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We discuss the orbital angular momentum (OAM) and the edge mass current in neutral fermionic
superfluids with broken time reversal symmetry. Recent mean field studies imply that total OAM
of a uniform superfluid depends on boundary conditions and is not a thermodynamic quantity. We
point out that this does not conflict with thermodynamics, because there is no intensive external
field conjugate to OAM with which a uniform superfluid is stable in the thermodynamic limit,
in sharp contrast to the orbital magnetization in a non-superfluid system. We establish a simple
physical picture for the sensitivity of OAM to boundaries by introducing the notion of “unpaired
fermions” and “fermionic Landau criterion” within a mean field description. In order to go beyond
the mean field approximation, we perform a density matrix renormalization group calculation and
conclude that the mean field understanding is essentially correct.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The study of orbital angular momentum (OAM) in a
superfluid with broken time reversal symmetry has a long
history since the discovery of 3He-A phase1–6. In the p-
wave 3He-A phase, each Cooper pair is expected to carry
OAM ν = 1, resulting in a bulk OAM proportional to
the total number of fermions N in the system. However,
the discussions on the magnitude of the total OAM has
been controversial and called “intrinsic angular momen-
tum paradox”. At an intuitive level, the OAM is esti-
mated as Lz = ν×N/2 just by counting the total number
of Cooper pairs, while OAM could also be estimated as
Lz = ν× (N/2)× (∆/εF ) since the fermions only around
the Fermi energy εF would be relevant to physical quan-
tities. ∆ is the gap amplitude of the superfluidity. Both
of the physical estimations seem to be reasonable, and
detailed theoretical calculations predicted various values
of the spontaneous OAM corresponding to these physical
pictures1–24.

Recently, this problem attracts renewed interest,
partly because the chiral superfluidity like 3He-A state
is a prototypical example of topological superconduc-
tivity/superfluidity 6,25–34. In such a chiral topological
state, the edge mass current Jedge flows along a sam-
ple boundary, which leads to OAM Lz = 2Jedge × V
where V is the sample volume. Interestingly, it has
been proposed that the OAM is related to non-dissipative
transport phenomena in two-dimensional chiral superflu-
ids35–41; the thermal Hall conductivity κH is given by
temperature derivative of OAM, and the quantization of
κH at low temperature which is the hallmark of a chiral
superfluid as a symmetry protected topological phase is
attributed to the quantized value of the edge mode con-
tribution to OAM35,36. Similarly, the Hall viscosity ηH
at zero temperature which is considered as an intrinsic
non-dissipative transport quantity in two-dimensions is
shown to be proportional to OAM per fermion at and is

therefore quantized in chiral superfluids37–41. The mass
current Hall conductivity is also related to the OAM via
ηH

40. Since κH and ηH are considered as topological in-
trinsic quantities, their connections to OAM would imply
that Lz is independent of details of the system such as
the gap amplitude ∆ and the Fermi energy εF .
However, surprisingly, there have been various mean

field calculations which show that the spontaneous OAM
in a chiral superfluid does depend on boundary con-
ditions of a system and is not an intrinsic quantity
26–32,42–45. This is, on one hand, quite counter-intuitive,
since it has been widely regarded that OAM is a ther-
modynamic quantity and should be independent of non-
thermodynamic details such as boundary conditions and
shapes of a system. This can be inferred from the well-
known formula for the total OAM,

Lz = −∂F (Ωz)

∂Ωz
, (1)

where F (Ωz) is the free energy in the rotating frame with
the angular velocity Ωz along z-axis46. On the other
hand, the sensitivity of OAM to boundaries would be
rather natural, since the origin of spontaneous OAM in
a chiral superfluid is mainly the edge mass current and
such a current could be influenced by details of bound-
aries along which the current flows. For example, we
may expect that edge mass current depends on rough-
ness of the sample surface. Indeed, this was shown to
occur within mean field calculations26,42–44. It was also
demonstrated that directions of edge mass current can
be even reversed depending on sample shapes45. Simi-
lar reversal of edge mass current is possible at a domain
boundary between superfluids with positive and negative
chiralities47,48. All the contributions to the energy from
boundary conditions and system shapes themselves are
at most proportional to the surface area in a system with
short range interactions.
One can compare the OAM in superfluids with sponta-

neous orbital magnetization (OM) in non-superfluid sys-
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tems, and will find a qualitative difference between these
two quantities. Total spotaneous OM for a finite size sys-
tem is simply proportional to total OAM at zero mag-
netic flux density, Mz = −µBLz, as an operator in an
appropriately chosen gauge where µB is the Bohr mag-
neton49. Although one might expect that the sponta-
neous OM is also a non-thermodynamic quantity which
depends on boundaries or shapes, it is a thermodynamic
quantity and the well known formula,

Mz = −∂F (Bz)

∂Bz
, (2)

is a thermodynamic relation, where Bz is the uniform
magnetic flux density50,51. Indeed, these have been
proved to be true in non-interacting systems52–54, and
free energy density in interacting systems have also
been discussed extensively55,56. Therefore, the non-
thermodynamic nature of spontaneous OAM discussed
in the previous studies would be a characteristic prop-
erty only in superfluids.

Experimentally, direct observations of OAM and corre-
sponding edge mass currents are challenging issues. For
example, there have been a limited number of experimen-
tal reports on the intrinsic angular momentum paradox
in the 3He-A phase57–59, and the magnitude of the edge
charge current in the candidate chiral p-wave supercon-
ductor Sr2RuO4 is extremely small compared with a the-
oretical estimation32,60. If OAM and edge currents are
boundary sensitive quantities, careful discussions will be
required for an experimental detetction.

Although there have been many calculations of spon-
taneous OAM and corresponding edge mass current for
concrete models of superfluids within mean field approx-
imations 26–34,42–45, a comprehensive understanding es-
pecially on connections to thermodynamics has not been
well established. Therefore, it is desirable to develop a
simple understanding on the physical reason why OAM
in superfluids can depend on non-thermodynamic details,
and obtain an intuitive picture. In this study, we point
out that the OAM, especially the spontaneous OAM, in
a superfluid is not a thermodynamic quantity by focusing
on absence of a thermodynamic limit under rotation and
roles of Hess-Fairbank effect under an artificial magnetic
flux density. Then, we establish a simple physical picture
for the non-thermodynamic nature of the OAM within
mean field descriptions, where two important notions,
“unpaired fermions” and “fermionic Landau criterion”,
are introduced. In order to go beyond the mean field
approximations, we perform a non-perturbative numeri-
cal calculation by using the infinite density matrix renor-
malization group (iDMRG)61–66. It is concluded that the
mean field understanding is essentially correct.

II. NON-THERMODYNAMICS OF OAM IN

NEUTRAL SUPERFLUID

In this section, we discuss whether or not OAM (es-
pecially spontaneous OAM) in a uniform superfluid can
be described within the standard thermodynamics. Al-
though this will be an elementaly discussion, to the best
of our knowledge, it has never been explicitly considered
in the context of the spontaneous OAM in chiral super-
fluids. This may be a reason for the controversial dis-
cussions on the OAM, and therefore we will clarify some
important points here.

A. General discussion

The extensive thermodynamic free energy FTD
V for vol-

ume V can be derived from the statistical mechanical free
energy density in the thermodynamic limit f∞,

FTD
V = V × f∞. (3)

If FTD
V is well-defined in the presence of Ωz 6= 0 or

Bz 6= 0, Eq. (1) or (2) becomes a thermodynamic re-
lation. Since a thermodynamic free energy is stable to
non-extensive perturbations such as boundary conditions
and shapes, a physical extensive quantity obtained from
FTD
V should also be thermodynamic. However, in gen-

eral, it is a non-trivial problem whether or not a micro-
scopic model has a well-defined thermodynamic limit and
thermodynamics can be applied to the system. Indeed,
the previous mean field studies may imply that Eqs. (1)
and (2) for a uniform superfluid are not thermodynamic
relations 26–34,42–45.
For a general system, we would naively expect that an

extensive quantity M is stable to non-extensive perturba-

tions if and only if it is derived from a thermodynamic

free energy. Indeed, if the thermodynamic free energy is
obtained in the presence of a conjugate intensive field h
to M , we have

MTD
V (h) = −∂F

TD
V (h)

∂h
, (4)

whereMTD
V is the thermodynamic value of the statistical

mechanical quantity M 67,68. Similarly, if the statisti-
cal mechanical expectation value 〈M〉V is robust to non-
extensive perturbations, the statistical mechanical free
energy FV with the intensive conjugate field h 6= 0 ob-
tained as

FV (h)− FV (0) = −
∫ h

0

dh′〈M〉V (h′) (5)

will also be stable to the perturbations, if possible
changes in FV (0) by the perturbations are at most
o(V )69. For such a stable FV (h), one would naively ex-
pect existence of a well defined thermodynamic limit.
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An important subtle point in OAM is that the OAM
operator itself is not extensive20,22,70. For a system on
V ⊂ R3, the OAM operator is defined as

Lz =

∫

V

ψ†[r × p]zψd
3x =

∫

V

[r × j ]zd
3x, (6)

j (r) = −i(ψ†∇ψ −∇ψ†ψ)/2, (7)

where pj = −i∇j and j is the mass current density. Or
equivalently, in the first quantization form,

Lz =

N
∑

i=1

ri × pi =

∫

V

[r × j ]zd
3x, (8)

j (r) =

N
∑

i=1

{δ(r − ri),pi}/2. (9)

Although it is not trivial from these expressions, its ex-
pectation value at equilibrium scales as 〈Lz〉V = O(V ), if
an equilibrium state is well-defined. This is because j(r)
is usually localized around the boundary of V in such a
state71, and the above expressions can be reduced to

〈Lz〉V ≃
∫

∂V

[r × Jedge]zd
2x‖, (10)

Jedge(r‖) =

∫

〈j (r)〉V dx⊥, (11)

where Jedge is the net edge current which are the inte-
gral of 〈j 〉V over the perpendicular direction x⊥ to the
surface72. Then, it is clear that 〈Lz〉V = O(V 2/3) ×
O(V 1/3) = O(V ).
We note that it is impossible to express the operator

Lz as a sum of local “OAM density operator” which is
translationally symmetric20,22. This can be understood
as follows. Suppose that there exists a local OAM den-

sity operator of the form l(r) = [ψ†(r)̂l(∇)ψ(r) + (h.c.)]

where l̂ is independent of r. We expand l̂j = a1j +
a2jk∇k + · · · where a1j , a2jk, · · · ∈ C. Then it is easy to
see that there is no solution for the commutation relation
[li(r), lj(r

′)] = iδ(r − r′)ǫijklk(r). Therefore, the oper-
ator l(r) does not exist73–75. This is in sharp contrast
to the familiar spin magnetization operator which can be
equivalently expressed either of the form

∫

V d
3xs(r) or

∫

V d
3x[r × (∇ × s(r))] with s(r) = ψ†σψ/2. These are

consistent with our naive expectation that spin is an in-
ternal degrees of freedom which has the spatial position
independent generator of SU(2) symmetry, while an or-
bital motion is an spatially extended object and therefore
there is no local, translationally symmetric generator of
SO(3) rotational symmetry.
In the following, we will consider several theoretical se-

tups in which OAMmight possibly be obtained by deriva-
tive of a thermodynamic free energy; we introduce two
kinds of external fields, a uniform rotation with or with-
out additional confinement potentials corresponding to
Eq.(1), and an artificial constant magnetic flux density
corresponding to Eq.(2). In each case, we explain that

FTD
V (h) is not obtained for a superfluid with a uniform

density, and OAM cannot be regarded as a thermody-
namic quantity.

B. System under rotation

The robustness of 〈M〉V is guaranteed by the existence
of a thermodynamic limit of fV (h) = FV (h)/V under
the intensive conjugate field h for fixed N/V , which is
often implicitly assumed in condensed matter physics.
Although this assumption is indeed satisfied in many
systems, there are several important exceptions and a
system of particles under a uniform rotation, for ex-
ample, confined in a cylinder of radius R is the case
68,76–79. This is simply because the centrifugal potential
Vcen ∝ −(Ωzr⊥)

2 (r⊥ is the in-plane distance from the
rotation axis) will push the particles onto the boundary
of a system and velocities of those particles ΩzR will be
infinitely fast when the system size R becomes R → ∞
with keeping Ωz 6= 0. Indeed, it is easy to show that such
a system described by Schrödinger Hamiltonian with a
stable, short-range interaction does not have stability of
Hamiltonian of the second kind, i.e. ¬(H > const × V ),
and therefore does not have a thermodynamic limit when
the particles are confined in a rigid wall container76. For
example, we consider variational single particle wavefunc-
tions

ψj(rj , θj, zj) ≃ eiljθj ψ̃j(rj), (12)

where lj = Ωz/Ωj with Ωj = 1/mR2
j and the particle

mass m. ψ̃j(rj) is localized at rj = Rj = O(R) and sat-
isfies a given boundary condition at rj = R. Although we
only consider particular values of Ωz for which ψj is con-
sistent with a given boundary condition on θj , there are
many such Ωzs when Ω0 = 1/mR2 is sufficiently small.
We then construct an anti-symmmetric many-body wave-
function Ψvar for N particles from these single particle
wavefunctions, which obviously gives 〈Ψvar|H |Ψvar〉 ∼
−I0Ω2

z/2 = O(V 5/3) with I0 = mNR2 in the leading
order. It is noted that the expectation value of a sta-
ble, short range interaction term in the Hamiltonian is
at most O(V ), and therefore it is irrelevant here.
For such a system to have a thermodynamic limit, one

needs to keep ΩzR = O(1) at a fixed value when tak-
ing R → ∞, which means that the angular velocity Ωz

is no longer an intensive field conjugate to OAM 80–83.
Therefore, Eq. (1) is an equation which holds only in
a small size system and is not a thermodynamic equa-
tion. In fact, for such a case, the coupling term in the
free energy is −Ωz〈Lz〉 = O(R−1)O(V ) = O(V 2/3) when
OAM is O(V ), and this energy gain is comparable with
possible surface perturbations and therefore cannot guar-
antee thermodynamic nature of OAM. Note that it could
be considered that the state with a uniform density dis-
tribution84,85 is metastable (or non-equilibrium) and is
not a true equilibrium/ground state of a rotating three-
dimensional system.
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One may expect that the Hamiltonian can be made sta-
ble for fixed Ωz = O(1) by use of a mathematical trick of
introducing an additional confinement potential such as
Vcon = Cnr

n
⊥, and taking an appropriate limit of Cn ↓ 0.

This might reproduce the desired thermodynamic limit
of the original free energy, if Vcon-dependence of the free
energy density could be removed. In order to do so,
we wish to take the limit, limCn↓0 limN↑∞ FN (Ωz)/N for
fixed Ωz = O(1). However, for such a Hamiltonian with
a confinement potential, one needs to take a scaling limit
of Cn and N to have an extensive free energy. For ex-
ample n = 2, the kinetic Hamiltonian can be written
as (p − A)2/2m + mΩ̃2

zr
2
⊥/2 where A = mΩ × r and

Ω̃2
z = (C2 − Ω2

z) > 0 with an appropriately chosen C2.
Although C2 ↓ 0 limit cannot be taken for keeping the
Hamiltonian with a fixed Ωz 6= 0 stable, a scaling limit
is required similarly to other n cases. Indeed, to have
an extensive free energy FN ∝ N of the fermion model,
one needs to keep N2Ω̃

2
z = O(1) and the free energy den-

sity will depend on the value of N2Ω̃
2
z , where N2 is the

total number of particles divided by the length of the sys-
tem in z-direction86. Therefore, we cannot take the de-
sired thermodynamic limit where the free energy density
is well-defined and Vcon-independent, even if the math-
ematical trick of an additional confinement potential is
used. The special case Ω̃z = 0 for which the scaling limit
is not required will be discussed in the next section.
In summary, we have seen that the angular velocity is

not an intensive field conjugate to OAM. Therefore, we
conclude that, in general, OAM in a system with a uni-
form particle density is not a thermodynamic quantity.

C. System with constant artificial magnetic flux

1. Non-interacting case

In the previous section, we have seen that OAM in a
uniform system is generally non-thermodynamic. How-
ever, this does not necessarily mean that spontaneous

OAM at zero external field Ωz = 0 is sensitive to non-
extensive perturbations. As mentioned in Sec. I, OAM
is equivalent to OM at zero field as an operator, and the
latter is thermodynamic in metals and insulators. If we
consider a neutral system minimally coupled with an ar-
tificial gauge field A = mΩ× r ≡ B× r/2, the Hamilto-
nian is formally equivalent to the charged particles under
a constant magnetic flux density in the symmetric gauge.
Or equivalently, we can introduce Vcon = m(Ωzr⊥)

2/2
as a mathematical trick to make the Hamiltonian un-
der rotation stable. We note that a gauge invariant
Hamiltonian H now has the stability H > const × V
and translational symmetry if combined with a suitable
gauge transformation, and we can take the desired limit
limV ↑∞ FV (Bz)/V for a fixed intensive field Bz 6= 0 in
this case. If the “charged” system under uniform Bz has
a thermodynamic limit, spontaneous OAM in a neutral
system obtained as the limit of Bz ↓ 0 (or Bz ↑ 0) will

also be thermodynamic. Indeed, this is true for non-
superfluids and spontaneous OM/OAM obtained so will
be a thermodynamic quantity 52–56. We will give a brief
explanation on the existence of the thermodynamic limit
in Appendix A.
Similarly, one might expect that OAM in a neutral

superfluid should be thermodynamic as well. Unfor-
tunately, this expectation is not correct, because for a
Hamiltonian of a uniform superfluid under a constant
artificial magnetic flux density Bz, derivative of the
free/ground state energy with respect to Bz does not give
the desired OM. To see this, for simplicity, let us consider
a non-interacting fermionic Hamiltonian with a uniform
s-wave gap function ∆0 as a U(1) symmetry breaking

field, H =
∫

d3xψ†[(p − A)2/2m]ψ + ∆0

∫

d3xψ†
↑ψ

†
↓ +

(h.c.). This Hamiltonian is not gauge invariant and does
not have translation symmetry, and therefore existence
of a thermodynamic limit in the presence of Bz 6= 0 is
not guaranteed. Indeed, the induced current is given by
〈j〉 ≃ −〈(ψ†ψ〉/m)A ∝ B × r, and OAM per volume
and free energy density diverge at V → ∞, which is un-
physical87. The reason for the divergence is very simple;
physically, the dangerous behavior of 〈j〉 comes from the
fact that a uniform real magnetic flux density cannot
be realized in superconductors because of the Meissner
effect where electromagnetic field is determined by the
Maxwell equation. The introduction of the constant ar-
tificial B-field into the Hamiltonian corresponds to an
implicit assumption that there is no Meissner or Hess-
Fairbank effect. Such an unphysical assumption results
in a huge energy cost, leading to the superextensive free
energy FV .
For a system defined on a cube with the volume V =

L3, the superextensive fV (B) behaves as fV (B) = f̃(LB)

where f̃ is a scaling function which is nearly independent
of V . This is because the additional energy density due
to the B-field is Bz〈Mz〉V /L3 ∼ B2

z

∫

d3x(x2 + y2)/L3 ∼
(BzL)

2, where we have used 〈j〉V ∼ A = B × r/2. This
scaling behavior is also seen in lattice models. Here, we
consider a two-dimensional square lattice of V = L2 with
open boundaries and spinful fermions at half filling with
a fixed uniform s-wave gap function as a simple example,

H =
∑

〈i,j〉,σ

−teiAijc†iσcjσ +
∑

i

[∆0c
†
i↑c

†
i↓ + (h.c.)]. (13)

The vector potential Aij describes a constant magnetic
flux density Bz in the symmetric gauge. We show the
ground state energy density ǫV (Bz) = 〈H〉V (Bz)/V in
Fig.1. ǫV (Bz) has a strong size dependence, and all
the data collapse into a single curve in the scaling plot,
ǫV (Bz) = ǫ̃(BzL). For small BzL, the scaling function
behaves as ǫ̃(BzL) ∼ (BzL)

2 as expected from the above
discussion for a continuum system. The scaling behavior
clearly shows the absence of the thermodynamic limit at
a fixed Bz 6= 0.
Finally, we note that, in a realistic charged super-

conductor with electromagnetic fields described by the
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FIG. 1. (Left panel) The ground state energy density at ∆0 =
0.6t for different system sizes. The dimensionless magnetic
flux density is Bz = φ/2π where φ is the flux per plaquette
of the square lattice. (Right panel) The ground state energy
density in the scaling plot.

Maxwell equation, the Meissner effect arises from the
combination of (i) a response of electrons to a given vec-
tor potential and (ii) dynamics of electromagnetic fields
in presence of a given electron current. Note that the
two contributions (i) and (ii) to the total edge current
are spatially separated with different length scales, the
coherence length for (i) and the penetration depth for
(ii). In the present study, the artificial vector field is a
given fixed field and we do not consider its dynamics.
On the other hand, the current density as the response
(i) should be essentially proportional to the given artifi-
cial vector potential in superfluids, which we call “strong
diamagnetic response”. It is noted that the induced cur-
rent density is not necessarily localized at a boundary for
a general vector field.

2. Interacting case

Now we turn to interacting systems under a physi-
cally reasonable assumption. In an interacting system,
there are two ways for describing a uniform superfluid,
one with explicit U(1) symmetry breaking and the other
with conserved U(1) symmetry 88,89. In both descrip-
tions, the strong diamagnetic response, i.e. Meissner or
Hess-Fairbank effect is a necessary condition for the su-
perfluidity. Then, the assumption is that there exists the
strong diamagnetic response where the current density is
essentially proportional to a given vector potential, when
(i) a uniform U(1) symmetry breaking field ∆0 is intro-
duced into the Hamiltonian, or (ii) there is a uniform
long range order of the particle number U(1) symmetry
in the absence of ∆0. The uniform long range order is
defined as

σC = lim
V ↑∞

√

〈m2
C〉V , (14)

mC =
1

V

∫

V

d3x[ψ↑d(−i∇)ψ↓ + (h.c)], (15)

where mC is the uniform Cooper pair order parameter
with a form factor d = 1 for s-wave, d ∼ (px + ipy) with
pj = −i∂j for chiral p-wave, and so on. This assumption
is widely accepted and guarantees presence of the Meiss-
ner or Hess-Fairbank effect. The real Meissner effect is

realized when combined with the Maxwell equation, but
the present artificial vector potential is simply a given
field, |A| ∝ |r|. It should be noted that two approaches
corresponding to (i) and (ii) are equivalent for evaluating
gauge invariant quantities per volume, if there exist the
thermodynamic limits for both cases. Corresponding to
the two approaches, we consider interacting superfluids
in two ways in the following.

In the first scheme (i), we describe a superfluid as a
global U(1) symmetry broken state, where an introduced
U(1) symmetry breaking field ∆0 must be turned off af-
ter the thermodynamic limit is taken. In this case, from
the above assumption, there exists a contribution to the
current from the symmetry breaking field and 〈j〉 should
contain a term essentially proportional to A. Similarly
to the non-interacting case, this leads to an unphysical
divergence of the free energy density, since the symmetry
breaking field should be kept constant when the thermo-
dynamic limit is taken. Physically, the Hamiltonian with
a constant Bz-field would correspond to a vortex state or
a normal (non-superfluid) state. Therefore, if necessary,
one might need to introduce new corresponding symme-
try breaking field which is different from the uniform field
∆0.

In the other scheme (ii), we do not introduce a sym-
metry breaking field into the Hamiltonian, and the U(1)
symmetry is strictly kept in both finite and infinite vol-
ume systems, although we assume that the system has
the uniform U(1) long range order in the absence of B-
field. In this case, there exists the thermodynamic limit
of the free energy density under the uniform artificial B-
field, since the Hamiltonian is translationally invariant
if combined with an appropriate gauge transformation.
(See Appendix A for a brief discussion.) This means that
there is no U(1) long range order, since if it were there,
the strong diamagnetic response will lead to a divergent
free energy density. Therefore, we conclude that a con-
stant B-field will suppress the pre-existing uniform U(1)
long range order. The absence of the strong diamagnetic
response can also be understood from the Bloch’s theo-
rem which excludes a macroscopic current in a ground
state/equilibrium for a U(1) symmetric system71. Be-
sides, the suppression of the uniform long range order
may be consistent with a variant of the Elitzur’s theorem
for a fixed gauge field configuration derived in Ref. Tada
and Koma 71 , according to which the long range order
σC vanishes for almost all gauge field configurations. Al-
though we have assumed that σC 6= 0 for the specially
chosen gauge A = 0 in the absence of B-field, a gauge
field corresponding to the constant B-field is no longer
compatible with a uniformly Cooper paired state. This
is physically reasonable, since one would expect a vortex
state or a normal (non-superfluid) state for Hamiltonian
with the uniform B-field. There might arise a new long
range order such as a vortex state once a uniform B-field
is introduced into the Hamiltonian, or any long range
order of U(1) symmetry might get suppressed.

It is important to realize that the state at Bz = 0
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and that at Bz 6= 0 are physically different states in dis-
tinct “phases”, because only the former has the uniform
U(1) long range order. The quantity we are interested in
this study is l0 = lim∆0→0 limV→∞〈Lz〉V (Bz = 0)/V =
lim∆0→0 limV→∞ ∂fV (Bz = 0,∆0)/∂Bz, while the lat-
ter state gives different quantities l± = −∂f∞(Bz →
±0)/∂Bz±

90,91. As already mentioned, l0 and l± are
expectation values of Lz at different states. Although
l± is a thermodynamic quantity by definition, l0 is not
directly related to f∞ and is not thermodynamic in this
sense. We note that fV (Bz ,∆0) for general (Bz,∆0) con-

tains a scaling term f̃(BzL,∆0) and diverges as V → ∞
except for (Bz = 0,∆0) or (Bz ,∆0 = 0). It is also noted
that the discussions based on the two schemes (i) and (ii)
for describing a superfluid are consistent, as expected.

In summary, we have seen that thermodynamic limits
of the free energy density do not exist in several theoret-
ical setups which could seemingly realize the desired uni-
form superfluid state. As a result, the OAM in a neutral
superfluid is not a thermodynamic quantity at some value
of external (rotation/artificial flux) fields, although it is
usually extensive and seemingly thermodynamic. There-
fore, it can depend on non-thermodynamic details such
as boundary conditions. In the next section, we will de-
mostrate a physical picture on how OAM is affected by
non-extensive perturbations.

III. MEAN FIELD DESCRIPTION OF FRAGILE

OAM

A. Unpaired fermions and fermionic Landau

criterion

In the previous section, we have explained that sponta-
neous OAM of a neutral superfluid is not related to ther-
modynamic free energy. Then, it is important to develop
a physical understanding on behaviors of OAM in the
presence of non-extensive perturbations. In this section,
we discuss a mean field understanding at zero external
rotation or B-field which has potential applicability to
a large class of neutral superfluids. This part is based
on the recent progress28–31,48, and here we establish an
intuitively clear picture for the seemingly non-trivial sen-
sitivity of OAM.

In order to demonstrate the essential physics, we con-
sider a two-dimensional d + id-wave superfluid confined
by a rotationally symmetric potential Vcon as a simple
example. We mainly focus on the weak coupling BCS
states where edge states are topological and gapless. The
argument can also apply to rotationally asymmetric sys-
tems and in principle to the strong coupling BEC states
with some modifications, when OAM is determined by
an edge mass current. The mean field Hamiltonian with

the rotationally symmetric confinement potential reads,

H =

∫

d2xψ†
σ

( p2

2m
− µ+ Vcon

)

ψσ

+∆0k
−2
F

∫

d2xψ†
↑(px + ipy)

2ψ†
↓ + (h.c.), (16)

where pj = −i∇j . kF is the Fermi momentum in the
normal state, and ∆0 is the symmetry breaking field.
In this section, the confinement potential is zero in the
bulk of the system, Vcon(r ≪ R) = 0, and infinitely
large outside of the system, Vcon(r ≫ R) = ∞, where
R is the system radius. We expand the field operator as
ψσ(r, θ) =

∑

ml cmlσφml(r, θ) by using the single particle
eigenfunctions of [p2/2m − µ + Vcon]. The Hamiltonian
is rewritten into a Bogoliubov-de Gennes form,

H =
∑

m,l

[

c†m,l+2,↑

cm,−l,↓

]T
(

Ĥ
(l)
BdG

)

mm′

[

cm′,l+2,↑

c†m′,−l,↓

]

. (17)

We first consider a smooth confinement potential Vcon(r)
which increases smoothly around r ∼ R with a length
scale ξcon which satisfies ξ∆ = vF /∆0 ≪ ξcon ≪ R. The
total OAM at T = 0 is easily calculated as29,92

〈Lz〉V = 2× 〈N〉V
2

− 1

2

∑

l

(l + 1)ηl, (18)

ηl =
∑

n

sgnεn(l), (19)

where ηl is the spectral asymmetry of the BdG Hamil-

tonian H
(l)
BdG for which eigenvalues are {εn(l)}. Within

the semi-classical approximation which can be valified for
∆0 ≪ εF , OAM at zero temperature is reduced to

〈Lz〉V ≃ 2× 〈N〉V
2

− 1

2

∑

j=1,2

(

RkFj

)2
. (20)

Here, we have introduced Fermi wavenumbers of the
two one-dimensional edge modes, kF1 = −kF2(kF1 ≤
kF2), which are defined as RkFj = lj with the vanish-
ing eigenvalues of the edge modes, εn(lj) ≃ 0. Since
ξ∆ = vF /∆0 ≪ ξcon, within the semi-classical approx-
imation, the confinement potential can be treated as a
constant energy shift εF → ε′F = εF − Vcon(r = R) for
the edge modes localized in the relatively low particle
density region |r−R| . ξcon. Then the edge mode Fermi

wavenumber is given by kF1,2 = ±k′F /
√
229. When the

potential is so smooth with large ξcon that the particle
density is vanishing around r ≃ R for which k′F ≃ 0,
Eq.(20) gives the “full” value 〈Lz〉V = 〈N〉V .
Now we deform the confinement potential by decreas-

ing ξcon so that ξcon ≪ ξ∆ ≪ R is now satisfied.
Note that this is a microscopic deformation of Vcon in
a length scale much smaller than R, and Vcon remains
unchanged in the length scale O(R). The modified po-
tential gives a sharp confinement, Vcon(r < R) = 0 and
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Vcon(r ≥ R) = ∞, in the limit of ξcon → 0, and the edge

mode Fermi wavenumbers are kF1,2 = ±kF /
√
2, result-

ing in 〈Lz〉V = 0 within the semi-classical approximation.
We show numerical calculations of the OAM for the sharp
confinement in Appendix B.
Although this Vcon-dependence of OAM seems curious

at first sight, the physical reason is simple as discussed
below. When we modify Vcon which is parametrized by
0 ≤ λ ≤ 1 (λ = 0 for the smooth potential and λ = 1
for the sharp potential), some eigenvalues of the edge
modes change their signs because kF1,2(λ = 0) = 0 and

kF1,2(λ = 1) = ±kF /
√
2, as seen in Fig.2. The ground

�

� �

� � � � � �

	


��
���� �

FIG. 2. Schematic picture of the spectrum of a chiral d-
wave superfluid for the smooth confinement potential (left)
and sharp confinement potential (right). λ characterizes the
potential shape. Some eigenvalues changes the sign as indi-
cated by the green arrow.

state wavefunction satisfies b†nl|GS(λ = 0)〉 = 0 when
εn(l;λ) < 0, while bnl|GS(λ = 1)〉 = 0 when εn(l;λ) > 0,
where bnl is the λ-dependent annihilation operator of the
eigen-mode of ĤBdG with εn(l;λ). Let us focus on an
eigenvalue εn(l) of the first edge mode (j = 1) which is
originally positive for the smooth potential and becomes
negative for the sharp potential at a critical λ = λcnl. Be-
cause the ground state is characterized by bnl|GS〉 = 0

or b†nl|GS〉 = 0 depending on the sign of εn(l), there will
be level crossing between the ground state and an ex-
cited state at λ = λcnl. If we denote the corresponding
eigenstates as |Ψ0〉 = |GS〉 and |Ψ1〉, these two states

are related as |Ψ1〉 ∼ b†nl|Ψ0〉. Although the fermions are

��

��

�

�
�
�
��
�

� �

 !

FIG. 3. Schematic picture of successive level crossings be-
tween the eigenstates.

fully paried up at λ < λcnl, the Cooper pair is partially

broken by the application of b†nl-operator for λ > λcnl.
Once a Cooper pair of the chiral d-wave state which is ex-

pressed as c†l+2,↑c
†
−l,↓|0〉 (|0〉 is the vacuum of c-fermions)

and carries OAM= 2 is broken, one fermion will be re-
moved from |GS〉 and an unpaired single fermion mode
will remain filled. By a careful analysis, it turns out

that c†l+2,↑-fermion will remain while c†−l,↓-fermion is re-
moved from the ground state where l < −1 in the first
branch (j = 1) of the edge modes, which reduces OAM
as (l + 2) + (−l) = 2 → (l + 2) ≤ 029.
If we consider other eigenvalues, there will be a se-

quence of spectral flows of {εn(l)} and corresponding suc-
cessive level crossings between the eigenstates as shown
in Fig. 3. Consequently, by increasing λ, the original
ground state wavefunction |GS(λ = 0)〉 = N ⊗l |GS(λ =

0), l〉 = N ⊗l exp[
∑

jj′ c̃
†
j,l+2,↑F

(l)
jj′ c̃

†
j′,−l,↓]|0〉 (N is a nor-

malization constant) for the smooth potential at λ = 0 is
replaced with the new ground state wavefunction for the
sharp potential at λ = 1,

|GS(λ = 1), l〉 =







n
(l)
↑
∏

j=1

c̃†j,l+2,↑













n
(l)
↓
∏

j=1

c̃†j,−l,↓







× exp







∑

j>n
(l)
↑

∑

j′>n
(l)
↓

c̃†j,l+2,↑F
(l)
jj′ c̃

†
j′,−l,↓






|0〉.

(21)

The parameters n
(l)
↑,↓(λ), F

(l)
jj′ (λ) and the explicit form of

the c̃-operators can be calculated from diagonalization of

ĤBdG(λ)
29,92. For λ = 1, we have (n

(l)
↑ , n

(l)
↓ ) = (1, 0)

for l1 < l < −1, (n
(l)
↑ , n

(l)
↓ ) = (0, 1) for −1 < l < l2, and

(n
(l)
↑ , n

(l)
↓ ) = (0, 0) otherwise, where lj = kFjR. Note

that although the number of unpaired fermions induced

by the change in Vcon, i.e. the total number of {n(l)
↑,↓}l

in Eq. (21), is only O(R) and their contributions to the
ground state energy are negligibly small, they have large
impacts on the edge mass current and consequently on
OAM.
We believe that the depairing effect of the Cooper

pairs and resulting reductions of edge mass currents are
a universal mechanism in fermionic neutral superfluids,
although we have used the very simple model as an ex-
ample for an illustrative demonstration. For example, a
chiral p-wave system can show spectral flow depending
on system shapes, and the pair breaking effect works in
lattice models as well where continuous rotational sym-
metry is absent28,45,48.
The above mechanism is analogous to the well known

Landau criterion for bosonic superfluids where the pre-
formed superfluid is broken once a bosonic excitation en-
ergy ε(λ) becomes negative as some parameter is varied,
leading to a new condensation of this boson mode. Sim-
ilarly, in the present fermion case, the Cooper pair is
broken once its excitation energy becomes negative, and
the resulting ground state is a state with broken Cooper
pairs, i.e. unpaired fermions. The essential difference is
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that Cooper pairs are broken only for the modes with sign
changing eigenvalues in the fermion case. We call this
partial breaking of fermion superfluidity as “fermionic
Landau criterion”. The similarity between the fermionic
Landau criterion and bosonic Landau criterion will be
discussed in detail in the next section. It should be noted
that the fermionic Landau criterion is based on a given
mean field Hamiltonian where the gap function is simply
given and therefore it does not necessarily hold in gen-
eral interacting models. In a realistic interacting model,
it may be possible that the system goes into a completely
different phase as the parameter λ is varied, if the energy
cost due to unpaired fermions is O(V ).

B. Superfluid under uniform linear flow

In this section, we study a toy model for a superfluid
under a uniform linear flow93,94 to clarify the analogy
between the fermionic Landau criterion and well-known
bosonic Landau criterion. This analogy is helpful to un-
derstand the physics in a comprehensive way.

We consider a non-interacting s-wave superfluid with
a modulating gap function ∆0 exp(iqr) under periodic
boundary conditions,

HFF =
∑

kσ

εkc
†
kσckσ +

∑

k

∆0c
†
k+q↑c

†
−k↓ + (h.c.)

=
∑

k

[

c†k+q↑

c−k↓

]T [
εk+q ∆0

∆0 −ε−k

] [

ck+q↑

c†−k↓

]

(22)

where εk = k2/2m−µ. The Hamiltonian has a conserved
quantity

P = P − qN/2, (23)

where N =
∑

kσ c
†
kσckσ and P is the total linear mo-

mentum P =
∑

kσ kc†kσckσ. This momentum P char-
acterizes the deviation from the naively expected value
〈P 〉V = q〈N〉V /2. Eigenvalues of the BdG Hamiltonian
Hk are

Ek1,2 =
1

2

[

εk+q − ε−k ±
√

(εk+q + ε−k)2 + 4∆2
0

]

. (24)

Eki vanishes when |εk+q−ε−k| =
√

(εk+q + ε−k)2 + 4∆2
0

or equivalently εk+qε−k + 4∆2
0 = 0 which can be satis-

fied only in the BCS regime µ > 0. The momentum
space is divided into three regions depending on signs
of the eigenvalues, K1 = {k|Ek1 < 0, Ek2 < 0}, K2 =
{k|Ek1 > 0, Ek2 > 0}, and K3 = {k|Ek1 > 0, Ek2 < 0}
as shown in Fig. 4. Note that the volumes of K1,2

are the same by the particle-hole symmetry. Then, the
ground state wavefunction determined by the conditions

bki|GS〉 = 0(Eki > 0) and b†ki|GS〉 = 0(Eki < 0), and is

-2

-1

 0

 1

 2

-2 -1  0  1  2

E
/ε

F

k/kF

(a)

-2

-1

 0

 1

 2

-2 -1  0  1  2

E
/ε

F

k/kF

(b)

-2

-1

 0

 1

 2

-2 -1  0  1  2

E
/ε

F

k/kF

(c)

-2

-1

 0

 1

 2

-2 -1  0  1  2

E
/ε

F

k/kF

(d)

FIG. 4. Dispersions in the BCS states in one-dimension at
µ = εF ,∆0 = 0.2εF for (a) vs = 0, (b) vs = vL, and (c) vs =
3vL, where vs = |q|/2m0 and vL = ∆0/kF . (d) Dispersion
in the BEC state at µ = −0.3εF ,∆0 = 0.2εF , vs = vL. Red
curve is Ek1 and blue curve is Ek2.

given by

|GS〉 = N
(

∏

k∈K1

c†k+q↑

)(

∏

k∈K2

c†−k↓

)

×
∏

k∈K3

exp
(

−vk/ukc†k+q↑c
†
−k↓

)

|0〉, (25)

where (uk, vk)
T are eigenvectors of the Bogoliubov-de

Gennes equation and N is a normalization constant. One
can find an essential similarity between Eqs. (25) and
(21). Note that, for example when qx > 0, kx + qx < 0
for k ∈ K1 is satisfied, and breaking of a Cooper pair

c†k+q↑c
†
−k↓|0〉 → c†k+q↑|0〉 will reduce the linear momen-

tum as (kx + qx)+ (−kx) = qx > 0 → (kx + qx) < 0 as in
the OAM of neutral superfluids discussed in the previous
section. Similar reduction of the linear momentum takes
place for k ∈ K2.
The reduction of the linear momentum can be clearly

discussed based on the unpaired fermions and fermionic
Landau criterion. The expectation value of the mo-
mentum deviation is 〈GS|P |GS〉 = −1/2

∑

k(k +
q/2)

∑

i sgnEki, or equivalently,

〈P 〉V = q
〈N〉V
2

− 1

2

∑

k

(k + q/2)ηk, (26)

ηk =
∑

i=1,2

sgnEki. (27)

If the supercurrent velocity vs = |q|/2m0 is smaller than
the Landau critical velocity vL = ∆0/kF , K1,2 are empty
and functional structure of |GS〉 is essentially same as
that of the conventional full gap BCS state and 〈P〉V =
0, i.e. 〈P 〉V = q〈N〉V /2. On the other hand, when
the supercurrent velocity is sufficiently fast, vs & vL,
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the two regions K1,2 are non-empty, leading to |〈P 〉V | <
|q|〈N〉V /2 in the BCS regime where µ > 0. The ground
state now contains a non-zero fraction of normal state
fermions, i.e. unpaired fermions, and the system has both
a Fermi surface and Cooper pairs. This means that, the
fast flow causes depairing of the Cooper pairs for the
fermions with |εk+q−ε−k| & 2∆0. Therefore, the present
toy model is quite analogous to the original setup of the
bosonic Landau criterion. It is noted that, in contrast
to the BCS regime with µ > 0, K1,2 are always empty
and 〈P 〉V = q〈N〉V /2 in the BEC regime where µ < 0
as shown in Fig. 4 (d).
As was mentioned in the previous section, the Landau

criterion does not necessarily hold in general interact-
ing models. In an interacting model of the Fulde-Ferrell
superfluid, a large q > vL will eventually destroy the
whole superfluidity and the system will become a nor-
mal state (non-superfluid)93,94. To evaluate the stability
of the pre-assumed gap function, we need to calculate
the ground state energy or free energy of the interacting
model. This is also true for other non-trivial state with
unpaired fermions, such as the breached pair state where
gapless modes with a Fermi surface coexist with paired
fermions95,96.

IV. IDMRG CALCULATION OF MASS

CURRENT

In the previous section, we have established the phys-
ical picture of the fragile spontaneous OAM in neutral
fermionic superfluids based on the mean field approxi-
mation. A natural question is that whether or not the
physics within the mean field description can be justified
when we fully include interactions. In this section, we try
to go beyond the mean field approximation by treating
many-body interactions properly.
Here, we consider a model of the chiral p-wave su-

perfluid with domains of opposite superfluid chiralities
for an illustrative perpose. Within the mean field ap-
proximation, it is known that domain wall current is re-
versed depending on details of the domain boundary in
such a system47,48; the domain wall mass current flows
in a certain direction for the (px + ipy)/(px − ipy) do-
main junction, while it is in an opposite direction for
the (px + ipy)/(−px + ipy) domain junction, which can
be understood in terms of the unpaired fermions and
fermionic Landau criterion48. This is a drastic change
in the domain wall mass current, and it would be rela-
tively easy to discuss whether this holds true beyond the
mean field approximation. It is noted that the domain
wall mass current and edge mass current have essentially
the same origin in common, and both of their depen-
dences on boundaries can be understood based on the
unpaired fermions and fermionic Landau criterion in the
same way29,48. Therefore we expect that studying the
former is relevant to the latter.
Our Hamiltonian is a spinless fermion model with near-

est neighbor attractive interaction on a two-dimensional
square lattice,

H =
∑

i,j

−tijc†i cj + V0
∑

〈i,j〉

ninj +HSB, (28)

HSB =
∑

〈i,j〉

[∆0
ijc

†
i c

†
j + (h.c.)], (29)

where tij = t(i 6= j) is the nearest neighbor hopping and
tii = µ is the chemical potential. We have introduced
a small symmetry breaking field of U(1) symmetry ∆0

ij

which describes a domain structure. Although the sym-
metry breaking field must be ∆0 → 0 after the thermo-
dynamic limit is taken, we keep a small value of ∆0

ij and
discuss effects of the interaction V0 in a finite size sys-
tem. This calculation allows us to examine whether or
not the mean field understanding is essentially correct.
We apply infinite density matrix renormalization group
(iDMRG) and use the open source code TenPy61–66. The
system size is ∞ × Ly with periodic boundary condi-
tion for the y-direction. To realize the domain structure
shown in Fig. 5, the symmetry breaking field is taken to
be ∆0

ij = eiθi∆0(δi,j+x̂±iδi,j+ŷ) for a site i = (x, y) when
nLx ≤ x < (n + 1)Lx and (n + 1)Lx ≤ x < (n + 2)Lx

respectively, where Lx is the domain size and n is an
integer.

" # $%��� ���

&'

()

*+

,-./0 1 234

FIG. 5. Infinite length cylinder with the circumference Ly .
Each domain size is Lx × Ly.

The phase θi characterizes the structure of a domain
wall; (I) θi = 0 for which ∆i,j+ŷ changes the sign at the
boundary and (II) θi = δx,nLx

π for which ∆i,j+x̂ changes
the sign. The chirality of a domain is independent of θi.
It is known that the domain wall corresponding to (I)
is more stable than that of (II) within mean field calcu-
lations48,97. The important point is that the directions
of the domain wall currents for the two domain walls are
opposite, which is rather counter-intuitive since a domain
wall current in a chiral p-wave state is usually determined
by the chirality of the gap function. This non-trivial be-
havior can be understood based on the unpaired fermions
and fermionic Landau criterion48. Here, we discuss valid-
ity of the physical understanding based on the mean field
approximations with use of iDMRG which are essentially
free from approximations61–66.
Now we numerically evaluate the mass current density

for each domain wall, θ = 0 or θ = π. We have done
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similar calculations for several values of the symmetry
breaking field ∆0 and different system sizes Lx, Ly, and
they show qualitatively similar results. In the following,
we focus on the smallest symmetry breaking field ∆0 =
0.01t used in the calculations, and fix the system size as
Lx = Ly = 8. The bond dimension χ controls accuracy of
the iDMRG calculations, and we used only three values
χ = 200, 400, 600. Although these are not sufficient to
obtain fully convergent results, they give qualitatively
same results. Therefore, we fix χ = 400 in the following
to discuss the validity of the mean field approximations,
for which the truncation norm error is O(10−4). The
relatively small truncation error for the parameters used
is due to the symmetry breaking field ∆0 which makes
the bulk of the system gapped.
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FIG. 6. Mass current density along the y-direction for θ = 0
(left) and θ = π (right). The parameters are V0 = −0.1t, µ =
−t. The chirality of ∆0 is positive for 0 ≤ x < Lx = 8, while
it is negative for Lx ≤ x < 2Lx = 16.
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FIG. 7. Mass current density along the y-direction for θ = 0
(left) and θ = π (right). The parameters are V0 = −t, µ =
−2.2t. The chirality of ∆0 is positive for 0 ≤ x < Lx = 8,
while it is negative for Lx ≤ x < 2Lx = 16.

We show in Fig. 6 the calculated mass current den-
sities at a small interaction V0 = −0.1t, µ = −t for
which the average particle filling is n ≃ 0.32. Unfor-
tunately, the current profile does not show sharp lo-
calization at a domain boundary, since the system size
Lx = Ly = 8 is not large enough compared with the co-
herence length for the parameters used. Instead, the cur-
rent profile shows a broad structure where |jy| is largest
at the domain boundary, while it is smallest in the mid-
dle of a domain. Nevertheless, the current directions
for θ = 0 and θ = π are opposite, which is consis-
tent with the mean field calculations47,48. The ground
state energy difference between the two states is small,
[E(θ = 0)−E(θ = π)]/[E(θ = 0)+E(θ = π)] = O(10−3).
Now we increase the interaction and find that the current
reversal is stable even for a relatively large interaction
V0 = −t, µ = −2.2t for which n ≃ 0.28, as shown in Fig.

7. The mass current is enhanced by the interaction V0
and the maximum density becomes nearly double com-
pared with those for V0 = −0.1t if jy is normalized by
the filling n. This means that jy is dominated by the
interaction V0 = −t and the current reversal gets stabi-
lized. The origin of the enhancement of jy would be the
decreased superfluid coherence length ξ∆ ≃ t/∆ by the
interaction V0 where ∆ is the gap amplitude, because a
small ξ∆ gives jy which is well localized around a bound-
ary and does not influence jy at the opposite boundary.
If we increase |V0| further, the simulations become un-
stable and the fermions get dimerized. These numeri-
cal results suggest that the current reversal found in the
mean field calculations holds true even in the iDMRG
calculations which are essentially free from approxima-
tions. Therefore, we conclude that the physical under-
standing based on the mean field approximation is essen-
tially correct, and the physics is determined by the un-
paired fermions and fermionic Landau criterion. Finally,
although our iDMRG results support the correctness of
the mean field understanding, they are reliable at a rather
qualitative level and further numerical calculations would
be required to develop a quantitative understanding.

V. SUMMARY AND DISCUSSION

In this study, we have discussed the OAM and corre-
sponding edge or domain wall mass current in neutral
fermion superfluids with broken time reversal symme-
try. It was explained that OAM in a neutral superfluid
cannot be obtained by derivative of the thermodynamic
free energy with respect to its intensive conjugate ex-
ternal field in sharp contrast to non-superfluid systems.
This means that OAM in a neutral superfluid is not a
thermodynamic quantity and can be influenced by non-
thermodynamic details. We established a simple physical
picture of how OAM is changed by such perturbations
based on the mean field approximation, by introducing
the concepts of the unpaired fermions and fermionic Lan-
dau criterion. We also discussed the validity of the mean
field description by a non-perturbative numerical calcu-
lation using iDMRG. It is concluded that the mean field
calculations of OAM and edge mass current for chiral su-
perfluids are essentially correct, and OAM does depend
on non-thermodynamic details such as boundary condi-
tions which are usually not controlable in experiments.
The sensitivity of OAM can be considered as an anoma-
lously colossal response of OAM to boundaries. If one
could control the boundary conditions of a neutral su-
perfluid, a dramatic response of OAM by small pertur-
bations might be obtained.
In the original problem of the “intrinsic angular mo-

mentum paradox” in 3He-A phase in three dimensions,
the rotation axis of Cooper pairs will locally deviates near
the wall of a container from that in the bulk1–6. Because
this effect may depend on the container used, some people
have anticipated that this problem would depend on the-
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oretical models used and experimental details. However,
such a subtle problem is absent in simpler systems such as
the thin film limit of a chiral p-wave state and two-,three-
dimensional chiral d-wave state, and one may expect an
“intrinsic” value of the spontaneous OAM. What we have
discussed in this study is that, even in such a relatively
simple system, there is no “intrinsic” value of OAM in
a uniform neutral superfluid, simply because it is not a
thermodynamic quantity.

The OAM and edge mass current of a neutral super-
fluid will be determined for each given surface condition
and sample shape. There exist various possible perturba-
tions such as surface adsorption, surface reconstruction,
and surface disorder, and surface conditions should be
carefully treated in experiments, although it is a very
difficult issue. Sample shapes and relative relations be-
tween the surface direction and underlying lattice geom-
etry should also be controlled in solid state superconduc-
tors, to observe edge charge currents.

Finally, we touch on charged chiral superconductors
such as the candidate p-wave superconductor Sr2RuO4.
It is considered that the edge current depends on bound-
aries in this system32,60. In such a system, there arises a
Meissner screening current in addition to a spontaneous
edge current. The former is localized at a surface in the
length scale of coherence length, while the latter is in
the length scale of penetration depth, and they are spa-
tially separated. These two contributions will cancel each
other in a longer length scale, and the total net edge cur-
rent Jedge and corresponding spontaneous OM vanishes
in absence of an external field48. Since the spontaneous
edge current which we have discussed in the present study
depends on boundaries and shapes of the system, the
corresponding screening current also depends on them.
Therefore, the induced local magnetic flux density which
is to be measured in experiments would also be sensitive
to boundaries and shapes.
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Appendix A: Thermodynamic limit under uniform

flux density

We explain that the thermodynamic limit exists for a
U(1) symmetric system with a given uniform magnetic
flux density. The existence proof is the same as in the
previous studies, once one notices that the Hamiltonian
is stable and translationally symmetric with an appropri-
ate gauge transformation55. Nevertheless, as a reference,
here we will give a brief discussion on both lattice models
and continuum models with stable, short-range interac-
tions. It should be noted that existence of a thermody-
namic limit for a system with long-range interactions is
highly non-trivial, and for example, one would find the fa-
miliar shape/boundary condition dependent free energy
density of a magnet with dipole interactions in the pres-
ence of an external field 51,98. Long range interactions or
dynamics of electromagnetic field is beyond the present
study. We also discuss Bloch’s theorem on absence of a
macroscopic current at equilibrium as a collorary of the
existence of the thermodynamic limit.

1. Lattice model

We consider a simple model defined on a lattice Λ ⊂ Zd

where d = 3 is the system dimension,

HΛ =
∑

i,j

−tijc†icj + V
∑

〈i,j〉

ninj ,

≡
∑

X⊂Λ

hX , (A1)

where X = {i}, 〈i, j〉 represents sites or nearest neigh-
bor pairs of sites. The hopping term contains a given
vector potential Aij which realizes a uniform magnetic
flux density along z-axis, and its amplitude |tij | is con-
stant. We have also included the chemical potential,
tii = µ. It is important to see that the Hamiltonian
is symmetric under the magnetic translation. We de-
note the nµ-sites magnetic translation operator along
µ-direction as Tµ(nµ). Then, for a translation T (n) =
Tx(nx)Ty(ny)Tz(nz),

HΛ+n = T (n)HΛT (n)
−1, (A2)

where Λ + n is the translate of Λ by the vector n. This
relation is independent of the order of Tx, Ty, Tz in T ,
since they are a projective representation of translation.
Therefore, the free energy density fΛ = FΛ/|Λ| is also
translationally symmetric

fΛ+n = fΛ. (A3)

For simplicity, we consider a cube Λa = {x ∈ Zd|0 ≤
xµ < a} and a larger cube Λ = {x ∈ Zd|0 ≤ xµ < la}
where l, a are positive integers. We define Λa+n = {x ∈
Zd|nµa ≤ xµ < (nµ + 1)a} and denote them as {Λj}l

d

j=1

so that Λ = ∪ld

j=1Λj .
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We compare the free energy densities fΛ and fΛa
. For

Γj = ∪j
i=1Λi, one can show

|FΛ −
ld
∑

j=1

FΛj
| ≤ ||h||

ld
∑

j=2

N(Γj−1,Λj), (A4)

where N(Γj−1,Λj) is the number of sites for which
h〈k,l〉 6= 0 with k ∈ Γj−1 and l ∈ Λj . We have introduced
||h|| =∑X∋0 ||hX ||/|X | which is well defined because hX
is magnetic translationally symmetric. It is important to
see that the seemingly dangerous terms in hX close to
the boundary of Λj are harmless in the presence of the
vector potential. Since N(Γj−1,Λj) = O(a2) for large a,
we have

|fΛ − fΛa
| = O(1/a), (A5)

which means the existence of the thermodynamic limit
f∞ = limΛ→Zd fΛ. One can also show the existence of
the thermodynamic limit for a more general sequence of
lattices, and the resulting f∞ is independent of the sys-
tem shape for such lattices.

2. Continuum model

We next touch on continuum models. Although discus-
sions on continuummodels are generally complicated, the
proof for Hamiltonian with usual translation symmetry
can also be applied to that with magnetic translational
symmetry55.
We consider a Hamiltonian of N fermions,

HΛ,N = TΛ,N + UΛ,N , (A6)

TΛ,N =

N
∑

j=1

1

2m

(

−i∇j −A(rj)
)2
, (A7)

UΛ,N =
∑

i<j

U(|xi − xj |), (A8)

where the vector potential gives a constant magnetic flux
density. The interaction is stable (UΛ,N > −bN with
b ≥ 0) and short-range with the range r0 or strongly tem-
pered, U(r > r0) ≤ 0. Λ ⊂ Rd is a bounded region, and
we consider wavefunctions which smoothly tend to zero
at the boundary ∂Λ and vanishes outside of Λ. Math-
ematically, HΛ,N should be regarded as a self-adjoint
Friedrichs extension.
The spectrum of HΛ,N consists of discrete eigenvalues

with finite multiplicity, and we denote them in increasing
order as E1 ≤ E2 ≤ · · · . Then, the minimax principle
reads

Em = inf
M:dimM=m

sup
φ:φ∈M,||φ||=1

〈φ|H |φ〉. (A9)

Now we discuss entropy SΛ(N,E) = logWΛ(N,E),
where WΛ(N,E) is the number of eigenvalues of HΛ,N

below E. Note that SΛ is translationally invariant, since
the Hamiltonian has magnetic translational symmetry.
We consider two regions Λi(i = 1, 2) which are sepa-
rated by the distance r ≥ r0, and Ni particles are con-
fined in each region, respectively. The states with en-
ergy of HΛi,Ni

below Ei are described by wave functions
ϕi ∈ Mi which satisfy the hard wall boundary condi-
tion ϕi(x ∈ ∂ΛNi

i ) = 0, for which dimMi = ΩΛi
(Ni, Ei).

From the minimax principle, we have

sup
ϕi∈Mi,||ϕi||=1

〈ϕi|HΛi,Ni
|ϕi〉 ≤ Ei. (A10)

Now we construct a subspace M1+2 of the total Hilbert
space for particles in Λ1 ∪Λ2; M1+2 is generated by an-
tisymmetrized ϕ1 ⊗ϕ2 and its dimension is dimM1+2 =
ΩΛ1(N1, E1) · ΩΛ2(N2, E2). Note that ϕ ∈ M1+2 van-
ishes on (∂Λ1) ∪ Λ2 or Λ1 ∪ (∂Λ2), and seemingly dan-
gerous contributions to ΩΛ1∪Λ2(N1 + N2, E) from those
boundaries are harmless in the presence of the vec-
tor potential |A| ∝ |r|, as in lattice models. Since
supϕ∈M1+2,||ϕ||=1〈ϕ|HΛ1∪Λ2,N1+N2 |ϕ〉 ≤ E1 +E2, we ob-
tain

SΛ1∪Λ2(N1 +N2, E1 + E2) ≥ SΛ1(N1, E1) + SΛ2(N2, E2).
(A11)

Furthermore, SΛ is an increasing function of Λ, i.e.
SΛ ≤ SΛ′ if Λ ⊂ Λ′. Therefore, for a sequence of regions
Λj = {x ∈ Rd|0 ≤ x ≤ Lj = 2Lj−1 + r0} such that Λj

contains 2d translates of Λj−1 with mutual distance r0,
sΛj

= SΛj
(Nj , Ej)/|Λj| with Nj = 2dNj−1, Ej = 2dEj−1

is a non-decreasing sequence. Besides, entropy of the
interacting model is bounded above by that of the corre-
sponding non-interacting model,

SΛ(N,E) ≤ S
(0)
Λ (N,E + bN), (A12)

since Em ≥ E
(0)
m − bN holds, where E

(0)
m is the m-th

eigenvalue of TΛ,N . Therefore, there exists the thermo-
dynamic limit of the entropy density, s∞ = limΛ→Rd sΛ.
Because of the equivalence between different emsembles,
thermodynamic limit of the free energy density also ex-
ists.

3. Bloch’s theorem

We briefly discuss Bloch’s theorem as a collorary of
the existence of the thermodynamic limit of a U(1) sym-
metric system. The theorem claims that a macroscopic
current is not allowed at equilibrium71. For simplicity,
we consider a Hamiltonian H of fermions with short-
range interactions defined on a two-dimensional cylinder
Λ = SR × I where SR is a one-dimensional ring with
radius R and I is an interval, under an external field
Bz perpendicular to SR. There might possibly arise a
uniform current density 〈j(r ∈ Λ)〉 = O(1) around the
cylinder. However, such a current density is not allowed,
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since if it exists, the free energy will be superextensive,
|FΛ(Bz 6= 0)| = O(R2×|I|) ≫ O(|Λ|) due to the coupling
between Bz and OM. Therefore, there is no net current
in Λ, which is a variant of Bloch’s theorem.

The above argument has a trivial but important phys-
ical implication. Now we consider a three-dimensional
ferromagnet which is fully wrapped with a thin film un-
der the assumption that long range magnetic interactions
are negligible. The total system is a combination of the
decoupled ferromagnet and thin film, and the latter is de-
scribed as a two-dimensional system such as the cylinder
in the above discussion. Then, from the similar argu-
ment, we conclude that it is impossible to change the
value of OM of the ferromagnet by wrapping it with a
thin film, which sounds rather trivial. We can screen
OM only when we use a superconducting thin film, where
the Maxwell equation or long range magnetic interactions
should be taken into account. One can compare this with
the electric polarization for which a constant electric field
is not a conjugate intensive field78,79. Corresponding to
the above argument, one can wrap a three-dimensional
ferroelectric material by a two-dimensional metallic film,
which can be regarded as a surface perturbation to the
former. Obviously, the polarization of the total system,
i.e. the perturbed ferroelectric material, changes due to
a screening effect by the thin metal. In sharp contrast to
OAM/OM, the charge polarization can be easily affected
by surface perturbations even in a theoretical model with

short range interactions.

Appendix B: Numerical calculation of OAM

We breifly discuss numerical calculations of the OAM
for the Hamiltonians Eq. (16) with the sharp confinement
potential, V (r < R) = 0, V (r > R) = ∞. The calcula-
tion results are shown in Fig. 8. The OAM per fermion
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FIG. 8. OAM for the Hamiltonian Eq. (16). ∆0 dependence
for different system sizes (left panel), and global ∆0 depen-
dence for the fixed system size kFR = 80 (right panel).

is nearly zero for small ∆0/εF , although it is slightly os-
cillating around zero because of finite size effects. The
vanishing OAM is consistent with the semi-classical dis-
cussions given in the main text. As ∆0 increases, the
OAM changes discretely since the spectral asymmetry ηl
is an integer and the total number of fermions 〈N〉V is
kept constant for each system size kFR with the same
average density (see Eq. (19)). For large ∆0, the system
enters the strong coupling BEC regime and the OAM
takes the saturated value 〈Lz〉V /〈N〉V = 129.
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