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Most implementations of Coulomb-distorted strong-field approaches that contain features such as
tunneling and quantum interference use real trajectories in continuum propagation, while a fully
consistent approach must use complex trajectories throughout. A key difficulty in the latter case are
branch cuts that appear due to the specific form of the Coulomb potential. We present a method for
treating branch cuts in quantum-trajectory models, which is subsequently applied to photoelectron
holography. Our method is not numerically intensive, as it does not require finding the location of all
branching points and branch cuts prior to its implementation, and is applicable to Coulomb-free and
Coulomb-distorted trajectories. We show that the presence of branch cuts leads to discontinuities
and caustics in the holographic fringes in above-threshold ionization (ATI) photoelectron angular
distributions (PAD). These artefacts are removed applying our method, provided they appear far
enough from the polarization axis. A comparison with the full solution of the time-dependent
Schrodinger equation is also performed, and a discussion of the applicability range of the present

approach is provided.

PACS numbers: 32.80.Rm

I. INTRODUCTION

Above threshold ionization (ATI) has allowed unprece-
dented control in light matter interactions and enabled
probing of targets via imaging processes. One such imag-
ing technique associated with ATT is photoelectron holog-
raphy [1-3], where, similarly to light holography, an elec-
tron freed from a target atom or molecule takes (at least)
two paths to the detector: A direct path and one via
further interaction with its parent ion. These paths un-
dergo quantum interference, which will yield information
about the interaction and binding potential. Quantum
interference is not only vital for photoelectron hologra-
phy, but plays an important role in molecular imaging
[4] and in the study of other phenomena. Examples are
high-order harmonic generation (HHG) [5], and, possibly,
laser-induced nonsequential double ionization (NSDI) [6-
9]. Besides this, different interpretations of the ionization
process, in terms of paths, appeared pivotal for verifica-
tion of such theoretical concepts as the tunnel exit, the
tunneling time and the attoclock setup[10-13].

Traditionally, the strong field approximation (SFA)
[14-18] has been widely used for this type of problem.
The power of the SFA is due to the simple analytic solu-
tion given for the continuum, which is approximated by
field-dressed plane waves. This, coupled with the abil-
ity to build transition amplitudes from many alternative
paths to the detector, makes the SFA an ideal method for
the analysis of quantum interference in strong fields. The
specific formulation using the steepest descent method
leads to the concept of “quantum orbits”, which are as-
sociated with classical orbits and yet may interfere or
undergo tunnel ionization [19]. This requires the compu-
tation of integrals in complex time, which are straight-
forward for the SFA. Also, various representations for

quantum-mechanical amplitudes of strong-field processes
in terms of other types of paths were proven to be very
efficient both in computations and illuminating of the un-
derlying physics; see [20-23] for a review and references.

Since the past decade, however, it has become clear
that the residual Coulomb potential plays an integral
role in holographic patterns [24-30] observed in photo-
electron angular distributions (PADs). Examples are
the fan-shaped structure that forms near the ionization
threshold [31], the spider-like structure near the field-
polarization axis that extends up to high photoelectron
energy, and holographic sidelobes [1, 32]. There have
also been other, non-interference based, striking discrep-
ancies between the SFA and ab initio solutions of the
TDSE or experiment. The most significant of these
being the low energy (LES) [33-35], very low energy
(VLES) [36] and zero energy (ZES) [37, 38] structures,
respectively. For that very reason, orbit-based models
that include the Coulomb potential, such as the Eikonal
Volkov approximation (EVA) [39], the time-dependent
analytical R-matrix (ARM) method [40], the Coulomb-
corrected strong-field approximation (CCSFA) [41] and
the Coulomb quantum-orbit strong-field approximation
(CQSFA) [27] from one side and models of ionization in-
corporating interference via the semiclassical treatment
of the post-tunneling photoelectron dynamics in the two
fields [42] from the other, as well as methods based on a
purely classical consideration of the post-ionization dy-
namics [43, 44] have become increasingly popular. De-
pending on the model, the influence of the Coulomb po-
tential may be introduced either in the semiclassical ac-
tion or in the electron trajectories or in both simultane-
ously.

Nonetheless, in introducing the Coulomb interaction,
a number of issues must be faced, namely: i) The ini-
tial conditions of the electron dictate that it must start



from the origin, where the Coulomb potential is singu-
lar. This will cause a divergence. Replacing the singular
Coulomb potential by a soft core one does not actually
solve this problem, because this does not change the very
fact that semiclassical approaches fail in the vicinity of
the core. Thus the necessity to part the space into two
subspaces and to match either trajectories or wave func-
tions at the boundary is inevitable for ionization theories
with the Coulomb interaction included [20, 45]. ii) The
transition amplitude must not be dependent on the inte-
gration contour chosen from the complex time of ioniza-
tion to the real time of detection. iii) In order to satisfy
ii) a calculation based on the trajectory language must
necessarily use complex trajectories throughout. Hence,
the Coulomb potential must be extended to the complex-
valued position space r. As vr? is a multivalued func-
tion, this extension raises a question of determining a
physically meaningful branch of the square root. The
problem of choice of “physical” leafs for values which
are initially determined in the theory as real and then
extended into the complex time plane is generally well
known in physics, particularly in the theory of scatter-
ing [46]. Finally, the only real quantity that remains in
the theory is the electron momentum, which is measured
at the detector. These issues have been investigated for
Coulomb-free trajectory models, where the dynamics are
still only determined by the laser field but a phase re-
lated to the Coulomb potential is included in the action.
Solutions 1), ii) and iii) have been explored in [41, 47, 48],
[48, 49] and [48, 50], respectively. Complex Coulomb-free
trajectories (i.e. those which solve Newton’s equation in
the presence of the laser field only, see Section II for de-
tails) have also been used in [45] in conjunction with the
EVA for circularly polarized fields. Therein, it has been
shown that the imaginary parts of the trajectories lead to
an effective deceleration of the wave packet. This deceler-
ation was found to improve the agreement with ab-initio
methods.

The methods [39, 48] which use Coulomb-free trajecto-
ries and correct only the complex-valued Coulomb phase
are rigorously justified in the case when the Coulomb in-
teraction only weakly distorts trajectories without chang-
ing the topology properties of these trajectories including
their mapping onto the final momentum space. The lat-
ter means that, in particular, the number of trajectories
bringing the electron into a given final state, the number
of close revisits for a given trajectory and other qualita-
tive characteristics which can be expressed in terms of
natural numbers do not change under the influence of
the Coulomb interaction. It was however shown that, in
many practically interesting cases, the Coulomb interac-
tion considerably changes their topology leading to the
emergence of new classes of trajectories which do not ex-
ist in the Coulomb-free case [1]. These new classes of tra-
jectories were shown to be responsible for the generation
of the side lobes, the LES, VLES and other pronounced
structures observed in ATI spectra experimentally and in
numerical TDSE solutions. In particular, the Coulomb

potential is essential for the holographic patterns to form.
In fact, our previous work [29, 30, 51] has shown that
Coulomb-distorted trajectories (i.e. those found by solv-
ing Newton’s equation in the two fields without consid-
ering any of them as a perturbation) are required to re-
produce the well known fan-like or spider-like structures.
Without Coulomb distortion, the softly forward scattered
trajectories involved in producing the spider-like struc-
ture do not even exist. It is however a non-trivial prob-
lem to employ complex trajectories if the Coulomb poten-
tial is incorporated. For that reason, in many Coulomb-
corrected approaches the continuum propagation is per-
formed using real variables, which can be justified within
the semiclassical picture of the photoionization dynamics
[13, 21, 42, 52]. Despite the good agreement between the
outcome of such approaches and ab-initio methods, all of
them have to consider the ionization step separately, by
postulating some initial conditions for the photoelectron
emerging at the tunnel exit. This reduces the applicabil-
ity of these models to the tunneling limit of ionization and
limits the account of non adiabatic effects. To the best of
our knowledge, none of the issues i)-iii) have been dealt
with for Coulomb-distorted complex trajectory models.

A method for dealing with the Coulomb potential en-
ergy calculated along a classical trajectory in the complex
time plane has been proposed for Coulomb-free trajecto-
ries in [48, 50] and later explored in [49] for a qualitative
calculation of photoelectron spectra. This method re-
quires all branching points and branch cuts to be found
and a contour that avoids these branch cuts and remains
on a fixed Riemann leaf to be constructed accordingly.
Thus, a different contour must be used for each value of
momentum in a PAD. Additionally, a two-dimensional
search through complex time must be performed and all
branch cuts must be mapped in advance. This is a diffi-
cult procedure already for Coulomb-free trajectories and
may not even be feasible for Coulomb-distorted orbits.

In the present work, we propose a more efficient
method for dealing with branch cuts. Instead of find-
ing integration contours that avoid branch cuts, we keep
the contour fixed by directing it first to the real time axis
and then along it. If a branch cut is encountered along
the contour, we take the point for which the branch cut
meets the real time axis and the branching point, con-
tinue the contour along the cut, circumvent the branch
point and return to the real part along the other side of
the same cut. This implies that branch cuts need only be
found if they cross that part of the real time axis where
the second arm of the integration contour is located,
which requires a 1-D rather than 2-D search through com-
plex time. We apply this method to Coulomb-free and
Coulomb-distorted orbits. Finally, we apply the devel-
oped algorithm for a calculation of PADs and show how
it can help improving the agreement between the approx-
imate analytic theory and ab initio results. Apart from
bringing a further quantitative progress in the analytic
theory of strong-field ionization, our method paves a way
to development of an essentially self-consistent method of



complex-time quantum orbits which considers the photo-
electron interaction with a laser field and with the parent
ion on an equal footing.

This article is organized as follows. In the next section
we introduce the basic equations of the theory and specify
the two models which deal with Coulomb-free (Subsec-
tion A)and Coulomb-distorted (Subsection B) trajecto-
ries correspondingly. Subsection C explains the choice
of the integration contour and gives general expressions
for the Coulomb-corrected action. In Section III the con-
tribution of branch cuts into the Coulomb action is cal-
culated and analyzed again for the Coulomb-free (Sub-
section A) and Coulomb-distorted (Subsection B) cases,
and topology of the branching points for different types
of photoelectron trajectories is discussed. Section IV is
devoted to a comparative discussion of PADs calculated
along different methods. The concluding section summa-
rizes results and open questions. We use atomic units
throughout.

II. BACKGROUND

The full transition amplitude from a bound state
|Wo(t')) = explilpt’] |¥o) with ionization potential I, to
a final momentum state [ps(¢)) = |py + A(t)) reads as
[27]

Mipg) = —i Jim [ [Br0/U 00 0(0)
1)

In Eq. (1), U(t,t") gives the full time evolution operator

U(t,t') =T exp Pblf}{@qdr], (2)

where T denotes time-ordering, which relates to the full
Hamiltonian
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H(t) = 2~ + V(£) + Hi(t) (3)
evolving from an initial time ¢ to a final time ¢. We

choose V() to be the Coulomb potential

V) = - )

with Z being the atomic charge and the interaction
Hi(t) = —t - E(t) with the external field is taken in the
length gauge. Throughout, the hats denote operators.

In order not to lose generality, we present the theory
below without making any assumption on A(t), except
the standard agreement that A(—oc) = A(4o00) = 0.
Numerical calculations will be made for the common case
of a monochromatic linearly polarized field of frequency
w, with the vector potential

A(t) = % cos wt. (5)

The electric field amplitude Ey is connected to the pon-
deromotive energy U, as U, = E§ /(4w?) and the electric
field is given by E(t) = —dA(t)/dt.

A. Coulomb-free Trajectory Model
If, in Eq. (1), the binding potential is neglected in
U(t,t'), the Strong-Field Approximation (SFA) is recov-

ered. In this case, the drift momentum is conserved and
the transition amplitude reduces to

t
Mg = —i lim [ ' (B(t)| Hr(t')[¥o(t) "), (6)
where
/ ! K 1 2
Silpt) =4t - [ dry e+ Am? (@
tl

is the Coulomb-free action associated with the ATI di-
rect electrons. The time integral in (6) is calculated by
the steepest descend method with the well-known expres-
sion for the saddle-point equation 9S4/t = 0

[P+ A(t,))]" +1, =0, (8)

N |

which can be interpreted as the conservation of energy at
the instant of ionization and has only complex solutions.
The action (7) calculated at the stationary point can be
associated with a trajectory

1‘0(7') =

0Sq i / /

o= [arerar) o
which starts at the origin at ¢ = t; and propagates under
the action of the laser field only. Below we refer to such
trajectories as Coulomb-free. They appear in general as
complex-valued, and become real only for the most prob-
able photoelectron momentum minimizing the imaginary
part of the action (7) [53]. Along these trajectories, the
Coulomb correction to the action can be calculated in the
form

t t
drVire(r)] = dT#
t/

\/Tro(T) - ro(T) '
(10)

Within the approximation of Coulomb-free trajecto-
ries, the Coulomb effect on the action appear linear with
respect to the charge Z. The relative value of the action
(10) compared to that of the SFA (8) is given by dimen-
sionless parameters whose value depends on the regime
of interaction (see [48, 53, 54], where such parameters
have been introduced in the tunneling and multiphoton
regimes of ionization). Taking the Coulomb distortion of
trajectories into account as we explain it in the following,
makes the full action a non linear function of Z. Below
we consider only hydrogen and therefore set Z = 1.

Sc(p,t',t) = */

t



The transition amplitude within the saddle-point ap-
proximation then reads as

My(p) = ch (ts)eisd(p,ts)eiSc(rO.,ts)’ (11)

with
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Colts) =\ 5252(p. 1) /02

<p + A(ts)|HI(ts)|\IIO> .

(12)
Within this approximation there is no need to calculate
linear Coulomb corrections to the Coulomb-free trajecto-
ries, because their contribution into the action vanishes
as shown e.g. in Appendix B of [18]. Calculation of the
prefactor (12) is straightforward for short-range poten-
tials while in the case we are interested in here it requires
additional caution. For potentials with the Coulomb tail,
for which the radial part of the bound state wave func-
tion behaves at large distances as R(r) ~ r“~1, where
v = 1/,/2I, is the effective principal quantum number,
this calculation is described in details in [18, 55].

B. Coulomb Quantum-Orbit Strong Field
Approximation

Inserting the closure relation [ Po [Po) (Po| = 1 into
Eq. (1) gives a transition amplitude in which the elec-
tron reaches the continuum via the momentum state

[Po(t)) = [po + A(t))

M(py) = i Jim [t [dpo (5, ()|Ut, 1) Bo(t)
(Bl H (1) () (1)

The matrix element between the initial and final momen-
tum states enables us to compute Eq. (1) using path-
integral methods via time-slicing techniques [27]. This
gives

N : , } pr(t) L Dr
M(pf)=—lt1£20 _Oodt /dpo/f)o DP/W
x e S®t) (50 H () i) (14)

where D'p and Dr denote integration measures, the
prime indicates a restriction and the tilde indicate field-
dressed momenta, i.e., p(7) = p + A(7). The action in
Eq. (14) reads

t
SP,r,t,t) =I,t' — / [p(T)-r(7)+ H(x(T),p(T), 7)]dT,

t

with
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Eq. (14) can also be calculated using saddle-point meth-
ods. Minimizing the action (15) with regard to the in-
termediate momentum p, the intermediate coordinate r
and the ionization time t' gives

V. S(P,r,t,t')=0 = p=-V.V(r(r), @17)

VS, r,t,t')=0 = F=p-+ A7), (18)
and
)+ A
POZAOL  vewy =1, (9
respectively. The latter equation obviously fails for

r(t') = 0 for the good reason that the semiclassical
approximation employed here does not apply at short
distances from the nucleus. For that reason, a series
of approximations will be introduced as discussed in
Sec. IIC. Within the saddle-point approximation, the
CQSFA transition amplitude becomes

M(ps) < —i lim Z det Op (1) _Cl(f)eis(f’“”-“t’ts)
! t—o0 . 8rs(ts) S

(20)
where ts, ps and rg are determined by Egs. (17)-(19)
and C(ts) is given by Eq. (12). In practice, we use the
stability factor Ops(t)/0ps(ts), which is obtained with a
Legendre transformation. This transformation will lead
to the same action and thus not alter the overall dynam-
ics if the electron starts from the origin. Note that, owing
to the Coulomb potential, Eqs. (18),(19) are singular at
r(t') = 0, so that a series of approximations introduced
in the next Subsection are required to make them mean-
ingful.

C. Choice of Contours and Regularization

Actions (7), (10) and (15) have to be calculated tak-
ing the stationary point ¢4 for the lower integration limit,
t' = t, while the upper integration limit is some real value
tq when the laser field is off and the electron momentum
p is measured at the detector. Throughout, unless oth-
erwise stated we consider a two-pronged contour, whose
first and second arms are parallel to the imaginary and
real time axis, respectively. The first arm goes from the
imaginary time t' = ¢/ + it} to its real part t,., while the
scond part goes from ¢/ to the real final time ¢4. This is
the most widely used contour in the literature (see, e.g.,
[26, 40, 41, 45]). In the presence of branch cuts gener-
ated by the Coulomb potential energy this contour must
be deformed as soon as any of them cross the real axis
between t. and t4 [56]. The value of the electron coordi-
nate ro(t = t.) taken at the time ¢/ for which the electron
reaches the continuum is commonly known as the tunnel
exit. In the standard version of the CQSFA, we consider
only the real part of the tunnel exit. This renders all
variables in the second part of the contour real, which
considerably simplifies the computations.



For the Coulomb-free trajectory model, this will be
taken into consideration when computing the trajectory
ro and the Coulomb phase Sc(p,t’) [Egs. (9) and (10),
respectively]. For the CQSFA, the action along the first
and the second arm of the contour will be defined as

1 [t
St (Pt ) = it — 5/ [po +A(T)}2d7
t/

-/, Viro(myr, (21)
and

t
S8 (b, t,15) = Iyt~ 5 [ () + AT dr
t/

f/fpr+vwvmma (22)

t

respectively. In the second arm of the contour, we use
r-p=-r-V.V(r)=V(r) (23)

in Eq. (22), which will lead to a factor two in the CQSFA
Coulomb phase [29, 42]. Thus, the last integral in (22) is
equal to

t
1
Ic =2 —dr. 24
o t& —dr (24
The overall action will then read
S(P,t,t') = S (p,tl, ') + SPP(P, t,t). (25)

In the first arm of the contour, we have neglected the
influence of the Coulomb force on the trajectory and have
approximated the momentum by pg. For that reason,
Eq. (21) is given in terms of pg and ry. In this case,
Eq. (19) is approximated by

5 [P0+ AW + 1, =0. (26)
Although this equation is formally the same as (8), the
solutions will be different as it will be matched to the
solutions of saddle-point equations (18) and (17) de-
scribing the electron motion in the continuum. Physi-
cally, Eq. (21) relates to the sub-barrier dynamics, while
Eq. (22) is associated with the continuum propagation.
When the integrand remains an analytic function ev-
erywhere in the complex time plane except the infinity,
as is the case for the Coulomb-free action (7), the inte-
gration contour connecting ts and t; can be chosen ar-
bitrarily. This makes, in particular, the value of tunnel
exit ill-defined for theories where the Coulomb field is
fully discarded [18, 48]. In contrast, the integrands in
(10) and (15) may have singularities generated by the di-
vergency of the Coulomb potential energy at the origin
and at those points where r? = 0. As r(t) is a complex-
valued vector, the condition r? = 0 does not necessarily
mean that r = 0. This imposes certain constraints on

the choice of the integration contour [18, 48-50]. Besides
the integrals (10), (21) and (22) diverge logarithmically
at both endpoints of the contour, i.e., at the initial time
t'" and the final time t; — oo, due to the presence of
the Coulomb term. However, as the asymptotic behav-
ior of the Coulomb integral in the limit ¢; — oo is the
same for all trajectories corresponding to the same fi-
nal momentum, So(p,t) ~ p~!Int, and this divergent
contribution is real, the upper-limit divergency does not
influence the shape of photoelectron spectra. Instead,
the divergency at the lower integration limit is generated
by the Coulomb singularity and physically connected to
the fact that the approximate treatment of the Coulomb
interaction along a Coulomb-free trajectory does not ap-
ply when the electron approaches the atomic core, so that
the Coulomb interaction becomes dominant.

To overcome this issue, we follow the regularization
procedure outlined in [18, 48], in which the Coulomb
phase (10) is matched to the asymptotic value for the
bound-state Coulomb wave function W, (ty,) at a time
tm such that 1/,/2I, < r(tm) < Eo/w?, so that the
electron is already sufficiently away from the atom, but
still travelled a small fraction of its quiver amplitude.
The generally complex-value matching point satisfying
these conditions can be arbitrarily chosen around tg; as
it vanishes from the final result there is no need to specify
its precise position on the integration contour.

In both cases of the Coulomb-free trajectories and of
the CQSFA the regularized integral along the vertical
arm of the contour takes the form [18, 47, 53]:

th

‘ Z
Sc = —ivln {2Ipt§] —z/( B )dT
s rg(t'r—l—iT) ;=7

(27)
After the regularization is performed, the remaining in-
tegral along the real axis preserves the form it has in
Egs. (10) and (22) correspondingly with the difference
that in the integral along a Coulomb-free trajectory the
lower integration limit is replaced by t/.. Although the
Coulomb integrals along the second arm look identi-
cal in both approaches, they are nevertheless different:
a Coulomb-free trajectory acquires a constant imagi-
nary part, generating branch points and first-order poles,
which should be accounted for during the integration. In
the formulation of the CQSFA given in [27-29], the tra-
jectories were assumed real along the real time contour,
so that the integration process is straightforward. This
assumption will be relaxed in the next sections.

III. TREATMENT OF BRANCH CUTS

The solutions of the saddle-point equations in
Secs. IT A and II B are complex, so that the correspond-
ing trajectories r(t) are complex-valued as well. The only
observable, and therefore guaranteed real quantity, is the
final momentum py(tq), t4 — oo at the detector. Thus,



the residual binding potential
Vir(n)] = ————= (28)

must be extended to the complex plane where it exhibits
branch cuts [18, 48-50]. If the standard convention is
applied, branch cuts occur in the negative real half axis
of r(7) - r(7), i.e., for

Re(r(r) -r(r)) <0 and  Im(r(r)-r(r))=0. (29)
Hence, the integration contour used must not cross this
line. In this section, we present an alternative solution to
that adopted in [49, 50] to treat branch cuts. Instead of
mapping them in advance and using this information to
build a specific contour, we first choose a contour and, af-
ter computing the trajectory, test to see if any branch cut
has been crossed. Should this be the case, then the con-
tour must be deformed in such a way that it goes around
the branch cut. Hence, one must find the branching point
in complex time, which will be defined by

r(r)-r(r) =0+ 0:. (30)

Given a time t;, along the second arm of the contour
that satisfies Eqgs. (29), it is easy to use that to find a
complex time ¢ that satisfies Eq. (30). Throughout, we
will use the two-pronged contour specified in Sec. 11 C,
whose first and second arms are chosen parallel to the
imaginary axis and along the real time axis, respectively.
For this specific contour, ¢, will mark the intersection
of the branch cut with the real axis. Together with the
time t; marking the end of the branch cut, this can be
used to construct a contour from three parts that can be
integrated over to ‘correct’ the potential integral around
each branch cut. The Coulomb phase is then computed
along this contour, so that

sleut) :/Cl V[r(T)}dT+/02 V[r(T)}dT—&-/CB Vie(r)]dr,

where ¢; goes from ¢t to t; following the branch cut, co
goes back from t; to ¢, and c3 connects them together
with a half circle around t;. By taking a function

ur =r(7) - r(7) = |u(r)| exp(Lin), (31)

such that wu, is restricted to ¢; and u_ to cy, one may
easily show that

/C V(e = / V(e (32)

and that, for p; # 0, the integral over ¢z vanishes. For
p1 = 0 the topology of the problem changes, with poles
instead of branch cuts, and there will be divergencies.
We will discuss this problem in the subsequent sections,
see also [57].

For a schematic representation of this contour and how
it is deformed to avoid branch cuts, see Fig. 1. Branch

cuts manifest themselves as discontinuities in the argu-
ment of \/r(7) - r(r), and thus may be visualized if this
argument is plotted in the complex time plane.

A key question is whether any electron orbit given by a
solution of the saddle-point equations crosses one or more
branch cuts, either for the Coulomb-free case or for the
CQSFA, and how this depends on the momentum compo-
nents parallel and perpendicular to the polarization axis.
For a monochromatic field, specific saddle-point solutions
are given by

2 1 —po| + /21, + p2

te =1 — 2 arccos Pl 7'V = T PoL . (33)
w w 2,/Uy

<p0| — /2, ergi)

1
tp, = — arccos
w

34
ST (34)
where pg| and po, are the components of the initial mo-
mentum parallel and perpendicular to the field polariza-
tion axis, and a, b refer to types of orbits that will depend
on the model.

A. Coulomb-free trajectories

For Coulomb-free trajectories, the complex coordinate
ro(7) [Eq. (9)] may be computed analytically and one
may easily map the branch cuts. For p; > 0, the ion-
ization times given by Eqgs. (33) and (34) are associated
to orbits 1 and 2 according to the classification in [25].
An electron along orbit 1 is freed in the direction of the
detector, while for orbit 2 it is initially released in the
opposite direction. For p; < 0, the situation is reversed
and the solutions are shifted by half a cycle. One should
note that in the Coulomb-free case the drift momentum
is conserved so that po = py = p.

Fig. 2 shows an example of a branch-cut mapping for
orbits 1 and 2 (upper and lower panels, respectively).
The figure shows two sets of branch cuts, in the lower
and upper complex time plane, whose shape and dis-
tance from the real time axis depends on the electron
momentum components, and on the field and atomic pa-
rameters. The momentum components used in Fig. 2
have been carefully chosen to match clear features in the
ATT photoelectron angular distributions, which will be
addressed in the next Section.

For orbit 1 [panel (a)], the branch cuts are in general
away from the real time axis, unless Re[t] is smaller than
the classical ionization times. These solutions are not rel-
evant as we have defined the contour such that Re(t) > ¢,
along it. For orbit 2, the situation is quite different, and
the branch cuts intersect the real time axis for physically
relevant times. This means that they must be taken into
consideration. The red lines correspond to a region in
which our chosen contour meets a branch cut, and for
which our method is successfully applied.

There are clear gaps between the upper and lower sets
of branch cuts. This is even more visible for larger val-
ues of t., for which the gaps are wide and the branch
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FIG. 1. Example of a contour constructed around a branch cut according to the procedure stated in this section, using
Coulomb-free trajectories. Panel (a) shows the standard contour in the complex time plane, together with the branch cuts
obtained by plotting arg(+/ro(7) - ro(7)). Panel (b) displays the close up of the branch cut and the contour around it. Panel
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FIG. 2. Branch cuts in the complex time plane calculated for
Coulomb-free trajectories corresponding to three different fi-
nal momenta and the same field and atomic parameters as in
the previous figure. The dots in the figure indicate the start
t' of the time contour for each set of parameters, according to
Egs. (33) and (34) (orbits 1 and 2, respectively), the squares
give the time ¢, at which a branch cut crosses the real time
axis provided t, > t., and the triangles mark the branching
points ¢x. Panel (a) refers to orbit 1, while panel (b) refers
to orbit 2. A blow up of the region where the branch cuts
meet the real axis for physically relevant parameters is pro-
vided on the left hand side of panel (b). The red, green and
blue curves in the figure correspond to the momentum com-
ponents (pyy,ps1) = (—0.63,0.53), (ps,prr) = (—0.80,1.05)
and (py,pr1) = (—0.82,0.01) given in atomic units.

The field and atomic parameters are I, = 0.5 a.u, w = 0.0570 a.u. and U, = 0.439 a.u.

cuts are located far from the real time axis. The green
curve is also in a region for which the corrections can
be successfully applied. The main difference in this case
is the perpendicular momentum p;, which was chosen
to be quite large. This leads to longer branch cuts, and
the branching points move away from the real time axis.
This can be clearly seen for the branch cut and branch-
ing point close to the start time ¢’. The gaps between the
lower and upper sets of branch cuts also widen. Finally,
the blue curves illustrate a case for which the branch-cut
corrections do not work, namely small scattering angles.
In this case, the gaps between the two different sets of
branch cuts are quite small or even close, so that the
contour can no longer be deformed as discussed. For de-
creasing perpendicular momentum, the gap between the
two branching points becomes increasingly shorter until,
for p; = 0 they merge into a pole [57] leading to diver-
gencies.

Egs. (29) defining a branch cut can also be employed
for finding regions in position space along the chosen con-
tour for which branch cuts occur. For a Coulomb free
orbit, we find, for a time 7, such that ¢, < 7. < t lies
along the real axis, that

|r0r(7'r)|2 < |r0i|2 and ror-(7r) -ro; =0, (35)

where rg,(7:) and rg; give the real and imaginary parts
of the Coulomb-free trajectory (9). One should note that
the imaginary part of this orbit is constant and given by
the phase picked up at the instant of ionization. This
leads to two straight segments starting radially from the
origin, which have a length of |rg;|. If these segments are
crossed by a specific orbit, then this orbit is crossing a
branch cut. Fig. 3 displays these conditions together with
the real part of the coordinate ry obtained for the two
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FIG. 3. Orbits 1 and 2, whose ionization times are given
by the solution of Egs. (33) and (34) computed for momen-
tum components (psy,prr) = (—0.63,0.53), (ps,psL) =
(—0.80,1.05) and (ps),ps1) = (—0.82,0.01) in atomic units
[panels (a), (b) and (c), respectively], together with the con-
dition (35), which is illustrated as the black segments in the
figure. We consider the tunnel exit zo such that its real part
is larger than zero. The field and atomic parameters are the
same as in the previous figure.

solutions of Egs. (33) and (34) that exist in the Coulomb-
free case. The figure shows that orbit 1 does not meet any
branch cut, while orbit 2 does. One should note that, for
the Coulomb-free trajectories, the segment in the figure
gives condition (35) for both orbits 1 and 2.

B. Coulomb-distorted trajectories

For Coulomb-distorted trajectories in the framework
of the CQSFA, the task of mapping is quite involved,
as the continuum propagation requires solving the cou-
pled ordinary differential equations (17), (18) numeri-
cally in the complex plane using the initial conditions
given by the complex tunnel exit ro(t).). The key diffi-
culty is that these equations contain branch cuts them-
selves. In order to avoid this problem, in our previous
work [29, 30, 51] the imaginary part of the tunnel exit
was discarded, which led to real variables in the second
arm of the contour. This is however an oversimplification,
as the electron trajectories are complex throughout.

To make this problem tractable, we retain the imag-
inary part of the trajectories, but assume it behaves
as in the Coulomb-free case in the continuum propaga-
tion. This simplification relies on the assumption that
the imaginary parts do not differ too much from their
Coulomb-free counterparts as (i) they stem mainly from
the sub-barrier dynamics; (ii) within the CQSFA, the
sub-barrier dynamics are described in the same way as
for the Coulomb-free case, in the sense that the momen-
tum is kept constant and the coordinate is given by ro(¢).
We also assume that, along the real time axis, the imag-
inary part of the trajectory is constant and equal to the
imaginary part of the field-free trajectory at the tunnel
exit. This gives

ry(7r) = 1(7) + iro0i, (36)
where ro; = Im[ro(¢,.)]. This simplification loosely relates
to the fact that, in the limit ¢ — oo, the imaginary part

of ry(t) must be constant so that the final momentum py
at the detector is real.
Away from the real time axis, we consider

ry(7) = r(7.) +irg; + re(7), (37)

where

-

rir) = [ 4T F A @)
Tr

to be able to treat branch cuts.

The real parts of the solutions are computed as pre-
viously, using the real part of the tunnel exit and the
solutions (33), (34) as initial conditions, for a given final
momentum py. In the Coulomb-corrected case, there
will be four types of solutions, whose classification is dis-
cussed in detail in [25]. For initial parallel momentum
po| > 0, orbits type 1 and 4 start in the direction of the
detector and are determined by the ionization time (34),
and orbits type 2 and 3 start in the opposite direction
at times given by Eq. (33). For pg < 0 the situation is
reversed. Each of these orbits is however topologically
different: An electron along orbit 1 will go directly to
the detector, while an electron along orbit 4 will first go
around the core. For orbit 2, the electron’s perpendicular
momentum will not change its sign, while pg, pr1 < 0 for
orbit 3.

Fig. 4 illustrates the branch cuts in the complex plane
obtained from the discontinuities of arg(y/ry(7) - r6(7)),
where r(7) has been computed according to Eq. (37) for
orbits 1, 2, 3 and 4. The overall behavior is similar to
that in the Coulomb-free case, i.e., two sets of branch cuts
separated by gaps, which, depending on the parameters
chosen, approach or distance themselves from the real
time axis. In Fig. 4(a), we have chosen the momentum
components so that, for the contour used, a branch cut
will be crossed for orbit 2 (see green line therein). For the
remaining orbits, branch cuts are avoided. This is due to
the fact that Re[t'] is smaller than ¢, for orbit 1, and that
there are clear gaps between the two sets of branch cuts
that exist for orbits 3 and 4. The branch cut crossing
orbit 2 will lead to fringe discontinuities in holographic
patterns dependent on this specific orbit, such as the fan
and the spider.

In Fig. 4(b), the final momentum components were
taken so that, for a given energy, the scattering angle
of orbit 3 is maximized. This gives a momentum very
close to the p, axis. The figure clearly shows that the
branch cuts intersect the ¢, axis for orbits 3 and 4. This
is associated with acts of rescattering. The Coulomb-
distorted trajectories tend to behave in a more complex
way than their Coulomb-free counterparts. For instance,
they may even cross the branch cuts twice within a frac-
tion of a field cycle. An example of that is provided for
orbit 4 in Fig. 4(c). The figure shows that, near the py
axis, two or more branch cuts may overlap, which ren-
ders the present algorithm inapplicable (see black line
therein). It is important to stress that there is not a sim-
ple gap between non-overlapping branch cuts as in the



previously discussed cases, as arg(y/rp(7) - 15(7)) clearly
exhibits many discontinuities in this region. For clarity,
we have plotted this argument near the branch-cut over-
lap in Fig. 4(d).

Similarly to what has been done in the Coulomb-free
case, it is possible to use Eqs. (29) to define conditions
upon rp(7), where ¢, < 7, < t is real, in order to de-
termine whether the present contour meets a branch cut.
Using Eq. (37) on the real time axis, we obtain

le(7,)]? < |roil? and  r(r)-ro; =0. (39)
Fig. 5 illustrates these conditions, for orbits 1, 2, 3 and 4.
The figure shows that, for orbits 3 and 4, the trajectories
crossing a branch cuts can be directly related to rescat-
tering events. This is in agreement with the fact that,
under some circumstances, these orbits may be identified
with SFA rescattered orbits [51]. A blow up of the figure
near the core clearly shows the hard collision that occurs
for orbit 3 mentioned in the discussion of Fig. 4(b), and
the double pass near the core related to the overlapping
branch cuts in Figs. Figs. 4(c) and (d). For clarity, we
have used the same line styles in both figures.

IV. PHOTOELECTRON ANGULAR
DISTRIBUTIONS

In Fig. 6, we show the ATI PADs obtained using
Coulomb-free trajectories of several types [panels (a) to
(c)] and the Coulomb-corrected action, together with the
plain SFA [panel (d)]. If complex trajectories are used
without branch cut corrections, there is an anomalous
trumpet-shaped structure near the p| axis, and a fringe
dislocation at larger transverse momenta [Fig. 6(a)]. We
have verified that both features are directly related to or-
bit 2 crossing branch cuts. The different Riemann sheets
can indeed be related to two elliptical regions in momen-
tum space, centered at nonvanishing perpendicular mo-
menta and vanishing parallel momenta. If the branch
cuts are corrected as described in the previous section
[Fig. 6(c)], both the fringe discontinuity and the trumpet
shape structure vanish and a PAD extending to much
higher parallel momenta is obtained. The discontinuity
along the p| axis is related to the fact that the pairs of
branching points merge into a pole when p; — 0, and
the contributions of the segments C and Cs of the inte-
gration contour shown on Fig.1 become logarithmically
divergent. This distribution is very distinct from that
obtained using real Coulomb-free trajectories, which is
displayed in Fig. 6(b). Using real trajectories seem to
overestimate the width of the PAD with regard to the
perpendicular momentum p, . This agrees with the state-
ment in [45] that the imaginary components of the con-
tinuum trajectories decelerates the electron wavepacket.
A visible extension of the distributions towards higher
values of p|| agrees qualitatively with the results of [49],
where an order in magnitude enhancement in the prob-
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FIG. 4. Branch cuts in the complex time plane for differ-
ent, fixed momenta, Coulomb-distorted trajectories and the
same field and atomic parameters as in the previous figure. In
panels (a), (b) and (c), we have used the momentum compo-
nents (pj,pr) = (—0.475,0.400), (pj,pL) = (—0.604,0.980)
and (p,pL) = (—0.619,0.0113), respectively. The momenta
are given in atomic units. The branch cuts related to orbits 1,
2, 3 and 4 are displayed as the red, green, blue and black lines
in the figure. The corresponding ionization times t’, branch-
ing times t; and the intersection times ¢, of the branch cut
with the real time axis are illustrated as dots, triangles and
squares using the same color convention. For clarity, the orbit
number is indicated close to the ionization times. In different
panels, we have used solid, dotted or dashed lines to match
the trajectories employed in Fig. 5. In panel (d), we plot
arg(\/rs(7) - rp(7)) computed according to Eq. (37) for the
parameters in panel (b), in the vicinity of the overlapping
branch cuts. The remaining field and atomic parameters are
the same as in the previous figures.
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FIG. 5. Orbits 1 to 4 computed for the same field and

atomic parameters as in Fig. 4, together with the condi-
tions (39). The solid, dotted and dashed lines correspond
to (p,pL) = (—0.475,0.400), (p,pL) = (—0.604,0.980) and
(p),pL) = (—0.619,0.0113), respectively. The momenta are
given in atomic units. The color convention employed is the
same as in the previous figure, i.e., the red, green, blue and
black lines yield orbits 1, 2, 3 and 4, respectively. Panel (a)
provides an overall view of the orbits, while panel (b) gives a
blow up near the core in order to illustrate rescattering events
and multiple passes.



ability of ionization with photoelectron energies close to
2U,, was explained as a branch-cut contribution.

An interesting feature is the appearance of fan-shaped
structures and richer interference patterns if the Coulomb
phase is included, even if the trajectories are kept
Coulomb free. This type of structure is absent in the
PAD computed with the standard SFA [Fig. 6(d)], whose
fringes have been described analytically in [29]. This
agrees with our previous work [51], in which the pres-
ence of the Coulomb potential is directly associated with
this type of structure in analytic models.

The distributions obtained in Fig. 6 are however very
different from the full TDSE solution and do not re-
produce the holographic patterns observed in experi-
ments. In Fig. 7, we present the outcomes of different
versions of the CQSFA, using complex trajectories with-
out [Figs. 7(a) and (c)] and with [Figs. 7(b) and (d)]
branch cut corrections, which are compared with the
real-trajectory CQSFA and with the full TDSE solution
[Figs. 7(e) and (f), respectively]. All panels exhibit well-
known interference structures such as the fan, the spider
and the inter-cycle ATI rings. One should note, however,
that the CQSFA overestimates the contributions of or-
bits 3 and 4, as can be seen in panels (a) and (b). This
is particularly extreme if complex trajectories are used,
and leads to a worse agreement with the TDSE for low
photoelectron energies near the ionization threshold. If,
on the other hand, the contributions of these trajectories
are artificially reduced [panels (c) and (d)], the agreement
with the TDSE considerably improves. The slope of the
spider-like structure, which stems from the interference
of orbits 2 and 3 [29], approaches its TDSE counterpart
if complex trajectories are used. In contrast, the spi-
derlike fringes obtained with real trajectories are nearly
horizontal. The figure also reveals a pronounced spiral-
like structure near the p,; axis, which are caused by type
4 orbits, and a caustic that marks a boundary for which
the contributions from orbit 3 are valid. Details have
been provided elsewhere [51].

Further insight is given by analyzing the interference
patterns formed by distinct pairs of orbits. The resulting
distributions are depicted in Fig. 8. The upper panels of
the figure show the fan-shaped structure that results from
the interference of orbits 1 and 2. For complex trajecto-
ries and when no contributions from the branch cuts are
accounted for, the resulting fringes exhibit a discontinu-
ous slope, which once more is related to crossing a branch
cut [Fig. 8(b)]. In fact, this discontinuity is eliminated if
branch-cut corrections are incorporated [Fig. 8(c)]. An
interesting feature is that the PADs computed using com-
plex trajectories decay much faster with increase of the
photoelectron momentum perpendicular to the polariza-
tion direction than their real counterparts in this case.
This is also a feature observed for the Coulomb-free tra-
jectories [see Fig. 2]. This faster decay is in agreement
with what is observed for the TDSE computation [see
Fig. 7(d) for comparison].

The middle panels of the figure show the spider-like
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FIG. 6. Photoelectron angular distributions computed using
Coulomb-free trajectories for Hydrogen (I, = 0.5 a.u.) in an
field of w = 0.0570 a.u., and T = 2 x 10" W /cm? (A = 800nm,
U, = 0.439). In panels (a) to (c), we have included the
Coulomb phase (10) and Coulomb-free trajectories, while in
panel (d) the outcome of the plain SFA is displayed for com-
parison. In Panels (a) and (c), we considered complex trajec-
tories without and with branch-cut corrections, while in panel
(b) real trajectories have been used. The red, green and black
dots in panels (a) and (c) correspond to momentum compo-
nents (pf”,pr_) = (—0.63,0.53) (pf“,pr_) = (—0.80,1.05)
and (pg,prr) = (—0.82,0.01) given in atomic units. All
plots have been displayed in a logarithmic scale.
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FIG. 7. Photoelectron angular distributions computed us-
ing the CQSFA for Hydrogen (I, = 0.5 a.u.) in an ex-
ternal field of w = 0.0570 a.u., U, = 0.439 (A = 800nm,
I = 2 x 10"W/cm?), computed over four cycles. In panels
(a) to (d), we present the outcome of the complex-trajectory
CQSFA without [panels (a) and (c¢)] and with [panels (b) and
(d)] branch cut corrections. Panel (e) displays the CQSFA
result obtained with real trajectories, and panel (f) shows
the outcome of an ab-initio computation, performed with the
freely available software Qprop [58, 59]. In panels (c¢) and
(d) the contributions of orbits 3 and 4 to the overall transi-
tion amplitude have been reduced multiplying by a factor 0.2.
The red, green, and black dots corresponds to the momen-
tum components (py),psr) = (—0.475,0.400), (psy,prL) =
(—0.604,0.980) and (pys,psrr) = (—0.619,0.0113) that have
been used to compute the branch cuts in Fig. 4. All plots
have been displayed in a logarithmic scale.
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FIG. 8. Contributions from specific pairs of orbits to the ATI
PADS computed using different versions of the CQSFA for the
same field and atomic parameters as in the previous figure.
In the left, middle and right panels, we have employed real
trajectories, complex trajectories and no branch cut correc-
tions, and complex trajectories with branch-cut corrections,
respectively. The first row [panels (a) to (c)] considers or-
bits 1 and 2, the middle row [panels (d) to (f)] orbits 2 and
3, and the lower row [panels (g) to (h)] to orbits 3 and 4.
The red, green, and black dots corresponds to the momenta
(pr1,prL) = (—0.475,0.400), (pgy,psr) = (—0.604,0.980)
and (pg,psr) = (—0.619,0.0113) that have been used to
compute the branch cuts in Fig. 4. All plots have been dis-
played in a logarithmic scale.

structure stemming from the interference of orbits 2 and
3. For real trajectories, the contrast of the spider-like
fringes is much higher, while complex trajectories in-
troduce some blurring. This is caused by the fact that
the imaginary parts employed in this model strengthen
the contributions of orbit 3 and suppress those of or-
bit 2. The discontinuities near the p, axis, which are
due to the approximations introduced in the sub-barrier
corrections, also become smoother for complex trajecto-
ries. This is due to the orbit 2 contributions which decay
faster with increasing p . Moreover, a direct comparison
of Fig. 8(d) with Figs. 8(e) and (f) shows that the imag-
inary parts of the trajectories introduce a slope in the
spider-like fringes. In fact, if real orbits are taken, such
fringes are nearly horizontal. This difference in slopes has
been identified in previous publications [29, 51], in com-
parisons with ab-initio computations, but in that case
the explanation remained speculative. Finally, complex
trajectories also influence the spiral-shaped fringes that
result from the interference of orbits 3 and 4, by altering
their contrast and spacing. One should note that some
of the corrections are in the vicinity of caustics and thus
are obfuscated by them.

V. CONCLUSIONS

The main conclusion to be drawn from this work is
that, in quantum-trajectory approaches that take the
residual Coulomb potential into consideration, the arti-
facts caused by branch cuts that occur in the ATI tran-
sition amplitude due to the specific functional form of
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the Coulomb potential can be corrected without prior
mapping. In fact, it suffices to pick out a particular con-
tour, test for branch cuts and distort this contour only
if a branch cut is found. For the specific contour em-
ployed in this article, it was necessary to identify the
intersection of the cuts with the real time axis. After
that the branching point can be identified employing a
simple one-dimensional procedure of traveling along the
cut side with a simultaneous calculation of the branch
cut contribution into the complex-valued Coulomb phase.
The present procedure is computationally much less de-
manding than existing methods, in which all branch cuts
are mapped in the complex time plane and a contour
that avoids them is constructed subsequently [50]. Fur-
thermore, it also allows for complex Coulomb-distorted
trajectories, instead of taking them to be real. The lat-
ter simplification is widely used, but is not consistent
and renders the transition amplitudes dependent on the
integration contour.

The Coulomb potential is incorporated as an addi-
tional phase in the semiclassical action, and there are two
options as far as the electron trajectoires are concerned.
Either they are kept Coulomb-free and determined by the
strong-field approximation, or the Coulomb force is incor-
porated and the full equations of motion of the electron
in the continuum are solved. Physically, Coulomb-free
trajectories are a reasonable approximation for circularly
polarized driving fields, or driving fields of high elliptic-
ity. In contrast, for linearly polarized driving fields the
Coulomb potential significantly modifies the trajectories
and the distinction between direct and rescattered ATI
is blurred [51].

We tested our method by calculating ATI photo-
electron angular distributions (PADs) using both types
of trajectories. In both Coulomb-free and Coulomb-
distorted cases, branch cuts lead to discontinuities in
the fringes of holographic structures, which are corrected
when our procedure is implemented. For the Coulomb-
free case, our method provides a consistent framework,
except for the limit of p; = 0 when the branch cut con-
tribution into the Coulomb integral becomes divergent
and requires regularization. Instead, for the Coulomb-
distorted case additional approximations were required.
This was due to the fact that solving the full complex
equations of motion for the electron is a highly nontriv-
ial problem. Our major assumption was to equate the
imaginary parts of the times and of the coordinate r(7)
to those of their Coulomb-free counterparts. In particular
when integrating along the real time axis, this will lead
to a constant imaginary part for r, which is consistent
with a real (final) momentum at the detector. For or-
bit 1, we have verified that this assumption corresponds
to the asymptotic limit ¢ — oo by solving numerically
equations of motion in complex space and time.

Overall, complex trajectories lead to a faster decay
with regard to increasing momentum components per-
pendicular to the field polarization axis, as compared to
their real counterparts. This holds for both Coulomb-free



and Coulomb-distorted trajectories, and supports the as-
sertion in [45] that their imaginary parts cause a decel-
eration in the electronic wave packet. This suggests that
the main influence of the imaginary parts is to change the
weighting of the orbits and to change the overall yield.
It seems that the main influence on the phases and inter-
ference patterns stems from their real parts. This may
explain the success of the Coulomb-corrected methods in
which such trajectories were taken to be real.

Comparisons with ab-initio methods also show that
complex orbits improve the slope of the spider-like struc-
ture. Nonetheless, the overall agreement between the
TDSE and the CQSFA worsens. This is due to the
fact that the approximate imaginary parts of the coor-
dinates r(7) introduced by our prescription overestimate
the contributions of orbits 3 and 4. Throughout, approx-
imating the Coulomb-distorted imaginary parts by their
Coulomb-free counterparts seem to work better for type
1 and 2 orbits than for orbits 3 and 4. Physically, this is
not surprising as the two former types of orbits are much
closer to the SFA orbits obtained for direct electrons,
while for the latter two deflection, and even rescattering
plays a much more important role [30, 51].

It is noteworthy that, within the present framework,
a branching point is always associated with a return to
the core, and, in the case of Coulomb-distorted trajecto-
ries, deflection or rescattering. In terms of rescattering in
real time and space, gaps between the pairs of branching
points can be associated with a nonzero value of the im-
pact parameter for the photoelectron experiencing scat-
tering. Mathematically it makes however no difference
if an integration contour circumvents a branching point
tightly as in the algorithm presented here or it crosses
the gap in between the two branching points at its mid-
dle point as in Ref. [50]. If both return and rescatter-
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ing occurs at an nonvanishing angle, the effective impact
parameter appears essentially nonzero, and the present
method is applicable. There are however problems for
final momenta near the polarization axis. Physically,
this specific scenario would correspond to hard scatter-
ing, which has proven to be a challenge for the CQSFA
already if real trajectories are used [29, 30, 51].

Within the present approach, the Coulomb integral
appears divergent in the case of hard recollision when
r(ty) = 0, which is particularly problematic in the
Coulomb-free case, for which momentum is conserved.
In this case, all problematic trajectories are concentrated
along the polarization direction where the probability is
known to have a maximum. In order to eliminate the
divergency, a matching with the phase of a stationary
atomic scattering wave function has to be performed,
along a method similar to that applied for the matching
at the saddle point ¢ = ¢, [18, 47]. For the case of high
harmonic generation this procedure has been realized in
[57] employing the Coulomb-free trajectories. Extension
of this method to ATI and Coulomb-distorted trajecto-
ries remains a serious challenge. Still, the present results
may be viewed as a road map towards the full computa-
tion and characterization of complex trajectories and of
overcoming branch cuts in photoelectron holography.
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