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Abstract

Background: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory
system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has
been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and
proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it
adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its
symbiotic microbiota.

Results: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the
absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (i) a modified hemoglobin
that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very
abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host
under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions
between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition
proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.

Conclusions: We show how this worm, over the course of evolutionary time, has modified widely-used proteins
and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components
of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization
that animals have evolved within the context of their associations with microbes and that their adaptive responses
to symbiotic microbiota have led to biological innovations.
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Background

Most, if not all, animals are associated with a species-
specific microbial assemblage that profoundly affects
their evolution, ecology, development and health [1-3].
Animals and their microbiota have evolved molecular
mechanisms to recognize and maintain these stable
associations, and on the host side, these mechanisms are
largely mediated by their immune system [4]. The mech-
anisms that govern host-symbiont interactions have been
studied in a number of model organisms [4, 5], but re-
main unexplored in many animal phyla.

Olavius algarvensis is a gutless oligochaete worm
(Annelida; Oligochaeta; Phallodrilinae) that lives in an
obligate nutritional symbiosis with at least four bacter-
ial species [6]. These extracellular endosymbionts thrive
in a dense bacterial layer between the cuticle and the
epidermis of the worm (Fig. 1). Over the course of their
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symbiotic evolution, the gutless oligochaetes have lost
their digestive and excretory organs, and rely solely on
their bacterial symbionts for nourishment and removal
of their waste products [7-9]. O. algarvensis harbors
two gammaproteobacterial symbiont species that are
chemoautotrophic sulfur oxidizers, and two deltaproteo-
bacterial symbionts that are sulfate-reducing bacteria
[6]. Together, these symbionts engage in a syntrophic
sulfur cycle that enables autotrophic carbon fixation by
the sulfur-oxidizing symbionts and provision of organic
carbon to the host [8, 9]. Many worm individuals also
harbor a spirochaetal symbiont, whose function has not
yet been resolved [10].

Metagenomic and metaproteomic studies of the sym-
bionts have revealed much about their metabolic cap-
abilities, highlighted their immense capacity to use and
recycle the host’s waste products and led to the
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Fig. 1 Schematic overview of proposed molecular host-symbiont interactions. a
5 mm. b) Light micrograph of a longitudinal section through O. algarvensis, tissue stained with toluidine blue. Scale bar 50 um. C) Transmission
electron micrograph of the symbiotic region, longitudinal section. Red asterisks, symbiont cells; black arrow, cuticle; white arrow, epidermal cell
extensions. Scale bar 5 um. The boxes in a), b) and ¢) frame regions corresponding to the image to their right (in a) and b)) or below (in ).
Images a, b, and ¢ do not show the same worm specimen. d) Schematic overview of the main groups of expressed pattern recognition molecules,
components of the Toll immune signaling pathway and proposed interactions between the host and its symbionts. Ig, immunoglobulin domain
proteins; PGRP, peptidoglycan recognition proteins; SRCR scavenger receptor-like cysteine rich proteins; TLR, Toll-like receptors; FREP, fibrinogen-

a) Light micrograph of an Olavius a/garvens s worm. Scale bar
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discovery of novel, energy-efficient pathways to fix both
inorganic and organic carbon into biomass [8, 9]. Re-
search aimed at a better understanding of the host, on
the other hand, has been hampered by the fact that the
worms are very small (0.1-0.2 mm in diameter and 10—
20 mm in length), cannot be cultivated, and by a lack of
sequence data. Recent advances in sequencing technol-
ogy have made it possible to sequence and assemble
comprehensive de novo transcriptomes of uncultured,
non-model organisms collected in the environment.
These transcriptomes provide a reference database for
identifying the proteins organisms express using mass-
spectrometry-based proteomic approaches. This meth-
odological advance has opened the door for in depth
studies of the molecular repertoire used by O. algarven-
sis and other non-cultivable organisms to establish and
maintain a successful symbiosis.

All animals employ mechanisms for selecting and
maintaining a specific microbial consortium over the
course of their lives, while avoiding overgrowth by
their own microbiota or infection by detrimental bac-
teria from the environment. The innate immune sys-
tem is crucial in the establishment and maintenance
of healthy symbiotic interactions, but has so far not
been studied in gutless oligochaetes. These hosts face
additional challenges because they obligately rely on
their symbionts and therefore must provide condi-
tions under which they can thrive, while also dealing
with the physiological challenges caused by their sym-
biotic lifestyle. For example, O. algarvensis must be
able to live in anoxic sediment layers for extended
periods of time to enable sulfate reduction by its an-
aerobic sulfate-reducing symbionts [8]. Additionally, it
must be able to deal with the hydrogen sulfide that is
produced during sulfate reduction. It must also be
able to endure the relatively high carbon monoxide
concentrations in its environment, which both the
sulfate-reducing and sulfur-oxidizing symbionts use as
an energy source [9, 11]. Another challenge occurs
when O. algarvensis inhabits the upper oxygenated
sediment layers where it competes for oxygen with its
aerobic sulfur-oxidizing symbionts.

Here, we used transcriptomics and proteomics to
elucidate how O. algarvensis fulfills the physiological
requirements outlined above and how it obtains nutri-
tion from its symbionts. We exposed worms collected
from the environment to two types of conditions that
they naturally encounter to increase transcriptome
and proteome coverage. Our identification and ana-
lysis of proteins expressed by O. algarvensis provide
insights into their molecular mechanisms for microbe
recognition, interaction and regulation, as well as
their physiological adaptations to living in symbiosis
with sulfur-oxidizing and sulfate-reducing bacteria.
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Methods

Sample collection and incubations

For proteomic analyses, sediment that contained gutless
oligochaete worms was collected at 7 m water depth in
the Bay of Sant’Andrea, Elba, Italy (42° 48 29.38’ N,
10° 08’ 31.57’ E) in October 2007 and 2008. Worms were
carefully washed out of the sediment at the HYDRA field
station (Fetovaia, Elba, Italy) by hand (for details see
[9]). To increase proteome coverage we treated the
worms in the following manner. Worms were either im-
mediately frozen in liquid nitrogen in batches of 150—
200 worms (called "fresh” worms in the following) or
were kept for 8 days in glass petri dishes filled with a
thin layer (2-3 mm) of washed sediment and 0.2 pm-fil-
tered sea water and then frozen in liquid nitrogen (called
"starved" worms in the following, because no external
electron donor for energy conservation and autotrophic
carbon fixation was provided). The sulfur-oxidizing sym-
bionts of O. algarvensis store large amounts of sulfur
and polyhydroxyalkanoate granules, which give the
worms a bright white appearance. Under prolonged ex-
posure to oxygen without access to an electron donor
like the sulfide produced anaerobically by the sulfate-
reducing symbionts, these storage granules become de-
pleted, the worms turn transparent, and are effectively
starved of nutrition. Transparent worms are regularly
found in the environment, especially during the repro-
ductive season of the worms. All samples were stored in
liquid N, and later at —80 °C until further use.

For transcriptomics, 100-120 worms were collected in
April 2012 from the same site as for proteomics. The
live worms were kept in washed sediment and trans-
ported to the lab in Bremen where they were washed
out of the sediment again, washed in petri dishes with
filtrated seawater, then flash-frozen in liquid nitrogen
and stored at —80 °C until they were used to prepare the
¢DNA library “A”. A second collection of worms was
used for library "B" to identify genes expressed under
prolonged anoxia, a condition that the worms often ex-
perience. For library "B", 100-120 live worms were col-
lected in March 2013 from the same site as above,
transported to Bremen in the same way as for library
"A", and incubated in anoxic serum bottles for 43 h.
Serum bottles were filled with sediment and sea water
from Elba, and were flushed with nitrogen to remove
oxygen from the headspace. The sediment and sea water
were not sterilized, so that fully anoxic conditions could
develop quickly through microbial metabolism. Oxygen
concentrations were measured at the end of the incuba-
tion with an oxygen microelectrode and were below
0.1 uM. Worms were fixed overnight in RNAlater
(Thermo Fisher Scientific, Braunschweig, Germany) at
4 °C and stored at -80 °C until they were used to pre-
pare the cDNA library “B”.
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lllumina library preparation and sequencing

Total RNA was isolated using peqGOLD TriFast reagent
(PEQLAB, Erlangen, Germany) and treated with DNase.
Poly(A) + RNA was isolated from the total RNA, frag-
mented with ultrasound (2 pulses of 30 s at 4 °C) and
used for cDNA synthesis with random hexamer primers.
[lumina TruSeq adaptors were ligated to the ends of the
¢DNA fragments and amplified according to the manu-
facturer’s instructions (Illumina Inc., USA). Library DNA
fragments of 300—500 bp were eluted from a preparative
agarose gel and paired-end sequenced on an Illumina
HiSeq2000 sequencer (2x 100 bp). A standard PhiX174
DNA spike-in of 1% was used for sequencing quality
control. We sequenced ~170 million read pairs from
library A, and ~6 million read pairs from library B
(Additional file 1: Table S1). For library B, a much
smaller number of reads was sequenced because the
purpose of this library was to detect abundant tran-
scripts expressed under anoxic conditions.

De novo transcriptome assembly and sequence analysis
The raw reads were trimmed to remove Illumina
adapters, filtered for PhiX174 spike-in DNA and qual-
ity trimmed with nesoni clip version 0.109 (parameters
used: —-match 7 —quality 27 —trim-start 10) [12]. The
cleaned reads from library A and B were co-assembled
de novo using Trinity release 2013-02-25 with default
parameters [13]. Trinity reports individual assembled
transcript sequences (“isoforms”) as members of tran-
script families (“components”), which can represent
fragments of the same transcript, chimeric artifacts, or
actual biological splice variants of a gene. In our
reports of numbers of different transcripts from a
certain family of proteins (e.g. number of identified
peptidoglycan recognition proteins), we stick to the
more conservative number of “components” rather
than reported isoforms, as these are difficult to reli-
ably verify without a confirmed reference. Transcripts
were quantified with RSEM as implemented in Trinity
using default parameters [14].

De novo assembled transcripts were annotated with
blast2GO [15]. Transcripts of particular interest were
searched against the invertebrate division of EST
(Expressed Sequence Tags) and TSA (Transcriptome
Shotgun Assembly) sequences of NCBI with tblastx
[16] to determine their similarity to genes expressed in
other annelids.

Hemoglobin sequences were assigned to families, if
possible, based on sequence homology and specific
conserved amino acid patterns as described in [17]. The
secondary structures of the putative sulfide binding
domains in O. algarvensis hemoglobin chains were pre-
dicted with hydrophobic cluster analysis using the pro-
gram drawhca [18].
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Host species identification

Two species of gutless oligochaete co-occur at the sam-
pling site, which can only be distinguished under the
dissecting scope when sexually mature. The majority of
worms used in this study were not sexually mature, and
as a result, could not be morphologically identified.
Therefore, we used EMIRGE [19] to estimate the rela-
tive abundance of the different species in our samples
based on the read coverage of the mitochondrial cyto-
chrome ¢ oxidase I (COI) gene. We determined that
the contamination with species other than Olavius
algarvensis was less than 3.5% in library A and less than
0.1% in library B.

2D-LC-MS/MS

Protein was extracted from frozen worms, and peptides
prepared as previously described using a single-tube
small processing method [9, 20]. We analyzed three
biological replicates for each condition (fresh and
starved). All samples were analyzed in technical dupli-
cates via 24 h nano-2D-LC MS/MS with a split-phase
column (RP-SCX-RP) [21, 22] on a hybrid linear ion
trap-Orbitrap (Thermo Fischer Scientific), as previously
described [9].

Peptide and protein identifications
Coding sequences (CDS) were predicted from the tran-
scriptomes using FrameDP [23] and getorf of the EM-
BOSS package using the standard genetic code [24].
Transcriptome CDS were combined into a single protein
sequence database with the symbiont protein sequence
database used by Kleiner et al. 2012 [9]. To remove po-
tential chimeric sequences and redundant CDS from the
database we used sequence clustering with CD-HIT
(version 4.5.4, [25]). Experimental peptide fragmentation
spectra (MS/MS) generated from Xcalibur v.2.0.7 were
compared with theoretical peptide fragmentation spectra
obtained from the protein sequence database to which
protein sequences of common contaminant proteins
(e.g., human keratin and trypsin) were added to a total
of 1,318,114 entries. To determine the false-discovery
rate (FDR), a decoy database, generated by reversing the
sequences of the target database, was appended.
MyriMatch v2.1.111 [26] was configured to derive
fully-tryptic peptides with the following parameters: 2
missed cleavages, parent mass tolerance of 10 ppm, and
a fragment mass tolerance of 0.5 m/z units. For protein
inference, peptide identifications were merged together
in IDPicker v.3 [27]. Only protein identifications with at
least two identified spectra and a maximum g-value of
0.02 were considered for further analysis. The number of
distinct peptides (i.e., a peptide with a unique series of
amino acids, but does not relate to its uniqueness to the
protein reference database) required for identifications
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was set to 1 to allow for the identification of small anti-
microbial proteins and/or small, fragmented protein se-
quences in the transcriptome assembly. Based on these
settings, protein-level FDR was < 3% for all samples.

To deal with sequence redundancy, post-search pro-
tein grouping was performed by clustering all protein se-
quences in the protein sequence database by sequence
similarity (290%) using the UCLUST component of the
USEARCH v5.0 software platform [28]. As described
previously [29], identified proteins were then consoli-
dated into their defined protein groups. Protein groups
were represented by the longest protein sequence (ie.,
the seed sequence), which shares > 90% sequence simi-
larity to each member of the protein group. Peptide
uniqueness was re-assessed and classified as either
unique (i.e., only belonging to one protein group) or
non-unique (i.e., shared among multiple protein groups).
We required each protein group to have at least two dis-
tinct peptides, with at least one of these being a unique
peptide. For shared peptides belonging to multiple pro-
tein groups, their spectral counts were recalculated
based on the proportion of uniquely identified peptides
between the protein groups sharing the peptide. Follow-
ing spectra balancing, total spectral counts of a protein
group were converted to normalized spectra counts
(nSpC) [30], which are derived from normalized spectral
abundance factors [31]. Relative protein abundances of
host proteins are listed in tables as nSpC values multi-
plied by 10,000 ie. the sum of all host protein nSpC
values in one sample is 10,000 and the nSpC values are
thus given as a fraction of 10,000 (°/000)-

Results and Discussion

Transcriptome/proteome measurement metrics

To generate our protein sequence database for host
protein identification, we sequenced the transcriptomes
of untreated whole worms (library A), and of worms
kept under anoxic conditions for 43 h (library B). We
chose these two conditions, which the worms encoun-
ter regularly, to obtain a larger range of host transcripts
for the generation of a comprehensive reference se-
quence database for improved protein identification.
After trimming and error correction, 159,551,509 (li-
brary A) and 5,745,537 (library B) read pairs remained,
which were co-assembled into 173,602 contigs, with an
N50 of 1236 bp, and 23,719 contigs of at least 1 kbp
length (for more details on sequencing and assembly
metrics, see Additional files 1: Table S1 and Table S2).
Of these contigs, 31,913 could be functionally anno-
tated (see Additional file 1: Figure S1 for annotation
summary). The sequencing depth and assembly metrics
are comparable to other, well-covered, transcriptomes
of recently sequenced annelid taxa [32]. We analyzed
proteomes of freshly collected worms, and worms that
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had been starved for 8 days - that is kept under oxic
conditions without an external electron donor for en-
ergy conservation and autotrophic carbon fixation (see
Methods). The purpose of creating these two condi-
tions was to identify as many proteins as possible, in-
cluding those expressed in worms that are starved. We
identified a total of 4355 protein groups (see Methods
for details on protein grouping) with a per sample
protein-level FDR <3%. Of these, 2562 were host pro-
teins and 1793 were symbiont proteins. The annotated
host transcriptomes and proteomes were manually
screened for sequences relevant for host-symbiont in-
teractions. We identified 316 transcriptome sequences
and 60 proteins potentially involved in microbe recog-
nition, microbial growth regulation, symbiont digestion,
immune modulation and physiological interactions (see
Table 1 and Fig. 1).

Physiological adaptations of the host to the symbiosis
Nutrients are transferred from the symbionts to the host
via digestion
Previous to this study, it was not clear how gutless oligo-
chaetes gain nutrition from their bacterial symbionts.
Two transfer modes, which are not mutually exclusive,
have been suggested for symbioses with endosymbionts
[33]: (1) “milking” of the symbionts (uptake of small
compounds leaked or actively released by the symbi-
onts), and (2) symbiont digestion through endocytosis.
Endocytosis can include phagocytosis of symbiont parti-
cles or whole cells, as well as uptake of extracellularly
digested and dissolved compounds by pinocytosis.
Several results from this study indicate that the main
mode of nutrient transfer from the symbionts to O.
algarvensis is through their digestion. First, we mea-
sured significantly less symbiont protein relative to
host protein in the proteomes of starved worms com-
pared to freshly collected worms (¢-test, p < 0.01). Sym-
biont protein accounted for only 18.7% of the total
holobiont protein in starved worms, while freshly col-
lected worms had 29.5% symbiont protein (Table 2 and
Additional file 1: Table S3). In starved worms, the sym-
bionts had no access to external sources of energy and
carbon. Since these worms gain all their nutrition from
their symbionts, the absence of external energy and
carbon sources meant that no net growth of the symbi-
osis was possible. Thus, both the worms and their
symbionts were starved of nutrition. We therefore
hypothesize that the observed decrease in total sym-
biont protein relative to total host protein in starved
worms occurred because the symbionts were digested
by the host. An alternative explanation for the decrease
in relative symbiont protein is that the symbionts, but
not the host, degraded their own proteins in response
to starvation.
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Table 1 Overview of proposed host-symbiont interaction proteins
Functional category Protein family Transcripts @ Proteins ©
Pattern recognition proteins
peptidoglycan recognition proteins (PGRPs) 6 (16) 1
C-type lectins 33 (119) 5
R-type lectins 6 (18) 4
SUEL/rhamnose-binding lectins 7 (22) 1
galectins 3(3) 1
fucolectin 1(23) 0
fibrinogen-related proteins (FREPs) 27 (161) 1
toll-like/variable lymphocyte receptor-like (TLR/VLR) 13 (52) 1
scavenger receptor cysteine-rich (SRCR) domain proteins 25 (164) 1
beta-1,3-glucan binding protein 1(1) 1
novel immunoglobulin I-set proteins 16 (17) 1
novel immunoglobulin V-set proteins 9 (22) 1
Antimicrobial proteins
lumbricin 1(1) 1
invertebrate-type lysozyme (1) 0
bactericidal permeability increasing protein BPI 1(3) 1
insect defensin/reeler-like proteins 4(8) 1
cysteine-rich secretory proteins (CRSPs) 6 (28) 2
membrane attack complex/perforin 2 (23) 0
Other immune effectors
ROS modulator 1 2 () 1
alpha-2-macroglobulin 10 (24) 1
kazal-type serpin 2(8) 0
kunitz-type serpin 1) 0
leukocyte elastase inhibitors 5 (25) 1
phosphatidylethanolamine-binding protein PEBP 3(5) 1
Immune response regulators
Toll/interleukin-1 receptor (TIR) domain proteins 5(9) 0
NF-kappa-B inhibitor Cactus 2 (6) 0
dorsal protein 2 (3) 1
evolutionarily conserved signaling intermediate in Toll (ECSIT) 1(1) 0
Pelle protein 1(1) 0
Relish protein 1(6) 0
mitogen-activated protein kinase kinase kinase 7 (TAK1) 1(1) 0
I-kappa-B-kinase alpha (IKK a) 1(1) 0
I-kappa-B-kinase beta (IKK () 1 (5 0
interleukin-1 receptor-associated kinase 1 (IRAKT) 102 0
mitogen-activated protein kinase kinase kinase 4 (MEKK4) 1(1) 0
sterile alpha and TIR motif-containing protein (SARM) 103) 0
Toll-interacting protein Tollip 102 1
(LPS-induced) tumor necrosis factor (TNF) 3(7) 0
Tumor necrosis factor (TNF) 4(6) 0
tumor necrosis factor alpha-induced protein 3 (TNFAIP3) 103) 0
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Table 1 Overview of proposed host-symbiont interaction proteins (Continued)

tumor necrosis factor receptor associated proteins (TRAF) 9 (16) 0
IFN regulatory factor 8 (10) 0
IFN regulatory factor-binding protein 1(1) 0
IFN-induced GTPase 7 (23) 1
macrophage migration inhibitory factor (MIF) 3(24) 1
ILN enhancer binding factor 2 2 (4) 1
ILN-16 1(1) 0
Digestive enzymes
carboxypeptidases 11 (22) 0
cathepsins total 15 (28) 4
cathepsin B 3(12) 1
cathepsin C 24 0
cathepsin F 3(3) 1
cathepsin L 5(6) 2
cathepsin O 1) 0
cathepsin Z 1(1) 0
chymotrypsins 3(17) 1
pancreatic elastase 1(1) 1
alpha amylase 2(3) 1
lysosomal alpha glucosidase 103) 1
acid trehalase 24 1
sucrase-isomaltase 1(1) 0
lysosomal acid lipase 1(1) 0
Respiration
hemerythrin 22 2
giant extracellular hemoglobin, globin chains 12 (16) 8
giant extracellular hemoglobin, linker chains 6 (18) 5
sum 316 (1032) 60

For more extensive details see Additional file 2: Table S8

@INumber of transcripts defined as Trinity components, which approximately correspond to genes; see [13]; in parentheses: number of contigs (isoforms or fragments)

P)Number of unique proteins

Second, we identified 15 digestive enzymes predicted to
occur in lysosomes, indicating their role in endocytosis,
and 28 digestive enzymes involved in general secretory
pathways, which could be targeted to phagolysosomes or
to the extracellular region (Table 3). If these enzymes are
not directed to phagolysosomes, but rather secreted

Table 2 Difference in symbiont protein content in fresh worms
compared to starved worms

Symbionts fresh worms  Symbionts starved worms

average nSpC 3050.30 1869.77
standard deviation 421.88 12247
# replicates 3 3
p-value t-test 0.00963

Significant differences between fresh and starved samples were determined
with the Student's t-Test; nSpC, normalized spectral counts. For more
extensive details see Additional file 1: Table S3

extracellularly, they could also aid in the digestion of sym-
bionts in the extracellular space just below the worm's cu-
ticle, and precede endocytotic digestion by the epidermal
cells. The digestive proteins included various proteases for
the degradation of polypeptides and oligopeptides, gluco-
sidases with specificity for al -4, al -6 and pl —4
glycosidic bonds, and enzymes involved in lipid and pep-
tidoglycan degradation (Table 3).

The third line of evidence that indicates that O. algar-
vensis digests its symbionts is that it expressed three dif-
ferent types of intestinal digestive enzymes, despite the
fact that it does not have a mouth or gut. (i) The first
type were digestive proteases (Table 3), namely pancreatic
carboxypeptidase A, chymotrypsins A and B, cathepsins B,
F and L, and pancreatic elastase. These enzymes are
most often found in the intestinal tract of animals with
a digestive system (Additional file 1: Table S4). Most of
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Table 3 Digestive enzymes expressed in Olavius algarvensis
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Transcript ID @ Protein ID Annotation Consensus Substrate or function
localization evidence®
Protein digestion
comp310626_c3  nd. pancreatic carboxypeptidase Al secreted release of C-terminal amino acids
comp330196_c1  nd. pancreatic carboxypeptidase A2 secreted release of C-terminal amino acids
comp209868_cO0  nd. pancreatic carboxypeptidase A2 secreted release of C-terminal amino acids
comp329532_c3  nd. pancreatic carboxypeptidase A2 secreted or membrane release of C-terminal amino acids
comp328734_c12 nd. carboxypeptidase secreted peptides
comp328734_c1  nd. carboxypeptidase secreted peptides
comp328734_c4 nd. carboxypeptidase secreted peptides
comp326419_c0  nd. uncharacterized carboxypeptidase  secreted peptides
comp330196_c2  nd. uncharacterized carboxypeptidase  secreted peptides
comp319717_c3  nd. lysosomal Pro-X carboxypeptidase  lysosomal proline - amino acid bonds
comp320275_c1 nd. chymotrypsin A secreted Tyr-/Trp-/Phe-/Leu-|-Xaa bonds
comp306409_c1  nd. chymotrypsin B secreted Tyr-/Trp-/Phe-/Leu-|-Xaa bonds
comp334148_c2  BF11_334148_c2_seq1_11 chymotrypsin-like protease ctrl-1 secreted proteins
BF11_334148_c2_seq2_10
comp331491_c1 BF11_331491_c1_seql_7 pancreatic elastase secreted proteins
comp334775_c2  nd. cathepsin B secreted Arg - Arg/-Xaa bonds
comp335560_cO0  BF11_335560_c0_seq5_5 cathepsin B lysosomal Arg — Arg/-Xaa bonds
BF11_335560_c0_seq9_5
comp306522_c2 nd. cathepsin F lysosomal peptides, cleaves Phe/Leu
comp306522_c3  nd. cathepsin F lysosomal peptides, cleaves Phe/Leu
comp308536_cO0  BF11_308536_c0_seql_12 cathepsin F lysosomal peptides, cleaves Phe/Leu
comp283346_c1  nd. cathepsin L lysosomal proteins
comp306922_c1  BF11_306922_c1_seql_34 cathepsin L lysosomal proteins
comp315575_c0  nd. cathepsin L lysosomal proteins
comp315575_c2  FD_315575_c2_seq1:64:270:1:+ cathepsin L lysosomal proteins
comp328653_c0  nd. cathepsin L lysosomal proteins
comp329800_c6  nd. cathepsin O lysosomal peptides (endopeptidase)
comp314408_c1  nd. cathepsin Z lysosomal C-terminal amino acids (not Pro)
comp308700_cO0  nd. cathepsin C (dipeptidyl peptidase I)  lysosomal release of an N-terminal dipeptide
comp329456_c1  nd. cathepsin C (dipeptidyl peptidase )  lysosomal release of an N-terminal dipeptide
comp328746_c4  nd. alpha amylase secreted al->4 glycosidic bonds

comp324906_c1

comp335205_c1
comp320084_c0
comp334411_c3
comp329957_c8
comp335402_c7
Lipid degradation
comp22535_c0
comp249291_c0
comp250229_c0

BF11_324906_c1_seq1_9
BF11_324906_c1_seq2_12

BF11_335205_c1_seq1_20
nd.
n.d.
BF11_329957_c8_seq2_17
nd.

nd.
nd.

BF11_250229_c0_seq1_15
BF11_250229_c0_seq2_17

alpha amylase

lysosomal alpha glucosidase
lysosomal beta-mannosidase
sucrase-isomaltase

acid trehalase

acid trehalase

lysosomal acid lipase
lysozyme

peptidoglycan recognition protein

secreted or membrane

secreted or membrane
lysosomal

secreted or membrane
secreted or membrane

secreted or membrane

secreted
secreted

secreted

al->4 glycosidic bonds

al->4 glycosidic bonds
cleaves terminal 3-D-mannose
al-> 6 glycosidic bonds
trehalose - > glucose

trehalose - > glucose

hydrolyzes steryl esters
peptidoglycan (glycosidic bonds)
peptidoglycan (peptide bonds)
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Table 3 Digestive enzymes expressed in Olavius algarvensis (Continued)

comp335695_c10 nd.
comp330541_c4 nd.
comp314994_c0 nd.
comp332570_c2  nd.

peptidoglycan recognition protein
peptidoglycan recognition protein
peptidoglycan recognition protein

peptidoglycan recognition protein

secreted or membrane peptidoglycan (peptide bonds
(

)
secreted peptidoglycan (peptide bonds)
secreted or membrane peptidoglycan (peptide bonds)

)

secreted or membrane peptidoglycan (peptide bonds

@Defined as Trinity components; see [13]

PPprobable subcellular localization of proteins based on the results of TMHMM [117, 118], SignalP-4 [119], Phobius [120], TargetP [121], DISTILL [122], LocTree3
[123], BaCelLo [124], and iLoc-Animal [125]. Secreted — enters secretory pathway and is either excreted to the extracellular space or confined to non-cytoplasmic
insides of intracellular compartments; membrane - predicted to be membrane integral; lysosomal - predicted to be targeted towards the lysosome. See Additional

file 3: Table S14 for details on localization evidence

the O. algarvensis digestive proteases were highly simi-
lar to enzymes expressed in the midgut of the oligo-
chaete Eisenia andrei (Additional file 1: Table S5). (ii)
O. algarvensis also expressed a number of digestive glu-
cosidases: two alpha amylases, with best BLAST hits to
salivary gland and pancreatic amylases, an intestinal
sucrase-isomaltase and two enzymes similar to pancre-
atic acid trehalase (Additional file 1: Table S6). (iii) O.
algarvensis expressed five peptidoglycan recognition
proteins (PGRPs) with predicted amidase activity (Fig. 2)
and a lysozyme, all proteins that degrade peptidogly-
cans. Although PGRPs and lysozyme are known for
their role in immune defense [34], they can also aid in
the digestion of food bacteria [35, 36]. The five O.
algarvensis PGRP sequences were highly similar to
PGRPs expressed by the annelid Eisenia andrei in its
midgut (Additional file 1: Table S5). The expression
levels of these enzymes in starved worms were compar-
able to those in fresh worms, suggesting that there was
no overall increase in host digestion rates of symbionts
during starvation.

Taken together, these results strongly indicate that O.
algarvensis obtains nutrition from its symbionts by di-
gestion, rather than milking, using a wide range of di-
gestive enzymes, many of which are known to be
expressed in the digestive tissues of animals. Given that
the symbiotic bacteria are only found in the body wall of
their host, it is highly likely that, in adaptation to the
symbiosis, the expression of these “intestinal” enzymes
has been redirected from the gut to the epidermis. This
assumption is supported by ultrastructural analyses that

show the lysis of symbionts in the epidermal cells of the
worm [37]. Additional support for the digestion of
symbionts instead of “milking” stems from the observa-
tion that some of the O. algarvensis symbionts abun-
dantly expressed high-affinity uptake transporters for
organic substrates [9]. If 'milking' were the main man-
ner in which the hosts gained their nutrition, they
would compete with their symbionts for the uptake of
small organic compounds.

Giant hemoglobins are likely involved in sulfide tolerance
and transport

O. algarvensis abundantly expressed giant extracellular
hemoglobins, which are respiratory pigments produced
exclusively by annelids [38]. They are large multiprotein
complexes (3.8 MDa in earthworms [39]), each consist-
ing of more than a hundred copies of heme-containing
globin chains and non-heme linker chains [38]. We
found 12 globin chains and 6 linker chains from giant
extracellular hemoglobins in our proteomes and tran-
scriptomes (Additional file 1: Table S7). A signal peptide
was predicted for all complete coding sequences, lending
further support that these hemoglobins are indeed extra-
cellular. Of the twelve O. algarvensis hemoglobin chain
sequences, five could be unequivocally assigned to their
respective families (3x family A, 2x family B).

We found that one of the three chains assigned to
family A contained a free cysteine residue (Fig. 3). Free
cysteine residues do not participate in the formation of
disulfide bonds in proteins, and therefore may uninten-
tionally react with other blood components and disturb

OalgPGRP5: comp332570_c2; OalgPGRP6: comp1100768_c0

)

OalgPGRP1 [ S
OalgPGRP2 [ [
OalgPGRP3 [N @ @
OalgPGRP4 [ [N
OalgPGRPS (N )
OalgPGRP6 |

Fig. 2 Domain structures of peptidoglycan recognition proteins. Structure of conserved functional domains in Olavius algarvensis peptidoglycan
recognition proteins; OalgPGRP1: comp330541_c4; OalgPGRP2: comp250229_c0; OalgPGRP3: comp335695_c10; OalgPGRP4: comp314994_cO;

[ PGRP domain, amidase activity
[:] PGRP domain, no amidase activity
D signal peptide

- transmembrane region

[ cytoplasmic region

100 aa
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Fig. 3 Protein alignment of hemoglobin A2 chains. Protein alignment of hemoglobin A2 chains from marine and terrestrial annelids: Riftia
pachyptila (GenBank accession number: CAD29155), Tevnia jerichonana (GenBank accession number: AAP04530), Lamellibrachia satsuma (GenBank
accession number: BAN58231), Lamellibrachia sp. XB-2003 (GenBank accession number: AAP04528), Oasisia alvinae (GenBank accession number:
AAP04531), Oligobrachia mashikoi (GenBank accession number: Q7M413), Arenicola marina (GenBank accession numbers: A2a, CAI56308; A2b,
CAJ32740; A2c, CAJ32741), Lumbricus rubellus (GenBank accession number: BF422675.2), Lumbricus terrestris (GenBank accession number: P02218),
Tylorrhynchus heterochaetus (GenBank accession number: P09966) and Olavius algarvensis (comp287449_c0_seq1)
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l conserved cysteine residue involved in sulfide binding
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blood homeostasis [40, 41]. Extracellular hemoglobins
are therefore under strong selective pressure to avoid
the incorporation of free cysteines. The exception are
annelids that experience high concentrations of sulfide
in their habitats (Fig. 3, [17]). In these worms, free cyst-
eine residues in the A2 and B2 hemoglobin chains may
allow them to reversibly bind environmental hydrogen
sulfide and oxygen simultaneously [42]. It has been ar-
gued that this could mitigate the toxic effects of hydro-
gen sulfide for these worms. In hydrothermal vent tube
worms, which also have free cysteine residues in their
hemoglobin, it is assumed that these also allow them to
bind and transport sulfide to their sulfur-oxidizing endo-
symbionts [43]. In these worms, sulfide-binding to
hemoglobin could also be mediated by zinc ions rather
than free cysteine [44, 45]; however zinc does not appear
to play a role in sulfide-binding in other annelids [46].

In O. algarvensis, the free cysteine residue is located in
the conserved position that allows sulfide binding, and
hydrophobic cluster analysis showed that the molecular
environment of this free cysteine is highly similar to the
sulfide-binding domain of A2 chains in other annelids
(Additional file 1: Figure S2). It is therefore plausible
that the O. algarvensis hemoglobin can also bind sulfide.

O. algarvensis lives in oligotrophic sediments with very
low environmental sulfide concentrations [6, 9]. How-
ever, its sulfate-reducing symbionts are a considerable
internal source of sulfide under anoxic conditions [6].
With its sulfide-binding hemoglobin, the host could
store this internally produced sulfide for use by the SOX
symbionts once they return to oxic conditions. Further-
more, the sulfide-binding hemoglobin might keep sulfide
levels low in sensitive tissues of O. algarvensis such as
the central nervous system.

Hemerythrin may enable respiration in the absence of O,
and in the presence of CO
In addition to hemoglobin, the host expressed two hem-
erythrins, which are also respiratory proteins, but with-
out heme groups. One of these hemerythrins was by far
the most abundant protein in both fresh and starved
worms, and accounted for 11-15% of total host protein
(Additional file 2: Table S8). In comparison, the second
most abundant protein, a histone, accounted only for less
than 3%. Both hemerythrins were more highly expressed
than any of the hemoglobin chains; expression levels of the
most abundant hemerythrin were almost 32 times higher
than the most abundant globin chain in the proteome
(Additional file 2: Table S8). Such abundant expression of
hemerythrin is unknown from gut-bearing oligochaetes
and other annelids (Additional file 1: Table S9).
Hemerythrin is an oxygen-carrying protein in sipuncu-
lids, priapulids and brachiopods, and also in a few poly-
chaete annelids [47, 48]. In addition to oxygen transport,
annelids might use hemerythrins for heavy metal resist-
ance and antibacterial defense, or as an egg yolk protein
[49-51]. In the only study that found hemerythrin ex-
pression in an oligochaete, it was assumed to be involved
in heavy metal detoxification [50]. Since the environ-
ment of the O. algarvensis sampled for this study is not
contaminated with high levels of heavy metals or patho-
genic bacteria, and the worms in our experiments were
not exposed to such conditions, it is unlikely that the
high expression levels of hemerythrin are related to
heavy metal resistance or antibacterial defense. We can
also exclude its role in egg yolk protein, because the
worms for proteomics were sampled in the fall, a time of
the year when O. algarvensis does not reproduce (Kleiner,
Lott, Wippler, unpublished observation). Therefore, it
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seems most likely that the hemerythrin in O. algarvensis is
used to bind oxygen. This raises the question why O.
algarvensis has two abundant oxygen binding proteins -
hemoglobin and hemerythrin.

The fact that hemerythrin expression is unusual in oli-
gochaetes suggests that there is a considerable selective
advantage for its expression in O. algarvensis. One intri-
guing property of hemerythrin is that it is insensitive to
carbon monoxide (CO) [52]. In contrast, heme proteins
such as hemoglobin and myoglobin have much higher af-
finities for CO than for oxygen [53, 54]. This makes CO
highly toxic to organisms that rely on heme proteins for
oxygen transport. Considerable in situ CO concentrations
of up to 51 nM were regularly measured in the O. algar-
vensis environment [11], and CO serves as an energy
source for its sufur-oxidizing and sulfate-reducing symbi-
onts [9]. Thus, the selective advantage of using hemery-
thrin for oxygen binding could be that it mitigates the
adverse effects of carbon monoxide for the host.

The question remains why hemoglobin is also expressed
in O. algarvensis, in parallel to hemerythrin. We speculate
that hemerythrin and hemoglobin fulfill different func-
tions in these worms. We propose that hemerythrin is
used for oxygen storage to bridge the frequent and ex-
tended periods of anoxia that O. algarvensis is exposed to
in the reduced sediment layers it mainly inhabits. Hemery-
thrin is well suited for oxygen storage because its oxygen
binding capacity is stable under varying concentrations of
O,, CO, and protons [55, 56], and has been shown to play
a key role in oxygen storage for bridging hypoxic episodes
in sipunculids [57]. In contrast, hemoglobin, due to co-
operative binding of oxygen and the Bohr effect, is well
suited for gas exchange with the environment, which
occurs in the upper oxic layer of the sediment where
CO concentrations are much lower [11].

Interestingly, hemerythrin was also co-expressed with
hemoglobin in the sulfur-oxidizing symbiont-bearing
trophosome tissue of the deep-sea hydrothermal vent
tube worm Ridgeia piscesae, a polychaete annelid that is
not closely related to O. algarvensis [58]. The function
of hemerythrin in Ridgeia is at present unknown. It is
intriguing that the two animals currently known to
abundantly express both hemoglobin and hemerythrin,
O. algarvensis and R. piscesae, live in symbiosis with
sulfur-oxidizing bacteria.

Interactions between the host innate immune system and
its microbiome

We analyzed the proteins of the host innate immune
system in our transcriptomes and proteomes, because
these receptors, regulators and effectors are essential for
sensing and responding to microbes [59], and are thus
crucial for establishing and maintaining bacterial symbi-
osis [4]. The immune system must be able to distinguish
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beneficial symbionts from harmful intruders, and must
respond appropriately, avoiding chronic inflammation in
the presence of symbionts, while allowing rapid elimin-
ation of non-symbiotic bacteria.

Multitude of pattern recognition molecules for differential
responses to microbes

Pattern recognition receptors (PRRs) are proteins that
recognize microbe-associated molecular patterns (MAMPs)
by binding to surface molecules specific to microbes,
like peptidoglycan or lipopolysaccharide [60]. PRRs are
essential for sensing the presence of different microbial
species and initiating an appropriate response, either
via activation of immune signaling pathways and the
synthesis of antimicrobial compounds, or by dampen-
ing or silencing the immune response in the case of
bacterial symbionts [4]. We identified many different
types of classical pattern recognition receptors, as well
as proteins potentially involved in pattern recognition
via conserved domains (Table 1).

PGRPs

Six peptidoglycan recognition proteins (OalgPGRP1-
OalgPGRP6) were expressed in the O. algarvensis
transcriptomes, and one of these was detected in the
proteomes (OalgPGRP2, Table 1). PGRPs were first
described as an important component of the innate
immune defense [61], but are now known to play a
major role in many animal-bacteria symbioses, mediat-
ing symbiont tolerance [62, 63], controlling symbiont
populations [64], and regulating symbiosis establish-
ment and maintenance [63, 65]. Elevated expression of
PGRPs was also observed in the symbiont-bearing tis-
sues of hydrothermal vent tube worms and mussels;
however their precise function within these symbioses
remains unknown [4, 66].

Specific PGRP function can not be determined from
sequence information alone and depends on the mo-
lecular context in which they are expressed. However,
some assumptions can be made and are discussed in
the following. OalgPGRP1, OalgPGRP3 and OalgPGRP5
contained N-terminal transmembrane domains (indi-
cating that they are membrane integral), as well as
novel cytoplasmic domains (Fig. 2). As is typical for
PGRPs, the poorly conserved cytoplasmic domains had
no similarity to known sequences [34]. PGRPs that in-
tegrate into the cell membrane and carry intracellular
domains often induce an antimicrobial response by ac-
tivating immune signaling pathways like Toll and IMD
(immune deficiency) [67, 68]. However, some PGRP re-
ceptors bind peptidoglycans, but do not pass on an
intracellular signal, thus effectively down-regulating the
immune response and mediating tolerance towards
resident bacteria [69].
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OalgPGRP2 and OalgPGRP4 consisted only of the
conserved PGRP domain itself with a signal peptide, in-
dicating that they are secreted (Fig. 2). Similar to the
transmembrane PGRPs, secreted PGRPs can induce an
antimicrobial response by indirectly activating immune
signaling [70] or acting as bacterial growth inhibitors or
antimicrobials themselves [71, 72]. However, if they
possess amidase activity, they also can dampen the im-
mune response, by cleaving peptidoglycan into non-
immunogenic fragments [36, 73].

OalgPGRP1, OalgPGRP2, OalgPGRP4 and OalgPGRP5
contained the conserved residues needed to cleave
peptidoglycan (Fig. 4 [36, 74]). This suggests that they
contribute to symbiont tolerance by scavenging im-
munogenic peptidoglycan fragments, which are released
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as a by-product of bacterial growth. The sequence of
OalgPGRP3 was incomplete, but contained four out of
the five residues needed to cleave peptidoglycan (Fig. 4).
These enzymatically active PGRPs may also play a role
in symbiont population control and host nutrition by
participating in the digestion of symbionts [75].

The affinities of PGRPs for different types of peptidogly-
can stem peptides are determined by specific residues in
the PGRP binding groove [76]. OalgPGRP1, OalgPGRP2,
OalgPGRP4 and OalgPGRP5 possessed the residues that
favor recognition of DAP-type peptidoglycan typical for
gram negative bacteria [77], indicating that they could
be used for the recognition of the worm's symbionts
(which are all gram-negative) (Fig. 4). The specificity of
OalgPGRP3 could not be assigned because it had an

10 . 30 . 30 \ P . 30 \ 50 . e .
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Fig. 4 Protein alignment of peptidoglycan recognition proteins. Protein alignment of PGRP domain sequences from different model organisms
and Olavius algarvensis; Dmel Drosophila melanogaster (GenBank accession numbers: PGRP-SA, Q9VYX7; PGRP-LA, Q95T64; PGRP-LB, Q8INK6;
PGRP-LC, Q9GNKS5), Mmus Mus musculus (GenBank accession numbers: PGRP1, 088593; PGRP2, Q8VCSO0; PGRP3, ATA547; PGRP4, QOVB07),
Hsap Homo sapiens (GenBank accession numbers: PGRP-S, 075594; PGRP-L, Q96PD5), Oalg Olavius algarvensis (OalgPGRP1, comp330541_c4;
0algPGRP2, comp250229_c0; OalgPGRP3, comp335695_c10; OalgPGRP4, comp314994_c0; OalgPGRP5, comp332570_c2; OalgPGRP6,
comp1100768_c0). Conserved active-site residues that confer amidase activity are shown in red; mutation of at least one active-site residue
(pink) removes amidase activity
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insertion of two amino acids in the binding-groove re-
gion, and the OalgPGRP6 fragment did not contain the
binding-relevant region.

Lectins

We detected six different classes of lectins in the tran-
scriptome and proteome (Table 1, Table 4). They in-
cluded C-type lectins, R-type lectins, fucolectin, SUEL/
rhamnose-binding lectins, galectins, a beta-1,3-glucan
binding protein and fibrinogen-like proteins. Lectins are
proteins with widely differing molecular structures and
physiological functions. They are unified by their ability
to strongly, yet reversibly, bind specific carbohydrate res-
idues on the surfaces of cells and proteins, without exhi-
biting enzymatic activity [78].

Lectins are often associated with immune functions
because of their molecular pattern recognition proper-
ties. For instance, they aid in microbe recognition and
elimination through agglutination or direct antibacterial
activity [79, 80], but, similar to PGRPs, are often also in-
volved in modulating interactions between hosts and
their beneficial symbionts. Lectins were, for example,
shown to play major roles in symbiont acquisition and
maintenance in sponges [81], corals [82, 83], clams [84],
mice [85], and stilbonematid nematodes [86]. The sulfur-

Table 4 Lectins expressed in Olavius algarvensis
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oxidizing symbionts of stilbonematine nematodes are very
closely related to the primary symbionts of gutless oligo-
chaetes [7, 87]. However, the stilbonematine lectins have
no notable sequence similarity to the O. algarvensis lec-
tins, as expected given the long independent evolutionary
histories of these two animal groups [87].

The domain architectures of Olavius lectins and their
potential functions in host-symbiont interaction are
summarized in Table 4. C-type lectins were particularly
diverse, and 33 different forms were found in the tran-
scriptome. Some of these C-type lectins have significant
sequence similarity to lectins implicated in host-microbe
interactions (Additional file 1: Table S10), for example to
CD209 antigen-like proteins, macrophage mannose recep-
tors, and C-type lectin receptor B — all MAMP receptors
and phagocytosis enhancers of bacteria in vertebrates
[88-90], and to immunolectin A, a microbe-inducible C-
type lectin in Manduca sexta (tobacco hornworm) that is
also involved in phagocytosis [91] .

Another highly diverse group of lectins found in O.
algarvensis were fibrinogen-related proteins (FREPs),
which are almost exclusively involved in host-microbe
interactions in invertebrates [92]. They were represented
by 27 different unigenes (“‘components” in Trinity as-
sembler terminology) in the transcriptome (Table 1,

Lectin group Transcripts ~ Proteins  Domain architectures
a) b)

Potential functions

Fucolectins 1 0 o -—
C-type lectins 33 5 —
-
[ - .
[
—-
- -
C o=
R-type lectins 6 4 - .
[ |
Galectins 3 1 q )
SUEL rhamnose- 7 1 a»
binding lectins ao-mm
D - .-

Fibrinogen-like proteins 27 1

glycan recognition and host defense [126]

glycan recognition [85], symbiont recognition and acquisition [127]

glycan recognition [128], antimicrobial [129, 130], host defense [131]

[132, 133], host defense [134, 135]
MAMP recognition [136, 137], egg fertilization [138], development [139]

[92], MAMP recognition and antimicrobial activity [79], development
[140], egq fertilization [141]

@D fucolecin (IPRO004A21, IPRO08979, PF006585) (D carbohydrate-binding WSC (IPR002889)

fibrinacen (IPR002181)
@D von Wilebrand factor type A (IPRO0203S)
@D 19t (1PF014756)

c-type lectin (IPR0O1304)
galectin (IPR001079)
@D ricin B lectn IPRO00772)

@ Number of transcripts, defined as Trinity components; see [13]
5 Number of identified proteins in the proteomes

SUEL (IPR0O00922) @D <R (IPRO20999)
) EGF (IPRO00742) @D rerse transcriptase (IPROO.
@D :ipha carbonic antydrase (IPR0O01148) (@) ShKT {IPR0O3582)
@ CUB (PROC0BSI) B vansmembrane region
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Table 4). For most of these, several isoforms with vary-
ing amino acid sequences were predicted, indicating
that they may form an even more diverse array of pro-
teins, possibly allowing very high specificity in the rec-
ognition of microbes.

Scavenger receptor cysteine rich proteins

In the transcriptomes we found a large group of se-
quences containing single or tandem scavenger recep-
tor cysteine rich (SRCR) domains, often in association
with other conserved domains, such as C-type lectin,
trypsin, epidermal growth factor, low density lipopro-
tein (LDL) receptor, and immunoglobulin domains
(Additional file 1: Figure S3). One of these proteins,
which contained an additional universal stress protein
A and four LDL receptor class B domains, was also
identified in the proteome (Table 1).

The SRCR domain is an ancient and highly conserved
module often found in proteins of the innate immune
system that are involved in the recognition of microbial
patterns and phagocytosis of bacteria in vertebrates
[93]. In invertebrates, SRCR proteins have been impli-
cated in host-symbiont interaction [94] and MAMP
recognition [95].

Many SRCR sequences we identified had significant
similarity to the MARCO scavenger receptor, DMBT]I,
CD163/M130, sea urchin scavenger receptors, and lam-
prey Pema-SRCR protein (Additional file 1: Table S11);
all of these proteins are known or have been implicated
to be involved in immune functions [93, 96]. Similar to
the Olavius FREPs, the SRCR sequences identified in the
transcriptome were represented by a considerable number
of unigenes (FREP: 27, SRCR: 25), but many more differ-
ent isoforms were predicted by the assembly. We there-
fore expect a high variability in the final proteins, possibly
supporting highly specific recognition of microbes in Ola-
vius, as has been observed in other invertebrates [97].

Toll-like receptors
We identified two Toll-like receptors (TLRs) consisting
of the typical intracellular Toll/interleukin-1 receptor
(TIR) homology domain and extracellular leucine- and
cysteine-rich domains [98]. One of them was also de-
tected in the proteome. Furthermore, we identified two
sequences with only a TIR domain, one sequence with a
TIR and transmembrane domain, and eight sequences
containing leucine-rich repeats with high sequence simi-
larity to TLRs from other animals and the variable
lymphocyte receptors (VLRs) of agnate fish (Additional
file 1: Table S12). VLRs are immune receptors that ex-
perience somatic recombination and convey a form of
adaptive immunity in jawless vertebrates [99].

Toll-like receptors (TLRs) are microbial pattern recog-
nition receptors and intracellular signaling transducers
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that play a vital role in sensing and responding to micro-
biota in many animals [100]. They also play a role in
many beneficial host-microbe symbioses [101, 102].
TLRs have long been thought to be absent from annelids
[103, 104]. However, their presence and importance in
host-microbe interactions has recently been recognized
in polychaetes, leeches and earthworms [105, 106],
where some were shown to be involved in the innate im-
mune response against pathogens [107, 108] or were
constitutively expressed in the gut [109].

We identified all the major components of the Toll
signaling pathway in O. algarvensis, indicating that Toll
signaling is active (Additional file 1: Table S13). We
identified SARM (sterile alpha and TIR motif containing
protein), an inhibitor of Toll signaling [110], that could
aid in down-regulating the immune response against
symbionts. Tollip, another inhibitor of Toll signaling
[111], was also detected in the proteome, suggesting that
these two inhibitors of Toll signaling may protect O.
algarvensis against constant inflammation in response to
its symbionts.

Interactions between symbionts and host may be
regulated by different immune effectors and modulators
We detected several different types of antimicrobial pro-
teins in the host transcriptome and proteome (Table 1),
some of which were very abundant (Additional file 2:
Table S8). The antimicrobials expressed in both tran-
scriptome and proteome were lumbricin, an antimicro-
bial protein first discovered in earthworms [112], BPI
(bactericidal permeability increasing protein), perforin/
membrane attack complex-like proteins, insect defensin-
like reeler proteins and cysteine-rich secretory proteins
(Table 1). Antimicrobials combat infection by pathogenic
microbes [113], but are also important in beneficial
host-microbe interactions [85, 114], where they are used
to modulate and control symbiont populations [115, 116].
In O. algarvensis they might be used to prevent symbionts
and pathogens from invading non-symbiotic tissues, or to
regulate symbiont growth.

Conclusions

This study provides insights into the physiological and
molecular mechanisms that allow Olavius algarvensis to
live in a stable beneficial association with its microbial
consortium. Our results indicate that these animals have
undergone a number of evolutionary changes in adapta-
tion to their symbiotic lifestyle, apart from a complete
reduction of the excretory and digestive organs. Exam-
ples of such adaptations are host proteins involved in
symbiont digestion and nutrient uptake, with likely
relocalization of the expression sites of some of these
enzymes, and unconventional proteins for gas exchange
and storage.
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Since a mouth and anus are absent in gutless oligo-
chaetes, and their epidermis is covered by a thick layer
of symbionts, foreign microbes can only invade these
hosts if they have the ability to penetrate the egg integu-
ment, or the cuticle in a juvenile or adult worm, and
pass through the symbiont layer just under the worm's
cuticle. As a result, the complexity of the O. algarvensis
microbiome is quite low and consists primarily of its five
symbiotic phylotypes. Despite this low microbial diver-
sity, we found that O. algarvensis expresses a highly di-
verse array of pattern recognition receptors, comparable
to other invertebrates that are associated with a much
more complex community of microbes on their skin and
in their digestive system. The high number of MAMP
recognition proteins expressed in the transcriptome and
proteome that clearly originated from different genes
demonstrate the need of Olavius algarvensis to differen-
tially sense and respond to both its symbiotic microbiota
as well as environmental bacteria, although direct con-
tact with the latter may be limited. The transcriptomes
generated in this study contained small amounts of con-
tamination with other Olavius species (0.1 — 3.5%) and
minor contaminations are also expected to be present in
the proteomes. Therefore, transcripts and proteins with
very low expression levels should be treated with cau-
tion, as they alternatively may have originated from
closely related Olavius species. Particularly, if several
variants of a transcript or protein were expressed, it is
possible that some of the variants that were considerably
less abundant than the most abundant variant could be
derived from the contaminating species.

This is also the first comprehensive transcriptomic
and proteomic analysis of the innate immune system of
a marine oligochaete. It shows how genes common to a
wide array of invertebrates have evolved to enable the
intricate communication and interactions that occur
between animals and their symbiotic microbiota. The
analyses described here lay the foundation for future
experimental studies of immune processes and physio-
logical responses that are essential in the functioning of
this symbiosis.
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