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We study quantum noise in a nonequilibrium, periodically driven, open system attached to static
leads. Using a Floquet Green’s function formalism we show, both analytically and numerically, that
local voltage noise spectra can detect the rich structure of Floquet topological phases unambiguously.
Remarkably, both regular and anomalous Floquet topological bound states can be detected, and
distinguished, via peak structures of noise spectra at the edge around zero-, half-, and full-drive-
frequency. We also show that the topological features of local noise are robust against moderate
disorder. Thus, local noise measurements are sensitive detectors of Floquet topological phases.

Introduction.—Topological phases of matter are char-
acterized by bulk topological invariants and, via the
bulk-boundary correspondence, also by the appearance
of topological boundary states (TBSs). Canonical ex-
amples of such phases are provided by Chern insulators
characterized by bulk integer Chern numbers and chiral
edge states, and time-reversal topological insulators char-
acterized by Z2 indices and counter-propagating helical
surface modes [1, 2]. In equilibrium, the bulk invariant
manifests itself in quantized transport coefficients, such
as Hall or spin-Hall conductance. In a multi-terminal ge-
ometry, this is equivalently understood in terms of TBSs
connecting the leads.

Recent theoretical [3–16] and experimental [17–19]
progress has uncovered the possibility of engineering
topological phases in a system periodically driven at
frequency Ω, where topology is characterized, through
Floquet theory, by bulk invariants in the quasienergy
spectrum and, correspondingly, by the appearance of
steady-state Floquet TBSs (FTBSs) in the Floquet zone
[−Ω/2,Ω/2]. These Floquet topological phases have a
richer structure than their equilibrium counterparts; for
example, in addition to “regular” FTBSs at the Floquet
zone center with the same period as the drive, they can
also host “anomalous” FTBSs at the Floquet zone edge
with twice the period of the drive. A number of studies
have connected the Floquet topological invariants and
the corresponding FTBSs to observable quantities. For
example, a quantized Floquet sum-rule was obtained [6]
for conductance summed over terminal biases spaced by
integer multiples of Ω (we are setting ~ = 1). The pres-
ence of FTBSs in a disordered driven system has also
been connected to a generalized bulk magnetization den-
sity [20]. While these connections expound observable
effects of Floquet topology in principle, they do not nec-
essarily lend themselves to experimental detection. Thus,
the problem of detecting a Floquet topological phase re-
mains of interest.

In this Rapid Communication, we show that FTBSs
can be detected via noise measurements. We show that
quantum noise in a driven system attached to static leads
probes the quasienergy excitation spectrum. Thus, local

voltage noise spectrum at the boundary of the system
detects both the regular and anomalous FTBSs through
peak structures appearing at noise frequencies ω = 0,Ω/2
and Ω. These peaks are absent in the trivial phase and in
the bulk, and are robust to static potential disorder. Fur-
thermore, their behavior with respect to lead bias pro-
vides unique signatures of their topological origin. A
summary of our results is presented in Fig. 1.

Our proposal differs from most noise studies of elec-
tronic systems in its focus on voltage rather than cur-
rent, for which the latter is largely irrelevant in the sys-
tem we consider. Voltage noise resulting from particle
number fluctuations can be measured in solid-state as
well as cold-atom realizations. Additionally, by attach-
ing the system to static leads we avoid the problem of
heating to infinite temperature, and a featureless noise
spectra, in generic driven systems [21, 22]. In what fol-
lows we first derive a general analytical expression for
voltage noise in a Floquet system, and then apply this
formalism to a particular system that hosts FTBSs, the
driven Su-Schrieffer-Heeger (SSH) model [14, 23].

Model.—As a concrete realization of a Floquet topo-
logical system we focus on the driven SSH model, which,
while simple, exhibits all the relevant Floquet topological
phases. The Hamiltonian is defined on a one-dimensional
lattice by Ĥ(t) =

∑
x [w − (−1)xδ(t)]ĉ†x+1ĉx + h.c.,

where ĉ†x creates a fermion at lattice site x, w is the un-
modulated hopping amplitude and δ(t) = δ(t + 2π/Ω)
is a temporally periodic hopping modulation. Using
Floquet’s theorem, the Schrödinger equation may be
written as [Ĥ(t) − i∂/∂t] |uα(t)〉 = εα |uα(t)〉, where
|uα(t)〉 = |uα(t+ 2π/Ω)〉 are periodic Floquet steady
states with quasienergy εα. The static system has two
distinct phases: a topological one for δ/w > 0 and a triv-
ial one for δ/w < 0, characterized respectively by the
presence and absence of solutions representing TBSs at
each edge. By contrast, the Floquet system has more
distinct topological phases; in what follows, we focus on
four distinct Floquet phases, each with one or no regular
and/or anomalous FTBS.

Noise in Floquet formalism.—Quantum noise in a local
observable Ôx(t) at time t (in the Heisenberg picture) is
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FIG. 1. (a) A sketch of the geometry considered for quan-
tum noise. The system, here a one-dimensional Su-Schrieffer-
Heeger chain, is attached to leads at its edges; noise is mea-
sured locally at the edge and the bulk. (b) Local voltage noise

spectrum, S
(0)
xx (ω), of Floquet phases in driven SSH model

with the hopping modulation δ(t) = δ0 + δ1 sin(Ωt). The
left (right) panels show the local noise at the edge, x = 1
(bulk, x = 50) of a chain with 100 sites. The top, top middle,
bottom middle, and bottom panels are four distinct Floquet
phases with, respectively, no, one regular, one anomalous,
and both types of Floquet topological bound states at the
edge. The dashed vertical lines indicate probe frequencies
ω = 0,Ω/2 and Ω. The parameters are: δ0 = −0.1 (top,
bottom middle), δ0 = 0.1 (top middle, bottom), δ1/w = 0.4,
γL = γR = 10−2w, TL = TR = 10−4w, and the leads are
unbiased in the main panels. The insets show the spectra for
a lead bias 0.1w and have the same range as the main panels.

defined as

Sxy(t, s) =
1

2
〈{Ôx(t), Ôy(s)}〉 − 〈Ôx(t)〉 〈Ôy(s)〉 , (1)

where {·, ·} is the anticommutator and 〈· · ·〉 is the ex-
pectation value with respect to steady states defined
by the leads, discussed below. In our driven sys-
tems, the dynamics is given by a periodic Hamilto-
nian Ĥ(t) = Ĥ(t + 2π/Ω), so the noise is a func-
tion of τ = t − s and is periodic in t: S(t, τ) =
S(t + 2π/Ω, τ) = 1

2π

∫
dω
∑
m e

iωτ+imΩtS(m)(ω), where

S(m)(ω) defines the Floquet noise spectrum.
We focus on voltage noise, characterized by the spa-

tiotemporal correlations in the number operator ĉ†xĉx,
where ĉ†x creates a quasiparticle in state |x〉 (here posi-
tion). To calculate the expectation values in Eq. (1), one
must specify a density matrix [21, 22, 24–26] which sets

⌫ + ! + n⌦
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FIG. 2. Diagrammatic representation of Eq.(11), the Floquet

quantum noise S
(m)
xy (ω) at probe frequency ω and m “pho-

tons” exchanged with the drive across two (position) states
|x〉 and |y〉. The circular vertices (labeled x and y) project
to position basis; solid (dashed) lines show particle (photon)
propagation in the direction of arrows; square vertices λ, κ
represent coupling with external leads and exchange of a con-
served number of “photons,” with the net influx of m photons
indicated by the dashed circular vertex.

the occupation of the Floquet bands, and therefore plays
a defining role in the accessible topological properties of
the system. We assume that the system is attached to
external static leads, as shown in Fig. 1(a), with a ther-
mal distribution of electrons impinging on the system [4].
This contact with external reservoirs guarantees the sys-
tem will not heat to infinite temperature. We employ a
Floquet Green’s function approach [6, 9, 11, 12, 27, 28]
to evaluate the expectation values of Eq. (1). The details
of our calculation are presented in [29], with the result,

S(m)
xy (ω) = 2πRe

∑

kln
λκ

∫
dν 〈y|Wλ

k+n,n+l(ν) |x〉 fλ(ν)

× 〈x|Wκ
m+l,k(ν + ω + nΩ) |y〉f̄κ(ν + ω + nΩ),

(2)

where k, l, n, are integers, the Fermi distribution of lead
λ with chemical potential µλ and temperature Tλ is
fλ(ω) = 1/

(
1 + exp[(ω − µλ)/Tλ]

)
, f̄λ = 1 − fλ, and

Wλ
n,m(ω) = G(n)(ω)Γλ(ω)G(m)†(ω) = Wλ†

m,n(ω), with Γλ

the self-energy due to lead λ. The matrix elements of
the Floquet Green’s function G(n)(ω) give the amplitude
of propagation for a particle at energy ω dressed with
n “photons,” carrying nΩ quanta of drive energy. In
the wide-band limit, i.e. with constant lead densities of
states, we have the spectral representation

G(n)(ω) =
∑

kα

|u(k+n)
α 〉 〈ū(k)

α |
ω − (zα + kΩ)

, (3)

where |u(k)
α 〉 is the kth harmonic of the periodic Floquet

state |uα(t)〉, and zα is the complex-valued quasienergy
of the open system. Note that the adjoint Floquet states
〈ūα|† have complex conjugate quasienergy z̄α.

Eq. (11) can be represented diagrammatically as
shown in Fig. 2, with the following rules. A circular ver-
tex labeled x projects to the state |x〉; it is connected to
one external line at a given energy and photon number
and two dressed particle propagators of a given energy
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and photon number. At such a vertex, the outgoing elec-
tron energy is increased from the incoming energy by the
incoming external frequency plus the energy exchanged
with the drive, equal to Ω times the net incoming pho-
ton number. Photon number by itself is not conserved
at this vertex. A square vertex labeled λ supplies the
tunnel coupling Γλ to lead λ; it connects one dressed
particle to a dressed hole and can exchange a number of
photons with the drive. Here, the dressed particle en-
ergy and photon energy are conserved separately. The
net influx of m photons is shown by the dashed circular
vertex. Finally, vertices are connected by lines of prop-
agating dressed particles and holes, represented by G†

and G. This diagram suggests the noise spectrum is un-
derstandable in terms of particle-hole pair fluctuations
around the steady state. We note Eq. (11) is general,
and applies for systems in any spatial dimension, type of
drive, and coupling with the external leads.

Weak-coupling limit.—While Eq. (11) is valid in gen-
eral, the physical processes contributing to voltage noise
become particularly transparent in the wide-band and
weak-coupling limits. Then, to lowest order in Γ =∑
λ Γλ, we can take |uα〉 to be the Floquet state of the

closed system with quasienergy εα = Re zα, 〈ūα| = 〈uα|,
and Im zα ≡ γα = −∑k 〈u

(k)
α |Γ |u(k)

α 〉. Using the
spectral form (13), we find only the diagonal elements

〈u(k)
α |Γλ |u(k)

α 〉 contribute significantly to the matrix ele-
ments of Wλ, so that

S(m)
xy (ω) ≈ 2πRe

∑

kln
λκαβ

Υλ(k)
α Υ

κ(l)
β fλ(εα + kΩ)f̄κ(εβ + lΩ)

×M (m,n)
αβ,xyδγαβ

(ω + εα − εβ + nΩ). (4)

Here, Υ
λ(k)
α = π 〈u(k)

α |Γλ |u(k)
α 〉 /γα is a dimensionless pa-

rameter that describes the coupling of the k-th Fourier
mode of the system with the leads, the matrix elements

M
(m,n)
αβ,xy =

∑
q,p 〈u

(n+q)
α |x〉 〈x|u(m+q)

β 〉 〈u(p)
β |y〉 〈y|u

(n+p)
α 〉

account for the projection of the states |x〉, |y〉 into the
Floquet basis, and γαβ ≈ max(γα, γβ) + γ0 is a small
broadening entering the Lorentzian δε(z) = (ε/π)/(z2 +

ε2). The delta function makes explicit that S
(m)
xy (ω) is a

measure of the particle-hole excitation spectrum, with a
dressed particle and a dressed hole propagating between
the positions x and y at energy ω and with a net loss
of m photons to the drive. We have included an addi-
tional small phenomenological part, γ0, to account for
other sources of broadening and experimental resolution.

Since in each process the dressed particles and holes
can lose or gain photons, one must sum over the am-
plitudes of all such virtual processes weighted by the ap-
propriate tunnel couplings and matrix elements. Thus, it
becomes possible to measure the quasienergy excitation
spectrum and reveal the presence of FTBSs. This gives
rise to noise at frequencies forbidden in a static system,

where the only nonzero noise harmonic is S
(0)
xy (ω). In

an unbiased static system, voltage noise vanishes for fre-
quencies below the particle-hole excitation gap. In par-
ticular, the “shot” noise at ω = 0 vanishes unless there
is a resonant (bound) state at the lead chemical poten-
tial. This structure can be used to detect static TBSs in
equilibrium [29].

In the zero-temperature limit, an additional factor
must be included in the summands that correctly ac-
counts for restrictions arising from the step-function
Fermi distributions. For small lead bias, this only signif-
icantly affects the behavior around ω = 0 resulting from
εα = εβ = 0. For example, in the static limit, these con-
ditions restrict ω > 0 in the zero-temperature limit [29].
The main effect of this restriction is to render the peak
at ω = 0 resulting from a regular FTBS asymmetric, as
we discuss below.

Floquet noise spectrum.—We now show that local volt-
age noise with x = y in the driven system can detect dif-
ferent types of FTBSs unambiguously. In particular, the
structure of the noise spectra near frequencies ω = 0,Ω/2
and Ω bear unique signatures of FTBSs. For simplicity,
we shall assume the system is coupled at its edges to two
leads. Very generally, a particle-hole pair between any
Floquet steady state and a state in the lead, dressed with
a sufficient number of virtual photons, will contribute to
noise at ω = 0. While the matrix elements for large vir-
tual photon numbers are quite small, this nevertheless
leads to a broad resonance at zero frequency in the bulk.
Some residual zero-frequency noise from these bulk states
will persist in the local noise at the edge.

On the other hand, for a topologically nontrivial driven
system coupled to unbiased leads, with a regular or
anomalous FTBS, or both, we expect to see a sharp
zero-frequency peak in the local noise measured at the
edge, arising from particle-hole excitations among differ-
ent FTBSs. Similarly, a peak should be seen at ω = Ω
due to processes involving a single virtual photon. The
peak originating from FTBSs can be distinguished from
the broad bulk peak by its behavior with chemical po-
tential in the lead: in the regular case, it drops sharply
in magnitude when the chemical potential moves away
from zero energy. The analogous peak for the anoma-
lous case remains unchanged for small biases and only
drops sharply when the chemical potential passes through
±Ω/2. In the bulk, this behavior is completely absent.

When the driven system hosts both regular and
anomalous FTBSs, their simultaneous presence an-
nounces itself through the noise spectrum near ω = Ω/2,
since the inter-level particle-hole spectrum at the edge
now has an excitation precisely at this energy. Indeed,
this peak is robust against a whole set of parameter varia-
tions, including disorder and other perturbations, so long
as the FTBSs continue to exist. Together with its ab-
sence in the local noise spectrum in the bulk, this peak
provides an unambiguous detection signal for this intrin-
sically nonequilibrium topological phase.
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FIG. 3. Effect of local potential disorder on local voltage
noise, averaged over 200 disorder realizations with strength
W/w = 0.1. The shaded regions show the standard deviation
of the signal. The system parameters are as in the bottom
panel of Fig. 1(b).

Numerical results.—In Fig. 1(b), we plot the local noise
at the edge and the bulk, obtained using the weak-
coupling approximation, Eq. (15), for the driven SSH
chain attached to unbiased leads at its edges. We have
numerically checked that this approximation accurately
reproduces the results of the full expression, Eq. (11), but
Eq. (15) allows for simulation of considerably larger sys-
tems. As expected, the trivial phase shows residual zero-
frequency noise. However, in all the topological phases
prominent zero- and full-frequency peak structures ap-
pear at the edge. For the phase with both regular and
anomalous FTBSs, an additional peak structure is ob-
served at half-frequency.

We also show, in the insets of the middle two panels,
the local noise at the edge for a small bias between the
leads. In agreement with our analysis above, the peak
structure for the regular (anomalous) FTBS goes away
(persists), thus distinguishing the two kinds of Floquet
phases. We note that the peaks for the regular (anoma-
lous) FTBS showing an asymmetric (symmetric) shape.
For the phase hosting both (the bottom panel), the peak
shape shows an intermediate asymmetry. These shapes
arise due to restrictions placed on the resonance condi-
tions by the Fermi distributions; a similar asymmetric
zero-frequency peak is also observed at the edge of the
topological phase of the static system.

Effects of disorder.—Topological bound states hosted
by a topological phase are generically robust against lo-
cal changes of potential that do not spoil the symmetries
protecting them: while their wavefunctions change, they
stay bound near an edge. Consequently, they are also
robust against local disorder that preserves the relevant
symmetries on average. Thus, a detection scheme of a
topological phase must also display a degree of robust-
ness against disorder. Indeed, we may expect a more
dramatic response to disorder, whereby the topological
feature becomes more prominent as the nontopological
aspects are suppressed by disorder more rapidly [6].

In order to study the effects of disorder in quantum
noise, we calculated the local noise in the SSH model with
local potential disorder, taken to be an uncorrelated, uni-

formly distributed random variable Vx ∈ [−W,W ]. An
example of our results is shown in Fig. 3. After aver-
aging over disorder, we observed a smoothening of the
non-topological features; for example, the local noise at
the edge at frequencies away from multiples of Ω/2 shows
significant variation, which, after averaging, result in a
smoother profile. The peak structure at multiples of Ω/2
shows reduced variation and remains robust. This ro-
bustness allows the identification of topological phases in
moderately disordered systems.

Discussion.—As seen in the bottom two panels of
Fig. 1(b), the residual zero-frequency signal in the bulk
develops to a more prominent peak than in the upper
two panels. This structure reflects the growing intra-
band quasienergy particle-hole excitations with n = 0 in
Eq. (15), while the larger frequency features result from
interband excitations. We also note that the gap around
ω = Ω clearly seen in the top two panels closes in the
bottom two panels. This can also be understood as aris-
ing from intraband excitations with n = −1 in Eq. (15).
More generally, with decreasing drive frequency, multi-
photon processes become more relevant, so that gaps in
the bulk noise spectrum fill in and the signal becomes
more or less featureless. However, the noise at the edge
remains gapped and the peak structures persist at even
these lower drive frequencies. This robustness of the edge
noise spectrum reflects the robustness of the FTBS which
dominate the observed noise signal.

The numerical calculations we report here have been
performed in a one-dimensional system. However, the
analytical expressions we obtain for local voltage noise,
Eqs. (11) and (15), are valid for any dimension. For the
SSH model as well as other topological one-dimensional
systems, the focus on voltage rather than current noise is
important because the FTBSs do not carry current. In
higher dimensions, the system boundaries allow for dif-
ferent geometries of connecting to leads. For example,
one may contact the leads on two extended edges or sur-
faces of a two- or three-dimensional system [30]. These
geometric variations would lead to different matrix ele-
ments, Wλ in Eq. (11) or Υλ in Eq. (15). It would be
interesting to explore the Floquet noise spectra in these
and other multi-terminal geometries.

In conclusion, we derived a general expression for the
voltage noise in periodically-driven systems. We have
shown that quantum noise in a periodically driven sys-
tem attached to static leads probes the quasienergy ex-
citation spectrum. Thus, local quantum noise can detect
Floquet topological bound states at the edge and, in par-
ticular, the intrinsically nonequilibrium, anomalous Flo-
quet bound states. The structure of Floquet noise spectra
at lower drive frequencies and the effects of dissipation
and other bath geometries are interesting problems for
the future.
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SUPPLEMENTAL MATERIAL

In this Supplemental Material, we outline the deriva-
tion of the Floquet power spectrum, present the noise in
the weak coupling limit and show numerical results for a
static system.

VOLTAGE NOISE DERIVATION

The Hamiltonian of the system we consider is given by

Ĥ(t) = ĤS(t) +
∑

λ

Ĥλ +
∑

λ

T̂λ, (5)

where ĤS(t) = ĤS(t + T ) is the time-periodic sys-
tem’s Hamiltonian, which in general can be written as
ĤS(t) =

∑
xy wxy(t)ĉ†xĉy, where w(t) = w(t + T ) is

a hermitian matrix, and ĉ†x(ĉx) creates (annihilates) a
fermion in the quantum state x of the system. Ĥλ =∑
xy F

λ
xyâ

λ†
x â

λ
y , is the Hamiltonian that described lead λ,

where aλ†x creates a fermion in state x on lead λ. Finally,
Tλ =

∑
xyK

λ
xyâ

λ†
x ĉy + h.c. is the tunneling Hamiltonian

that describes the coupling between lead λ and the sys-
tem.

The time evolution of the creation and annihilation op-
erators is obtained solving the coupled Heisenberg equa-

tions of motion dâλx/dt = i
[
Ĥ(t), âλx

]
and dĉx/dt =

i
[
Ĥ(t), ĉx

]
. We find that the solutions are given by [1]

âλ(t) = iGλ(t− t0)âλ(t0) +

∫ t

t0

Gλ(t− t′)Kλĉ(t′)dt′

ĉ(t) =
∑

n

∫
dω

2π
e−it(ω+nΩ)G(n)(ω)ĥ(ω). (6)

The first term in the expression for âλ(t) represents co-
herent time evolution of the static leads starting at time
t0, where Gλ(t) is the propagator in lead λ. The sec-
ond term arises from coupling with the time-dependent

http://arxiv.org/abs/1412.5599
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system ĤS(t). The time evolution of ĉ(t) is dictated by

ĥ(ω) =
∫
eiωtĥ(t)dt, ĥ(t) = i

∑
λK

λ†Gλ(t − t0)âλ(t0),
and the Floquet-Green’s function G(n)(ω) is defined as
the Fourier transform

G(t, t′) =
∑

n

∫
G(n)(ω)e−iω(t−t′)−inΩt dω

2π
(7)

of the two-time Green’s function G(t, t′), given by
the solution of [i∂/∂t− w(t)]G(t, t′) − i

∫∞
0

Γ(τ)G(t −
τ, t′)dτ = δ(t − t′), where Γ(τ) =

∑
λ Γλ(τ), and

Γλ(τ) = −iKλ†Gλ(τ)Kλ arise from coupling with the
leads.

In this work, we are interested in the voltage noise,
which is proportional to occupation number fluctuations

defined by the correlation function

Sxy(t, s) =
1

2
〈{n̂x(t), n̂y(s)}〉 − 〈n̂x(t)〉〈n̂y(s)〉, (8)

where n̂x(t) = ĉ†x(t)ĉx(t) is the number operator, 〈· · · 〉
represents a thermal average of the unperturbed system
in the far past at time t0 → −∞ defined by the state
of the leads 〈âλ†ν (t0)âλ

′

ν′ (t0)〉 = δνν′δλλ′fλ(Eν), where in
this case ν (ν′) represent energy eigenstates with energy

Eν (Eν′), fλ(E) = 1/(1 + eβ
λ(E−µλ)) is the Fermi distri-

bution function, βλ is the inverse temperature and µλ is
the chemical potential of lead λ.

Now we substitute ĉx(t) in Eq. (8) and evaluate the
expectation values. It is straighforward but lengthy to
show that in our system Wick’s theorem remains valid for
the time dependent creation and annihilation operators
in the system,

〈ĉ†x(t1)ĉ†y(t2)ĉz(t3)ĉl(t4)〉 = 〈ĉ†x(t1)ĉl(t4)〉〈ĉ†y(t2)ĉz(t3)〉 − 〈ĉ†x(t1)ĉz(t3)〉〈ĉ†y(t2)ĉl(t4)〉. (9)

Using the above relation, Eq. (8) simplifies to Sxy(t, s) = Re 〈ĉx(t)ĉ†y(s)〉〈ĉ†x(t)ĉy(s)〉. The expectation values 〈ĉ†ĉ〉 and

〈ĉĉ†〉 are evaluated using Eqs. (6). We obtain 〈ĉ†x(t)ĉy(s)〉 = (1/π)
∑
λ

∫
dωeiω(t−s)fλ(ω)〈y|G(s, ω)Γλ(ω)G†(t, ω)|x〉

and 〈ĉx(t)ĉ†y(s)〉 = (1/π)
∑
λ

∫
dωe−iω(t−s)f̄λ(ω)〈x|G(t, ω)Γλ(ω)G†(s, ω)|y〉, where f̄λ = 1− fλ. These results lead to

the time-dependent voltage noise

Sxy(t, s) =
1

π2
Re
∑

λκ

∫
dωdω′ei(ω−ω

′)(t−s)fλ(ω)〈y|G(s, ω)Γλ(ω)G†(t, ω)|x〉f̄κ(ω′)〈x|G(t, ω′)Γκ(ω′)G†(s, ω′)|y〉. (10)

Taking the Fourier transform, we obtain the Floquet noise power spectrum as shown in the main text

S(m)
xy (ω) = 2πRe

∑

kln
λκ

∫
dν 〈y|Wλ

k+n,n+l(ν) |x〉 fλ(ν)〈x|Wκ
m+l,k(ν + ω + nΩ) |y〉f̄κ(ν + ω + nΩ), (11)

where k, l, n, are integers, the Fermi distribution fλ(ω) =(
1 + exp[βλ(ω − µλ)]

)−1
of lead λ with chemical poten-

tial µλ and inverse-temperature βλ, f̄λ = 1 − fλ, and
Wλ
n,m(ω) = G(n)(ω)Γλ(ω)G(m)†(ω) = Wλ†

m,n(ω), with Γλ

the tunnel coupling matrix. For the one-dimensional
model considered in the main text, 〈x|Γλ|y〉 = δxyδxλγ

λ

in position representation, and the parameter γλ charac-
terizes the lead-system coupling strength.

WEAK COUPLING LIMIT

In this section we present the voltage noise power spec-
trum in the wide-band weak-coupling limit. In the wide-
band limit, the calculation of the Green’s function is

equivalent to solving the Floquet equation [1]

[w(t)− iΓ− id/dt] |uα(t)〉 = zα|uα(t)〉 (12)
where Γ =

∑
λ Γλ is constant and in the weak coupling

limit is treated as a perturbation. To lowest order in

Γ =
∑
λ Γλ, zα = εα + iγα, γα = −∑k 〈u

(k)
α |Γ |u(k)

α 〉 and
the Floquet Green’s function has spectral representation

G(n)(ω) =
∑

kα

|u(k+n)
α 〉 〈ū(k)

α |
ω − (εα + kΩ + iγα)

. (13)

In this limit, the propagators Wλ are given by

Wλ
n′,n(ω) ≈ 1

π

∑

αk

Υλ(k)
α |u(n′+k)

α 〉〈u(n+k)
α |δγα(ω − εα − kΩ),

where Υ
λ(k)
α = π 〈u(k)

α |Γλ |u(k)
α 〉 /γα and δε(x) =

(ε/π)/(x2 + ε2). Substituting the above approximation
for Wλ

n′,n(ω) in Eq. (11) we obtain the power spectrum
in the weak-coupling limit
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FIG. S4. Voltage noise spectrum at the (left) edge x = 1 and bulk (right) x = 50 as a function of the frequency ω/∆ for a static
SSH model with N = 100 sites. The black and red curves correspond to the topological (δ0/w = 0.4), and trivial (δ0/w = −0.4)
regimes respectively, where w is the hopping amplitude. The gap in the energy spectrum is ∆/w ≈ 1.6, wβλ = 104, µλ/w = 0,
and γλ/w = 10−2.

S(m)
xy (ω) ≈ πRe

∑

kln
λκαβ

Υλ(k)
α Υ

κ(l)
β M

(m,n)
αβ,xy

[
fλ(εα + kΩ) f̄κ(ω + εα + (n+ l)Ω) + f̄κ(εβ + lΩ)

fλ(−ω + εβ − (n− k)Ω)
]
δγαβ

(ω + εα − εβ + nΩ) (14)

with the matrix elements M
(m,n)
αβ,xy =

∑
q,p 〈u

(n+q)
α |x〉 〈x|u(m+q)

β 〉 〈u(p)
β |y〉 〈y|u

(n+p)
α 〉 , and γαβ ≈ max(γα, γβ) + γ0 the

small broadening entering the Lorentzian δε(z) = (ε/π)/(z2 + ε2). When the spectral broadening induced by the
coupling with the leads is larger than the temperature, the noise power spectrum takes the more physically transparent
form

S(m)
xy (ω) ≈ 2πRe

∑

kln
λκαβ

Υλ(k)
α Υ

κ(l)
β fλ(εα + kΩ)f̄κ(εβ + lΩ)M

(m,n)
αβ,xyδγαβ

(ω + εα − εβ + nΩ) (15)

presented in the main text.

STATIC SSH MODEL

In this section, we present our results for a static SSH model [2] . In the weak coupling limit, the voltage noise is
given by

S(0)
xy (ω) ≈ 2πRe

∑

λκαβ

Υλ
αΥκ

βPα,yxPβ,xyf
λ(Eα)f̄κ(Eβ)δ(ω + Eα − Eβ), (16)

where Pα,xy = 〈x|uα〉 〈uα|y〉 are the matrix elements of
the projector to eigenstate |uα〉 with energy Eα, Υλ

α =
π 〈uα|Γλ |uα〉 / 〈uα|Γ |uα〉, and 〈x|Γλ|y〉 = δxyδxλγ

λ. In
figure S4 we plot the noise power spectrum at the edge
of a sample (left panel) with N = 100 sites for trivial,
and topological regimes. The frequency is normalized to
the energy spectrum gap ∆. In the topological regime,

S
(0)
xx (ω) at the edge has a peak at ω/∆ ≈ 0, stemming

from particle-hole pair exchanges between the localized
edge states and the leads. As expected, this sharp feature
is not present in the trivial regime. In contrast, the noise

in the bulk (right panel) is similar in both regimes. The
spectrum in the bulk shows a slight enhancement around
ω/∆ ≈ 1.75. This feature arises from transitions between
the bottom of the spectrum and states close to the gap
edge, where the density of states is relatively high.
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