black lines) and when it
is controlled by a decaying aggregate strength (blue lines). In both cases, the
solid lines refer to the situation where the shear rate is kept constant, while
the dashed and dashed-dotted lines refer to the situation where the shear rate
is reduced to half of its original value before and after the maximum in the
original experiment, respectively, as indicated by point 1 and point 2 in Fig.
12-a. The exact times when the shear rate is lowered were chosen arbitrarily.
The simulation parameters were chosen such that the time evolution of the
mean aggregate size at constant shear rate is similar for the restructuring
case and for the case of a decaying aggregate strength. Since the dependency
of restructuring on the shear rate is not known, in our simulation we put
restructuring on a halt once the shear rate is lowered. Likewise, we put on
halt the decay of the aggregate strength when changing the shear rate.

Fig. 12-a shows the time evolution of the mean aggregate size plotted
versus the dimensional time for a shear rate that changes from G = 100 to
50 s−1. In Fig. 12-b we replot the same data versus the dimensionless time
τ = t/τc, with τc given by Eq. (12). Notice that due to the dependency of τc
on the shear rate there are two characteristic aggregation times: one for the
interval before the step change in G and one for the interval after the step
change, which needs to be accounted for when re-plotting the data in Fig.
12-b. Normalising the time axis by τc cancels out the direct effect of the shear
rate on the dynamics of the aggregation process and allows for highlighting
the characteristics of the mechanisms leading to an overshoot. In particular,
the important characteristic that allows for distinguishing between the two
mechanisms is the rate of regrowth upon the step change in G. Looking
at Fig. 12-b we see that the rate of re-growth in the case of restructuring
(black lines) is substantially different in point 1 and point 2, while in the
case of a decaying aggregate strength (blue lines) the rate of re-growth is of
similar magnitude in point 1 and point 2. The reason for this is that reducing
the shear rate leads to a drastic reduction of the breakup rate which gives
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aggregation the overhand over breakup. Due to the strong dependency of the
aggregation rate on the fractal dimension the restructured aggregates grow
substantially slower in point 2 than the more open aggregates in point 1. In
the case of a decaying aggregate strength the fractal dimension and therefore
the aggregation rate are not affected. Accordingly, similar growth rates are
observed in point 1 and point 2. Such distinguishing was applied by Moussa
et al. [11] to relate the overshoot to a decaying aggregate strength.

Fig. 13 shows the results when applying the step change of the shear rate
to the case where the overshoot is controlled by deposition of large clusters.
The different lines in Fig. 13 have the same meaning as in Fig. 12. The re-
growth of the mean aggregate size is similar in the two situations where the
step change in G is applied before (point 1) or after (point 2) the maximum of
the original experiment, hence, the behavior of the re-growth is similar to the
case of a decaying aggregate strength. However, the difference to the latter
is that in the case of large aggregate deposition, reducing the shear rate once
the apparent plateau is reached results in a re-growth followed by a second
overshoot, as shown by the dashed-dotted line in Fig. 13. The reason for this
second overshoot is that reducing the shear rate allows for the aggregates to
grow to sizes that are prone to deposition. This deposition again disturbs the
balance between aggregation and breakup resulting in the second overshoot
observed in Fig. 13. (It is worthwhile to add that a second overshoot is
unlikely to occur in the case of a decaying aggregate strength: once the
original experiment reaches the plateau the weakening of the aggregates gets
saturated and it is unlikely that a reduction in the shear rate will result in
further weakening, hence, observing a second overshoot upon lowering the
shear rate in the very late stage of the experiment indicates to deposition or,
e.g. settling caused by the lower stirring speed).

Finally, the response of step changes in the shear rate for a system con-
trolled by primary particle aggregation is shown in Fig. 14. Interestingly,
primary particle aggregation shows similar characteristics as the case of re-
structuring (black lines in Fig. 12), i.e. the re-growth at an early stage is
substantially faster than the re-growth at a late stage, as indicated by the
slopes s1, respectively, s2. However, applying the step change at a suffi-
ciently late time (point 3 in Fig. 14) will lead to a pattern where the mean
size exhibits negligible re-growth and, instead, stays apparently constant.
This apparently constant aggregate size that establishes upon lowering the
shear rate is due to the absence of primary particles that would be required
for the re-growth.
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Table 1: Distinguising the different overshoot mechanisms

Mechanism Re-grow ratesa Late stage re-grow pattern
Restructuring of clusters s1 > s2 Increase-relaxation
Decay of aggregate strength s1 ≈ s2 Increase-relaxation
Deposition of large clusters s1 ≈ s2 Overshoot
Primary particle aggregation s1 > s2 Overshoot/decay
a s1 and s2 denote the re-growth rates for a step change in the shear

rate before and after the maximum in the mean aggregate size.

The results of the analysis to identify the dominating mechanism in a
system exhibiting an overshoot are summarized in Table 1. The two charac-
teristics, i.e. the re-grow rates s1 and s2 and the pattern of the re-growth for
a late change in the shear rate, are not the same for any two mechanisms.
This provides us the protocol to distinguish among the different mechanisms
behind the observed overshoot.

5. Conclusion

Many aggregation-breakup processes show an overshoot in the time evo-
lution of the mean cluster size, including latex coagulation, protein aggre-
gation, flocculation of inorganics, asphaltenes aggregation, and as shown in
this work, flocculation of microalgea. Aggregation and breakup alone cannot
explain this phenomena, i.e. the time evolution of cluster size distribution
governed by aggregation and breakup always describes a monotone relax-
ation to a steady state that is controlled by the shear rate, the solid volume
fraction, the fractal dimension and the aggregate strength.

Four mechanisms were considered to investigate the occurrence of an over-
shoot. Restructuring towards more dense clusters leads to an overshoot when
it occurs at a late stage of the process while, on the other hand, early restruc-
turing does not show an overshoot. Hence, restructuring does not per se lead
to an overshoot. Similar observation were made for the case of a decaying
aggregate strength which shows an overshoot when the decay occurs at a late
stage. If the decay happens at an early stage of the process no overshoot is ob-
served. As restructuring is more likely to occur at an early stage (growing ag-
gregates need to restructure in order to not to suffer breakup) while strength
decay is more likely to occur at a late stage (at a later stage the aggregates
will have experienced many breakup/re-aggregation events) we might argue
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Figure 12: Time evolution of the mean radius of gyration for systems controlled by
restructuring (black line) and a decaying aggregate strength (blue lines). The dashed and
dashed-dotted lines show the response of the system upon lowering the shear rate to half
of its original value. The markers indicate the times when the step change in shear rate are
applied. Panel (a) shows the data plotted versus dimensional time, while panel (b) shows
the same data versus the dimensionless time τ = t/τc. The parameters for the system with
restructuring are k0 = 0.22, C = 108, df,0 = 1.8, df,∞ = 2.6, α = 1, and τa = 0.5. The
parameters for the system with strength decay are k0 = 1.3, f = 1, df = 2.6, C0 = 108,
C∞ = 3.3× 107, α = 2.5, and τa = 0.5. The shear rate varies from G = 100 to 50 s−1.

Figure 13: Time evolution of the mean radius of gyration for a system controlled by large
aggregate deposition, together with its response upon lowering the shear rate. Lines and
markers have the same meaning as in Fig. 12.
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Figure 14: Time evolution of the mean radius of gyration for a system controlled by
primary particle aggregation. Lines and markers have the same meaning as in Fig. 12.
The slopes s1 and s2 indicate the rate of regrowth upon a step change in the shear rate.

that strength decay is the prevailing scenario in many aggregation-breakup
processes that show an overshoot.

For the other two mechanisms, we found that deposition of large clusters,
in principle, leads always to an overshoot. However, a pronounced overshoot
that is detectable in an experiment requires a relatively large mass loss, i.e.
a decrease of the solid volume fraction by roughly one order of magnitude.
Similarly, primary particle aggregation in principle leads always to an over-
shoot. However, for the overshoot to be detectable the clusters have to be
relatively strong such that they can grow to large sizes. Investigating the
pattern and rate of re-growth upon a reduction of the shear rate allows for
distinguishing between the four mechanisms.
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Appendix: Overshoot in the flocculation of the green microalgae
D. salina

Cell cultures of Dunaliella salina (CCAP 19/18, delivered 2011 by the
Culture Collection of Algae and Protozoa, Scotland) were prepared prior to
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Figure A1: Time evolution of the mean aggregate size in the flocculation of microalga
D. salina. The two sets of data refer different flocculants, namely FeCl3 (circles) and
Al2(SO4)3 (squares). The lines are polynomial interpolations to guide the eye.

flocculation as described in Pirwitz et al. [9]. In short, cultures in a mid-
logarithmic growth phase were adjusted to a pH of 7.5 and a cell density
of 1.1 × 107 cells mL−1. The flocculation experiments were carried out in a
beaker glass using 100 mL of the previously prepared cell suspension. To in-
duce flocculation, in between 0.4 and 1.0 ml of a flocculant solution was added
to the suspension and mixed for 10 min at 250 rpm. The three flocculant so-
lutions were 5 M NaOH, 0.1 M FeCl3 · 6H2O, and 0.1 M Al2(SO4)3 · 16H2O,
resulting in a flocculant concentration in the suspension of 20 mM NaOH,
1.0 mM FeCl3, or 0.6 mM Al2(SO4)3, respectively. After the mixing, the stir-
ring was reduced to 50 rpm and samples of the aggregated cells were taken
after 1, 5, 10, 15 and 20 min flocculation time (tF ). The samples were ana-
lyzed by laser diffraction using a Mastersizer 2000 (Malvern Instruments Ltd,
England) instrument. To consider impurities in the medium, a background
measurement was done using the pure culture medium. The stable single
cell culture was used as control. Fig. A1 shows the mean aggregate size d50
versus time for the case of FeCl3 and Al2(SO4)3. The time evolution of the
mean aggregate size shows an clear overshoot with the maximum occurring
after a flocculation time of 5 and 10 min for the two flocculants, respectively.
Using NaOH as flocculant lead to very large flocks and the no overshoot was
detected. The underlying data is reprinted in Tab. S2. As the experiments
are the result of an independent preliminary study we do not evaluate the
data in terms of the models discussed in this work.
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and M. Soos. Flow-induced aggregation and breakup of particle clusters
controlled by surface nanoroughness. Langmuir, 29(47):14386–14395,
2013. doi: 10.1021/la403240k. URL http://dx.doi.org/10.1021/

la403240k.

[12] C. Selomulya, G. Bushell, R. Amal, and T.D. Waite. Aggregation mech-
anisms of latex of different particle sizes in a controlled shear environ-
ment. Langmuir, 18(6):1974–1984, 2002. doi: 10.1021/la010702h. URL
http://dx.doi.org/10.1021/la010702h.

[13] Y. Sang and P. Englezos. Flocculation of precipitated calcium carbon-
ate (PCC) by cationic tapioca starch with different charge densities. I:
experimental. Colloid. Surface. A, 414:512–519, 2012. doi: 10.1016/
j.colsurfa.2012.07.019. URL https://doi.org/10.1016/j.colsurfa.

2012.07.019.

[14] E. Antunes, F.A.P. Garcia, P. Ferreira, A. Blanco, C. Negro, and M.G.
Rasteiro. Effect of water cationic content on flocculation, flocs resistance
and reflocculation capacity of PCC induced by polyelectrolytes. Ind.
Eng. Chem. Res., 47(16):6006–6013, 2008. doi: 10.1021/ie800326z. URL
http://dx.doi.org/10.1021/ie800326z.

[15] A.R. Heath, P.A. Bahri, P.D. Fawell, and J.B. Farrow. Polymer
flocculation of calcite: experimental results from turbulent pipe flow.
AIChE J., 52(4):1284–1293, 2006. doi: 10.1002/aic.10729. URL http:

//dx.doi.org/10.1002/aic.10729.

[16] P. Bubakova, M. Pivokonsky, and P. Filip. Effect of shear rate on aggre-
gate size and structure in the process of aggregation and at steady state.

33

https://doi.org/10.1016/j.biortech.2015.07.032
https://doi.org/10.1016/j.biortech.2015.07.032
http://dx.doi.org/10.1021/la403240k
http://dx.doi.org/10.1021/la403240k
http://dx.doi.org/10.1021/la010702h
https://doi.org/10.1016/j.colsurfa.2012.07.019
https://doi.org/10.1016/j.colsurfa.2012.07.019
http://dx.doi.org/10.1021/ie800326z
http://dx.doi.org/10.1002/aic.10729
http://dx.doi.org/10.1002/aic.10729


Powder Technol., 235:540–549, 2013. doi: 10.1016/j.powtec.2012.11.014.
URL https://doi.org/10.1016/j.powtec.2012.11.014.

[17] N.H.G. Rahmani, J.H. Masliyah, and T. Dabros. Characterization of
asphaltenes aggregation and fragmentation in a shear field. AIChE J.,
49(7):1645–1655, 2003. doi: 10.1002/aic.690490705. URL http://dx.

doi.org/10.1002/aic.690490705.

[18] L. Nicoud, S. Lazzari, D. Balderas Barragán, and M. Morbidelli. Frag-
mentation of amyloid fibrils occurs in preferential positions depending
on the environmental conditions. J. Phys. Chem. B, 119(13):4644–4652,
2015. doi: 10.1021/acs.jpcb.5b01160. URL http://dx.doi.org/10.

1021/acs.jpcb.5b01160.

[19] E. Antunes, F.A.P. Garcia, P. Ferreira, A. Blanco, C. Negro, and M.G.
Rasteiro. Modelling PCC flocculation by bridging mechanism using
population balances: Effect of polymer characteristics on flocculation.
Chem. Eng. Sci., 65(12):3798–3807, 2010. doi: 10.1016/j.ces.2010.03.
020. URL https://doi.org/10.1016/j.ces.2010.03.020.

[20] R.I. Jeldres, F. Concha, and P.G. Toledo. Population balance modelling
of particle flocculation with attention to aggregate restructuring and
permeability. Adv. Colloid Interfac., 224:62–71, 2015. doi: 10.1016/j.cis.
2015.07.009. URL http://dx.doi.org/10.1016/j.cis.2015.07.009.

[21] B.O. Conchuir, Y.M. Harshe, M. Lattuada, and A. Zaccone. Analytical
model of fractal aggregate stability and restructuring in shear flows. Ind.
Eng. Chem. Res., 53(22):9109–9119, 2014. doi: 10.1021/ie4032605. URL
http://dx.doi.org/10.1021/ie4032605.

[22] S. Caimi, A. Cingolani, B. Jaquet, M. Siggel, M. Lattuada, and
M. Morbidelli. Tracking of fluorescently labeled polymer particles re-
veals surface effects during shear-controlled aggregation. Langmuir,
33(49):14038–14044, 2017. doi: 10.1021/acs.langmuir.7b03054. URL
http://dx.doi.org/10.1021/acs.langmuir.7b03054.

[23] M. Vlieghe, C. Frances, C. Coufort-Saudejaud, and A. Liné. Morpho-
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