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Pulsating flow and boundary layers in viscous electronic hydrodynamics
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Motivated by experiments on a hydrodynamic regime in electron transport, we study the effect of
an oscillating electric field in such a setting. We consider a long two-dimensional channel of width L,
whose geometrical simplicity allows an analytical study as well as hopefully permitting experimental
realisation. The response depends on viscosity v, driving frequency, w and ohmic heating coefficient
~ via the dimensionless complex variable L72(zw + ) =12+ 3. While at small Q, we recover the
static solution, a new regime appears at large 2 with the emergence of a boundary layer. This
includes a splitting of the location of maximal flow velocity from the centre towards the edges of
the boundary layer, an an increasingly reactive nature of the response, with the phase shift of the
response varying across the channel. The scaling of the total optical conductance with L differs
between the two regimes, while its frequency dependence resembles a Drude form throughout, even
in the complete absence of ohmic heating, against which, at the same time, our results are stable.
Current estimates for transport coefficients in graphene and delafossites suggest that the boundary
layer regime should be experimentally accessible.

Introduction.—Hydrodynamics is an universal theory,
that constantly reaches new areas of applicability. Recent
experimental developments [IH7] suggest that in clean
materials electrons can acquire collective, hydrodynamic
behavior. This is perhaps not so surprising since we ex-
pect that clean physical systems at large enough scales
should behave as a fluid. In fact, first attempts to de-
scribe fluid behavior in electronic systems date back to
Ghurzi in the 1960s [8, Q). Experimental realizations of
Ghurzi’s ideas were, however, quite challenging because
high impurity-related phenomena in most materials pre-
sented a formidable obstacle, with scattering of electrons
off impurities and phonons spoiling the momentum con-
servation underpinning the hydrodynamic regime. Nev-
ertheless, thanks to the advancements in chemical syn-
thesis the number of candidate materials has grown to
include two-dimensional (Al,Ga)As heterostructures, de-
lafossite metals, and graphene [TH7]. The relevant regime
has sample size L small enough that the mean-free path
of electrons for the collisions with impurities and phonons
lpr is larger than L. In graphene and delafossites,
this separation of scales appears especially pronounced,
thus making them ideal candidates to measure hydrody-
namic signatures. In this case transport is dominated by
momentum-conserving collisions. So far several examples
of local [IOHI3] as well as non-local [I4HI6] responses of
electronic flows have been identified.

We ask the following basic question: what are the fea-
tures of the electronic flow once we apply a periodic driv-
ing by an oscillating electric field? The simplicity of our
set-up permits an analytic treatment of the solution and
the concomitant experimental geometry is arguably the
simplest possible. We identify a new high-frequency flow
regime of the boundary-layer type. We interpret it as a
genaralization of the so-called annular effect to charged
electronic flows, although the name is more suited to
three-dimensional flows through pipes [I7]. The annu-
lar effect was previously studied in fluid dynamics, in

experiments with water driven by a periodically moving
piston [I8H20]. The emergence of a boundary layer pro-
vides a clear signature of a hydrodynamic behavior which
results in several distinctive consequences. To facilitate
the analysis we use dimensionless quantity Q = L%w/v
(closely related to the Womersley number used in physics
of pulsating flows) that depends on the sample size L,
driving frequency w and the kinematic viscosity v. This
quantity can be thought of as a Reynolds number that
controls various approximations in our set-up.

Our simple set-up is that of a long, sample in two-
dimensions with non-slip boundary conditions. For a
constant driving field, we can visualise it as a parallel flow
(with only one velocity component) through the channel.
In this case flow obeys an well-known solution, which cor-
responds to a 2 dimensional analogue of Hagen-Poiseuille
flow in fluid mechanics.

In the next sections we first introduce the theoret-
ical set-up, with the Navier-Stokes equations in non-
dimensional form subject to an oscillating electric field.
We check that the known pulsating flow solution [21] is
stable against addition of ohmic dissipation. We examine
the behavior of the resulting flow profile as a function of
Q and dimensionless Ohmic coefficient ¥, identifying the
boundary layer regime and analysing conditions under
which it can be observed. We conclude that the bound-
ary layer phenomena may be relevant for modern ”vis-
cous electronic” systems such as graphene or delafossites,
and therefore are experimentally relevant. We calculate
the conductance of the driven system and study its scal-
ing behavior. We close the discussion with suggestions
for experiments and an outlook.

Navier-Stokes equations—Fluid behavior can be
reached for a given system if we probe the dynamics
at scales that are large compared to the mean-free path
of the microscopic constituents. The equations of mo-
tion capture conservation laws of momentum, energy and



charge

dp+ Vi(pu') =0, (1)

Oi(pu') + V(pu'v’) = V0" + F". (2)

Here u is the local fluid velocity, p the fluid density, F' the
force acting on the fluid, 0% the viscous stress tensor, and
v denotes kinematic viscosity. This is a very general set
of equations so simplifying assumptions for the situation
of interest are needed. We assume, similar to the static
case, that the fluid is incompressible and isotropic. We
also use the following ansatze:

u =u(t,x), u* =0, FY = p|Ele™, F*=0 , (3)

where y is the direction perpendicular and x parallel
to the channel, ;1 and |E| stand for charge density and
the intensity of the electric field respectively. The as-
sumption on velocity as well as the fact that our flow
should be viscosity-dominated allows us to neglect the
non-linear advection term of . Finally, we include a
non-hydrodynamic, Ohmic dissipative term, with coeffi-
cient v. Then and reduce to a single equation

Opu — vO2u + yu = p|Ele™". (4)
We non-dimensionalize our equation using
u=Lwu", tw=r7, /L=y |, (5)

yielding dimensionless velocity u*, relative width x, and
time 7 (measured in radians), Equation (4) becomes

1 .
Oru* — 58>2<u* +Tu* = Pe'” (6)
with
ulE| L2w
L V, vw. (7)

The first parameter encodes the forcing scale, the second
is related to the Reynolds number in our electronic flow
while the latter encodes the Ohmic friction coefficient.
Before we proceed to construct a solution we factor out
the dependence on frequency in such a way that it is
through the dimensionless ratio 2. This introduces new
dimensionless parameters

uEL3

U =30%="—-, .
pv v

The velocity function depends on the spatial coordinate
and time. Now the system can be solved analytically, and
a general solution (for static initial condition u(7 = 0))
assumes form of an infinite series. However, the interest-
ing ’late-time’, periodic part can be extracted in a closed
form by the use of the following substitution:

u* = exp(in)U(x). (9)

The above ansatz gives the following solution to Eq.@:

. i U B cosh(v/i) + )
w=e Q6EQ+Y) <1 cosh(Mﬂ)). 10)

We can recover the physical velocity using the transfor-
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FIG. 1: Spatiotemporal flow profiles u*(x, 7) (z-axis) for dif-
ferent driving frequencies. The color represents the phase
difference between the driving and the fluid velocity.

mation u = FQu*.

We first consider the asymptotic behavior for small and
large frequencies. For the former, the velocity profile re-
tains the same phase as the field that drives it, while the
amplitude is parabolic as in the steady case. However,
for large frequencies, the fluid ceases to be in phase with
the rapidly oscillating force. In this case the solution
acquires Stokes boundary-layer behavior. The fluid in



the middle oscillates uniformly, and with an ‘inductive’
phase relation to the drive, while close to the boundary
it is dominated by viscous effects. The velocity ampli-
tude is plotted in Fig. [T} For slow forcing, the maximal
velocity is reached in the middle of channel. Fast forc-
ing induces the maximal velocity some distance from the
channel center; the phase shift is visible, with the flow
turning first near the boundaries and only then in the
middle.

Conductance—Having the velocity profile u we can
write down the charge current k = up

v PR cosh(V/iQ) + )
k= f% {6 i+ 2 (1 ; cosh(Mﬂ)ﬂ )
= %\113? [eiTj(X,Q,E)] .

This is a local expression and we have to integrate over
the sample width to extract conductance

2tanh (33 +iQ
oc=C 1. -2 (2. o ) ) (12)
DIEEAY) (X +iQ)3/2
with C' = “sz, a dimensionful constant. In order to

14
identify the effect of driving on conductance, given the

above solution, we have to possibilities: 1) fix the driving
frequency w and measure the conductivity for different
sample sizes L, 2) vary the driving frequency at fixed
sample size. It turns out that the effect of frequency
changes is somewhat less striking in the flow profile. This
follows from the scaling properties of the solution ,
which is highly suppressed by 1/w upon re-scaling (see
Fig. 2). Thus we focus on the sample sizes. Due to the
properties of the solution the re-scaling of length
manifests itself only in the hyperbolic functions. As a
result there is no suppression and we are able to extract
a quantitative difference in conductance.

Scaling with the channel width.—The global behavior
of the current is modified if the constriction is small
enough because the velocity profile differs significantly
between non-viscous and boundary-layer regimes. As one
can see in Fig. [I] the driving creates a plateau between
two ridges of the boundary layers. The thickness of the
layer is fixed by the viscosity and the frequency. As a re-
sult, if the constriction is comparable to the width of the
boundary layer the plateau dissapears and the flow qual-
itatively changes. Let’s imagine we measure conductance
for some width L* and fixed w. Then we measure for an-
other sample whose width is L = SL*. If we use asterisks
to denote the reference values of our constants present in
the formula for conductivity then parameters scale
with § as:

Q= B2, ¥ =732 C=p20" (13)
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FIG. 2: Top: Real and imaginary parts of conductance for
various choices of the parameter ¥. The bahavior resembles
Drude conductivity and is stable against small Ohmic pertur-
bations. The position of the Drude peak is 2 ~ 9.89 at ¥ = 0.
The Drude peak separates two different scaling regimes, low
frequency (o ~ w®) and high frequency (o ~ w™!). Middle:
Conductivity plotted in the ¥ — € plane. The hydrodynamic
behavior is stable for ¥ < 10. Bottom: local conductivity
j(3X = 0) as a function of the relative channel width x and
Q. Color encodes a local phase shift with respect to forcing,
resistive at small €, tuning reactive (inductive) at large €.

whence the conductance

1 2 tanh (gm)

—C* —
7 ¥* 4 i0* B(X* +1iQ*)3/2

(14)

This is plotted for several parameter values in Fig. 3] On
a logarithmic scale we observe the initial linear growth of
the conductance which then saturates. Note that Ohmic
friction does not have a significant impact on the quan-
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FIG. 3: Top: Scaling of the optical conductance for various
values of the reference parameters X%, Q*. We set C* to 1.
For 8 smaller than the annular crossover value we observe
o ~ B2 behavior. Bottom: local conductivity j as a function
of the width scaling 3. The cross-over to annular flow happens
approximately for the same value as the scaling change of the
total conductance.

titative behavior.

Ezperimental implications.—Pulsating flows have been
experimentally investigated for three-dimensional ducts.
In these experiments the local velocity measurements
identified the boundary layers in the flow [18], to which
at high-frequency the effects of viscosity are confined.
We now discuss under what conditions a boundary-layer
emerges in electronic systems. Our analysis suggests a
very simple experimental set-up, which consists of a lon-
gitudinal sample of e.g. monolayer graphene positioned
between voltage probes. On top of that we require an
external drive. Our considerations are based on experi-
ments in graphene or delafossites, in which the current
technology allows one to reach sample sizes around 0.01
of the electron mean free path, for L ~ 107%m. In the
case of delafosite metals this can be achieved from flux-
grown single crystals by focused ion beam etching [5]. Bi-
layer graphene devices are prepared crystals of hexagonal
boron nitride using lithography and subsequent etching
processes [4]. The estimates for kinematic viscosity are
around v = 0.1m?/s [3HT7]. The boundary layer requires

high frequencies 2 > 1. Given the above estimates for
v and L we deduce the boundary-layer to have emerged
at 2 = 100, around 100 GHz, i.e. in the high-frequency
microwave/far infrared part of the electromagnetic spec-
trum. Numerical evaluation of the solution suggests
that the layer actually starts to emerge at Q =~ 80. Of
course one may worry if this lies in the range of appli-
cability of hydrodynamic description. However, compar-
ing the time scales: momentum-conserving collision rate
yme = 8 x 10715 [I5] and forcing frequency time scale
100GHz (=~ 10~ !s) leads us to the conclusion, that we
are still deep in the regime, where momentum-conserving
interactions are dominating enough to facilitate the use
of collective (i.e hydrodynamic) description. Standard
estimates for the width of the boundary layer give

v

o~ " (15)
which, for the values of viscosity measured for graphene
or delafossite metals, results in the layer thickness of or-
der 10~7"m. The parameter ¥ produced by Ohmic fric-
tion can reach the numerical values up to 10, based on
the experimental estimates [4] [5] [7].

As we already mentioned, the given analysis focuses
on periodic solutions, i.e. ones with real frequency. One
can also ask how is this periodic steady state reached.
To answer that one must solve equation @ on x €
[-1/2;1/2], 7 > 0. The analytical solution consists of
the periodic part and an infinite series of functions
of complex frequency which correspond to exponentially
dumped modes. The slowest-relaxing mode has a lifetime
given by

vl

tret = L—Z ~ 107125, (16)
with the last number estimated using previously men-
tioned parameters. The non-periodic behavior is there-
fore experimentally irrelevant.

Discussions.—We have analysed the behavior of the
electronic fluid driven by a periodic voltage difference.
If the driving frequency is large enough, the system
presents a clear hydrodynamic signatures in the form of a
boundary-layer structure of the flow. The boundary layer
emerges as a consequence of viscosity and the boundary
conditions, thus giving a distinctive hydrodynamical fea-
ture absent in both Ohmic and ballistic regimes.

Studying the purely hydrodynamic regime we have
identified several consequences of the boundary-layer
flow, the most prominent being the dependence of the
conductivity on sample size and frequency. The simplic-
ity of our considerations allows for clear experimental
protocols, which should be realistically possible with cur-
rent experimental capabilities, to seek further evidence
for the hydrodynamic behavior of electrons in solids. AC
susceptibility measurements are staple electronic experi-
ments and the scaling properties (Fig. and discussed



in the previous section should provide a global signature
of hydrodynamic flow. More ambitiously, it would be
gratifying to image the boundary layer directly using lo-
cal probes, although it is not clear whether direct mea-
surements of such probes (ideally — current densities) are
available at this point of time.

The existence of a boundary layer also has ”technical”
implications, e.g. for numerical treatment of this and
similar systems in more complex approaches. With a thin
layer crucially impacting the global response, it will be
necessary to choose a set-up —e.g. with a spatially depen-
dent grid size — capable of capturing this fine structure
in simulations, which could be applied in the framework
of kinetic theory in order to work towards a complete
understanding of the ballistic-hydrodynamic crossover.
This would require solving a Floquet-Boltzmann equa-
tion [22] with the Bhatnagar-Gross-Krook collision term
[23].

In addition, we note that studying boundary layers
in fluid flows is an important subject in its own right.
Indeed, the appearance of boundary layer physics is pre-
sumably not limited to the AC-drive in a channel, de-
scribed here, and it will be interesting to look for simi-
lar phenomena in other appropriate settings. From that
perspective electronic systems are unique test objects,
as (contrary to the classical, mechanically driven fluids)
they are forced by the electric field, which is highly tun-
able, can easily be made uniform and propagates with
the speed of light (effectively instantaneously in the hy-
drodynamic approximation). Therefore, two-dimensional
boundary-layer electronic flows can be used as a new test
bed of for older ideas, and allow the study of vorticity and
the emergence of turbulent behavior.
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