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The Particle-In-Cell (PIC) algorithm is the most popular method for the discretisation
of the general 6-D Vlasov-Maxwell problem and it is widely used also for the simulation
of the 5D gyrokinetic equations. The method consists of coupling a particle based al-
gorithm for the Vlasov equation with a grid based method for the computation of the
self-consistent electromagnetic fields. In this review we derive a Monte Carlo Particle In
Cell Finite Element model starting from a gyrokinetic discrete Lagrangian. The variations
of the Lagrangian are used to obtain the time continuous equations of motion for the par-
ticles and the Finite Element approximation of the field equations. The Noether theorem
for the semi-discretised system, implies a certain number of conservation properties for
the final set of equation. Moreover, the PIC method can be interpreted as a probabilistic
Monte-Carlo like method, consisting of calculating integrals of the continuous distribu-
tion function using a finite set of discrete markers. The nonlinear interactions along with
numerical errors introduce random effects after some time. Therefore, the same tools for
error analysis and error reduction used in Monte-Carlo numerical methods can be applied
to PIC simulations.

PACS codes:

1. Introduction

In this lecture note, we discuss a Monte Carlo Particle-In-Cell (PIC) Finite Element
method based on the description of the equation of motions by a Lagrangian derived
using the particle trajectories approach. Starting from the Lagrangian introduced by
Low (1958), Sugama (2000) derived the gyrokinetic field theoretic Lagrangian that will
be the base of our formulation. For the discretisation, we follow the procedure first
proposed by Lewis (1970) to derived a Particle In Cell approximation based on a discrete
Lagrangian, the variations of which are used to obtain the time continuous equations of
motion for the particles and the Finite Element approximation of the fields. This feature
implies a certain number of conservation properties thanks to the Noether theorem for
the semi-discretised system. For these to be retained exactly after time discretisation,
special care needs to be taken, implying implicit methods. This is inconvenient for large
PIC simulations and is generally not done in practice.

Classical derivations of the PIC method are based on the approximate distribution
function being a sum of δ functions. A detailed discussion of the method and a systematic
derivation of the relevant equations were given by Hu & Krommes (1994). Unlike classical
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derivation, we cast the PIC method from the beginning into the framework of Monte
Carlo simulation, which is best adapted to the study of its approximation properties.
This approach enables us to draw on the extensive literature on Monte Carlo methods
in statistics to propose efficient noise reduction strategies. The aim of this lecture note,
which follows a large literature on PIC method for gyrokinetics like Aydemir (1994); Hu
& Krommes (1994); Tran et al. (1999); Allfrey & Hatzky (2003); Krommes (2007); Jolliet
et al. (2007); Bottino et al. (2010); Kleiber et al. (2011) and many others, is to highlight
on the one hand the semi-discrete variational principle on which these methods are based
and on the other hand the Monte Carlo framework, in order to make a clear link with the
Monte Carlo literature in statistics. The outline of the note is the following. First we will
introduce the gyrokinetic approximation and in particular the phase space Lagrangian
density on which it is based, derive the gyrokinetic Vlasov-Poisson equations and also
present the special case of adiabatic electrons. Then we will describe our Finite Element
Monte Carlo Particle in Cell discretisation the principle of which consists in obtaining
a discrete Lagrangian by applying a Monte Carlo approximation in the particle part
of the Lagrangian density and a Finite Element approximation for the fields. The PIC
marker equations of motion and the discrete field equations then are obtained as the
Euler Lagrange equations of the discrete Lagrangian. We will then explain how classical
Monte Carlo noise reduction techniques can be applied. Finally in the last part we will
present some typical gyrokinetic simulations and illustrate how the noise to signal ratio
can be monitored in a PIC simulation.

2. Description of the gyrokinetic model

Gyrokinetic (GK) theory aims to describe plasma particle motion in terms of drifts of
particle gyrocenters, rather than the usual combination of gyromotion and drifts of the
particles, thus reducing the original 6D kinetic problem into a 5D problem. The develop-
ment of GK theory was motivated by the need to describe complex plasma dynamics over
time scales much longer than the short gyro-motion time scale. The typical example is
the study of the low-frequency electromagnetic fluctuations (microturbulence) observed
in inhomogeneous magnetized plasmas, characterized by Ω < Ωs where Ωs = esB/ms is
the ion cyclotron frequency.

Several ways to construct gyrokinetic equations exist. Initially, GK equations were
derived by gyro-averaging the Vlasov equation with recursive methods (see for exam-
ple Frieman & Chen (1982) and Lee (1983)). Modern gyrokinetic theory is based on a
Hamiltonian representation in which nonlinear gyrokinetic equations are derived from
a systematic Hamiltonian theory as originally proposed by Dubin et al. (1983). The
starting point of the derivation is the description of particle motion in a magnetic field
in terms of a drift-kinetic Lagrangian. Gyrokinetic equations can be constructed when
this Lagrangian is (Lie) transformed into a low-frequency form by means of an expansion
based on a small parameter. The small parameter can be either the fluctuation amplitude
of the drifts [Littlejohn (1981, 1983)] or the gyroradius compared to the dynamical scale
lengths [Hahm (1988)]. In this formulation, a back transformation was used to obtain
the self-consistent field equations for the potential [Dubin et al. (1983); Hahm (1988)]. In
modern gyrokinetics, the so-called gyrokinetic field theory, the entire Lagrangian is con-
structed as the integral of a Lagrangian density, with the field equations obtained as the
Euler-Lagrange equations by varying the potentials in the Lagrangian [Sugama (2000);
Brizard (2000)]. These two approaches have been proved to be identical by Brizard &
Hahm (2007) and both preserve the symmetry and conservation properties of the Vlasov
equation.
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Gyrokinetic field theory can be addressed in the context of a general Hamiltonian [Scott
& Smirnov (2010)]. It consists in constructing a Lagrangian in which all the dependence
on dynamical variables is in the Hamiltonian or in the free field terms. The symmetry
with time through the Hamiltonian leads automatically to energy conservation. Indeed,
self-consistent nonlinear gyrokinetic Vlasov-Maxwell equations can be derived starting
from the Lagrangian, without any additional ordering assumption. This approach also
naturally provides the exact energy conservation law these nonlinear GK equation satisfy
and it is therefore particularly suited for numerical simulations. In the following, the
simplest self-consistent and energy conserving gyrokinetic model, suited for gyrokinetic
particle-in-cell simulations, is derived using general Hamiltonian based gyrokinetic field
theory.

2.1. Gyrokinetic Lagrangian

As a starting point, the following Lie transformed low-frequency particle Lagrangian is
assumed:

Lp ≡
(e
c
A+ p‖b

)
· Ṙ+

mc

e
µθ̇ −H. (2.1)

The velocity variables are the magnetic moment µ ≡ mv2⊥/(2B), the canonical parallel
momentum, p‖ and the gyroangle θ; R is the gyrocenter position. Upper dots denote
total time derivatives. The perpendicular subscript denotes the component in the plane
perpendicular to the background magnetic field B = ∇ ×A. Note that the symplectic
part depends only on the background, while all the time varying fields are contained in
the Hamiltonian H. In the sequel A will always denote the background vector potential,
whereas A‖ will denote the parallel component of the fluctuating field, the perpendicular
part being assumed to be zero. Complete derivations of such a particle Lagrangian can be
found, for example, in Hahm (1988); Brizard & Hahm (2007) and Miyato et al. (2009).
Following Sugama (2000), the gyrokinetic total Lagrangian is given by:

L =
∑
sp

∫
dW0dV0f(Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t) +

∫
dV

E2 −B2
⊥

8π
, (2.2)

where Z ≡ (R, p‖, µ, θ), dW ≡ (2π/m2)B∗‖dp‖dµ and dV denotes the volume element

in physical space, with Jacobian 1/
√
g. Here f(Z0) is the distribution function for the

species sp at an arbitrary initial time t0. We will not use a specific notation to distinguish
the distribution functions of the different species for simplicity. dW0 implies that the
phase space Jacobian is function of Z0, i.e. B∗‖(Z0). Lp is the Lie transformed particle

Lagrangian of Eq. (2.1), written in terms of the gyro-center coordinates of the particle,
with the initial condition:

Z(Z0, t0; t0) = Z0. (2.3)

The first term in the total Lagrangian is the Lagrangian for charged particles. Note that
here the integral is performed with respect toZ0: it is therefore assumed that the particles
can be traced back in time to their position at t0. The second term is the Lagrangian for
the electromagnetic fields.

Writing that the distribution function is conserved along the particle trajectories

f(Z(Z0, t0; t), t) = f(Z0, t0) (2.4)

yields the GK Vlasov equation by taking the time derivative

d

dt
f(Z(Z0, t0; t), t) =

∂

∂t
f(Z, t) +

dZ

dt
· ∂
∂Z

f(Z, t) = 0. (2.5)



4 A. Bottino and E. Sonnendrücker

The particle number conservation follows from Liouville’s theorem for a time independent
Jacobian:

∂

∂Z
· (B∗‖

dZ

dt
) = 0,

which is a property inherited from the particle Lagrangian Lp that we shall verify later.
Then, on the one hand the first integral defining L can be expressed by the change of
variables Z = Z(Z0, t0; t) as∫

dWdV f(Z, t)Lp(Z, Ż, t) (2.6)

and the Vlasov equation can be written in the conservative form

∂

∂t

(
2π

m2
B∗‖f

)
+

∂

∂Z
·
(

2π

m2
B∗‖

dZ

dt
f

)
= 0. (2.7)

The GK Hamiltonian in general depends on the electrostatic potentials Φ and on the
parallel component of the fluctuation magnetic potential A‖. In its simplest form, the
GK Hamiltonian has the following form:

H = m
U2

2
+ µB + eJ0Φ− mc2

2B2
|∇⊥Φ|2. (2.8)

The last term in the Hamiltonian is the negative of the kinetic energy associated with
the E × B motion of the gyrocenters. The physical meaning and implications of this
term are specifically addressed in a recent paper by Krommes (2013). A derivation of the
gyrokinetic equations using higher order Hamiltonian can be find, for example, in Miyato
& Scott (2013). Note that U , the parallel velocity, is not a coordinate. It is defined by
mU = p‖ − (e/c)J0A‖ and is a function of the fluctuation magnetic potential A‖. The
gyroaveraging operator J0 applied to an arbitrary function ψ in configuration space is
defined by

(J0ψ)(R, µ) =
1

2π

∫ 2π

0

ψ(R+ ρ(α)) dα, (2.9)

where ρ is the vector going from the guiding center position to the particle position. It
depends on µ and spatial coordinates. In the context of GK field theory, this Lagrangian
can be further approximated, without loosing self-consistency and energetic consistency
of the final equations [Sugama (2000); Scott & Smirnov (2010)]. A possible approxima-
tion, widely used in GK simulations, is the so called quasi-neutrality approximation. It
consists in neglecting the term proportional to E2 in the free field term. This term is
ordered small compared to the so called E ×B energy, corresponding to the second order
term in Φ in the Hamiltonian:∫

dV
E2

8π
+

∫
dΩf

m

2

c2

B2
|∇⊥Φ|2 =

1

8π

∫
dV

[
E2
‖ +

(
1 +

ρ2S
λ2d

)
|∇⊥Φ|2

]
, (2.10)

having introduced the electron Debye length squared λ2d ≡ (kBTe)/(4πne
2) and the ion

sound Larmor radius ρ2S ≡ (kBTemc
2)/(e2B2); dΩ ≡ dV dW .

In fusion plasmas

ρ2S
λ2d

=
4πnmc2

B2
=
c2

v2a
� 1 (2.11)

where va is the Alfvén velocity and E2
‖ is even smaller. Therefore the E2 term can be

safely neglected. We will see in the following that this approximation will lead to a field
equation for the electrostatic potential equivalent to a quasi-neutrality condition.
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Recalling the definition of p‖, the GK Hamiltonian can be rewritten as follows:

H = H0 +H1 +H2, (2.12)

H0 ≡
p2‖

2m
+ µB, (2.13)

H1 ≡ eJ0Ψ, (2.14)

H2 =
e2

2mc2
(J0A‖)

2 − mc2

2B2
|∇⊥Φ|2, (2.15)

having introduced the generalized potential Ψ ≡ Φ − (p‖/mc)A‖. The GK total La-
grangian can be further approximated by assuming that only (H0 + H1) multiplies f ,
while f is replaced by an equilibrium distribution function fM independent of time in
the term containing H2:

L =
∑
sp

∫
dΩ
((e

c
A+ p‖b

)
· Ṙ+

mc

e
µθ̇ −H0 −H1

)
f

−
∑
sp

∫
dΩH2fM −

∫
dV

B2
⊥

8π
. (2.16)

Since this approximation leads to linearised field equations, it is traditionally known as
linearised polarisation approximation. However, this choice of Lagrangian has a deeper
meaning: already Sugama (2000) showed that in order to construct a gyrokinetic equation
based on first order drift motion, only H0 + H1 must multiply f , thus contributing to
the drifts via the variational derivatives. The term containing H2 must act as a field
term and should contribute to the field equations only, i.e. H2f must be replaced by
H2f0. Conversely, if one desires to keep the dependent variable f in this term then H2

must be kept in the drift motion. This is the basic statement of energetic consistency
in a gyrokinetic global model as discussed in Scott & Smirnov (2010) . Note that this
result was already present in both Sugama (2000) and Brizard (2000). In addition to this,
Miyato et al. (2009) showed that the reduced MHD vorticity equation can be recovered
by taking the time derivative, ∂/∂t, of the linearised polarisation equation.

Although electromagnetic effects are important to correctly describe experimental plas-
mas, in the following we will neglect magnetic perturbations, setting A‖ = 0, which
implies B2

⊥ = 0 and p‖ = mU .
Finally, the electrostatic GK Lagrangian starting point for the derivation of our GK

system is:

L =
∑
sp

∫
dΩ
((e

c
A+ p‖b

)
· Ṙ+

mc

e
µθ̇ −H0 −H1

)
f +

∑
sp

∫
dΩ

mc2

2B2
|∇⊥Φ|2fM .

(2.17)

It is important to underline that from now on, any additional approximation or ordering
will break the symmetry and conservation properties of the underlying dynamical system.

2.2. Gyrokinetic electrostatic Vlasov-Poisson equations

The gyrokinetic equations for the particle distribution function and the GK field equa-
tions can be derived from the GK Lagrangian using variational principles for the action
functional I [Sugama (2000)]:

δI[Z,Φ] =

∫ t2

t1

δL[Z,Φ]dt =

∫ t2

t1

(
6∑

α=1

δL

δZα
· δZα +

δL

δΦ
· δΦ

)
dt, (2.18)
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where the functional derivative of L with respect to a function ψ is defined for an arbitrary
variation δψ in the same function space as ψ by

δL

δψ
· δψ =

d

dε |ε=0
L(ψ + εδψ) = lim

ε→0

L(ψ + εδψ)− L(ψ)

ε
. (2.19)

The particle equations of motion can be obtained by taking the functional derivatives
with respect to the particle phase space positions Z = (R, p‖, µ):

δI

δZ
= 0⇒ δL

δZ
= 0 (2.20)

as t1 and t2 are arbitrary. This yields the GK Euler-Lagrange equations for the particle
Lagrangian Lp, describing the drift motion of the gyrocenters, which can be expressed as

d

dt

∂Lp
∂ẏ

=
∂Lp
∂y

for all the phase space components y. We follow here the idea introduced by Little-
john (1983) for non canonical formulations. Let us first compute all the needed partial
derivatives of Lp, denoting by ∇A the Jacobian matrix associated to vector field A:

∂Lp

∂Ṙ
=
e

c
A+ p‖b,

∂Lp
∂R

=
e

c
(∇A)T Ṙ+ p‖(∇b)T Ṙ−∇(H0 +H1), (2.21)

∂Lp
∂ṗ‖

= 0,
∂Lp
∂p‖

= b · Ṙ− ∂(H0 +H1)

∂p‖
. (2.22)

Taking the time derivative of the first term above, using that A and b do not depend on
time

d

dt

∂Lp

∂Ṙ
=
e

c
(∇A)Ṙ+ ṗ‖b+ p‖(∇b)Ṙ =

e

c
(∇A∗)Ṙ+ ṗ‖b, (2.23)

where we introduce

A∗ = A+ p‖
c

e
b, B∗ = ∇×A∗. (2.24)

We can now write the Euler-Lagrange equation for R and p‖:

e

c
(∇A∗)Ṙ+ ṗ‖b =

e

c
(∇A∗)T Ṙ−∇(H0 +H1), (2.25)

0 = b · Ṙ− ∂(H0 +H1)

∂p‖
. (2.26)

Moreover ∂Lp/∂θ̇ = µ, ∂Lp/∂θ = 0, so that the Euler-Lagrange equation for θ yields
dµ/dt = 0, which expresses that µ is an exact invariant. On the other hand, as the
dependence on θ has been removed from the Lagrangian no evolution equation on θ is
needed.

Let us introduce F = ∇A− (∇A)T with the properties

∇× b = −∇ · F
B
, C × (∇×A) = C ×B = FC for any vector C, (2.27)

and similarly F ∗ = ∇A∗ − (∇A∗)T , with C × B∗ = F ∗C for any vector C. Then in
equation Eq. (2.25) we have

(∇A∗)Ṙ− (∇A∗)T Ṙ = F ∗Ṙ = Ṙ×B∗, (2.28)
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and we can write Eq. (2.25) equivalently

e

c
Ṙ×B∗ + ṗ‖b = −∇(H0 +H1). (2.29)

Finally taking the dot product of Eq. (2.29) withB∗ yields an equation for ṗ‖, and taking

the cross product of b and Eq. (2.29), using that b× (Ṙ×B∗) = (B∗ · b)Ṙ− (Ṙ · b)B∗
and equation Eq. (2.26), we get an equation for Ṙ. The equations of motion for the
gyrocenters then read

Ṙ =
∂(H0 +H1)

∂p‖

B∗

B∗‖
− c

eB∗‖
b×∇(H0 +H1) (2.30)

ṗ‖ = −B
∗

B∗‖
· ∇(H0 +H1) (2.31)

where we denote by B∗‖ = B∗ ·b. This is the formulation also obtained in Scott & Smirnov

(2010) and Scott et al. (2010) who start from the same Lagrangian.

Those equations can be cast in a more familiar form by plugging in the values of H0

and H1:

Ṙ =
p‖

m
b−

(p‖
m

)2 mc

eB∗‖
b× ∇p

B2
+

(
µB

m
+
(p‖
m

)2) mc

eB∗‖
b× ∇B

B
+

c

eB∗‖
eb×∇J0Φ,

ṗ‖ = µB∇ · b+
µc

eB∗‖
p‖b×

∇p
B2
· ∇B + e∇J0Φ ·

(
−b+

c

eB∗‖
p‖

(
b× ∇p

B2
− b×∇B

B

))
,

∇p ≡ 1

4π
(∇×B)×B. (2.32)

We can now check that the Liouville theorem, which is a fundamental property, is
verified for the gyrocenter equations of motion Eqs. (2.30)-(2.31) with Jacobian B∗‖ . We
denote by He = H0 +H1.

∇·(B∗‖Ṙ)+
∂(B∗‖ ṗ‖)

∂p‖
=
∂∇He

∂p‖
·B∗− c

e
∇He ·∇×b+

c

e
∇×b·∇He−B∗ ·

∂∇He

∂p‖
= 0, (2.33)

where we made use of ∇ ·B∗ = 0 which is a necessary condition for Liouville’s theorem
to be satisfied. As B∗ is defined as a curl this is obviously verified.

The equation for the electrostatic potential, the so called polarisation equation, or
GK Poisson equation, is derived by computing the functional derivative of L (given
by Eq. (2.17)) with respect to the electrostatic potential and setting it to zero. Let us
compute this functional derivative using the definition Eq. (2.19). We first notice that the
only dependence on Φ in the first integral defining L is in H1 = eJ0Φ in the electrostatic
case and as the gyro average operator J0 is a linear operator of Φ we simply have

δL

δΦ
· δΦ = −

∑
sp

∫
dΩeJ0(δΦ)f +

∑
sp

∫
dΩ

mc2

B2
fM∇⊥Φ · ∇⊥δΦ = 0 ∀δφ. (2.34)

This is the variational formulation sometimes also called the weak form of the polarisation
equation that defines the electrostatic potential Φ. This variational formulation can be
used directly in a finite element discretisation as we will see later. Let us however single
out the test function δΦ to express the polarisation equation in its usual form. For this
we need on the one hand to shift the gyro average operator from δΦ to f , this is done
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by defining its adjoint operator J†0 by∫
δΦJ†0fdW =

∫
fJ0(δΦ)dW. (2.35)

Then using a Green’s formula in the second integral of (2.34) assuming Φ vanishes on
the boundary, and taking out the B∗‖ that is hidden in the dW , we get

−
∑
sp

∫
dV δΦ

∫
dW

(
eJ†0f +

1

B∗‖
∇ · (B∗‖

mc2

B2
fM∇⊥Φ)

)
= 0 (2.36)

note that, if one wishes to apply directly J0 to f instead of the test function, we need
J†0 = J0, which means that J0 has to be Hermitian. Such a J0 can be constructed as shown
in Mcmillan et al. (2012) but is not necessary when we work directly on the variational
formulation with Finite Elements, as then J0 can be applied to the test function δΦ.

The arbitrariness of δΦ implies that∑
sp

∫
dW

(
eJ†0f +

1

B∗‖
∇ ·
(
B∗‖

mc2

B2
fM∇⊥Φ

))
= 0 (2.37)

since the integral with respect to dp‖dµ commutes with ∇, the velocity integral on the
second term can be performed, leading to the following linear polarisation equation:∑

sp

(∫
dWeJ†0f +∇ · mn0c

2

B2
∇⊥Φ

)
= 0 (2.38)

where n0 is the density associated with the equilibrium Maxwellian fM .
The expression of the polarisation equation clarifies the meaning of the approximations

made: it is a linear equation and it has the form of
∑

sp ensp = 0, where ensp is the particle
density, i.e. a quasi-neutrality condition.

In summary, the GK model used in the following is:

∂f

∂t
+ Ṙ · ∇f + ṗ‖

∂f

∂p‖
= 0, (2.39)

Ṙ =
p‖

m

B∗

B∗‖
− c

eB∗‖
b× (µ∇B + e∇J0Φ) , (2.40)

ṗ‖ = −B
∗

B∗‖
· (µ∇B + e∇J0Φ) , (2.41)

∑
sp

(∫
dWeJ†0f +∇ ·

(
n0mc

2

B2
∇⊥Φ

))
= 0. (2.42)

Despite all the approximations made, this model is physically relevant and it can be
used to describe a large class of micro-instabilities excited by the density and temperature
gradients, like ion temperature gradient (ITG) driven modes or trapped electron modes
(TEM).

Thanks to its derivation from a Lagrangian density which does not directly depend on
time, there is a conserved energy. In our case the following energy is conserved [Dubin
et al. (1983)]:

E(t) =
∑
sp

(∫
dΩ(H0 +H1)f +

∫
dΩH2fM

)
. (2.43)
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Let us verify this by direct computation. As H0 and fM do not depend on time

dE
dt

(t) =
∑
sp

(∫
dΩ(H0 +H1)

∂f

∂t
+

∫
dΩ

∂H1

∂t
f +

∫
dΩ

∂H2

∂t
fM

)
. (2.44)

We first notice that
∂Hi

∂t
=
δHi

δΦ
· ∂Φ

∂t
so that∑
sp

(∫
dΩ

∂H1

∂t
f +

∫
dΩ

∂H2

∂t
fM

)
=
δL

δΦ
· ∂Φ

∂t
= 0. (2.45)

On the other hand, we have for each species independently, denoting by He = H0 +H1,∫
dΩHe

∂f

∂t
= 0.

This follows from the Hamiltonian structure of the Vlasov equation (Poisson brackets),
but can also be verified as follows. As ∇ ·B∗ = 0 and ∂B∗/∂p‖ = c/e∇× b, we have

∇·(B∗ ∂H
2
e

∂p‖
f)+

∂

∂p‖
(f∇·(H2

eB
∗)) = B∗ ·∇f ∂H

2
e

∂p‖
−B∗ ·∇H2

e

∂f

∂p‖
− c
e
f∇×b·∇H2

e . (2.46)

Integrating over phase space, the terms on the left hand side vanish. On the other hand

f∇× b · ∇H2
e = ∇H2

e · (b×∇f +∇× (fb)). (2.47)

Then, as
∫

dV dp‖dµ∇H2
e · ∇ × (fb) = 0, using the GK Vlasov equation we get

2

∫
dV dp‖dµB

∗
‖He

∂f

∂t
=

∫
dV dp‖dµ∇H2

e ·
c

e
b×∇f −B∗ ·

(
∇f ∂H

2
e

∂p‖
−∇H2

e

∂f

∂p‖

)
= 0.

(2.48)

In the electrostatic, quasi-neutral limit that we consider, we have

H0 = m
U2

2
+ µB, H1 = eJ0Φ, H2 = −mc

2

2B2
|∇⊥Φ|2. (2.49)

Then our conserved energy from Eq. (2.43) becomes:

E(t) =
∑
sp

∫
dΩf

(
m
U2

2
+ µB + eJ0Φ

)
−
∫

dΩfM
mc2

2B2
|∇⊥Φ|2

=
∑
sp

∫
dΩf

(
m
U2

2
+ µB

)
+

∫
dΩfM

mc2

2B2
|∇⊥Φ|2 (2.50)

using the variational form of the polarisation equation Eq. (2.34) with δΦ = Φ which
reads∑
sp

∫
dΩfM

mc2

B2
|∇⊥Φ|2 =

∑
sp

∫
dΩfeJ0Φ. (2.51)

Note that the same relation can be obtained by multiplying the polarisation equation
Eq. (2.38) by Φ and integrating (by part) over volume [Scott (2010)]. Because of this last
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relation the energy can be written equivalently

E =
∑
sp

∫
dΩf(m

U2

2
+ µB +

1

2
eJ0Φ) ≡ EK + EF (2.52)

with EF ≡ 1/2
∑

sp

∫
dΩefJ0Φ.

The power balance equation, also called E ×B-thermal transfer equations is:

dEk
dt

(t) = −dEF
dt

(t) (2.53)

It can be verified, using the Euler-Lagrange equations, that

dEk
dt

(t) = −
∑
sp

∫
dΩfe∇(J0Φ) · Ṙ0, (2.54)

where R0 represents the part of Eq.(2.40) which does not contain terms in Φ. This
quantity can be compared to the time derivative of the field energy:

dEF
dt

(t) =
d

dt

(∑
sp

∫
dΩf

1

2
eJ0Φ

)
(2.55)

In numerical simulations it is particularly useful to consider the following form of the
power balance equation:

1

EF
dEk
dt

(t) = − 1

EF
dEF
dt

(t) . (2.56)

Figure 1 shows an example of power balance in a global nonlinear gyrokinetic simulation,
for the CYCLONE base section described in section 4. The power balance equation not
only gives an indication of the quality of the simulation, but also provides, in linear
simulations, a measure of the instantaneous growth rate as

γ =
1

2

d

dt
log EF =

1

2

1

EF
ĖF .

Hence

γ =
1

2EF

∑
sp

∫
dΩfe∇(J0Φ) · Ṙ0. (2.57)

The different contributions to the growth rate arising from the different terms in the
gyrocenter velocity can be easily separated in the power balance equation and give a
clear indication of the kind of instabilities present in the system in both linear and
nonlinear simulations:

γ =
1

2EF

∑
sp

∫
dΩfe∇(J0Φ) · (v‖ + v∇p + v∇B),

v‖ =
p‖

m
b,

v∇p = −
(p‖
m

)2 mc

eB∗‖
b× ∇p

B2
,

v∇B =

(
µB

m
+
(p‖
m

)2) mc

eB∗‖
b× ∇B

B
.

The time evolution of the instantaneous growth rate for a typical toroidal ITG mode is
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Figure 1. Time evolution of the right-hand-side and left-hand-side of the power balance
equation (2.57) for the nonlinear CYCLONE base case described in Section 4, code ORB5.

Figure 2. Time evolution of the different contributions to the instantaneous growth rate, equa-
tion 2.58, for the most unstable mode of linear CYCLONE base case described in Section 4,
code ORB5.

illustrated in Figure 2. In general the ITG mode is driven unstable by particle magnetic
drifts related to the inhomogeneity (gradient and curvature) of the tokamak magnetic
field in the presence of a temperature gradient. Indeed, the power balance diagnostics
clearly show that the magnetic drifts are the main destabilizing mechanism while the
parallel motion has a stabilizing effect.

The gyrokinetic field theory approach to the derivation of the GK equations leads
naturally to the known result on energetic consistency: the same Hamiltonian must be
used to construct the polarisation equation and the gyrokinetic Vlasov equations. All
the approximations are done in the Lagrangian L (hence H) and then the equations are
derived without any further approximation or additional ordering. This also implies that
the approximations made cannot be relaxed once the equations have been derived. For
example, as already discussed, the linearised polarisation equation has been obtained by
considering only fH = f(H0+H1) while the term fH2 was replaced by fMH2, as a result,
only H0 + H1 contributed to the Euler-Lagrange particle motion equations. Therefore,
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if we want to construct a model with nonlinear polarisation, second order terms in the
fields, related to H2f , must be included in the equation of motion. On the other hand, if
we want to extend the model by including second order terms in the equations of motion,
a nonlinear polarisation equation has to be used. A more detailed discussion of this topic
can be find in Scott & Smirnov (2010) and Sugama (2000).

2.3. Adiabatic electrons

The electron contribution to the polarisation equation is often further approximated by
replacing the electron density with a fluid approximation for the electron species. Using
a fluid model for the electron motion, the equation for the parallel electron momentum,
at the lowest order, is:

me

dve‖

dt
= e∇‖Φ−

Te
ne
∇‖ne. (2.58)

We suppose that electrons react instantaneously to the electrostatic potential, therefore
the inertial term in the previous equation can be neglected: this is equivalent to impose
me → 0. The general solution of Eq. (2.58), for vanishing me, is:

ne(R, t) = F exp
eΦ(R, t)

Te
. (2.59)

In this model, known as adiabatic electrons approximation, the electron density is there-
fore proportional to the electrostatic potential. The value of the free function F must be
fixed by additional constraints. The equilibrium configuration of a magnetically confined
plasma consists in general of a sequence of nested magnetic surfaces, or flux surfaces.
Almost each flux surface is covered ergodically by a single field line. In the case of elec-
trostatic waves in a plasma with well defined magnetic flux surfaces, there is no net radial
transport of particles if the electrons are exactly adiabatic, since the radial particle flux
vanishes when averaged over a flux surface [Dorland (1983)]. As a result, the total number
of electrons on each flux surface must be conserved. Following the derivation proposed by
Dorland (1983), this constraint can be used to fix the value of the integration constant in
Eq. (2.59) for magnetic configurations with well defined flux surfaces (without magnetic
islands). This can be achieved by taking the flux-surface average of Eq. (2.59) :

n̄e(s, t) = 〈F exp
eΦ(R, t)

Te
〉, (2.60)

having introduced the flux-surface average operator 〈〉 and the flux surface averaged
density, n̄e(s, t) = 〈ne(R, t)〉, where the flux surface label s plays the role of a radial
coordinate. A detailed description of the flux-surface average operator in tokamaks can
be found in Hinton & Hazeltine (1976). The condition of conservation of the number of
electrons on each flux surface is n̄e(s, t) = ne0(s), leading to

ne(~x, t) = ne0(s) exp eTe(s)(Φ− Φ̄) ' ne0(s) +
ene0
Te(s)

(Φ− Φ̄), (2.61)

where Φ̄(s, t) = 〈Φ(R, t)〉 is the electrostatic flux surfaced averaged potential. Finally,
the linearised quasi-neutrality equation for adiabatic electrons is:

ne0
Te

(Φ− Φ̄)−
∑
sp6=e

∇n0mc
2

B2
∇⊥Φ = −ne0 +

∑
sp6=e

∫
dWeJ0f (2.62)

where Φ̄ is the flux surface average electrostatic potential. Although here the adiabatic
electrons approximation was not done in the Lagrangian, it is possible to show that
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the resulting set of equations can also be obtained via a Lagrangian formulation as de-
scribed in Scott & Smirnov (2010). The adiabatic electron approximation largely reduces
the difficulty and the numerical cost of gyrokinetic simulations. However non adiabatic
electron effects, in particular the trapped electron dynamics, play an important role in
experimentally relevant plasmas.

3. Particle-in-cell (PIC) discretisation

Different numerical methods can be used to solve the set of GK equations. One of the
most common is the Lagrangian approach, based on a Monte-Carlo algorithm in which
a finite collection of initial positions in phase-space is sampled by a set of particles, often
called markers. This is the loading step in a PIC algorithm. Euler-Lagrange equations
are solved to follow marker orbits in 5D, which is called pushing. On the other hand
the fields are solved on a grid. To this aim the source terms for the field equations at
every time step need to be computed on the fixed grid by a procedure called charge and
current assignment. Field equations are then solved on the same (3D) grid by means of
finite difference or finite element methods, thus providing the electric field on fixed grid.
Interpolation techniques can then be used to get the value of the electric field at the
marker position. The Lagrangian approach is often referred to as particle-in-cell (PIC).
The PIC method for standard plasma physics applications is described in the textbooks
Birdsall & Langdon (2004); Hockney & Eastwood (1988). It was introduced very early
in the context of gyrokinetics by Lee (1983).

Let us now explain how the PIC method fits in the framework of Monte Carlo simu-
lations and how the literature on this subject can be used to understand and improve
PIC simulations. Good introductory textbooks on Monte Carlo simulations are Dunn
& Shultis (2012) and Liu (2008). A discussion on the role of Monte Carlo sampling in
gyrokinetic PIC methods can also be found in a review paper by Krommes (2007).

3.1. Monte Carlo simulation

The principle of a Monte Carlo simulation is to approximate the expected value of a
random variable by an average over a large number of samples. For our purposes a
random variable X is a function that can take values in R (or Rn for a vector valued
random variable), which are distributed according to a probability density function. The
random number generator available in numerical computation software typically gener-
ates a pseudo-random sequence uniformly distributed in [0, 1], which corresponds to the
uniform probability density f = 1. From this there are several techniques that enable
to generate samples of random variables that are distributed according to any density
f . In a particle-in-cell simulation, the probability density that will be used to generate
samples will be the initial distribution of the particles f0, normalized to one so that it
becomes a probability density. This procedure is called marker loading in the PIC lit-
erature, and consist in generating an initial particle distribution in phase space. In this
case the random variable Z is the phase space position of a marker, which is distributed
according to the initial particle phase-space density f0. Each marker can then be seen as
one realization (i.e. one random draw) of the random variable Z. Another point of view
which is more convenient for the Monte Carlo theory, is to consider only one realization
for each of N random variables Zi which are identically distributed, i.e. which are drawn
according to the same probability density. With both interpretations, we get at the end
a sample of N independent markers that can be used to represent the probability density
f0.

Once a random variable X of probability density function f is available. In our case



14 A. Bottino and E. Sonnendrücker

the phase space positions of the markers, arbitrary smooth functions ψ of these define
new random variables, and we can compute expected values of these using the definition:

E(ψ(X)) =

∫
ψ(x)f(x) dx.

We refer to Dunn & Shultis (2012), for a more detailed background on the probability
terminology for Monte Carlo simulations, explaining in particular also the important
notion of independence of random variables.

Now, the Monte Carlo method simply consists in approximating the expected value
of some random variables by a sample average. To approximate E(ψ(X)) we consider
a sequence of independent random variables (Xi)i distributed like X and approximate
E(ψ(X)) by the sample mean

MN =
1

N

N∑
i=1

ψ(Xi). (3.1)

In order for this procedure to be useful, we need to check that the approximation we
defined converges in some sense to the exact value and possibly estimate the speed of
convergence.

Here the sample mean is an example of what is called an estimator in statistics, which
is a rule for computing some statistical quantity, which is a function of the random
variable, here the expected value, from sample data.

Definition 1. The difference between the expected value of the estimator and the
statistical quantity it approximates is called bias. If this difference is zero, the estimator
is said to be unbiased.

Let us compute the bias of the sample mean given by Eq. (3.1). We easily get as the
Xi are all distributed like X and thus have the same expected value that

E(MN ) =
1

N

N∑
i=1

E(ψ(Xi)) = E(ψ(X))

so that the bias is zero and our sample mean is unbiased.
Useful statistical quantities in Monte Carlo simulations are variance and covariance,

that are defined as follows:

Definition 2. Let X and Y be two square integrable real valued random variables.
The variance of the random variable X is defined by

V(X) = E(|X − E(X)|2) > 0

and

σ(X) =
√

V(X)

is called standard deviation of the random variable X. The covariance of X and Y is
defined by

Cov(X,Y ) = E((X − E(X))(Y − E(Y ))).

We have obviously that V(X) = Cov(X,X). The variance can be also expressed by
V(X) = E(|X|2)−E(X)2. Indeed, this follows from a simple computation, relying on the
linearity of the expected value, which is an integral, and as a = E(X) is a number we
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have, as f is a probability density which integrates to one

E(a) =

∫
af(x) dx = a

∫
f(x) dx = a.

In the same way

Cov(X,Y ) = E(XY )− E(X)E(Y ).

A useful result is Bienaymé’s equality:

Theorem 1 (Bienaymé). If X1, . . . , Xm are independent real valued random variables
with V(|Xi|) < +∞ then

V(X1 + · · ·+Xm) = V(X1) + · · ·+ V(Xm).

Assuming the sample number N > 2 an unbiased estimator of the variance is given by
the following sample variance

VN =
1

N − 1

N∑
i=1

(Xi −MN )2 =
1

N − 1

N∑
i=1

(
Xi −

1

N

N∑
i=1

Xi

)2

. (3.2)

Indeed, let us compute the expected value of VN . Denoting by a = E(Xi) for i = 1, . . . , N ,
we have

VN =
1

N − 1

N∑
i=1

((Xi − a) + (a−MN ))2 =
1

N − 1

N∑
i=1

(Xi − a)2 − N

N − 1
(MN − a)2,

as 2
∑N
i=1(Xi − a)(a−MN ) = −2N(MN − a)2 . Hence

E(VN ) =
1

N − 1

N∑
i=1

E((Xi−a)2)− N

N − 1
E((MN−a)2) =

1

N − 1

N∑
i=1

V(Xi)−
N

N − 1
V(MN ).

And because of Bienaymé’s theorem

N2V(MN ) = V(

N∑
i=1

Xi) =

N∑
i=1

V(Xi) = NV(X).

Hence

E(VN ) =
N

N − 1
V(X)− 1

N − 1
V(X) = V(X).

Remark 1. Note the 1/(N−1) factor in the variance estimator instead of the 1/N that
one would expect at the first glance. Using 1/N instead would also yield an estimator of
the variance, but this one would be biased, i.e. it would not have the right expected value.

3.2. Estimation of the error in a Monte Carlo simulation

Let us first compute in a general way the mean square error (MSE) of an estimator.

Assume θ̂ is an estimator for the statistical quantity θ which is a real number that can
be computed as a function of a random variable X. The MSE is defined by

MSE(θ̂) = E((θ̂ − θ)2) =

∫
(θ̂ − θ)2dP.

Note that the root mean square error or RMS error, which is the square root of the MSE,
is the classical L2 error.
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Lemma 1. Assume the random variable θ̂ is an estimator for θ and E(θ̂2) < +∞.
Then

MSE(θ̂) = E((θ̂ − θ)2) = V(θ̂) + Bias(θ̂)2. (3.3)

Proof. A straightforward calculation yields

MSE(θ̂) = E((θ̂ − θ)2) = E(θ̂2) + θ2 − 2θE(θ̂)

= E(θ̂2)− E(θ̂)2 + E(θ̂)2 + θ2 − 2θE(θ̂)

= (E(θ̂2)− E(θ̂)2) + (E(θ̂)− θ)2

= V(θ̂) + (Bias(θ̂))2.

Assume that the random variable X defining our Monte Carlo simulation verifies
E(X2) < +∞. Then we can apply the previous lemma to MN as an estimator of E(X),
which yields

MSE(MN ) = V(MN ) + (E(MN )− E(X))2.

So the RMS error is composed of two parts, the error coming from the variance of the
sample and the possible bias on the sample occurring when the expected value of MN is
not exactly equal to the expected value of the random variable X being approximated.

In many cases the bias can be made to be zero, but in some cases it can be useful to
introduce some bias in order to decrease the variance of the sample and the total error.

Lemma 2. Assume E(X2) < +∞. Then the RMS error for an unbiased simulation
based on the random variable X is

erms = σ(MN ) =
σ(X)√
N

.

Proof. The formula Eq. (3.3) giving the mean squared error of an estimator shows
that if the simulation is unbiased E(MN ) = E(X) and

erms =
√

V(MN ) = σ(MN ).

Now using Bienaymé’s theorem we also have

N2V(MN ) = V(

N∑
i=1

Xi) =

N∑
i=1

V(Xi) = NV(X).

And thus V(MN ) = V(X)/N , which gives the result.

The law of large numbers, strong or weak, implies that the sample mean converges
towards the desired expected value, which justifies the Monte Carlo method.

Another major theorem of probability theory, the central limit theorem, gives a precise
estimation of the error committed by an approximation.

Theorem 2 (Central Limit Theorem). Assume (X1, X2, . . . , XN ) is a sequence
of independent identically distributed random variables such that V(X) = σ2(X) < ∞.
Then

lim
N→+∞

P

[
|MN − E(X)|
σ(X)/

√
N

6 λ

]
=

1√
2π

∫ λ

−λ
e−u

2/2 du. (3.4)
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This tells us that the asymptotic distribution of (MN − E(X))/(σ(X)/
√
N) is a unit

normal distribution, or equivalently that MN is a normal distribution with mean E(X)
and standard deviation σ(X)/

√
N .

The right hand side of Eq. (3.4) is a number that can be computed explicitly, and
that is called confidence coefficient. For λ = 3 the confidence coefficient is 0.9973 and for
λ = 4 the confidence coefficient is 0.9999 (see e.g. Dunn & Shultis (2012) for other values).
This is the probability that the true mean lies in the so-called confidence interval [MN −
λσ(X)/

√
N,MN +λσ(X)/

√
N ]. Note that deterministic error estimates are generally of

the form hp or 1/Np, where h is a cell size and N a number of discretisation points, and
lie on a deterministic curve. As opposite to this, the error estimate in a Monte Carlo
method is random, but it is always a normal distribution with variance which tends to 0
when the number of sample points tends to +∞. In practice a good estimate of the error
is given by σ(X)/

√
N , which is all the more interesting that the variance (or standard

deviation) can be well estimated by the sample variance (or sample standard deviation),
which is an a posteriori estimate that can be directly used in actual computations to
measure the error.

3.3. The Monte Carlo PIC algorithm

We now derive the Monte Carlo PIC algorithm from a given Lagrangian as was first
proposed by Lewis (1970) and also more recently by Evstatiev & Shadwick (2013). We
consider a Lagrangian that is build using the single particle Lagrangian for each particle
species Lsp and a field Lagrangian LF :

L :=
∑
sp

∫
fsp(Z0, t0)Lsp(Z(Z0, t0; t), Ż(Z0, t0; t)) dZ0 + LF . (3.5)

Here fsp(Z0, t0) denotes the initial phase space density of species sp, and Z(Z0, t0; t) are
the characteristics of the GK-Vlasov equations, i.e. the particle phase space trajectories,
with initial condition Z0 at time t0. Using the Liouville theorem the Lagrangian can also
be written as

L =
∑
sp

∫
fsp(Z, t)Lsp(Z, Ż)dZ + LF . (3.6)

We notice here that the particle contribution to the Lagrangian is written as a sum of
integrals with densities fsp. Using the definition of expected values, each of them can be
replaced by an expected value of a random variable Zsp(t) of probability density fsp(·, t).
This yields

L =
∑
sp

E
(
Lsp(Zsp(t), Żsp(t))

)
+ LF . (3.7)

The particles contribution of the Lagrangian now being expressed as an expected value,
the Monte Carlo method can be applied by replacing the expected value by a sample
mean over a large number of samples being drawn independently according to the initial
distributions fsp(·, t0), which yields the Monte Carlo Lagrangian

LMC =
∑
sp

1

Np

Np∑
k=1

Lsp(zk(t), żk(t)) + LF . (3.8)
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Even though in does not appear explicitly in our notation, the number of particles Np
can be different for each species. We also remove the sp index from the marker positions
to alleviate the notation.

There now remains to discretise the fields. In the variational framework, the most
natural method to do this is given by the Galerkin approximation, which consists in
doing the variations over functions constrained to remain in a finite dimensional function
space. This then leads to a Finite Element approximation of the fields. Introducing the
basis functions Λν of the finite dimensional function space, all the functions in this space
can be expressed as linear combinations of these basis functions:

Φh(x, t) =

Ng∑
µ=1

Φµ(t)Λµ(x) (3.9)

where Φµ(t) are real numbers, and Λµ(x) = Λj(x1)Λk(x2)Λl(x3) is a product of poly-
nomial basis functions, typically cubic B-splines. Replacing Φ by Φh in the Lagrangian
Eq.(2.17), we get the following finite dimensional Lagrangian

Lh,MC =
∑
sp

1

Np

Np∑
k=1

wk

((e
c
A(Rk) + p‖,kb(Rk)

)
· Ṙk +

mc

e
µkθ̇k −m

U2

2
− µB(Rk)

− eJ0Φh(Rk)

)
+
∑
sp

∫
dΩ

mc2

2B2
|∇⊥Φh|2fM . (3.10)

Note that we already here introduced an importance weight wk that we shall explain
in the next section. For the moment we have wk = 1 for all k. We shall compute the
Euler-Lagrange equations corresponding to this finite dimensional Lagrangian after hav-
ing introduced variance reduction techniques which are essential for gyrokinetic PIC
computations.

At this level no time discretisation has been performed. As the semi-discrete La-
grangian is still invariant with respect to a time translation, the corresponding Noether
energy is exactly conserved. The equations of motions of the particles are discretised
using a standard fourth order Runge-Kutta procedure, which breaks the exact energy
conservation. However, as will be discussed later, numerical simulations still exhibit in
practice very good energy conservation properties.

3.4. Variance reduction techniques

As we saw the Monte Carlo error for the approximation of the expected value of a
random variable X is in σ(X)/

√
N . Apart from increasing the number of realizations N ,

the most efficient method to reduce the error is to use available information to replace X
by another random variable with the same expected value but a lower variance. We shall
describe two techniques that are used to this purpose in the context of PIC methods.

3.4.1. Importance sampling

We are interested in computing, for some given probability density f , quantities of the
form ∫

ψ(z)f(z) dz.
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The standard Monte Carlo method for doing this is to define our integral as an expected
value using a random variable Z of density f . Then∫

ψ(z)f(z) dz = E(ψ(Z)).

Depending on the function ψ it might not be the best approach to use directly the
density f for drawing the random variable used in the simulation. Indeed if g is any other
probability density that does not vanish in the support of f one can express our integral
as an expectation using a random variable Z̃ of density g:∫

ψ(z)f(z) dz =

∫
ψ(z)

f(z)

g(z)
g(z) dz = E(W (Z̃)ψ(Z̃)),

where the random variable W (Z̃) = f(Z̃)/g(Z̃) is called weight.
The Monte Carlo approximation using independent random variables distributed iden-

tically with density g can be expressed as

M̃N =
1

N

N∑
i=1

W (Z̃i)ψ(Z̃i),

from which we get

E(M̃N ) = E(W (Z̃)ψ(Z̃)) =

∫
ψ(z)f(z) dz.

So M̃N is another unbiased estimator of the integral we wish to compute and the ap-
proximation error for a given number of samples N is determined by its variance.

Let us now investigate how g can be chosen to get a smaller variance. For this we need
to compare the variance of W (Z̃)ψ(Z̃) and the variance of ψ(Z) knowing that both have
the same expected value.

E(W (Z̃)2ψ(Z̃)2) =

∫
ψ(z)2W (z)2g(z) dz =

∫
ψ(z)2W (z)f(z) dz.

On the other hand

E(ψ(Z)2) =

∫
ψ(z)2f(z) dz.

So we see that there is a factor W difference between the two expressions and obviously
if W < 1 in regions where ψ is larger, the procedure will lead to a smaller variance. Note
that because f and g both have an integral one, we cannot have W < 1 everywhere.

We also remark that, assuming that ψ(z) does not vanish, if we takeW (z) = E(ψ(Z))/ψ(z)
which corresponds to g(z) = f(z)ψ(z)/E(ψ(Z)), we get

E(W (Z̃)2ψ(Z̃)2) = E(ψ(Z))

∫
ψ(z)f(z) dz = E(ψ(Z))2 = E(W (Z̃)ψ(Z̃))2

so that V(W (Z̃)ψ(Z̃)) = 0. This of course cannot be done in practice as E(ψ(Z)) is
the unknown quantity we wish to approximate, but it can be used as a guideline to find
a density g that reduces the variance as much as possible and tells us that the density
g should be proportional to the integrand fψ, i.e. that markers should be distributed
according to the integrand.

3.4.2. Control variates

Consider the standard Monte Carlo problem of approximating a = E(X), for a given
random variable X, by a sample mean.
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Assume now that there exists a random variable Y the expected value of which is
known, that is somehow correlated to X. For a given α ∈ R, let us define the new
random variable

Zα = X − α(Y − E(Y )).

Obviously, we have for any α that E(Zα) = E(X) = a, which means that the sample
mean of Zα

MN,α =
1

N

N∑
i=1

(Xi − α(Yi − E(Y ))) = αE(Y ) +
1

N

N∑
i=1

(Xi − αYi)

could be used instead of the sample mean of X to approximate a. The random variable
αY is called a control variate for X.

Let us now look under what conditions the variance of Zα is lower than the variance
of X. We assume that both V(X) > 0 and V(Y ) > 0.

Lemma 3. If the random variables X and Y are not independent, there exists a value
of α for which the variance of Zα is smaller than the variance of X. More precisely

min
α∈R

V(Zα) = V(X)(1− ρ2(X,Y )) = V(Zα∗), with α∗ =
Cov(X,Y )

V(Y )
.

Moreover

V(Zα) < V(X)⇔
∣∣∣∣ α < 2α∗ if α > 0,
α > 2α∗ if α < 0.

Proof. As Zα = X − αY + αE(Y ), and E(Zα) = E(X) we have

V(Zα) = E(Z2
α)− E(X)2,

= E((X − αY )2) + 2αE(Y )E(X − αY ) + α2E(Y )2 − E(X)2,

= E(X2)− 2αE(XY ) + α2E(Y 2) + 2αE(Y )E(X)− 2α2E(Y )2 + α2E(Y )2 − E(X)2,

= V(X)− 2αCov(X,Y ) + α2V(Y ),

= σ2(X)− 2ασ(X)σ(Y )ρ(X,Y ) + α2σ2(Y ),

introducing the standard deviation of a random variable σ2(X) = V(X) and the corre-
lation coefficient of two random variables ρ(X,Y ) = Cov(X,Y )/(σ(X)σ(Y )).

So the variance of Zα is a second order polynomial in α the minimum of which is
reached for

α∗ =
σ(X)

σ(Y )
ρ(X,Y ) =

Cov(X,Y )

σ2(Y )
,

and plugging this into the expression of V(Zα), we get

V(Zα∗) = σ2(X)− 2σ(X)2ρ(X,Y )2 + σ2(X)ρ(X,Y )2 = V(X)(1− ρ2(X,Y )).

On the other hand

V(Zα)− V(X) = ασ(Y )(ασ(Y )− 2σ(X)ρ(X,Y )).

Hence for α > 0,

V(Zα) < V(X)⇔ α < 2
σ(X)

σ(Y )
ρ(X,Y ) = 2α∗,

and for α < 0, V(Zα) < V(X)⇔ α > 2α∗.
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Remark 2. This results means that provided Cov(X,Y ) 6= 0, i.e. X and Y are not
independent, there is always an interval around the optimal value α∗ for which Zα has
a lower variance than X. The more correlated X and Y are, the larger this interval is.
So the most important is to find a random variable Y the expectation of which is known,
that is as correlated with X as possible. Then if a good approximation of Cov(X,Y ) can
be computed, one can use this to get closer to α∗ and minimize the variance as much as
possible with the random variable Y .

A typical example is when X = Y + εỸ , where ε is small and E(Y ) is known and
for simplicity Y and Ỹ are independent. Plugging this in the expression of V(Zα) in the
above proof yields

V(Zα) = V(Y ) + ε2V(Ỹ )− 2αV(Y ) + α2V(Y ) = (1− α)2V(Y ) + ε2V(Ỹ ).

So that taking α = 1 yields that V(Zα) is of order ε2 assuming V(Ỹ ) of order 1. This is
typically the form that is used in PIC simulations.

3.5. Application of the variance reduction techniques to the PIC method.

For the PIC method, we can combine the importance sampling method and the control
variates method.

3.5.1. Importance sampling

The choice of a density for importance sampling depends on the expected value that
we are interested in. There are many of those in a PIC code, but arguably the accurate
computation of the electromagnetic field, which determines the self-consistent dynamics
is the most important. Depending on the physical problem we want to deal with more
particles will be needed in some specific phase space areas, like for example in some region
of the tail for a bump-on-tail instability. For this reason, it is interesting in a PIC code
to have the flexibility of drawing the particles according to any density, but one needs to
be careful with the choice of this density as the results can become better or worse.
Initialization. Assume we know the density g0 according to which we want to draw

the markers. Then we initialize the marker’s phase space positions z0i = (x0
i ,v

0
i ) as

realizations of a random variable Z0 with density g0.
Time stepping. The markers evolve along the characteristics of the Vlasov equation

so that at time t the random variable Z(t) = (X(t),V (t)) is distributed according to
the density g(t, z), that is the solution of the GK-Vlasov equation with initial condition
g0.

Then as we saw, the different quantities we need to compute using the Monte Carlo
approximation are of the form∫
ψ(z)f(t, z) dz =

∫
ψ(z)

f(t, z)

g(t, z)
g(t, z) dz = E

(
ψ(Z)

f(t,Z)

g(t,Z)

)
(3.11)

for some analytically known function ψ(z). This means that we need to simulate the
random variable Y (t) = ψ(Z(t))f(t,Z(t))/g(t,Z(t)) = ψ(Z(t))W , where the random
variable W is defined by W = f(t,Z(t))/g(t,Z(t)). Because f and g are conserved along
the same characteristics we have

W =
f(t,Z(t))

g(t,Z(t))
=
f0(Z0)

g0(Z0)
,

so that the random variable W does not depend on time and is set once for all at the
initialization.
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Using importance sampling, we obtain the so-called weighted PIC method, in which the
particles or markers are advanced like in the standard PIC method, but have in addition
an importance weight which does not evolve in time. The drawback of this method is
that the variance can increase when large importance weights and small importance
weights are mixed close together in phase space which often happens in long nonlinear
simulations.

3.5.2. Control variates

We combine here control variates with importance sampling for most generality, but
it can also be used without importance sampling by taking g0 = f0.

In the PIC method expected values of the form Eq. (3.11) cannot be exactly computed
because the particle density in phase space f(t, z) is not analytically known except at
the initial time. However in many problems, and in particular in problems we study
in magnetic fusion applications, the distribution function stays close to an analytically
known distribution function f̃(t, z), which in our applications is typically the initial
canonical Maxwellian. Next to the random variable Y (t) associated to f(t, z), this can
be used to build the control variate Ỹ (t) associated to f̃(t, z) such that

Y (t) = ψ(Z)
f(t,Z)

g(t,Z)
, Ỹ (t) = ψ(Z)

f̃(t,Z)

g(t,Z)
.

Indeed we have

E(Ỹ (t)) =

∫
ψ(z)

f̃(t, z)

g(t, z)
g(t, z) dz =

∫
ψ(z)f̃(t, z) dz

which can be computed analytically for simple enough functions ψ and f̃ . Moreover if f̃
is close enough to f then Ỹ (t) will be close to Y (t) and from the previous discussion a
variance reduction of the order of the squared distance between the two random variables
can be expected.

Let us now explain how this can be implemented in a PIC simulation.
Initialization. As for importance sampling, the initial phase space positions of the

markers are sampled as realizations (z0i )16i6N of the random variable Z0 of density g0.
The importance weights are then defined by the corresponding realizations of the random
variable W = f0(Z0)/g0(Z0), i.e. wi = f0(z0i )/g0(z0i ).

We also initialize the importance weights for δf = f − f̃ , which are defined by the
random variable

W 0
α =

f0(Z0)− αf̃(tn,Z
n)

g0(Z0)
= W − αf̃(0,Z0)

g0(Z0)
. (3.12)

Time stepping. The markers Z are advanced by numerically solving the characteris-
tics of the GK-Vlasov equation. This means that given their positions Zn at time tn, an
ODE solver is used to compute an approximation of their position Zn+1 at time tn+1.
Because f and g satisfy the same GK-Vlasov equation, they are conserved along the
same characteristics so that, as for importance sampling

W =
f(tn,Z

n)

g(tn,Z
n)

=
f0(Z0)

g0(Z0)

is a random variable which does not depend on time. On the other hand, we know f̃
analytically and know that f and g are conserved along the characteristics, so that we
can compute the importance weight for δf at time tn from the phase space positions of
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the markers at the same time:

Wn
α =

f(tn,Z
n)− αf̃(tn,Z

n)

g(tn,Z
n)

=
f0(Z0)− αf̃(tn,Z

n)

g0(Z0)
= W − αf̃(tn,Z

n)

g0(Z0)
. (3.13)

So Wn
α is a time dependent random variable which can be computed explicitly using the

analytical functions f̃ , f0 and g0. These values can be used to express the sample mean
for the new simulated random variable Ỹα = Y − α(Ỹ − E(Ỹ )). This is defined by

Mn
α,N =

1

N

N∑
i=1

(Y ni − αỸ ni ) + αE(Ỹ ).

Plugging in the values for Y ni and Ỹ ni we get

Mn
α,N =

1

N

N∑
i=1

(
ψ(ZNi )

f(tn,Z
n
i )− αf̃(tn,Z

n
i )

g(tn,Z
n
i )

)
+αE(Ỹ ) =

1

N

N∑
i=1

Wn
α,iψ(ZNi )+αE(Ỹ ).

This yields an estimator for ψ(Z) based on the weights Wn
α and the expected value that

can be computed analytically E(Ỹ ). If no estimation of the optimal α∗ is available this
method is used with α = 1.

This is classically known as the δf method in the PIC literature [Kotschenreuther
(1998); Hu & Krommes (1994); Aydemir (1994); Allfrey & Hatzky (2003)], as its interest
lies in the expression f = f̃ + δf with f̃ known. A large variance reduction for α = 1
is obtained as long as δf � f̃ , else one can also achieve some variance reduction by
optimizing for α [Kleiber et al. (2011)].

3.6. Monte Carlo PIC discretisation of the GK equations

We are now ready to proceed with the Monte Carlo PIC discretization of the GK equation
with the discrete Lagrangian Eq. (3.9) as a starting point.

Keeping the possibility to use importance sampling, we choose an initial marker distri-
bution g0 based on physics considerations rather than the actual initial particle distribu-
tion f0. We then compute samples from a random variable Z distributed with probability
density g0. These will be the initial marker phase space positions z0k. After that we com-
pute the importance weights for each marker wk = f0(zk)/g0(zk) which do not evolve
during the simulation.

In order to get the equations of motion of the markers, we compute the Euler-Lagrange
equations associate to the Lagrangian Eq. (3.9) with respect to the components of the
markers phase space positions zαk . This yields exactly the same equations as Eqs.(2.25)-
(2.26) that can be inverted as in the continuous case, which yields the equations of motion
for the markers

Ṙk =
p‖,k

m

B∗

B∗‖
− c

eB∗‖
b× [µk∇B + e∇J0Φ]

˙p‖k = −B
∗

B∗‖
· [µk∇B + e∇J0Φ] (3.14)

given an initial condition Rk(0) = R0
k, µk and p‖,k(0) = p0‖,k. The value of the self-

consistent gyroaveraged electrostatic potential at the marker position is needed to evolve
the marker positions from the time tn to the time tn+1. We will see how to compute the
electrostatic potential and the gyro average from the marker positions in the next two
subsections.
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This can be computed by solving the polarisation equation on a grid of physical space,
after having constructed the charge density ρ =

∫
dWeJ0f on the grid.

If we consider the expression of the gyrocenter density:

ngc =

∫
dWfN '

N∑
k=1

2πB∗‖k(R)

m2
wkδ(R−Rk(t)) (3.15)

3.7. Polarisation equation using finite elements

In the continuous case, the variational form of the polarisation equation is given by
Eq. (2.34). Exactly the same equation, replacing Φ by its Finite Element approximation
Φh, can be obtained by constraining the variations δΦ to be in the same Finite Element
space as Φh. Another way to obtain the discrete equation, which might be more appealing
for people not familiar with functional derivatives consists in taking the Euler-Lagrange
equations with respect to the coefficients Φν of

Φh(x, t) =

Ng∑
µ=1

Φµ(t)Λµ(x)

in the discrete Lagrangian Eq. (3.9). As Φ̇µ does not appear in the Lagrangian this
reduces to

0 =
∂L

∂Φν
=
∑
sp

1

Np

Np∑
k=1

wk(−eJ0Λν(Rk)) +
∑
sp

∫
dΩ

mc2

B2
∇⊥Λν · (

Ng∑
µ=1

Φµ∇⊥Λµ) (3.16)

which can be written, taking
∑

Φmu out of the integral,

Ng∑
µ=1

Φµ
∑
sp

∫
dΩ

mc2

B2
∇⊥Λν · ∇⊥Λµ =

∑
sp

1

Np

Np∑
k=1

wk(eJ0Λν(Rk)). (3.17)

The previous equation is actually a set of linear equations:∑
µ

AµνΦµ = bν (3.18)

with:

Aµν =
∑
sp

∫
dΩ

mc2

B2
∇⊥Λν · ∇⊥Λµ (3.19)

bν =
∑
sp

1

Np

Np∑
k=1

wk(eJ0Λν(Rk)). (3.20)

The main numerical advantage of this linearised model is that the matrix Aµν does
not change in time and it can be constructed (and factorized) at the beginning of the
simulation.
When adiabatic electrons were used the discretised polarisation equation has the form:∑
µ

(Aµν +AZFµν )Φµ = bν (3.21)
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Aµν =

∫
dV (

en0
T

Λν(x)Λµ(x) +
∑
sp

mc2

B2
∇⊥Λν(x) · ∇⊥Λµ(x)) (3.22)

AZFµν =

∫
dV (

en0
T

Λν(x)Λ̄µ(s)) (3.23)

bν = −
∫

dV n0eΛν +
∑
sp6=e

∑
sp

1

Np

Np∑
k=1

wk(eJ0Λν(Rk)). (3.24)

where Λ̄µ represents the flux surface average of the test function Λµ; Aµν
ZF is usu-

ally called zonal flow matrix because in a tokamak gives nonzero contributions only for
toroidally symmetric perturbations (zonal). Both Aµν and Aµν

ZF are sparse, symmetric

and positive definite but Aµν
ZF is computationally more intensive and contains many

more non zero elements due to the integration along the poloidal and toroidal direction
due to the flux surface average.

The computation of bν is called charge assignment: the charge density is obtained by
assigning the weights to gyro-rings and projecting them on the B-spline basis. Let us
now describe more precisely how this is done.

3.8. Gyroaverage

The calculation of ρN is complicated by the appearance of the gyroaverage operator J0.
In general, given a scalar field Φ(R), the gyroaverage operator J0Φ is defined as:

J0Φ(R, µ) ≡ 1

2π

∫ 2π

0

Φ(R+ ρi) dθ =
1

(2π)3

∫
Φ̂(k) J0 (k⊥ρi) eik·R dk

where Φ̂ is the Fourier transformed potential and ρi = (kBTmc
2)(e2B2). The previous

equation shows that the operator J0 has the form, in Fourier space, of a multiplication
of Fourier coefficients by the zeroth Bessel functions J0(k⊥ρi). This means that direct
calculation of J0Φ for each individual marker has to account for its interaction with
all the waves in the system. Therefore, the exact calculation of J0 is computationally
prohibitive. Alternatively, the gyroaverage procedure can be approximated by an average
over a number of points on the gyro-ring [Lee (1987)]. When four quadrature points
are used, this procedure is rigorously equivalent to considering the Taylor expansion
J0 (k⊥ρi) ' 1 − 1

4 (k⊥ρi)
2

and compute the transverse Laplacian using second order
finite differences. A simple proof can be given when considering an uniform 2D grid,
with grid spacing h = ρi in both directions. Each point of the grid is defined by a pair
of indexes (i, j):

J0(R) ' Φ− 1

4
ρ2i∇2

⊥Φ(R)

→ J0Φi,j ' Φij +
ρ2i

4h2
(Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1 − 4Φi,j)

=
1

4
(Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1)

where the standard second order centers finite difference scheme ∇2Φj = (−Φj+1+2Φj−
Φj − 1)/h2 was used. In general, the number of points used in the quadrature is linearly
increased with the gyroradius ρi to guarantee the same number of points per arc length
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on the gyro-ring:

J0Φ(R, µ) ≡ 1

2π

∫ 2π

0

Φ(R+ ρi) dθ ' 1

Ngr

Ngr∑
β=1

Φ̂β (3.25)

where Ngr(ρi) is the number of points on the gyro-ring chosen for the average and Φ̂β
represents the value of the electrostatic potential on the β point on the gyro-ring. In
practice this gyro-average is applied to a finite element basis function Λν to compute the
right hand side bν of the discrete polarisation equation as defined in Eq. (3.20).

3.9. Control variate

In addition to importance sampling, considerable noise reduction can be achieved by
applying the control variate technique discussed in subsection 3.5.2 in order to compute
the right hand side bν of the discrete polarisation equation defined in Eq. (3.20).

The natural choice for the probability density used to define the control variate is f̃
a solution of the unperturbed equations of motion, typically a Maxwellian distribution
function. We shall consider only the case α = 1 which is used in practice most of the
time. Then the initial importance weights for δf = f − f̃ of the markers that we denote
by wαk become, using Eq. (3.12)

wα,0k =
f0(z0k)− f̃(tn, z

n
k )

g0(z0k)
= wk −

f̃(0, z0k)

g0(z0k)
.

The right hand side of the discretised polarisation equation becomes:

bν =
∑
sp

∫
dV dWf0Λν +

e N∑
k=1

wαk 1

Ngr,k

Ngr,k∑
β=1

Λν(xk,β)

 (3.26)

The quasi-neutrality condition at t = 0 implies that the first term on the left hand side
must vanish. When adiabatic electrons are used:

bν = −
∫

dV n0eΛν +
∑
sp 6=e

∫
dV dWf0Λν +

∑
sp6=e

e

N∑
k=1

wαk 1

Ngr,k

Ngr,k∑
β=1

Λν(xk,β)

 (3.27)

Therefore, the fluid electron density n0e must be carefully chosen to match:

−
∫

dV n0eΛν +
∑
sp6=e

∫
dV dWf0Λν = 0 (3.28)

The weights can now vary in time. They can be updated using Eq. (3.13)

wα,nk =
f(tn, z

n
k )− f̃(tn, z

n
k )

g(tn, znk )
=
f0(z0k)− f̃(tn, z

n
k )

g0(z0k)
= wk −

f̃(tn, z
n
k )

g0(z0k)
. (3.29)

Another possibility to update the δf weights, especially useful for linear simulations,
would be to derive an evolution equation for them using the GK Vlasov equation:

dδf

dt
= −Ṙ · ∇f̃ − ṗ‖

∂f̃

∂p‖
. (3.30)

4. Results

All the simulations presented in this work have been performed using the code NEMORB
[Bottino et al. (2010)] a multi-species electromagnetic extension of the ORB5 [Jolliet
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et al. (2007)]. The linearised field equations, the polarisation equation and the parallel
Ampère’s law, are discretised using B-splines. The code is based on straight-field-line
coordinates and includes collision operators [Vernay et al. (2010)], shaped MHD equilib-
ria and a hybrid model for the trapped electrons [Bottino et al. (2004), Bottino et al.
(2006), Vernay et al. (2013)]. The NEMORB gyrokinetic model, in the electrostatic limit,
is based on the gyrokinetic Vlasov-Poisson system of equations described in the previous
section:

∂f

∂t
+ Ṙ · ∇f + ṗ‖

∂f

∂p‖
= C(f) + S, (4.1)

Ṙ =
p‖

m

B∗

B∗‖
− c

eB∗‖
b× (µ∇B + e∇J0Φ) , (4.2)

ṗ‖ = −B
∗

B∗‖
· (µ∇B + e∇J0Φ) , (4.3)

∑
sp

(∫
dWeJ0f +∇ ·

(
n0mc

2

B2
∇⊥Φ

))
= 0. (4.4)

where C(f) is a collision operator and S is a heat source term. In the absence of heat
sources, S = 0, transport processes tend to relax the temperature profile. In the simula-
tions presented in this section, the heat source has the form of a Krook operator

SH ∝ −γH δ̃f(ψ, v2, t), (4.5)

modified to enforce conservation of the number of particles. The symbol ˜ stands for the
operator which projects a general function A(R, p‖, µ, t) to a reduced space Ã(ψ, ε, t),
where ψ is the poloidal magnetic flux and ε is the kinetic energy. The complete definition
of the projection operator and of the heat source SH are given by Vernay et al. (2012).
This source term tends to readjust the temperature profile toward the background profile.
Note that small profile variations are still allowed during the simulation.

4.1. Numerical analysis of the statistical noise

As previously discussed, the Monte Carlo error for the approximation of the expected
value of a random variable X is proportional to σ(X)/

√
N . In PIC simulations, this

translates into the so-called “statistical noise” introduced when moments of the distribu-
tion function (for example, the charge assignment) are computed using a finite number
of markers. The code ORB5 allows for a direct evaluation of the noise contribution to the
charge assignment, ρnoise [Bottino et al. (2007)]. This measure is based on the average
amplitude of the contribution to the charge density, |ρk|, of the non-resonant (filtered)
modes which are physically damped and whose amplitude arises merely from noise. Fig-
ure 3 shows an example of the time evolution of the volume averaged ρnoise for a set of
simulations with a different total number of marker. Through the comparison with the
charge density of the “physical” modes, a signal to noise ratio can be constructed. This
diagnostics provides a direct indicator of the quality of the numerical simulations during
all the time evolution. The amplitude of ρnoise can be analytically estimated in several
ways (see, for example Nevins et al. (2005)). In the case of ORB5, a simple expression
has been given by Bottino et al. (2007):

ρ2noise '
NG
Np
〈w2〉G; 〈w2〉 ≡ 1

Np

Np∑
i=1

w2
i (4.6)
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Figure 3. Time evolution of the spatial averaged ρnoise for different number of markers for a
circular cross-section plasma with ρ∗ = 1/80. Numerical and physical parameters can be found
in Bottino et al. (2007).

where Np is the number of markers, NG is the number of modes kept in the simulation and
wi is the weight of a single marker. The full derivation of the previous equation is reported
in Appendix A. This equation indicates that the statistical noise can be reduced either
by increasing the number of markers (

√
Np convergence) or by reducing the number of

Fourier modes kept in the simulations (Fourier filtering of non-resonant modes). Several
ORB5 simulations showed that the scaling of the noise in the number of particle per
mode, (Np/NG), is in excellent agreement with the estimate, as it is illustrated in Fig.4,
where ρ2noise/〈w2〉 is plotted as function of time for the simulations of Fig.4. Moreover,
the scaling of the noise with the number of particles shows that the important parameter
in PIC simulations is indeed the number of particle per Fourier mode and not the number
of particles per grid cell (Fig. 5). The function G accounts for additional filtering coming
through finite Larmor radius effects (FLR) and the grid projection algorithm. However,
it is important to stress the role of the G function: although the number of numerical
particles per mode is a universal scaling for the noise in PIC codes, the scaling factor,
i.e. the G function, is strongly algorithm-dependent, and therefore code-dependent. For
example, different projection algorithms in the charge assignment procedure can lead to
very different level of noise: in ORB5 the level of noise is strongly reduced when moving
from linear to cubic finite elements as illustrated in Bottino et al. (2007).

4.2. Convergence in number of particles

The NEMORB simulations presented in this section are based on parameters and profiles
of the ITM Cyclone base case [Falchetto et al. (2008)]. This is a standard benchmark
case based on a circular low-β equilibrium, deuterium plasma, ρ∗ ' 1/185 (mid radius),
Te = TD and flat initial R/LT profiles between 0.2 < s < 0.8, s ∝

√
ψ; ρ∗ ≡ ρs/a is

the ions sound Larmor radius normalized to the tokamak minor radius. The q profile is
parabolic, matching the local value of the local Cyclone case (q = 1.4) at mid-radius.
A detailed description of the physical parameters and profiles can be found in Falchetto
et al. (2008) and Wersal et al. (2012). Figure 6 shows the results of a scan on the initial
temperature gradient, with all the other parameters kept fixed. Those simulations are
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equivalent in terms of physics and numerical parameters, to the standard ITM global
case of Falchetto et al. (2008), except for the presence of the heat source preventing
profile relaxation. The ion heat diffusivity in gyro-Bohm units (χGB ≡ ρ2scs/a, with c2s ≡
Te/mD and ρ2s ≡ TemD/(eB0)2) is plotted versus R/LT , both the quantities correspond
to radial averages between 0.4 < r/a < 0.6. Here it is evident that the heat source
prevents profile relaxation but still allows for local modifications of the gradient profile.
The solid line represents the original Dimits fit for this curve, derived as a fit to the
results of the LLNL gyrokinetic flux-tube PIC electrostatic turbulence code Dimits et al.
(2000). The NEMORB results follow the Dimits curve, although with lower diffusion
coefficients, as expected by global simulations. They also correctly reproduce the linear
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R/LT |lin ' 4 and nonlinear critical thresholds R/LT |nonlin ' 6. This is particularly
evident when considering the simulation with initial R/LT ' 5 (dark green in Figure
6): after the initial linear phase, the heat flux drops rapidly to zero, showing that the
mode was linearly unstable, but nonlinearly fully stabilized by zonal flow dynamics.
The density, temperature, vorticity and potential spectra for a simulation with initial
R/LT ' 10.3 are presented in Figure 7. Time averaged spectra show evidence of the
non-linear cascades to lower kθρs. The generalized vorticity, expressed as a frequency,
is Ω ' eB/mD(ne − ni)/n0; further details can be found in Scott et al. (2010) and in
Wersal et al. (2012).

The simulations with initial R/LT ' 10.3 has been chosen for a systematic study of
the convergence in number of markers for real space time traces and for the correspond-
ing spectra. The quantities considered are: density fluctuations, electrostatic potential,
temperature fluctuations and vorticity. Spectra have been obtained by performing a time
average during the saturation phase of the simulation, while real space data correspond to
radial averages between 0.5 < r/a < 0.7. The convergence results are illustrated in Fig.8.
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For all the quantities considered, non converged time traces correspond to flat spectra at
high kθρs. On the other hand, converged spectra always exhibit a clear power law down
to the highest kθρs values kept in the simulation. The most remarkable result is that not
all the physically relevant quantities converge with the same rate. Figure 9 summarizes
the results of Fig.8 by normalizing the time averaged quantities to the results of the sim-
ulations with the highest number of markers, plotted versus the number of markers per
mode kept in the simulation. The electrostatic potential converges much faster than all
the other quantities. The slowest converging field is the density fluctuation, δn. Remark-
ably, the ion heat flux diffusivity (and the heat fluxes) converge as fast as the potential.
Although the heat flux, important for predicting turbulence induced transport in experi-
ments, requires relatively few markers to converge (20M), comparisons with experimental
measurements (for example, with reflectometry data) rely on accurate description of the
density fluctuation spectra. According to our results, the latter requires at least a factor
of 10 more markers then what convergence studies based on potentials or fluxes suggest.
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Appendix A. Derivation of a simple analytical estimate for the noise

The amplitude of the statistical noise contribution to the charge density can be ana-
lytically derived. Before discussing the derivation in the case of the ORB5 code a simpler
system is considered by neglecting FLR effects, equilibrium profile variation and zonal
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flow effects and assuming purely adiabatic electrons. In this case, the quasi-neutrality
equations becomes:

eφ

Te
=
n0V

Np

Np∑
i=1

wiδ(x− xi), (A 1)

where the ORB5 normalization for the weights (see Jolliet et al. (2007)) is assumed: n0
is the averaged particle density V is the volume and Np is the total number of markers.
The continuous Fourier transform of the potential is:

φ(p) =

∫
d3xφ(x) exp[−2πip · x]. (A 2)

Applying the Fourier transform to the Poisson equation directly yields:

eφp
Te

=
V

Np

Np∑
i=1

wi exp[−2πip · xi]. (A 3)

The absolute value squared then is:∣∣∣∣eφpTe
∣∣∣∣2 =

V 2

N2
p

Np∑
i=1

w2
i +

Np∑
i=1

Np∑
j=1,j 6=i

wiwj exp[i2πp · (xj − xi)]. (A 4)

The second term of the right-hand-side represents correlations between marker positions
and weights and describes the contribution of waves and turbulence to the density. Fol-
lowing Nevins et al. (2005), we assume that the relevant physics is contained in that
term while the noise is in the contained in the first term, which describes the random
positioning of the markers. Therefore, the noise can be represented by∣∣∣∣eφpTe

∣∣∣∣2 =
V 2

N2
p

Np∑
i=1

w2
i . (A 5)

In order to compare with the simulation results, it is convenient to use discrete Fourier
transforms (DFT). The relation between the continuous and discrete FT can easily be
derived

F (p) =

∫
d3x f(x) exp[−2πip · x] ≈

NT∑
i=1

fi exp[−2πipi · x]∆x∆y∆z (A 6)

where ∆x ≡ Lx/Nx, ∆y ≡ Ly/Ny and ∆z ≡ Lz/Nz describe the grid spacing; Lx,
Ly, Lz are the size of the computational domain in the three spatial directions and
NT ≡ NxNyNz is the total number of grid points in configuration space.

The the sum
∑NT

i=1 symbol represents a sum over the different modes in x-, y- and z-
direction. The discrete Fourier transform is defined as

Fq =

N−1∑
i=0

fi exp[2πiqi/N ] (A 7)

with qi is an integer number satisfying

−N
2

6 qi <
N

2
. (A 8)

Using

Nxpx∆x = qx (A 9)
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and similar relations for the other directions, as well as

∆x∆y∆z =
V

NT
, (A 10)

one arrives at

Fq ≈
V

NT
Fp

(
pα =

qα
Nα∆α

)
. (A 11)

In ORB5 the charge density is filtered in Fourier space in order to keep only NG < NT
modes, thus removing physically irrelevant modes. Typically, at every radial location
only few poloidal modes are needed, due to the fact that the turbulence aligns with the
magnetic field. If we identify the poloidal direction with y, only NG ≡ NxN

′
yNz, with

N ′y < Ny, modes are kept in the charge density. More details about the Fourier filtering
procedure can be found in Jolliet et al. (2007). Assuming that the statistical noise has
a white noise character and it contributes to all the Fourier modes, the Fourier filtering
procedure reduces the numerical noise contribution to the charge density.

Fq ≈
V

NG
Fp

(
pα =

qα
Nα∆α

)
. (A 12)

Using the previous relations, one can rewrite the noise formula as∣∣∣∣eφqTe
∣∣∣∣2 =

N2
G

N2
p

Np∑
i=1

w2
i . (A 13)

We can also use the energy relation of the FFT

NG∑
i=1

f2i =
1

NG

NG−1∑
q=0

F 2
q . (A 14)

To derive the relation for the fluctuations of φ in real space〈∣∣∣∣eφTe
∣∣∣∣2〉 =

1

NG

∑
i

∣∣∣∣eφTe
∣∣∣∣2 =

1

N2
G

∑
q

∣∣∣∣eφqTe
∣∣∣∣2 =

NG
Np
〈w2〉 (A 15)

where

〈w2〉 =
1

Np

Np∑
i=1

w2
i (A 16)

is the averaged square weight.
This simple noise estimate can be extended to include FLR effects. In this case, the
starting point is the right-hand-side of the gyrokinetic polarisation equation of ORB5:

bν =
∑
sp

n0V

Np

Np∑
k=1

wk(eJ0Λν(Rk)) (A 17)

=
∑
sp

n0V

Np

Np∑
k=1

wk

∫
dxΛν(x)

∫
dp exp(2πip · x) exp(−2πip ·Rk)J0(p · ρik).

Multiplying the previous expression of bν by the complex conjugate and neglecting the
correlation (physical) term, the noise contribution to the right-hand-side of the polarisa-
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tion equation becomes:

|bν |2 =
∑
sp

n0V

Np

Np∑
k=1

w2
k

∫
dpdp′ exp (−2πi(p− p′) ·Rk)

exp

(
−k

2
⊥(p)ρ2ik + k

′2
⊥ (p′)ρ2ik

2

)
Λ̃ν(−p)Λ̃†ν(−p′) (A 18)

where the following relation has been used:

1

n0

∫
dWf0J0(k⊥ρik) = exp

(
−k

2
⊥ρ

2
ik

2

)
(A 19)

with f0 Maxwellian distribution, and

Λ̃ν(−p) ≡
∫

dx exp(2πip · x). (A 20)

Due to the randomization of the marker positions, the previous expression can be further
approximated assuming

exp (−2πi(p− p′) ·Rk) ' 1

V

∫
dR exp (−2πi(p− p′) ·Rk) =

1

V
δ(p− p′), (A 21)

giving

|bν |2 =
∑
sp

n0V

Np

Np∑
k=1

w2
kG (A 22)

G ≡ 1

V

∫
dp|Λ̃ν(−p)|2 exp

(
−k

2
⊥ρ

2
i

2

)
. (A 23)

This expression is similar to the simple estimate of Eq. (A 16) but contains an additional
term G which includes filtering due to FLR effects and due to the spline representation
of the potential. The full derivation can be find in Jolliet (2005).
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