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We propose a scheme for realizing fractional quantum Hall states of light. In our scheme, photons
of two polarizations are coupled to different atomic Rydberg states to form two flavors of Rydberg
polaritons that behave as an effective spin. An array of optical cavity modes overlapping with
the atomic cloud enables the realization of an effective spin-1/2 lattice. We show that the dipolar
interaction between such polaritons, inherited from the Rydberg states, can be exploited to create
a flat, topological band for a single spin-flip excitation. At half filling, this gives rise to a photonic
(or polaritonic) fractional Chern insulator – a lattice-based, fractional quantum Hall state of light.

PACS numbers: 42.50.Nn, 32.80.Ee, 73.43.-f, 42.50.Pq

Fractional Chern insulators are exotic topological
phases of matter that can be thought of as magnetic-
field-free fractional quantum Hall states on a lattice [1].
Recently, there have been several proposals to implement
fractional Chern insulators in optical flux lattices [2] and
dipolar systems [3]. On the other hand, the recent exper-
imental realization of topological band structures in ar-
rays of photonic modes [4, 5] points to the intriguing pos-
sibility of realizing strongly-correlated interacting topo-
logical states of light [6, 7]. Given that photonic systems
are prepared and probed differently [8], typically have
no chemical potential [9], and exhibit different decoher-
ence mechanisms [10, 11] as compared to their electronic
counterparts, interacting topological states of light will
open new avenues to the study of exotic physics [6]. Fur-
thermore, such states might enable the construction of
numerous robust, i.e. topologically protected, optical de-
vices such as filters [6], switches, and delay lines [12, 13].
Finally, once such highly non-classical states of light are
released onto freely propagating non-interacting modes,
they might be usable as resources for enhanced precision
measurements and imaging [14].

While strong interactions between microwave photons
are readily achievable [15–20], the realization of strong
high-fidelity interactions between optical photons has re-
mained a challenge [21–23]. Only recently, the required
strong interaction between optical photons has been im-
plemented in a robust fashion by transforming photons
into superpositions of light and highly excited atomic Ry-
dberg states, thus forming polaritons. These polaritons
inherit strong dipolar interactions from Rydberg states
[24–32] and – together with artificial gauge fields that
arise naturally in dipolar systems via the Einstein-de-
Haas effect [3, 33, 34] – constitute an ideal platform for
realizing interacting topological states of light [35–38].

In this Letter, we present the first example of a frac-
tional Chern insulator of photons (or polaritons) in such
a medium. The particular insulator we construct cor-
responds to the ν = 1/2 filling fraction of the familiar
Laughlin fractional quantum Hall state, in which an ad-
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FIG. 1. (a) A quasi-two-dimensional cloud of atoms (red disk)
overlaps with an array of cavity modes (with cavity axis ẑ) at
a plane tilted relative to ẑ. The overlaps (red balls) allow one
to define a square-lattice array of Rydberg polaritons. Each
polariton can be in state |⇑〉 or |⇓〉. The resulting spin model
has a fractional quantum Hall ground state. (b) To achieve
a topological flat-band structure, single-atom dressed states
|↑〉 and |↓〉 are constructed as linear combinations of several
Rydberg levels with spatially dependent coefficients s, v, and
w. A weak DC electric field along ẑ is assumed. (c) The |⇑〉
and |⇓〉 polaritons are created by coupling |↑〉 and |↓〉 states
to E↑ (σ−-polarized) and E↓ (σ+-polarized) photonic modes,
respectively. The flip-flop (|↑↓〉 → |↓↑〉) dipolar interaction
yields the fractional quantum Hall polariton Hamiltonian.
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ditional injected polariton fractionalizes into a pair of
quasiparticles obeying semionic statistics. In the absence
of quantized light, our proposal also allows one to imple-
ment fractional Chern insulators of Rydberg atoms.

To understand the basic idea [see Fig. 1(a)], consider
a cloud of atoms whose overlaps with spatially separated
optical modes form a square lattice (notice that, conve-
niently, we do not require an array of traps). Under the
conditions of electromagnetically induced transparency
(EIT) [39], an auxiliary control field coherently couples a
σ+-polarized photon to a Rydberg state creating a hybrid
atom-photon excitation called a Rydberg polariton (call
it the ⇓-polariton) [27, 40–43]. Another control field cou-
ples a σ−-polarized photon to a different Rydberg state
creating a different polariton, the ⇑-polariton. We popu-
late each site of the lattice (i.e. each optical mode) with
exactly one polariton (either ⇑ or ⇓), so that each site
becomes an effective spin-1/2 particle. Rydberg polari-
tons inherit dipolar interactions between Rydberg atoms
giving rise to long-range flip-flop interactions between
polaritonic spins. Thinking of the Rydberg-polariton
spin-flip operator |⇑〉 〈⇓| on one site as a bosonic cre-
ation operator, we obtain a model of hardcore bosons
hopping on a square lattice. Applied electromagnetic
fields can be used to break time-reversal symmetry and to
tune Rydberg-Rydberg dipolar interactions into creating
a topological flat band for these bosons. In particular,
the resulting complex-valued hopping amplitudes endow
the bands with non-trivial topology, characterized by a
nonzero Chern number of the bands. By analogy with
Landau levels, the flatness of the topological band man-
ifests itself in the smallness of the band’s dispersion rel-
ative to the bandgap and allows hardcore interactions to
turn a fractionally filled topological band into a fractional
Chern insulator. In the language of spins, the ν = 1/2
Laughlin state that we obtain is a gapped chiral spin liq-
uid [44, 45]. A limiting case of this proposal corresponds
to polaritons consisting entirely of Rydberg excitations,
which gives rise to a fractional Chern insulator of Ry-
dberg atoms even in the case where each effective spin
consists of a single atom.

Engineering the polariton Hamiltonian.—As shown in
Fig. 1(a), the atomic cloud is trapped in a plane tilted
relative to the cavity axis ẑ. As we show below, this vari-
able tilt is crucial for achieving sufficient controllability
to obtain flat topological bands.

As shown in Fig. 1(b), a DC electric field is ap-
plied along ẑ to remove the degeneracy between Zee-
man levels with different |mJ | for Rydberg states P3/2

and D3/2 (principal quantum numbers will be specified
below). At the same time, the field is assumed to be
sufficiently weak that the induced dipole moments are
negligible. Auxiliary optical and microwave fields can be
used to define dressed states |↓〉 = (|2〉 − |1〉)/

√
2 and

|↑〉 = s |3〉 + v |4〉 + w(|5〉 + |6〉)/
√

2, where the complex
coefficients s, v, and w vary from site to site. The dipo-

lar flip-flop interaction takes two Rydberg atoms in state
|P3/2〉 |D3/2〉 and produces the state |D3/2〉 |P3/2〉. Pro-
jecting this interaction onto states |↑〉 and |↓〉, we obtain

HI =
∑

A,B,i∈A,j∈B
tij σ

i
↑↓σ

j
↓↑, (1)

where σiαβ = |α〉i 〈β|i, A and B label the sites of the
array, i and j run over the atoms on sites A and B, re-
spectively. The amplitudes tij can be tuned by adjusting
the site-dependence of s, v, and w and by adjusting the
direction of the ẑ axis relative to the spin lattice.

We will now use Eq. (1) to derive an interaction
between Rydberg polaritons. We start with an en-
semble of effective five-level atoms on each site of the
square lattice [see Fig. 1(c)]: the ground state |g〉, ex-
cited states |e↑〉 and |e↓〉, and the dressed Rydberg
states |↑〉 and |↓〉 defined above. Since most atoms
will remain in state |g〉, atomic excitations can be de-
scribed using bosonic operators acting on state |g . . . g〉
[46, 47]. We take gαj = gα sin(ω1,αzj/c) to be the cou-
pling constant between atom j at position zj and op-
tical mode A of frequency ω1,α, polarization α =↑, ↓,
and with creation operator a†A,α. We further assume
that the two-photon-resonant running-wave control fields
of frequency ω2,α and Rabi frequency Ωα are propa-
gating along ẑ. We can then define the following –
slowly-varying in time – collective operators for site
A [46, 47]. E†A,α = a†A,αe

−iω1,αt creates a photon of

polarization α, P †A,α = (1/gcolA,α)
∑
j∈A gαjσ

j
eα,ge

−iω1,αt

creates a collective |eα〉 excitation, while S†A,α =

(1/gcolA,α)
∑
j∈A gαjσ

j
α,ge

−i(ω1,α+ω2,α)t+iω2,αzj/c creates a

collective |α〉 excitation. Here gcolA,α =
√∑

j∈A |gαj |2 is

the collectively enhanced atom-photon coupling. This
collective enhancement is the main reason for using en-
tire atomic ensembles in place of single atoms as this al-
lows one to achieve strong coupling even when individual
atoms are coupled to optical modes weakly. The non-
interacting Hamiltonian in the rotating frame becomes

H0 =
∑
A,α

−(∆α + iγ)P †A,αPA,α +
(
gcolA,αP

†
A,αEA,α

+ΩαS
†
A,αPA,α + h.c.

)
, (2)

where ∆α is the single-photon detuning, and 2γ is the
decay rate of |eα〉. The Hamiltonian can be diago-
nalized in the dark and bright polariton basis, H0 =∑
A,αEA,B1α

B†A,1αBA,1α + EA,B2α
B†A,2αBA,2α. The dark

polariton D†A,α = (gcolA,αS
†
A,α − ΩαE†A,α)/

√
|gcolA,α|2 + Ω2

α

has zero energy (in the rotating frame) and thus does
not appear in H0, while the two bright polaritons (linear

combinations of ΩαS
†
A,α+gcolA,αE†A,α and P †A,α) have large

energies (with imaginary parts due to the decay rate 2γ
of |eα〉). Provided that this energy is larger than the
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strength of the Rydberg interaction between sites, this
interaction will be too weak to convert dark polaritons
into bright ones, ensuring that the total number of dark
polaritons is conserved. Therefore, we can consider the
subspace consisting solely of dark polaritons, for which
H0 = 0.

The interaction between dark polaritons is mediated
via a long-range exchange interaction at different sites,
as provided in Eq. (1). The indices i and j belong to dif-
ferent sites since we assume that the system starts with
one Rydberg excitation per site and since time evolution
will not change this. Indeed, a hopping of a Rydberg
excitation from one site onto another requires a flip-flop
on an optical transition, which will be negligible for our
intersite separations. The hopping will be further sup-
pressed by interactions between two Rydberg excitations
on the same site. Therefore, using σi↑↓ = σi↑g σ

i
g↓, the

interacting Hamiltonian becomes

H =
∑
A 6=B

tAB
∑
i∈A

σi↑g σ
i
g↓
∑
j∈B

σj↓g σ
j
g↑. (3)

Note that the interaction amplitude tAB depends only on
the site index (and not specific atoms within each site)
as the distance between two sites is much greater than
the distribution size of atoms in a single one, in analogy
with Ref. [48].

The next step is to rewrite the Hamiltonian in terms
of collective operators S†A,α in place of the microscopic

atomic operators σjα,g. For our parameters, for any j ∈ A,
[sin(ω1,↑zj/c)/ sin(ω1,↓zj/c)] exp[i(ω2,↑ − ω2,↓)zj/c] ≈ 1
up to an A-dependent phase, which can be absorbed in
the definition of S†A,α [49]. One can then check that the

Hilbert space spanned on each site by S†A,↑|g · · · g〉A and

S†A,↓|g · · · g〉A is closed under the action of the Hamilto-
nian (3), which allows us to rewrite Eq. (3) within this
Hilbert space, in the rotating frame, as

H =
∑
A 6=B

tABS
†
A,↑SA,↓S

†
B,↓SB,↑. (4)

We now recall that we are restricted to a subspace
consisting of dark polaritons, |⇑〉A = D†A,↑|g · · · g〉 and

|⇓〉A = D†A,↓|g · · · g〉. Since gcolA,α � Ωα, the dark po-
laritons are predominantly composed of Rydberg excita-
tions. The atomic interactions, therefore, directly map
onto polariton interactions, irrespective of the precise
value of gcolA,α (which can depend on A due to atom-
number variations). Consequently, we are arrive at the
final polariton Hamiltonian

H =
∑
A6=B

tAB D†A,↑DA,↓D
†
B,↓DB,↑, (5)

which will be used to realize a topological flat band and a
fractional Chern insulator by tuning the site-dependent
interaction tAB .

Fractional quantum Hall states of Rydberg polari-
tons.—Thinking of |⇓〉 as vacuum and |⇑〉 as the pres-
ence of a hardcore boson, Eq. (5) describes the hopping
of such hardcore bosons. Following a recipe similar to
Ref. [3], the site-dependent parameters s, v, and w are
chosen to yield a lattice with a two-site unit cell. These
parameters, together with the direction of the quantiza-
tion axis ẑ relative to the spin lattice, are then tuned
[49] to achieve a topological flat band for the bosons, as
shown in Fig. 2(a). The band’s flatness (ratio of band
gap to band width) is ≈ 10, while its Chern number is
C = −1, meaning that the band is topological.

We now consider filling the band with bosons to a fill-
ing ν = 1/2, i.e. half a boson per unit cell. To show that
the hardcore interactions alone suffice to produce a frac-
tional Chern insulator, we diagonalized the Hamiltonian
(5) on a 6× 4 lattice with periodic boundary conditions
(we also verified that our results hold for an 8×4 lattice).
As shown in Fig. 2(b), we obtain the two-fold degenerate
ground state separated from the rest of the eigenstates
by a gap, consistent with the ν = 1/2 Laughlin state
on a torus [50]. As an additional diagnostic, we com-
pute the many-body Chern number. To do this, we nu-
merically calculate the ground-state wavefunction |Ψ〉 in
the presence of boundary-condition twists (θx, θy), which
are equivalent to inserting fluxes [1]. The many-body
Chern number, which is analogous to the Hall conduc-
tance, is then defined as σxy = 1

2π

´ ´
F (θx, θy)dθxdθy,

where the many-body Berry curvature is F (θx, θy) =
Im
(
〈∂θyΨ|∂θxΨ〉 − 〈∂θxΨ|∂θyΨ〉

)
. For both of our de-

generate ground states, we find σxy = −0.5, consistent
with the ν = 1/2 Laughlin state, or equivalently the
Kalmeyer-Laughlin chiral spin liquid [44, 45].

Experimental considerations.—Let us begin by empha-
sizing that in the simplest case where the polaritons have
a vanishing photonic component, we obtain a spin model
Eq. (4), where each spin state is a collective Rydberg ex-
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FIG. 2. (a) Topological flat band for Rydberg polaritons
(Chern number C = −1) featuring a flatness (band gap di-
vided by band width) ≈ 10. (b) Fractional Chern insulator
of Rydberg polaritons. For a 6 × 4 lattice with 6 particles
with periodic boundary conditions, the eigenstates in momen-
tum sector n2 + 4n1, where (kx, ky) = (n1/3, n2/2− n1/3)π,
n1 = 0, 1, 2, and n2 = 0, 1, 2, 3. The two degenerate ground
states (red) at (kx, ky) = (0, 0) and (0, π) are separated from
the other states by a gap.
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citation. The implementation of this purely atomic spin
model is a natural intermediate step towards the realiza-
tion of the polaritonic fractional Chern insulator, a step
that can make use of cavity modes for addressing indi-
vidual collective spins. Such a purely atomic implemen-
tation also works with a single atom per site, in which
case Eq. (1) immediately yields the desired spin Hamilto-
nian. Given the strength of Rydberg interactions, this is
a promising implementation of fractional Chern insula-
tors in optical lattices [51, 52] or microtrap arrays [53, 54].

The array of cavities can be created using arrays of mi-
crolenses [55] or spherical micromirrors [56]. For exam-
ple, as shown in Fig. 1(a), two microlens arrays enclosed
in a cavity with planar mirrors can support an array of
Gaussian modes. Using 69D3/2 and 70P3/2 of 87Rb for |↑〉
and |↓〉, an 85 µm lattice constant gives nearest-neighbor
dipole-dipole interactions Vdd/2π = 60 kHz, larger than
a reasonable cavity decay rate κ/2π ∼ 10 kHz [57] and
Rydberg decay rate . (2π)1 kHz. The waists of cav-
ity modes, which define the polaritons, are taken to be
< 10 µm, the blockade radius of our Rydberg states. The
control fields Ω↑,↓ can be spatially uniform and address
all sites globally. The auxiliary optical fields (Rabi fre-
quency Ωdr) used to create the dressed state |↑〉 are uni-
form over each site but differ between sites in the checker-
board fashion necessary to create the desired fractional
Chern insulator [49]. We then adopt the following lad-
der of energy scales: (Ωdr/2π = 10 MHz) � (Ω↑,↓/2π =
2 MHz) � (ωEIT/2π = 300 kHz) � (Vdd/2π = 60 kHz).
The condition Ωdr � Ω↑,↓ ensures that the control
fields couple to the dark states |↑〉 and |↓〉 but not to
the bright states. The condition Ω↑,↓ � ωEIT, with
ωEIT ∼ Ω2

↑,↓/|∆↑,↓| the EIT linewidth [39], arises from
the requirement |∆↑ − ∆↓| � Ω↓, which prevents two-
photon resonant coupling of E↑ to Ω↓ [49]. The condition
ωEIT � Vdd ensures that interactions do not violate EIT.

The preparation of the fractional Chern insulator state
can be achieved as follows. By changing the direction and
strength of the applied DC electric field, one first tunes
the interaction Hamiltonian to the part of the phase di-
agram where the ground state is a simple solid or su-
perfluid, in which each effective spin is in a well-defined
state. One then prepares the atomic state corresponding
to this solid or superfluid by introducing an appropri-
ate single collective Rydberg excitation onto each lattice
site [58]. By analogy with Ref. [26], this can be done by
relying on Rydberg blockade and driving a two-photon
transition to the Rydberg state, where the bottom leg of
the transition uses the cavity mode. The variations in
the collective Rabi frequency gcolA,α from one lattice site
to another can be mitigated by using adiabatic prepa-
ration [59, 60]. One then changes the parameters of the
Hamiltonian (by tuning the DC electric field strength and
direction) to adiabatically go across a phase transition
(believed to be continuous [61]) into the fractional Chern
insulator phase of collective Rydberg excitations. Finally,

the control fields are turned on to adiabatically convert
the Rydberg excitations S†↓ and S†↑ into polaritons |⇓〉
and |⇑〉, respectively. The addition of an auxiliary lat-
tice of qubits with fast decay may provide an alternative
elegantly preparation scheme and may further reduce the
effects of photon loss [10].

By analogy with Ref. [3], one detection approach
would attempt to flip the polaritons between |⇓〉 and
|⇑〉 with a variable detuning and variable spatial depen-
dence effectively realizing Bragg spectroscopy and pro-
viding the energy- and momentum-dependent spectral
function. The spectral function can, in turn, be used
to identify, for example, gapless chiral Luttinger liquids
on the edge [62, 63] and a spectral gap in the bulk. An-
other elegant detection approach, unique to the polari-
tonic fractional Chern insulators, relies on the retrieval
[47, 64] of the fractional Chern insulator state onto a

purely photonic state of E†↑ and E†↓ photons. Classical
and quantum correlations between the retrieved photons
could then be measured using quantum optics techniques
and compared to those of the desired fractional Chern
insulator [6]. Finally, an elegant combination of prepa-
ration and detection would involve first turning on all
dressing and control fields to create a “topological filter”
[6], and then sending single photons into each cavity; pro-
vided the incoming energy matches that of the fractional
Chern insulator, the photonic fractional Chern insulator
will be transmitted with probability determined by its
(small) overlap with the input.
Outlook.—While we have presented one of the most

conceptually straightforward implementations of one of
the simplest topological states, the ideas and methods
presented in this Letter point to strongly interacting Ry-
dberg polaritons as a very promising and powerful plat-
form for realizing interacting topological states of light.
In particular, it should be straightforward to extend to
Rydberg polaritons dipolar-spin-model implementations
[65, 66] of fractional Chern insulators in flat bands with
arbitrary Chern numbers [67, 68]. We also expect optical-
flux-lattice approaches [2] and approaches, in which the
role of time is played by the propagation direction [5], to
be extendable to light. It is also natural to consider trap-
ping ensembles of Rydberg atoms near arrays of optical-
ring resonators in order to harness the recently demon-
strated topological band structures in such systems [4]
for the creation of interacting topological states of light.

We used a separation of energy scales to provide a
controllable way of creating a long-range-entangled [69]
topological state of polaritons. At the same time, an ex-
perimentally more straightforward approach would con-
sist of a free-space setup, in which spatially inhomoge-
neous control fields give rise to propagating polaritons.
Our controllable creation of long-range-entangled topo-
logical states will motivate the study of this much more
complex problem, in which topological and other exotic
phenomena may manifest themselves in system dynam-
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ics.
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[38] R. O. Umucalõlar and I. Carusotto, Phys. Rev. Lett. 108,
206809 (2012).

[39] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev.
Mod. Phys. 77, 633 (2005).

[40] C. Guerlin, E. Brion, T. Esslinger, and K. Mølmer, Phys.
Rev. A 82, 053832 (2010).

[41] E. Brion, F. Carlier, V. M. Akulin, and K. Mølmer, Phys.
Rev. A 85, 042324 (2012).

[42] X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert,
and A.-C. Ji, Phys. Rev. Lett. 110, 090402 (2013).

[43] A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Us-
mani, A. Ourjoumtsev, and P. Grangier, New J. Phys.
16, 043020 (2014).

[44] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59,
2095 (1987).

[45] V. Kalmeyer and R. B. Laughlin, Phys. Rev. B 39, 11879
(1989).

[46] M. Fleischhauer, S. F. Yelin, and M. D. Lukin, Opt.
Comm. 179, 395 (2000).

[47] A. V. Gorshkov, A. André, M. D. Lukin, and A. S.
Sørensen, Phys. Rev. A 76, 033804 (2007).

[48] H. Weimer, N. Y. Yao, and M. D. Lukin, Phys. Rev. Lett.
110, 067601 (2013).

[49] See supplementary online material. ().
[50] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng,

Phys. Rev. Lett. 107, 146803 (2011).
[51] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,

A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch,
Nature (London) 491, 87 (2012).

[52] S. Zhang, F. Robicheaux, and M. Saffman, Phys. Rev. A
84, 043408 (2011).

[53] M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li,
S. Zhang, L. Isenhower, and M. Saffman, Phys. Rev. A
88, 013420 (2013).



6

[54] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo,
L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys,
Phys. Rev. X 4, 021034 (2014).

[55] R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer,
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SUPPLEMENTARY ONLINE MATERIAL:
DETAILS OF THE EXPERIMENTAL

IMPLEMENTATION IN 87RB

In this supplementary online material, we first present
the details of the experimental implementation in 87Rb,
including the construction of dressed states |↑〉 and |↓〉 in
Fig. 1 of the main text. We then present the dependence
of hopping amplitudes tAB in Eq. (5) of the main text
on dressing parameters s, v, and w, and give the values
of these parameters that were used to construct Fig. 2 of
the main text.

Expanding on Figs. 1(b,c) in the main text, on the ex-
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FIG. S1. Levels of 87Rb for generating the ⇑ (a) and ⇓ (b)
polaritons. In particular, |↑〉 = s |3〉+ v |4〉+w(|5〉+ |6〉)/

√
2,

while |↓〉 = (|2〉 − |1〉)/
√

2. All the labeled states, except
for |e↑〉 have mI = 3/2. Green and magenta are microwave
fields coupling Rydberg states to Rydberg states. Blue, red,
and orange are optical fields coupling 5P to 5S and to Ryd-
berg states. |g〉 = |F = 2,mF = 2〉 = |mJ = 1/2,mI = 3/2〉,
|e↓〉 = |F = 3,mF = 3〉 = |mJ = 3/2,mI = 3/2〉. The state
|s〉 in (b) is used virtually. The positions of Rydberg levels in
(b) relative to those in (a) are drawn to minimize the crowd-
ing of the figure: in reality, 69D3/2 lies between 70P3/2 and
71S1/2.

ample of 87Rb, Fig. S1 shows a detailed level structure
for constructing dressed states |↑〉 = s |3〉+v |4〉+w(|5〉+
|6〉)/

√
2 and |↓〉 = (|2〉 − |1〉)/

√
2 and for coupling these

states to quantized light fields to form |⇑〉 and |⇓〉 Ry-
dberg polaritons. By analogy with Ref. [3], the optical
Raman dressing beams coupling state |4〉 to state |5〉 and
state |3〉 to state |6〉 provide the required spatial depen-
dence (to be discussed below) of the dressing parameters
s, v, and w. All the remaining classical fields (control
fields Ω↑ and Ω↓, as well as microwave fields coupling
|5〉 to |6〉, |1〉 to |2〉, and |2〉 to |s〉) are spatially uni-
form. State |↑〉 in Fig. S1(a) (varying from site to site
in a checkerboard fashion as discussed below) is the dark
state of the Raman beams and the four microwave fields,
while state |↓〉 (same on all sites) in Fig. S1(b) is the
dark state of the four microwave fields. The |s〉 → |2〉
microwave field connects the odd-parity P-state |↓〉 to
the even-parity state 70S1/2, where the latter state is as-
sumed to be detuned (∆S � ∆↓) and is used virtually.

Let us now show explicitly how the Raman dress-
ing beams coupling state |5〉 to state |4〉 and state
|3〉 to state |6〉, together with the microwave dressing
fields coupling state |5〉 to state |6〉, can turn |↑〉 =
s |3〉 + v |4〉 + w(|5〉 + |6〉)/

√
2 into the dark state (for

any desired s, v, and w). In general, consider N
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“ground” states |g1〉 , . . . , |gN 〉 coupled to each other
with 2N − 2 control fields via N − 1 intermediate “ex-
cited” states |e1〉 , . . . , |eN 〉 according to the Hamiltonian

H =
∑N
j=1 |ej〉 (〈gj |Ωj,j + 〈gj+1|Ωj,j+1) + h.c. [70]. It

is clear that this Hamiltonian supports a unique zero-
energy dark state |D〉 =

∑
j cj |gj〉 made up of “ground”

states alone, where the amplitudes cj are set by cj/cj+1 =
−Ωj,j+1/Ωj,j and can be tuned to arbitrary values by
tuning the ratios of the Rabi frequencies. In the case of
|↑〉, the role of the 5 “ground” states is played by |4〉, |5〉,
|72S1/2,mJ = −1/2〉, |6〉, and |3〉, while the role of the
“excited” states is played by the 4 intermediate states.

We choose a DC electric field of 0.5 V/cm. At this
field, the energy difference ∆EStark between |1〉 and
|70P3/2,mJ =−1/2〉 is ≈ (2π)60 MHz (while the energy
difference between |4〉 and |5〉 is much larger ∼ (2π) 220
MHz). At the same time, this DC electric field is suffi-
ciently weak that the admixture of other states into bare
states |1〉, |4〉, and |5〉 remains small (. 0.2), justifying
the assumption of negligible induced dipole moments and
the use (see below) of transition dipole moments corre-
sponding to a vanishing electric field. With ∆EStark/2π
= 60 MHz, we have the following ladder of energy scales:
(∆EStark/2π = 60 MHz) � (Ωdr/2π = 10 MHz) �
(Ω↑,↓/2π = 2 MHz) � (ωEIT/2π = 300 kHz) �
(Vdd/2π = 60 kHz) � (κ/2π = 10 kHz). This ladder
ensures the following:

• The condition ∆EStark � Ωdr (where Ωdr is the
Rabi frequency of the optical and microwave dress-
ing fields) removes the degeneracy between Zee-
man levels with different |mJ |. This enables the
use of frequency selection for addressing desired
transitions. For example, this condition ensures
that the dressing lasers and microwaves do not
Raman-couple |3〉 to |4〉, or |70P3/2,mJ = −1/2〉
to |70P3/2,mJ = 1/2〉. The DC Stark shift also al-
lows us to avoid the two-photon resonant excitation
of |69D3/2,mJ = 3/2,mI =1/2〉 (instead of |3〉) by
Ω↑ since |mJ = 3/2〉 moves out of two-photon res-
onance.

• The condition Ωdr � Ω↑/↓ ensures that the control
fields couple to the dark states |↑〉 and |↓〉 created
by the dressing fields, but not to the bright states.

• The condition Ω↑/↓ � ωEIT (where ωEIT ∼
Ω2
↑,↓/∆↑,↓ is the EIT linewidth [39]) arises from

the requirement |∆↑ − ∆↓| � Ω↓, which prevents
two-photon resonant coupling of E↑ to Ω↓. Specif-
ically, we take ∆↑ = −∆↓ = (2π)10 MHz. Optical
elements can then be used to ensure that E↑ and
E↓ (whose frequencies ω1,↑ and ω1,↓ thus differ by
(2π)20 MHz) are resonant with cavity modes at
their respective polarizations.

• The condition ωEIT � Vdd ensures that the inter-
actions are not strong enough to violate EIT and

compromise dark-state polaritons.

• Finally, the condition Vdd � κ ensures that the
Hamiltonian responsible for the fractional Chern
insulator operates on an energy scale larger than
the rate at which photons leak out of the cavity.
Decay rates at the 10 kHz level are reasonable [57].

It is worth pointing out that, at room temperature, the
decay rates of the Rydberg states involved (69D, 70S,
and 70P) are γR . (2π)1 kHz [71], making these rates
negligible compared to Vdd. It is also worth noting that
the implementation of the purely atomic fractional Chern
insulator via Eq. (4) requires a much simpler ladder
of energy scales since the control Rabi frequency, the
EIT linewidth, and cavity decay rate no longer enter:
∆EStark � Ωdr � Vdd � γR.

To derive Eq. (4) in the main text, we assumed
that, for any atom j on site A, the condition
[sin(ω1,↑zj/c)/ sin(ω1,↓zj/c)] exp[i(ω2,↑ − ω2,↓)zj/c] ≈ 1
holds up to an A-dependent phase. We now verify this
condition. On a given site, zj varies at most by the
thickness of the atomic cloud, which needs to be smaller
than the Rydberg blockade radius, ≈ 10 µm, in or-
der to ensure an intra-site excitation blockade. Hence,
exp[i(ω2,↑ − ω2,↓)zj/c] will not vary appreciably with j
since |ω2,↑ − ω2,↓| ≈ (2π)17 GHz, which is the energy
separation between 70S and 69D. Now |ω1,↑ − ω1,↓| =
|∆↑ − ∆↓| = (2π)20 MHz, while ω1,↑ = (2π)384 THz
(i.e. the D2 line in 87Rb). Thus, as long as the cav-
ity length is less than ≈ 10 cm, the two modes get
< 0.01 out of phase with each other, ensuring that
[sin(ω1,↑zj/c)/ sin(ω1,↓zj/c)] ≈ 1.

We now derive the dependence of tAB in Eq. (5) on
the dressing parameters s, v, and w. Let d be the
dipole-moment operator, so that d0 = dz and d± =
∓(dx ± idy)/

√
2 are the three components of the cor-

responding irreducible spherical tensor. Then, from the
Wigner-Eckardt theorem, referring to Fig. 1(b) in the
main text, −〈5| d0 |1〉 = 〈6| d0 |2〉 = µ26 = d

√
3/5 and

−〈4| d+ |1〉 = 〈3| d− |2〉 = µ23 = d
√

2/5 for some re-
duced matrix element d. Taking R to be the distance
between Rydberg atoms i ∈ A and j ∈ B and dividing
by 1/(4πε0R

3), the dipole-dipole Hamiltonian between
spins i and j becomes

Hij = (1− 3 cos2 θ)(d0i d
0
j + 1

2 (d+i d
−
j + d−i d

+
j ))

− 3
2 sin2 θ

[
e−2iφd+i d

+
j + h.c.

]
, (S1)

→ (1− 3 cos2 θ)
[
µ2
26(|51〉 〈15|+ |62〉 〈26| − |61〉 〈25|

− |52〉 〈16|)− 1
2µ

2
23(|32〉 〈23|+ |41〉 〈14|)

]
(S2)

− 3
2 sin2 θ

[
e−2iφµ2

23(|42〉 〈13|+ |24〉 〈31|)
]

+ h.c.

→ tijσ
i
↑↓σ

j
↓↑ + h.c., (S3)
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a b

X

Y

FIG. S2. Checkerboard lattice used to create the fractional
Chern insulator. The parameters s, v, and w used to define
|↑〉 are different on the two sublattices (a and b). In addition,
the sign of wa and wb alternates every other row (not shown).

where

tij = (1− 3 cos2 θ)(µ2
26w
∗
iwj − 1

4µ
2
23(s∗i sj + v∗i vj))

+
3

4
sin2 θµ2

23(e−2iφv∗i sj + e2iφvjs
∗
i ) (S4)

and where the first “→” projects the Hamiltonian onto
states |1〉 through |6〉, while the second “→” projects the
Hamiltonian onto states |↑〉 and |↓〉. The first projection
is dictated by energy conservation and relies on the fact
that the strength of dipole-dipole interaction between two

sites is smaller than the splitting between different |mJ |
introduced by the DC electric field [70, 72, 73]. The
second projection is also dictated by energy conservation
and relies on the fact that the auxiliary dressing fields
used to define |↑〉 and |↓〉 split these two (dark) states
from all the other (bright) states by an energy larger
than the strength of dipole-dipole interaction between
two sites [70, 72, 73].

Finally, we present the specific values of s, v, and w
that were used to obtain Fig. 2 in the main text. As
in Ref. [3], we consider a checker-board lattice, shown
in Fig. S2, consisting of an a sublattice and a b sub-
lattice, so that parameters s, v, and w are different on
the two sublattices. Specifically, we parameterize sa/b =

sin(αa/b) sin(θa/b), va/b = sin(αa/b) cos(θa/b)e
iφa/b ,

wa/b = cos(αa/b)e
iγa/b . For Fig. 2 in the

main text, we chose {θa, θb, φa, φb, αa, αb, γa, γb} =
{0.87, 1.01, 2.79, 3.44, 2.37, 1.31, 4.71, 6.35}. We make a
further modification by changing the sign of wa and wb
every other row. Without increasing the size of the unit
cell (2 sites), this modification plays an important role
in allowing us to flatten the topological band. Finally, in
Fig. 2 of the main text, Θ0 = 0.68 and Φ0 = 2.60 are, re-
spectively, the polar and the azimuthal angles of the DC
electric field (ẑ) in the coordinate system determined by
the X-Y plane in which the square lattice is sitting.


