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The Kitaev model exhibits a Quantum Spin Liquid hosting emergent fractionalized excitations.
We study the Kitaev model on the honeycomb lattice coupled to a magnetic field along [111]. Uti-
lizing large scale matrix product based numerical models, we confirm three phases with transitions
at different field strengths depending on the sign of the Kitaev exchange: a non-abelian topological
phase at low fields, an enigmatic intermediate regime only present for antiferromagnetic Kitaev ex-
change, and a field-polarized phase. For the topological phase, we numerically observe the expected
cubic scaling of the gap and extract the quantum dimension of the non-abelian anyons. Further-
more, we investigate dynamical signatures of the topological and the field-polarized phase using a
matrix product operator based time evolution method.

I. INTRODUCTION

Quantum spin liquids (QSLs)1,2 are realized in cer-
tain spin systems where the interplay of frustration and
quantum fluctuations suppresses long range order. These
novel phases of matter cannot be understood in terms of
spontaneous symmetry breaking, but are instead charac-
terized by their long range entanglement and emergent
fractionalized excitations. The lack of local order param-
eters makes it difficult to experimentally detect QSLs by
their static properties–except for showing the absence of
conventional order. Instead it appears more promising to
study dynamical properties of QSLs (e.g., the dynamical
spin structure factor) which encode characteristic finger-
prints of topological order3–7.

On the theory side, significant insight into the physics
of QSLs comes from the study of exactly solvable mod-
els. A prominent example is the Kitaev model on the
honeycomb lattice8, which exhibits a QSL phase fea-
turing fractionalization of spin-1/2 degrees of freedom
into fluxes and Majorana excitations. The Kitaev in-
teraction, a strongly anisotropic Ising exchange appears
to be realized approximately in compounds with strong
spin-orbit interaction9–13, such as the iridates Na2IrO3,
Li2IrO3

14, and α-RuCl3
15–17. It may also be real-

ized in metal-organic frameworks18. In such materi-
als, additional interactions are important and typically
lead to long-range magnetic order, nonetheless signa-
tures of being in the proximity to the Kitaev QSL are
discussed17,19,20. Recent attention has shifted to apply-
ing a magnetic field19,21–26, in particular experiments on
the Kitaev compound α-RuCl3 (with an in-plane mag-
netic field) reveal a single transition into quantum para-
magnetic phase with spin-excitation gap27–33.

In this article, we consider the Kitaev model in a mag-
netic field along [111], such that the field couples to the
spins in a symmetry-equivalent way and the field does not
prefer any bond in particular. While the magnetic field
breaks integrability, Kitaev has identified two three-spin
exchange terms within perturbation theory, that break
time-reversal symmetry and open a gap in the spectrum.

One of the terms retains integrability and upon adding to
the Kitaev model, leads to a topologically ordered phase
hosting non-abelian anyons8. However, numerical simu-
lations34 reveal that the same topological phase occurs
for small magnetic fields and ferromagnetic Kitaev cou-
pling. The topological phase turns out to be more stable,
by one order of magnitude in the critical field strength, if
an antiferromagnetic coupling is considered35. Remark-
ably, an additional regime, possibly gapless, between the
low-field topological and the high-field polarized phase
appears to exist35.

In this work, we employ large scale infinite density ma-
trix renormalisation group (iDMRG) methods36–39 to in-
vestigate the ground state phase diagram of the Kitaev
model in a magnetic field along [111] and simulate its
dynamics using a matrix-product operator (MPO) based
time-evolution40.

The topologically ordered phase is characterized by its
finite topological entanglement entropy (TEE)41,42, By
subtracting contributions of the Majorana fermions and
the Z2-gauge field from the numerically obtained entan-
glement entropy of a bipartiotion, we extract a remainder
which is identical to the TEE in the integrable case. In a
magnetic field, this remainder is still consistent with the
existence of non-abelian anyons in the topological phase.
Furthermore, the correlation length decreases with mag-
netic field in a way that is consistent with a cubic opening
of the gap as found for the three-spin exchange8. How-
ever, the dynamical spin-structure factor in presence of a
field behaves very differently compared to what is known
for the three-spin exchange43. The magnetic field causes
the flux degrees of freedom to become mobile and as
a consequence the low-energy spectrum contains more
structure.

Approaching the intermediate regime from the polar-
ized phase, we observe a reduction in frequency and si-
multaneous flattening of the magnon modes, which re-
sembles the phenomenology within linear spin wave the-
ory (LSWT)21,44, but the transition gets significantly
renormalised to lower fields. Close to the transition, a
broad continuum exists that, within our reachable resolu-
tion in frequency, reaches down to almost zero frequency

ar
X

iv
:1

80
4.

06
81

1v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

8 
A

pr
 2

01
8



2

(a)

z

xy

Sy
i

Sy
j

(b)

Sx
i Sy

k

Sz
j

FIG. 1. (a) Bonds labeled with x,y, and z and an exemplaric
Sy
i S

y
j Kitaev-exchange (orange), (b) a single three-spin term

Sx
i S

z
j S

y
k of the three-spin interaction in HK3 .

in the whole reciprocal space and merges with the single
magnon branches.

The remainder of this paper is structured as follows:
In Sec. II we introduce the model consisting of Kitaev
term, Zeeman coupling to a magnetic field along [111],
and three-spin exchange. In Sec. III, the ground state
phase diagram is discussed for both signs of the Kitaev
coupling. We then focus on the antiferromagnetic Kitaev
coupling in Sec. IV and study its dynamical signatures
within the low-field topological as well as the high-field
polarized phases. We conclude with a summary and dis-
cussion in Sec. V.

II. MODEL

The Hamiltonian describing the Kitaev model in a
magnetic field along [111] direction reads

H =
∑
〈i,j〉γ

KγS
γ
i S

γ
j − h

∑
i

(Sxi + Syi + Szi ) , (1)

where the first term is the pure Kitaev model exhibiting
strongly anisotropic spin exchange coupling8. Neighbor-
ing spins couple depending on the direction of their bond
γ with SxSx, SySy or SzSz, cf. Fig. 1(a). The second
term is the Zeeman-coupling of the spins to a magnetic
field applied in [111] direction.

In the zero field limit, the Kitaev model exhibits a
quantum spin liquid ground state with fractionalized
excitations8. Depending on Kγ , the spectrum of the
fermions is either gapped (A-phase) or gapless (B-phase).
Let the Kγ be sorted as Kα ≥ Kβ ≥ Kγ , then the gapless
B-phase occurs if |Kα| ≤ |Kβ |+ |Kγ | and the A-phase if
|Kα| > |Kβ | + |Kγ |. In the remainder, we consider the
isotropic case Kγ = K = 2.

Flux degrees are defined by the plaquette operator

Wp =
∏
i∈P σ

γ(i)
i , where γ(i) = {x, y, z} equals the bond,

that is not part of the loop P around the plaquette. The
Wp commute with the Hamiltonian (in the h = 0 limit)
and have eigenvalues ±1. Thus, the Wp’s are quantum
numbers separating the full Hilbert space into subspaces,
for each of which a free fermion problem remains to be
solved. The ground state lies in the flux-free sector, that
is ∀i : Wp,i = +1.

For later use, we comment on placing the Kitaev
model on a cylinder. A second flux operator of a non-
contractable loop C going around the cylinder can be de-

fined: Wl =
∏
i∈C σ

γ(i)
i . Similarly to Wp, Wl commutes

with the Hamiltonian, has eigenvalues ±1, and separates
the full Hilbert space in two subspaces. With respect
to the free fermions, Wl = −1 (flux-free) corresponds
to periodic and +1 to antiperiodic boundary conditions
along the circumference of the cylinder. The ground state
within each of the two sectors are separated in energy by
∆E, which depends on the circumference Lcirc and van-
ishes in the limit Lcirc →∞.

Applying a magnetic field h along [111], as in Eq. (1),
breaks time-reversal symmetry and opens a gap in the
fermionic spectrum. The lowest order terms doing so
within perturbation theory8 and remaining in the flux-
free sector are the three-spin interactions Sxi S

y
j S

z
k . Two

such terms exists, of which the one shown in Fig. 1(b)
and its symmetric variants preserve the integrability of
the original model. Upon adding the former term, the
Hamiltonian reads

HK3
=
∑
〈i,j〉γ

KγS
γ
i S

γ
j +K3

∑
〈〈i,j,k〉〉

Sxi S
y
j S

z
k , (2)

where 〈〈.〉〉 denotes an ordered tuple (i, j, k) of neighbor-
ing sites such that the Sx, Sy, and Sz at the outer two
sites coincide with the label of the bond connecting to the
central site. The flux operators Wp and Wl still commute
with HK3

and separate the Hilbert space. The remaining
fermionic Hamiltonian is quadratic with the correspond-
ing bands having non-zero Chern number±1 and yielding
composite excitations with anyonic exchange statistics8.

III. GROUND STATE PHASES

The ground state is obtained using the matrix prod-
uct state (MPS) based infinite density matrix renormal-
isation group (iDMRG) method36–39. Being a standard
technique for one-dimensional systems, it has been used
in two dimensions by wrapping the lattice on a cylinder
and mapping the cylinder to a chain with longer range
interactions.

We employ a rhombic-2 geometry with a circumfer-
ence of Lcirc = 10 sites and a rhombic geometry with
Lcirc = 6 as illustrated in Fig. 2. Both geometries capture
the K−points in reciprocal space and hence are gapless
for pure Kitaev-coupling (h = 0). A main advantage of
the rhombic-2 geometry is its translational invariance of
the chain winding around the cylinder. While the map-
ping to a cylinder for the rhombic geometry requires an
iDMRG unit cell of at least Lcirc sites, a single funda-
mental unit cell with two sites is sufficient to simulate an
infinite cylinder using the rhombic-2 geometry. Different
iDMRG cells have been used to test for possible break-
ing of translational symmetry and corresponding results
will be presented when of relevance. We use bond dimen-
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FIG. 2. Geometries used for iDMRG and their corresponding
accessible momenta (orange lines) in reciprocal space with
respect to the first Brillouin zone (inner hexagon). The second
Brillouin zone is shown partially. The roman numbers label
links across the boundary. (a) rhombic geometry with three
unit cells, Lcirc = 6 sites, along the circumference and (b)
its corresponding reciprocal space. (c,d) rhombic-2 geometry
with five unit cells circumference, Lcirc = 10 sites.

sions of up to χ = 1600 for the computation of the phase
diagram.

We confirm the existence of two phases and a single
transition for ferromagnetic Kitaev coupling34,35 (FMK,
K < 0), and of at least three phases for antiferromagnetic
Kitaev coupling35 (AFK, K > 0). For both, FMK and
AFK, we find a topological phase at low field and a field-
polarized phase at high field. Only for AFK, we identify
an intermediate, seemingly gapless, phase.

A. Topological Phase

For small h, the system forms a non-abelian topolog-
ical phase8. Its stability upon applying h vastly differs
depending on the sign of the Kitaev interaction. Employ-
ing a rhombic-2 geometry with Lcirc = 10, we find, in
case of AFK, that this phase ranges up to hc1,AF ≈ 0.44,
whereas for FMK it ranges only up to hc,FM ≈ 0.028.
Both values are based on the peaks in the second deriva-
tive −d2E/dh2 of the energy with respect to the mag-
netic field. However, subtle features are present for AFK
at slightly lower h ≈ 0.41, which become less pronounced
with larger bond dimension χ. In comparison to values
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FIG. 3. Several observables of the Kitaev model with an-
tiferromagnetic coupling, K > 0, in a magnetic field along
[111]. From top to bottom: Second derivative −d2E/dh2 of
the energy with respect to the field h, entanglement entropy
SE of a bipartition of the cylinder divided by the number
Ly of bonds cut, correlation length ξ, average of plaquette
fluxes Wp, and flux Wl of a non-contractible loop around
the cylinder. At least three phases are observed: topological
phase for h < hc1,AF ≈ 0.44, intermediate possibly gapless
hc1,AF < h < hc2,AF ≈ 0.72, and a subsequent field-polarised
phase. Solid blue lines are for the Wl = −1 sector, dashed
blue lines for Wl = +1, and its intensity encodes the bond
dimension χ used, where dark blue refers to a large χ. Thin
dashed black lines depict the phase transitions obtained from
the peaks in −d2E/dh2.

reported earlier34,35 we find a nearly 30% lower value for
the FMK transition hc,FM . This is due to the fact that
for rather small circumferences, the ground state energy
within the topological phase is strongly sensitive to the
boundary condition as has already been noted in Ref. [8].
The rhombic-2 geometry we employ has the same twisted
boundary condition as the (Ln1, Ln2+n1) geometry em-
ployed in [8], which is shown to converge better in energy
when increasing L or Lcirc, respectively. The transition
field hc,FM may still decrease slightly upon further in-
creasing Lcirc and approaching the two-dimensional limit
Lcirc →∞.

For small h, the magnetisation (not shown here) grows
proportionally with h. The two sectors found on the
cylindrical geometry and determined by Wl = +1 or
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FIG. 4. Comparison of correlation length ξ between (a)
the rescaled magnetic field h → 8h3 and (b) the three-
spin exchange K3. The solid red line is a guide-to-the-
eye corresponding to a 1/K3 or 1/(8h3) scaling. Within
0.1 < K3, 8h

3 < 0.4, that is where numerical convergence
is achieved, the behaviour of ξ is consistent with a predicted
opening of the gap as ∆E ∝ h3 or as ∆E ∝ K3, respectively.

Wl = −1 are distinguished by their behaviour of the
entanglement entropy SE and the correlation length ξ.
The Wl = +1 sector is characterized by finite ξ and
SE , whereas the Wl = −1 sector has divergent ξ and
SE when h = 0, where it is gapless. In the latter, en-
coding the wave function as MPS with a finite χ in-
duces an effective gap that limits ξ and SE . In fact,
the growth of ξ and SE with increasing χ is connected
via SE,χ = c/6 log ξχ + const45,46, where c is the univer-
sal central charge. This has been named finite entangle-
ment scaling and allows to confirm c = 1 (for h = 0,
Wl = −1) as has been checked previously on a different
cylinder geometry47. As a side remark, the notion of a
central charge is applicable due to using a cylinder ge-
ometry and effectively mapping the model in question to
a one-dimensional system.

Numerical convergence, that is ξ and SE become χ-
independent, is achieved for 0.2 < h < 0.35. In that
range ξ reflects the physical excitation gap48 via ∆E ∝
1/ξ.

Figure 4, where the x-axis has been rescaled h→ 8h3,
enables a direct comparison with the three-spin exchange
K3 in HK3

. Both exhibit a very similar decrease of ξ
with a ξ ∝ 1/x scaling, where x is either 8h3 or K3. ξ
reaches a plateau at x = 0.4 with a low ξ ≈ 1. If h is
applied, a small χ-dependent dip and the phase transi-
tion into the intermediate regime follows, whereas for K3

the plateau ranges up to K3 = 1, from where ξ increases
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FIG. 5. Remainder ∆SE of the entanglement entropy of a
bipartition of the cylinder after subtracting a fermionic and
a gauge field contribution following Eq. (7). The magnetic
field has been rescaled, h → 8h3, based on the behaviour of
the correlation length in Fig. 4. The vertical dashed lines
signal the transitions in a magnetic field. The horizontal lines
correspond to log(D/da) as discussed in the main text.

again49. The entanglement entropy SE reaches, in the
case of a magnetic field, a plateau already at 8h3 ≈ 0.1
(h ≈ 0.25) beyond which it raises again until the tran-
sition field hc1,AF is reached. At all fields the entan-
glement remains larger than for the corresponding K3.
A more detailed discussion about the entanglement in
the context of topological excitations and topological en-
tanglement entropy follows below. The Wl = +1 sector
has χ-independent ξ and SE up to h ≈ 0.35. Before
the transition (0.35 < h < hc1,AF ) both sectors exhibit
a χ-dependents which suggests a closing of the gap at
the transition and, thence, indicates that the transition
might be continuous.

In a magnetic field, 〈Wp〉 as well as the cylinder flux Wl

begin to slowly deviate from ±1 until they vanish close
to the transition. The plaquette fluxes Wp, as defined in
the integrable limit, are not conserved anymore for finite
h as the application of a single Sγi creates a flux each on
the two plaquettes adjacent to bond γ at site i. However,
an adiabatically connected operator W̃l of Wl is expected
to exist, such that W̃l ≈ ±150. Such a dressed Wilson
loop W̃l separates the two sectors found on the cylinder
for any h within the topological phase.

We now focus on the characterization of the topologi-
cal order occurring at low magnetic fields h or when non-
zeroK3 is considered. First, let us recall some facts about
topologically ordered systems on an infinite cylinder51,52.
Generally, topological order leads to a ground state de-
generacy with a number of degenerate states being equal
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to the number of emergent quasiparticle species. These
ground states are conveniently represented as minimally
entangled states (MES)52,53, say |ψα0 〉, where α denotes
the particular quasiparticle. By utilizing iDMRG, such
MES are selected naturally, and the obtained MPS cor-
responds to one of the quasiparticles51,54.

Upon cutting a cylinder into two semi-infinite halves,
the entanglement entropy grows proportional with the
circumference Lcirc as42

SE = αLcirc − γα , (3)

where γα denotes the topological entanglement entropy
(TEE)41,42. A non-zero TEE γα = log(D/dα) reveals
topological order and is connected to the total quantum
dimension D, which itself is a sum of the quantum di-
mension dα of each quasiparticle

D =

√∑
α

d2α . (4)

The quantum dimension of abelian anyons is dα = 1,
whereas for non-abelian anyons dα is generally larger
than one55. The gapped phase of the Kitaev model upon
applying K3 is known to exhibit topological order hosting
non-abelian Ising anyons8. The following quasiparticles
exist: 1 (vacuum), ε (fermion), and σ (vortex), of which

σ has a quantum dimension dσ =
√

2 and the other two
d1 = dε = 1. From (4) follows a total quantum dimension
of D = 2.

The Kitaev model has two separate contributions56 to
the entanglement entropy

SE = SG + SF . (5)

The first contribution, SG, originates from the static Z2-
gauge field and is stated to be56,57

SG =

(
Ny
2
− 1

)
log 2 , (6)

where Ny is the number of unit cells along the circum-
ference and equals the number of bonds cut by the bi-
partition, thus Ny = Lcirc/2. The second contribution,
SF , describes the entanglement of the matter fermions56.
The remainder of log 2 in Eq. (6) reflects the aforemen-
tioned TEE.

We turn to our iDMRG results now, where the entan-
glement entropy is readily available from the MPS rep-
resentation of the ground state wave function. As will
become clear later, we consider the following quantity

∆SE = SE − SF −
Ny
2

log 2 ≈ γα , (7)

where SE is the entanglement entropy extracted numer-
ically using iDMRG. SF can be computed exactly via
the eigenvectors of the fermion hopping matrix if HK3

is
considered56,58. We compute SF on a torus with one di-
mension equalling Lcirc and the second dimension being

much larger. Note that a bipartition of a torus leaves
two cuts of length Lcirc, whereas on the cylinder there is
only one such cut. Thence, only half of S̃F of a torus is
considered in Eq. (7).

In the exactly solvable case of HK3 , ∆SE reproduces
the TEE, such that ∆SE,K3 = γa for all K3, except when
iDMRG is not converged with respect to χ. From Fig. 5,
we recover the following TEE

γα =

{
log 2 (Wl = +1),

log 2√
2

(Wl = −1),
(8)

which depends on the sector Wl = ±1. In the gapless
limit of the Wl = −1 sector (K3 = 0), SF is divergent.
Thus, at small K3 the MPS improves with increasing χ
similar to the behaviour of ξ discussed before. Nonethe-
less, from (8) a total quantum dimension of D = 2 can
simply be read off. The Wl = −1 sector contains a
non-abelian anyon, a vortex σ, with quantum dimension
da =

√
2. The ground state of the Wl = +1 sector is

doubly degenerate with dα = 1 for both states. Thus,
the expected degeneracy is recovered.

Upon applying the magnetic field, the integrability of
HK3 in Eq. (2) is lost and the fermionic contribution
SF cannot be computed exactly. Based on the fact that
we observe a similar opening of the gap in the fermionic
spectrum forK3 and h when the magnetic field is rescaled
as h → 8h3, we assume that SF as a function of the
rescaled magnetic field SF (8h3) is similar to SF (K3) as
a function of K3. This assumption is at least justified
in the limit of small h. Figure 5(a) displays ∆SE in
a magnetic field, where it approaches the same values
of γα for small h. At elevated fields, ∆SE begins to
deviate from γ = log 2 or γσ = log

√
2. ∆SE increases

monotonically until the transition into the intermediate
phase is reached.

In a magnetic field, the separability of fluxes and
fermions is lost and generically additional entanglement
between fluxes and fermions is created. Such entan-
glement generates an additional contribution SF⊗G to
the entanglement entropy, which is not accounted for in
Eqs. (5) and (7). As this deviation occurs continuously,
we like to argue that the topological phase in a low mag-
netic field is adiabatically connected to the topological
phase of HK3

at non-zero K3.
As a remark, the difference of ∆SE between the Wl =
±1 sectors is not constant. This is due to the correlation
length of the fermions being enhanced in the −1 sector,
particularly near the gapless limit (h = 0), where it di-
verges. Thus, the fermions may build up entanglement
with the fluxes in an increased area near the cut resulting
in an enhanced SF⊗G.

We like to conclude that we find numerical evidence
for a total quantum dimension D = 2 with non-abelian
anyons having quantum dimension da =

√
2 in the ex-

actly solvable model using the three-spin term. The re-
sults using the magnetic field, breaking integrability of
the original model, are still consistent with the results
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above. However, a significant contribution to the entan-
glement entropy arises at increased magnetic fields.

B. Intermediate Regime

Only for AFK, an intermediate region exists ranging
from hc1,AF < h < hc2,AF , where hc1,AF ≈ 0.44 (for
rhombic-2, Lcirc = 10) marks the transition from the
topological phase and hc2,AF ≈ 0.72 the transition into
the field-polarised phase.

The ground state within the intermediate regime
requires to go to comparably large bond dimensions
χ ≈ 1000. Using smaller χ, the ground state is very sen-
sitive to the cylindrical geometry as well as the size of the
iDMRG cell. However, based on the 1/χ-extrapolation of
the ground state energy, that is presented in Appendix A,
we find evidence for a translationally invariant ground
state. In particular, when using a larger iDMRG cell,
we observe a restoration of translational symmetry upon
reaching a sufficiently large χ.

This motivates the use of the rhombic-2 geometry with
an iDMRG cell equivalent to a single fundamental unit
cell, which on the one hand suppresses ground states with
enlarged unit cells due to broken translational symmetry,
but on the other hand saves computational resources bet-
ter spent in reaching larger χ.

Returning to its physical properties, the intermediate
region exhibits a behaviour typical for a gapless phase.
Both correlation length ξ and entanglement entropy SE
are not converged with respect to χ, where ξ increases
slowly with χ, while SE increases somewhat faster than in
the gapless Kitaev limit. As we are studying effectively a
one-dimensional system due to the cylindrical geometry,
the finite-χ scaling46 extracting a central charge may be
applicable59. In that context, the behaviour of SE and
ξ indicate a larger central charge c, than found in the
B-phase of the bare Kitaev model. However, the finite-χ
scaling, see also Appendix A, does not reveal a conclusive
c. Furthermore, the behaviour ξ for larger χ ≥ 800 sug-
gests a separation of the intermediate region into three
phases, of which the middle one grows in extent with
larger χ. Given the large entanglement and the sensitiv-
ity to boundary conditions, our iDMRG results can only
be suggestive for the nature of the ground state in the
2D limit.

The flux expectation values Wp and Wl approach
zero continuously. Interestingly, the coexistence of both
sectors found in the topological phase, Wl|h=0 = ±1,
persists beyond the transition hc1,AF . The peak in
−d2E/dh2 signaling this transition is independent of the
particular sector.

C. Polarized Phase

A transition to the large-h field-polarized phase oc-
curs at hc2,AF ≈ 0.72 (AFK), or hc,FM ≈ 0.028 (FMK),

respectively. The polarized phase is gapped, which is
signaled by the DMRG simulations by a finite correla-
tion length ξ and finite entanglement entropy SE . The
entanglement SE decreases with increasing field h and
vanishes once the magnetic moments approach satura-
tion, where the ground state is a simple product state.
Both, FMK and AFK, exhibit a longitudinal magnetic
moment of ≈ 55% of saturation along the [111] direc-
tion without any transverse component. The longitudi-
nal moment grows with h reaching 90% saturation at
h = 1.17 (AFK) and h = 0.41 (FMK). Large mag-
netic moments motivate perturbative methods like spin
wave-theory44. In comparison to linear spin wave the-
ory (LSWT)21, the transition gets renormalized signifi-

cantly from hLSW,AF = 2/
√

3 ≈ 1.15 down to hc2,AF .
For FMK, LSWT predicts a transition at exactly zero21,
whereas in iDMRG it occurs at small, non-zero field.

IV. DYNAMICAL SPIN-STRUCTURE FACTOR

The dynamical spin-structure factor S(k, ω) contains
information about the excitation spectrum and is experi-
mentally accessible via scattering experiments, in partic-
ular inelastic neutron scattering. S(k, ω) is the spatio-
temporal Fourier transform of the dynamical correlations

Sγγ(k, ω) = N

∫
dt eiωt

∑
a,b

ei(rb−ra)·k Cγγab (t) , (9)

where γ = {x, y, z} is the spin component, ra and rb
are the spatial positions of the spins, and diagonal ele-
ments Sxx, Syy, and Szz are considered. N is defined
by normalizing Sγγ(k, ω) as

∫
dω
∫
dk Sγγ(k, ω) =

∫
dk.

Cγγab (t) denotes the dynamical spin-spin correlation

Cγγab (t) = 〈ψ0|Sγa (t)Sγb (0)|ψ0〉
= 〈ψ0|U(−t)SγaU(t)Sγb |ψ0〉
= 〈ψ0|SγaU(t)Sγb |ψ0〉 , (10)

where the unitary time-evolution operator U(t) =
e−i(H−E0)t is modified by subtracting the ground state
energy E0. In doing so, the time-evolution U(−t) is obso-
lete as for the ground state 〈ψ0|U(−t) = 〈ψ0|. Following
Ref. [40], U(t) is recast into a matrix product operator
(MPO) with discretized time steps.

Equation (10) provides the numerical protocol we em-
ploy: (i) Obtain the ground state wave function |ψ0〉 us-
ing iDMRG and enlarge the iDMRG cell along the cylin-
drical axis to make room for the excitation to spread
spatially, (ii) apply spin operator Sγi at site i, (iii) time-
evolve the MPS by U(t), (iv) apply Sγj at j, and (v)
compute the overlap.

On the technical side, we first compute the spatial
Fourier transform of Cγγab (t), extend the time-signal using
linear predictive coding60, and multiply with a gaussian
to suppress ringing due to the finite-time window. The
extension of the time-signal allows for much wider finite-
time windows keeping a significant part of the simulated
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FIG. 6. Dynamical spin-structure factor Sxx(k, ω) along Γ–M–Γ′ at: (a) h = 0.01, (b) h = 0.20, (c) h = 0.40, (d)
h = 0.01,K3 = −0.5, (e) h = 0.20,K3 = −0.5, (f) h = 0.20,K3 = −0.5 within the topological phase. (a)-(f) have a logarithmic
color scale ranging over two decades. (g,h) Sxx(k, ω) at high-symmetry points Γ, K, M , and Γ′ for different h and K3. An
vertical offset is used for better visibility. In all plots, Sxx(k, ω) is normalized as given in the main text.

real-time dynamics. All spectra shown in the remainder
have a broadening of σω = 0.036 due to multiplying the
real-time data with a Gaussian of width σt = 27.9. The
real-time data is obtained for times up to T = 60 on
cylinders with rhombic geometry and Lcirc = 6.

In the following, we discuss S(k, ω) within the topo-
logical phase and the polarized phase. Simulating the
dynamics within the intermediate regime is left for fu-
ture work as the necessary bond dimension for encoding
the ground state is to large to achieve appreciably long
times in the time-evolution.

A. Topological Phase

Near h = 0, see Fig. 6(a), the numerically obtained
S(k, ω) exhibits the features of the analytic solution43,61

with some adjustments due to the cylindrical geometry47.
Firstly, this involves a low-energy peak at ω = 0.06 of
which its spectral weight is shifted towards Γ′ due to the
antiferromagnetic nearest-neighbor spin-spin correlation

caused by the antiferromagnetic Kitaev exchange. When
using a cylindrical geometry, an additional δ-peak with
finite spectral weight occurs at the two-flux energy. This
δ-peak, together with the finite-time evolution and subse-
quent broadening in frequency space, hides the two-flux
gap. Nevertheless, the δ-peak position coincides with the
two-flux gap62, ∆2 ≈ 0.06.

Secondly, a broad continuum exists, that is cut off at
ω ≈ 3.1. Increasing h to 0.2 and 0.35, cf. Fig. 6(b) and
(c), only leads to minor changes of the spectrum. Most
notably, the low-energy peak develops a shoulder towards
slightly elevated energies, and the cut-off at ω = 3.1 is
blurred out. Both features are more prominent in the line
plots, Fig. 6(g). Any changes to the low-energy spectrum
near or even below the two-flux gap are obscured by the
finite time-evolution window.

Next, we investigate the effect of both, K3 and h. For
K3 = −0.5 and small h = 0.01, Fig. 6(d), the low-energy
peak gets elevated to ω ≈ 0.4. This peak originates from
a single fermion bound to a pair of fluxes43 and its shift
is caused by K3 increasing the two-flux gap. The fermion
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FIG. 7. Dynamical spin-structure factor S(k, ω) in the field-polarized phase along Γ–M–Γ′ at: (a) h = 1.15, (b) h = 1.01, (c)
h = 0.85, and (d) h = 0.75. (e) S(k, ω) at high-symmetry points K, M , and Γ′ for different h. An vertical offset is used for
better visibility. In all plots, S(k, ω) is normalized as given in the main text.

continuum starts at ω ≈ 0.8, and the upper cut-off of the
continuum gets slightly elevated to ω = 3.2. Both edges
remain sharp.

Upon increasing h to 0.2, the low-energy peak splits
into at least three peaks, two of them develop a disper-
sion. Due to the field, the fluxes acquire a finite hopping
amplitude and become mobile. The fluxes are thence
no longer required to lie on neighboring plaquettes, but
instead may separate. Hence, the mode describing a
fermion bound to the two-flux pair generally attains more
structure63. Moreover, interaction between fluxes may
induce further dispersion64,65. At further elevated fields,
cf. Fig. 6(f) at h = 0.35, somewhat before the phase
transition into the intermediate regime66, the splitting
increases with lots of the spectral weight shifting to the
peak that is lowest in energy. The spectral gap reduces
significantly with h and has its minimum at the Γ and Γ′

high-symmetry points.

B. Polarized Phase

From linear spin-wave theory (LSWT) it is known that
the magnons are topological. Their bands carry a ±1
Chern number and chiral edge modes have been observed
on a slab geometry44. But LSWT is only applicable for
fields above the classical critical field hclas = 2/

√
3 ≈

1.15. Here, we focus on the bulk excitation spectrum at
fields between the numerically observed, hc2,AF ≈ 0.72,
and the classical critical field. Results for larger fields are
presented in Ref. [44] using the same method.

Beginning our discussion at the classical critical field
h = 1.15 shown in Fig. 7(a), we observe two magnon-
bands with a minimum of ω ≈ 0.3 at the high-symmetry
points Γ and Γ′. The two-magnon continuum has some
overlap with the upper magnon band. With lowering
the field, the magnon bands move down in energy and
flatten in the sense that their bandwidth decreases. At
h = 1.01, cf. Fig. 7(b), the continuum already overlaps
with major parts of the upper magnon band. This opens
decay channels, limiting its lifetime, and consequently
broadening the mode.

Approaching the transition, cf. Fig. 7(d) at h = 0.75
and (c) at h = 0.85, S(ω,k) shows a very broad contin-
uum ranging down to almost zero energy, where also most
of the spectral weight is observed. The upper magnon
band is completely obscured by the multi-magnon con-
tinuum and lots of the spectral weight is distributed over
a wide range in energy. The lower edge of the spectrum
flattens towards the transition, which is even more evi-
dent in the line plots shown in Fig. 7(e). In particular
at h = 0.75 the low-energy peaks shift down to almost
zero energy simultaneously at the K, M , and Γ′ high-
symmetry points, with most of the spectral weight still
appearing above the Γ′-point.

This reproduces to some extent the phenomenology of
LSWT, namely that the lower magnon band flattens com-
pletely while decreasing to zero energy21,44, yet it occurs
at lower fields than in LSWT. On the other hand, a clear
remnant of the single magnon branch cannot be observed
close to the transition as it overlaps and merges with the
multi-magnon continuum. It may be possible that the
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single magnon branch is still dispersive, even though with
a significantly reduced bandwidth.

A feature in the spectrum not mentioned so far,
emerges at around ω ≈ 2 at magnetic fields near the tran-
sition. Initially this high-energy feature is very broad in
energy, but sharpens and moves to higher energy upon in-
creasing the field. At h = 1.01 it appears around ω = 2.5
and exhibits a slight dispersion. At even larger fields,
beyond what is presented here, the high-energy feature
moves up in energy with a linear dependence on the field
and twice the slope compared to the single-magnon exci-
tations. Furthermore, the high-energy feature is situated
at the upper edge of the two magnon continuum. Its
intensity first increases, but starts to decrease at higher
fields.

V. CONCLUSION

We confirm the vastly different phenomenology be-
tween ferromagnetic and antiferromagnetic Kitaev inter-
action, if a magnetic field along [111] direction is applied.
In case of ferromagnetic Kitaev coupling, only a single
magnetic transition is observed, that separates a low-h
topological phase from the large-h field-polarized phase.
Whereas for antiferromagnetic Kitaev coupling, the topo-
logical phase is more stable and an intermediate regime
exists, that is possibly gapless. The topological order of
the low-h phase and its non-abelian anyonic excitations
are verified by extracting the topological entanglement
entropy. In addition to Ref. [34], the topological order
obtained with a finite three-spin term or when applying
a weak magnetic field is the same also for antiferromag-
netic Kitaev coupling.

Upon applying the magnetic field, the spectral gap
in the dynamical spin-structure factor remains within
the frequency resolution and the overall spectrum ex-
hibits only minor changes. However, the dynamical spin-
structure factor is remarkably different when applying
the three-spin term lifting the spectral gap, both due to
the flux gap increasing and the fermions gapping out.
When a combination of magnetic field and three-spin
term is applied, we observe a drastic reduction of the
spectral gap with increased field and more structure in
the low-energy peak corresponding to a bound state of a
flux pair and a fermion. This additional structure is due
to the fluxes becoming mobile and the flux-pair may sep-
arate providing a richer energy manifold for that bound
state. Upon approaching the intermediate regime, the
spectral gap reduces with a minimum at the Γ′ high-
symmetry point. We can conclude, that even though the
energy gap opens in a similar manner when either the
magnetic field or three-spin term is varied, the dynami-
cal spin-structure factor exhibits a remarkably different
low-energy structure. Thus, additional terms in pertur-
bation theory, other then the three-spin term preserving
integrability, are relevant to describe the dynamical spin-
structure factor in the topological phase.
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FIG. 8. Comparison of the ground state energy EGS vs bond-
dimension χ for different geometries and sizes of the iDMRG
cluster at a single field strength of h = 0.55. For small χ,
larger iDMRG cluster have a smaller EGS . However, in the
limit 1/χ→ 0, EGS is of very similar value for all geometries
used. In fact, large iDMRG cluster show a phase transition
from an ordered ground state at small χ to a translational
invariant ground state at large χ captured by the smallest
iDMRG cluster.

When approaching the intermediate region from high-
fields, we observe a strong reduction in frequency with
a simultaneous flattening of the lower magnon band.
A broad continuum develops, that ranges down to the
lowest frequencies and merges with the single magnon
branch. It remains an open question, whether this flat-
tening could be attributed to the collapse of the lower
magnon branch, as observed within LSWT, or rather to
multi-magnon excitations obscuring any dispersion of the
very same magnon branch. Nonetheless, the flat gap clos-
ing as such is interesting in various aspects as it may
indicate exotic spin states like a quantum spin liquid.
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Appendix A: Finite-size dependents within
intermediate phase

Here, we investigate the intermediate regime with re-
spect to possible finite-size effects as well as finite bond
dimension of the matrix product state (MPS). Figure 8
provides a comparison of the ground state energy EGS
for two different geometries, rhombic with Lcirc = 6
or rhombic-2 with Lcirc = 10, as well as several differ-
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FIG. 9. Entanglement entropy S of a bipartition of the
cylinder over correlation length ξ for various bond dimension
χ to check for possible finite-χ scaling. Data is shown for
different magnetic field strength h = 0.5, 0.55, 0.6, 0.65, 0.70
across the intermediate regime. Lines are fits to the five points
with largest ξ at each field.

ent sizes of the iDMRG cluster at a magnetic field of
h = 0.55. Similar checks are done at different h.

In case of rhombic-2 with Lcirc = 10 (green symbols),
the smallest cluster is similar to a single fundamental
unit cell with two sites (green circles), that is repeated
along a chain winding around the cylinder. Next larger
clusters are: four sites (n = 2 fundamental unit cells,
green ’x’), 10 sites (n = 5, green ’+’), 20 sites (n = 10,
green lower triangle), and 30 sites (n = 15, green upper
triangle). When using small bond-dimensions χ < 500,
larger iDMRG clusters result in lower ground state en-
ergies EGS . Upon increasing χ, the different energies
approach each other until eventually a transition to the
ground state of a smaller cluster occurs, e.g., at χ ≥ 512
the 10 site cluster (’x’) has the same ground state prop-
erties as the fundamental unit cell (circles). Such a χ-

transition is unphysical and a mere property of truncat-
ing the MPS.

In case of rhombic with Lcirc = 6 (black symbols)
in Fig. 8, the smallest iDMRG cluster is a single ring
with three fundamental unit cell along the circumference
(’3x1’, black circles). Larger clusters of three repetitions
along the cylinder (’3x3’, black triangles) and six repeti-
tions (not shown, but equivalent to ’3x3’) are checked. As
above, a similar χ-transition at χ ≈ 800 is found, where
for smaller χ the ’3x3’ has a lower EGS , but transitions
to the same state as ’3x1’ for larger χ.

In conclusion, the ground states for larger χ are not
exhibiting any broken translational symmetry and may
resemble the physical ground state. Thus, the use of
iDMRG cell composed of a single fundamental unit cell
is justified for computing the phase diagram shown in
Fig. 3.

The previous results signify, that large bond dimen-
sions are necessary to resemble the physical ground state.
We cannot say for sure, that the χ we are able to
achieve are already sufficient, thus any statement regard-
ing the intermediate region has to be taken with care.
Nonetheless, let us assume the MPS do reflect physical
properties of the underlying phase and apply a finite-
χ scaling. For h = 0.55, 0.6, 0.65, and 0.7 we obtain
a SE,χ = c/6 log ξχ + const scaling typical for a gap-
less phase45,46, see Fig. 9. Linear regression of the five
points with largest χ reveal slopes corresponding to cen-
tral charges of c = 3.493 at h = 0.55, c = 3.291 at
h = 0.60, c = 4.751 at h = 0.65, and c = 4.00 for h = 0.7,
all for rhombic-2 with Lcirc = 10. We want to remark,
that only the c of the former (h = 0.55) and the latter
(h = 0.7) reflect physical central charges. h = 0.6 has a
very similar behaviour in terms of SE vs ξ, but a slightly
smaller c, which may converge to 3.5 for larger χ. For
h = 0.5, χ does not yet suffice to enter a linear SE ∝ log ξ
regime.
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30 Z. Wang, S. Reschke, D. Hüvonen, S.-H. Do, K.-Y. Choi,
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